

1 **Use of ISO 22157 Mechanical Test Methods and the Characterisation of Brazilian *P. edulis* bamboo**

2 Christian Gauss¹, Holmer Savastano Jr.² and Kent A Harries³

3

4

5 **Abstract**

6 The characterisation of Brazilian *P. edulis* bamboo is presented as an example of the adoption of ISO
7 22157 test methods. Using digital imaging correlation (DIC), the behaviour of the bamboo material
8 subject to mechanical tests, their interaction with boundary conditions, and the progression of
9 damage during testing is illustrated. The DIC helped to identify and quantify specimen behaviour,
10 particularly in the presence of a node. Nodes are shown to have a significant local effect on
11 behaviour which can be mostly disregarded in compression and shear but are a weak link in tension.
12 This behaviour is described as an artefact of the morphology of the bamboo fibres in the nodal
13 regions. Specimen damage development was also described by DIC and the adoption of the limit of
14 proportionality (LOP) as a measure of useful material capacity proposed. Additional
15 recommendations related to the adoption of ISO 22157 are presented.

16

17 **Keywords**

18 Bamboo, Digital Image Correlation, *Phyllostachys edulis*, Test Methods

19

20

¹ PhD Candidate, University of São Paulo, Brazil; Visiting Scholar, University of Pittsburgh; gausschr@usp.br

² Professor, University of São Paulo; holmers@usp.br

³ Professor, University of Pittsburgh; kharries@pitt.edu

21 **1. Introduction**

22 In 2004, the International Organisation for Standardisation (ISO) promulgated ISO 22157:2004
23 *Bamboo – Determination of physical and Mechanical Properties*. The development of this test
24 methods Standard (ISO 22157-1:2004) and accompanying *Laboratory Manual* (ISO 22157-1:2004)
25 had as its aim “to bring bamboo towards the level of an internationally recognised and accepted
26 building material and engineering material... in favour of the well-being of lower income groups in
27 developing countries, and in favour of a better environment in bamboo-growing countries.” The
28 development of ISO 22157:2004 initiated as early as 1988 and the initial draft, established in 1998
29 (INBAR 1999), was the work of a handful of dedicated individuals – who are dutifully acknowledged
30 in the 2004 ISO Standard. The accompanying Laboratory Manual has as its aim “to give a practical
31 ‘how to do’ explanation on how to perform tests according in the ISO 22157-1.”. Since 2004, ISO
32 22157:2004 has been used internationally, formally adopted by at least eight⁴ countries and
33 anecdotally known to be used more broadly. While an imperfect measure of industry penetration
34 and use, as of July 2019, Google Scholar identifies 291 citations on searches of “ISO 22157” and “ISO
35 Standard 22157”. In 2019, a significantly revised ISO 22157:2019 was published and the *Laboratory*
36 *Manual* withdrawn.

37 ISO 22157:2004 includes four mechanical property tests: a) full-culm longitudinal compressive
38 strength; b) longitudinal tensile strength using a “dogbone” specimen taken from the culm wall; c)
39 flexural capacity based on a three-point bend test of a long length of culm; and d) longitudinal shear
40 using the “bowtie test” (Janssen 1981). The Standard also provides guidelines for determining
41 moisture content by drying, mass by volume, and shrinkage of bamboo.

42 The recently revised version, ISO 22157:2019, leveraged the considerable recent experience with
43 bamboo materials which partially stemmed from the 2004 publication of ISO 22157. The 2019
44 revision added two mechanical property tests: e) tension perpendicular to fibres (Mitch et al. 2010);
45 and f) bending perpendicular to fibres (so-called circumferential compression) (Sharma et al. 2012).

46 In addition, moisture content by calibrated moisture meter and mass by culm length were added
47 and existing mechanical tests (a) through d), above) were extensively revised. The 2004 method for
48 determining shrinkage was withdrawn as a method that could not be practically performed.

49 Other mechanical test methods often used for bamboo materials but not [yet] included in ISO 22157
50 include g) interlaminar shear by tension (INBAR 1999; Moreira 1991); h) perpendicular shear (Cruz
51 2002); i) pin shear (Janssen 1981; Sharma 2010); j) flat-ring flexure (Virgo et al. 2018); and, k) small

⁴ Colombia (NTC 5525), Ecuador (NTE INEN-ISO(DIS) 22157, Jamaica (JS ISO 22157), Vietnam (TCVN 8168), the Philippines (PNS ISO 22157), Netherlands (NEN-ISO 22157), Peru (Norma ISO/TC165/N315), India (IS 6874)

52 sample flexure (based on ASTM D7264 test method). A summary review of mechanical test methods
53 a) through i) is provided in (Harries et al. 2012).

54 **1.1 Selection of Bamboo Materials Test Methods**

55 Those conducting material tests of bamboo may have limited access to complex test apparatuses.
56 Nonetheless, “standard” testing needs to be just that: standard. Repeatability and minimising inter-
57 laboratory variation to the greatest extent possible is critical so that a description of bamboo
58 materials is as uniform as possible: creating a *lingua franca* among practitioners, as it were (Harries
59 et al. 2019). Simple test methods are those that a) require minimal specimen preparation; b) do not
60 require a complex test apparatus; and, c) are based on applying compression forces (Harries et al.
61 2012). Due to the dimensional variability and curved shape of bamboo, extracted test specimens are
62 often not symmetric or require some of the material to be lost during specimen fabrication; in a
63 functionally graded material such as bamboo, this may result in test specimens that do not represent
64 the material as it is used *in situ*. Thus full-culm section specimens should be preferred for obtaining
65 material properties reflective of *in situ* properties. A simple test apparatus will mitigate operator bias
66 and accommodate the variable geometry of bamboo specimens. Finally, compression-based tests
67 are simple to conduct and can often be carried out with quite fundamental instrumentation
68 (Glucksman and Harries 2015). Tension-based tests, on the other hand, require fixtures to interface
69 with the highly anisotropic bamboo that can bias test results.

70 **1.2 Objectives of Study**

71 The objective of this paper is to describe the use of bamboo material characterisation tests and
72 identify some factors affecting the performance of these. Using digital image correlation (DIC), the
73 behaviour of the tests specimens, their interaction with boundary conditions, and the progression of
74 damage during testing is illustrated. Understanding specimen behaviour will lead to more robust
75 mechanical testing practice. In addressing these objectives, an example of the mechanical
76 characterisation of a batch of Brazilian *P. edulis* is described.

77 **2. Bamboo Materials**

78 *Phyllostachys edulis* (Moso) bamboo was obtained from a supplier near Sao Paulo, Brazil.
79 Approximately 140 culms between 3 and 5 years of age were harvested and subsequently treated
80 (as described by Gauss (2019)) from which 4 m long poles were extracted. The diameters ranged
81 from 80 to 100 mm, wall thickness from 6 to 9 mm and the average oven-dry density prior to
82 treatment was 760 kg/m³. Image analysis determined an average fibre bundle content of 29%.
83 The bamboo reported in this study was also subject of a study of treatment processes (Gauss 2019).
84 The specimens were treated in one of the following manners:

85 • culms were treated with chromated copper borate (CCB) in a pressure vessel using a vacuum (-
86 600 mmHg for 30 min.) – pressure (10 kgf/cm² for 60 min.) – vacuum (-600 mmHg for 30 min.)
87 process.

88 • culms were treated by seven- to ten-day immersion in an 8% concentration of agricultural grade
89 disodium octaborate tetrahydrate (DOT).

90 Description of the treatment study is presented in Gauss et al. (2019). Analysis of variation (ANOVA)
91 of all data indicated that the effect of the treatment conditions had no significant effect on the
92 mechanical properties of bamboo. All mechanical properties reported in this study were found to fall
93 within the 95% confidence interval band and have a normal distribution irrespective of treatment.
94 Therefore, in support of the objectives of this paper, data from the treatment processes have been
95 combined. The density of the treated *P. edulis* specimens was found to be 810 kg/m³ (COV = 0.05),
96 also using the method of ISO 22157:2019. For all tests, moisture content at the time of testing was
97 determined using the oven-method of ISO 22157:2019 and ranged from 7% to 10%.

98 **3. Test Methods**

99 Test specimen sampling was random within the batch described (resulting in 17 poles from the batch
100 of 140). Full culm section specimens were used for compression and shear tests while machined
101 coupons were used for tension and small coupon bending.

102 **3.1 Full culm compression parallel to fibres**

103 Full culm compression tests based on that prescribed by ISO 22157:2019 were conducted. Apart
104 from some minor revisions (none affecting the samples tested in this study), the conduct of this test
105 is the same as ISO 22157:2004. ISO 22157 specifies “The length of the specimen shall be taken as the
106 lesser of the outer diameter, *D*, or 10 times the wall thickness, 10*t*. For the *P. edulis* specimens
107 reported these values were essentially the same: the average values of *D* and *t* of the compression
108 specimens were 78.3 mm (COV = 0.04) and 7.23 mm (COV = 0.09), respectively. For this study,
109 specimen length (77.9 mm; COV = 0.04) was taken as the culm diameter, in all cases. ISO 22157:2019
110 requires an “intermediate layer” be placed at both ends of the specimen in order to minimise
111 friction, causing radial restraint of the specimen ends. Compliant with ISO 22157:2019, sulphur
112 ‘capping compound’ was used as shown in Figure 1a. Applied load was determined from the test
113 machine load cell and all other strain data was determined using digital image correlation (DIC)
114 techniques described below. A total of 55 specimens, 41 internode and 14 with a node at their mid
115 height, were tested.

116 Compression strength parallel to the fibres is calculated from test results as:

$$117 f_c = P/A_{culm}$$

[1]

118 In which P is the applied axial load and $A_{culm} = \pi/4 \times [D^2 - (D - 2t)^2]$ is the cross sectional area of the
119 culm. Compression modulus, E_c , is determined from DIC analysis.

120 **3.2 Full culm shear parallel to fibres**

121 The so-called 'bowtie' shear test was developed by Janssen (1981) and is standardised in ISO
122 22157:2019. Apart from a minor revision (again, not affecting the samples tested in this study) this
123 test is identical to the ISO 22157:2004. In this test (Figure 1b), the full culm specimen (having the
124 same dimensional requirements as the compression test) is supported at its lower end over two
125 opposing quadrants, and loaded at its upper end over the other two opposing quadrants. In this
126 manner, loading the specimen results in four shear areas (a typical failure is seen in Figure 1b).
127 Specimens were generally sampled immediately adjacent compression specimens, therefore
128 dimensions are essentially identical: average specimen length was 77.3 mm (COV = 0.03) and
129 diameter and culm thickness were 78.1 mm (COV = 0.03) and 7.28 mm (COV = 0.08), respectively.
130 Applied load was determined from the test machine load cell and all other strain data was
131 determined using DIC. A total of 49 specimens, 36 internode and 13 with a node at their mid height,
132 were tested.

133 Shear strength parallel to the fibres is calculated from test results as:

134
$$f_v = P/4Lt \quad [2]$$

135 In which P is the applied load and $L \times t$ is the area of each shear plane (L is specimen length and t is
136 culm wall thickness). The test is controlled by the first shear plane to fail and therefore f_v is interpreted
137 as the lower bound shear strength. Shear modulus, G , is determined from DIC analysis.

138 **3.3 Tension parallel to fibres test**

139 Significant revisions were made to the ISO 22157 tension test between 2004 and 2019. In ISO
140 22157:2019 the specimen orientation as it is cut from the culm and subsequently tabbed is specified
141 (as seen in Figure 1c). Additionally, rotationally-restrained boundary conditions of the test machine
142 were as specified in ISO 22157:2019. Both specimen orientation and boundary conditions were
143 shown by Richard and Harries (2015) to significantly impact tension test results due to the graded
144 nature of the culm wall. ISO 22157:2019 standardises these parameters; the present tests are
145 compliant with ISO 22157:2019.

146 Specimens were extracted from culm walls as shown in Figure 1c. The average wall thickness, t =
147 7.07 mm (COV = 0.10) and the average specimen breadth, b = 2.68 mm (COV = 0.16). All specimens
148 were 200 mm long and had a gauge length of 100 mm as shown in Figure 1c. Applied load was
149 determined from the test machine load cell. In addition to DIC, an external 50 mm gauge length
150 extensometer (seen in Figure 1c) was used to determine tensile modulus and validate DIC data. A

151 total of 84 specimens, 57 internode and 27 with a node in the middle of the gauge length, were
152 tested.

153 Tension strength parallel to the fibres is calculated from test results as:

154
$$f_t = P/A \quad [3]$$

155 in which P is the applied axial load and $A = bt$ is the cross-sectional area of the gauge length of the
156 specimen. Tension modulus, E_t , is determined from DIC analysis or using an external extensometer
157 as:

158
$$E_t = \Delta f_t / \Delta \varepsilon \quad [4]$$

159 Where the change in stress (f_t) and measured strain (ε) is taken only between two points in the
160 elastic region of behaviour (i.e., below any observed limit of proportionality).

161 **3.4 Small coupon bending**

162 ISO 22157 promulgates a full-culm bending test but not a small coupon bending test. The full-culm
163 test can be difficult to conduct – requiring a long specimen (a minimum span length of $30D$ is
164 prescribed) which corresponds to large deflections requiring a versatile test arrangement and a
165 series of ‘saddles’ to conduct the test. Additionally, ISO 22157 is silent on how taper (D and/or t)
166 over the long specimen length should be limited and how this will affect results. Richard et al. (2017)
167 argue that even at a length of $30D$, the ISO 22157 full-culm flexure test does not determine modulus
168 of rupture, but rather the member flexural capacity of the culm being tested. This capacity is rarely
169 governed by compression or tension behaviour but is most always governed by longitudinal shear of
170 the culm in flexure which itself is a mixed mode of failure due to the stress state of the culm. Trujillo
171 et al. (2017) proposed that the full-culm flexure test is appropriate for grading schema (ISO
172 19624:2018) based on member capacity. Nonetheless, the test does not provide a meaningful stress
173 that may be used in a stress-based design.

174 For these reasons, like some other researchers (e.g., Gottron et al. 2014; Richard et al. 2017), a small
175 coupon flexural test is adopted. In the longitudinal direction, bamboo is often described as a
176 unidirectional fibre-reinforced material. For this reason, *ASTM D7264 – 15 Standard Test Method for*
177 *Flexural Properties of Polymer Matrix Composite Materials* was adopted. A three-point bending test
178 (Figure 1d; ASTM D7264 Procedure A) was selected in order to maximise the test shear span and
179 therefore minimise the effects of shear.

180 Bending specimens were extracted from culm walls as shown in Figure 1c. However, for flexure, b is
181 greater than t and bending is about an axis perpendicular to the dimension t . Due the curvature of
182 the culm wall, the coupons are sanded flat in their through-thickness direction. The average
183 resulting specimen dimensions were, $t = 6.57$ mm (COV = 0.08) and $b = 9.95$ mm (COV = 0.06).
184 Coupons were 200 mm long and tested in three-point bending over a span length of 160 mm. The

185 average shear span to depth ratio exceeded 10 in every test (average was 12.3 (COV = 0.09)); this
186 exceeds the minimum recommended ratio of 8 (ASTM D7264).

187 Two test orientations are possible (Figure 1d) resulting the outer culm wall being in compression
188 (OC) or in tension (OT); 54 tests of the former and 10 of the latter were conducted. In addition, 24
189 specimens having a node at midspan were tested; these were conducted in the OC orientation in
190 every case.

191 The modulus of rupture based on an assumption of a homogeneous material is determined as:

$$f_r = 3PL/2bt^2 \quad [5]$$

193 Where P is the maximum applied load at midspan, L is the simple test span and b and t are specimen
194 width and depth, respectively.

195 The apparent axial modulus of the homogeneous specimen derived from bending, E_f , is determined
196 from the midspan displacement, Δ . For three-point bending:

$$E_f = PL^3/4\Delta bt^3 \quad [6]$$

198 More complex analysis of the test is possible using data from DIC; this will be described in the
199 discussion of results, below.

200 **3.5 Digital image correlation**

201 Digital image correlation (DIC) is a well-established contact-free means of obtaining full-field surface
202 deformations (and therefore strains). Specimens are painted with a speckle pattern prior to testing
203 (photocopier toner broadcast onto wet white spray paint, the result is seen in Figure 1a). During the
204 test, consecutive high-resolution images (2448 x 2049 pixels) are taken every 0.5 sec. and
205 deformation patterns (based on sampling of the speckle pattern) are recorded. Post-processing
206 allows relative displacements and specified strain fields to be obtained in three dimensions. The
207 system used in this study is a VIC-3D dual camera system and DIC processing software (Correlated
208 Solutions). The advantage of a dual camera system when viewing full-culm bamboo is that the strain
209 field can be accurately obtained on the curved surface of the bamboo. The resolution of DIC data is a
210 function of the field of view and camera resolution. For the small material samples tested in this
211 study, theoretical strain resolution better than 1 microstrain is obtained; nonetheless strains are
212 reported with a precision of 10 microstrain. Subsequent figures show a variety of DIC-obtained
213 images that will be discussed below.

214 **4. Test Results**

215 ANOVA analysis of all data (Gauss 2019) indicated that mechanical properties reported in this study
216 were found to fall within the 95% confidence interval band for having a normal distribution.

217 **4.1 Full culm compression parallel to fibres**

218 A summary of full culm compression test results is given in Table 1. Representative compressive
219 stress versus strain data is shown Figure 2a. The strain shown in Figure 2 is obtained by DIC as the
220 axial (longitudinal) strain ‘averaged’ over a vertical section (shown by dotted lines in Figures 2b and
221 2c). As is typical with a correctly executed test, the stress-strain behaviour shown in Figure 2a is
222 essentially linear to failure. The strain fields at lower load levels are uniform over the specimen. As
223 the stress approaches ultimate, restraint from the loading platens results in larger axial strains near
224 the middle of the specimen (Figure 2b); typically, the specimen will bulge-out at this location and
225 eventually split. Once split, the slope of the compression stress-strain curve (i.e. compression
226 stiffness) will typically become negligible (Figure 2a, post peak behaviour). The effect of the initiation
227 of splitting is seen in Figure 2b: near the bottom of the specimen to the right of the dotted line, a
228 small region of low axial strain is forming. Nonlinear behaviour may also result from uneven loading
229 of the culm end; this was generally not seen in this study since sulphur capping compound was used.
230 Using a sulphur capping compound (as is used for testing reinforced concrete cylinders) largely
231 addresses uneven loading as the capping results in uniform distribution of force to the culm and, if
232 done correctly, results in parallel specimen end surfaces. The capping compound provides a low
233 friction interface and relatively little lateral restraint from the thin layer of material. To minimise
234 restraint, once capped, the capping material covering the culm annulus can be broken away leaving
235 only the culm walls capped.

236 The limit of proportionality (LOP) is defined as the limit of observed elastic behaviour (see Figure 2a
237 for example). A relatively high LOP indicates a good test procedure likely to yield a representative
238 value of bamboo compression strength. As described above, behaviour beyond the LOP, is indicative
239 of other mechanisms of failure.

240 As shown in Table 1, neither compression capacity, modulus of elasticity or LOP are affected by the
241 presence of a node. Indeed, considering the natural variation present, tests with and without nodes
242 cannot be statistically distinguished (see unpaired t-test *p*-values shown in Table 1). Locally,
243 however, the node is seen to be stiffer than the surrounding internode region. As seen in Figure 2c,
244 the local compressive strain at the node is to about one half the average strain over the height of the
245 specimen. The behaviour affected by the presence of the node is discussed further below.

246 **4.2 Full culm shear parallel to fibres**

247 A summary of shear test results is given in Table 2. Representative shear stress versus strain data is
248 shown Figure 3a. The strain shown in Figure 3 is obtained by DIC along one of the four shear planes.
249 At lower stress levels, the shear strain is relatively uniformly distributed along the height of the
250 specimen. Similar to compression tests, as the LOP is exceeded, the shear strains tend to increase
251 near the loading platens where the shear cracks and eventual failures initiate. This behaviour results

252 from the stress concentrations at the edges of the loading platens and is clearly seen in Figure 3b
253 where the strain at the top and bottom of the specimen is about 40% greater than at mid-height.
254 Due to this stress concentration, the LOP is lower in the shear tests than in compression. Also similar
255 to the compression tests, the presence of the node has no significant effect on the measured
256 capacity (p -values, Table 2) and a stiffening effect on the local shear response (Figure 3c).

257 **4.3 Tension parallel to fibres test**

258 A summary of tension test results is given in Table 3. Representative tension stress versus strain data
259 is shown Figure 4a. The preference for the through-culm wall orientation tested using rotationally-
260 restrained boundary conditions (Richard and Harries 2015) is evident in Figure 4a. There is no
261 apparent strain gradient across or along the 100 mm gauge length. The solid data points in Figure
262 4b, showing the axial strain along the middle 40 mm gauge length indicate some variation but no
263 gradient along the gauge length. The efficacy of the DIC data is validated by the data from the
264 external extensometer from which the average strain over a 50 mm gauge length is determined. the
265 behaviour is essentially linear to a brittle failure; there is no marked difference between LOP and
266 failure. This lack of nonlinearity – even near failure – indicates a failure dominated by fibre rupture.
267 The effect that the presence of a node has on the tension behaviour is dramatic. In this study, the
268 tensile capacity with a node is approximately 36% of the internode counterpart. While stiffness over
269 the gauge length (including the node) is reduced, the local stiffness of the node itself is significantly
270 lower. As seen in Figure 4b, the strain at the node increases about four times over the strain in the
271 adjacent internodes. The behaviour affected by the presence of the node is discussed further below.

272 **4.4 Small coupon bending**

273 A summary of coupon bending test results is given in Table 4; these results assume gross sections
274 properties and homogenous material properties and should be interpreted as being ‘average’
275 properties for a cross section. Representative flexural stress versus extreme fibre strain data is
276 shown in Figure 5a. Bending behaviour is clearly different for OC and OT orientation (p -values in
277 Table 4) and the behaviour is more nonlinear (especially for OT); having a lower LOP than previous
278 tests types. As an additional measure of this behaviour, the cumulative energy (or specific energy),
279 SE , taken as the area under the stress-extreme fibre strain curve is also given in Table 4.
280 From extreme fibre strains, shown in Figure 5b, the behaviour of the specimens becomes evident.
281 For both OC and OT specimens, flexure is described by a softer nonlinear response of the
282 compression zone and a stiffer tension behaviour having a higher LOP. The greater nonlinearity
283 observed in the compression strains indicates more local damage in the matrix-dominated
284 compression zone. Compression behaviour drives the failure of OT specimens which are generally
285 unable to develop large tensile strains despite the culm wall being oriented such that the greater

286 fibre density is in tension. Based on observation, it appears that OC specimen failure is driven by
287 excessive tensile strains resulting in failure of the relative lightly 'fibre reinforced' tension zone.
288 Bending tests having a node a midspan are very clearly dominated by the poor tensile behaviour of
289 the node as is discussed below.

290 **4.4.1 Assessing "Real" Bending Behaviour**

291 The difference in tensile and compression behaviour in flexure results in a shift in the neutral axis of
292 the specimen toward the stiffer outer culm wall; this is illustrated in Figures 5c and 5d for
293 representative OC and OT specimens, respectively. This shift reflects the differences in compressive
294 and tensile stiffness resulting from a) the varying fibre density in the culm wall; and b) the different
295 tension and compression behaviour associated with the fibres themselves. If the strain distribution
296 through the culm wall can be determined as is the case using DIC, the actual behaviour of the culm
297 wall in flexure can be determined. Assuming a linear strain distribution (Figures 5c and 5d), the
298 moment applied to the coupon, M , is resisted by a tension-compression couple having a lever arm
299 equal to $(2/3)t$. From equilibrium, and the recorded extreme fibre strains, ε_T and ε_C , the tensile and
300 compression moduli can be determined:

301
$$E_{TF} = 3M/t\bar{y}\varepsilon_T \quad [7]$$

302
$$E_{CF} = 3M/t(t - \bar{y})\varepsilon_C \quad [8]$$

303 Where $\bar{y} = t\varepsilon_T/(\varepsilon_T - \varepsilon_C)$ is the location of the neutral axis (relative to the tensile face of the coupon).
304 The approach using Equations 7 and 8, however is effected by a number of test parameters and is
305 only practical when sufficiently robust strain data is available. In three-point flexure, the recorded
306 strain at the compression face is significantly impacted by local deformation caused by the
307 application of the load and local strains in this region are unreliable. Using four-point flexure, having
308 a constant moment region, addresses this issue but such tests are limited by available internode
309 length and the need to have a shear span to depth ratio greater than 8. The utility of E_{TF} and E_{CF} in
310 practice is also limited. For this reason, the use of f_r (Eq. 5) is believed sufficient to represent the
311 flexural behaviour of small coupon bending samples.

312 **5. Effect of Node**

313 In compression and shear, the presence of a node in the test specimen has a local stiffening effect.
314 This is attributed to the reduction in unidirectional fibre alignment and the thickening of the culm
315 wall in the nodal region (Figure 6). In the node, the bamboo fibres are shorter (Liese 1998) than in
316 the internode. Additionally, as many fibre bundles simply pass through the node, others rearrange
317 themselves into the sheath (outwards) and diaphragm (inwards) (Liese 1998). Liese illustrates the
318 rearrangement of the vessels (vascular anastomoses) in the nodal region (Figure 6); the 'vascular
319 skeleton' supporting the primary vessels also becomes more isotropic. The total fibre volume in P .

320 *edulis* is typically less than 30% and, in general, fibre volume in other species rarely exceeds 40%
321 (Akinbade et al. 2019). As a result, both compression and shear in the longitudinal direction are
322 matrix-dominated behaviours. As the fibres become less unidirectionally aligned in the node, there is
323 a natural stiffening effect as fibres now reinforce the weaker parenchyma matrix in directions other
324 than longitudinal. The additional section thickness at the node further reinforces the behaviour
325 resulting in a stiffer response. The local stiffening effect has no statistically significant effect on the
326 global, or specimen stiffness as illustrated in Tables 1 and 2.

327 The same bamboo node morphology results in a softening of the fibre-dominated tension behaviour;
328 this is evident in Table 3 and Figure 4, reporting direct tension results. However, the same
329 mechanism also drives the small coupon bending tests in which a node is included. The presence of
330 the node dominates the tension behaviour of the flexural specimen leading to a brittle failure. Unlike
331 in compression, in tension the node becomes a 'weak link'. The strains shown in Figure 5b illustrate
332 this dramatically, where then tension strain increases essentially unbounded while the compression
333 strain has considerable reserve capacity (In Figure 5b, the compression strain has barely achieved
334 half that observed in the OC or OT specimens without a node).

335 **6. Characteristic Properties of *P.edulis***

336 The average mechanical properties determined for the Brazilian *P. edulis* tested are summarised in
337 Table 5 and shown (indicating one standard deviation) in Figure 7. In Table 5 these are compared to
338 other such data reported in the literature and seem to be in general agreement. The characteristic
339 design strengths that resulted from this study are also summarised in Table 5. These values are
340 defined as the 5th percentile value determined with 75% confidence (ISO 22156:2004; ISO
341 22156:2019) and are calculated for data having a normal distribution as:

$$342 f_{ik} = f_{i\ average} - K \times \text{standard deviation of } f_i \quad [9]$$

343 Where K is the confidence level factor associated with the confidence interval (75%), data percentile
344 (5%) and the number of samples tested (n). Values of K are tabulated in multiple sources; the tables
345 included in ASTM D2715 were used in the present study. For a test series having $n = 50$, $K = 1.811$.
346 Stiffness values used in design are conventionally the mean value established with 75% confidence
347 (ISO CD 22156:2019) calculated for data having a normal distribution as:

$$348 E_{ik} = E_{i\ average} - 1.15 \times \text{standard deviation of } E_i \quad [10]$$

349 The characteristic values apply only to the batch of *P. edulis* tested. The relatively high characteristic
350 values reflect the low variation observed in the tests. Coefficient of variation (COV) for both strength
351 and modulus of elasticity remained below 0.11 in all performed tests. The process of testing
352 illustrated in this paper reflects what is required to establish characteristic design values which may
353 be then used to grade the batch of bamboo (ISO 19624:2018).

354 **6.1 Minimising Material Damage in Bamboo Design**

355 While the characteristic values of strength are conventionally used in design (ISO 22156:2004; ISO
356 CD 22156:2019), the application of the limit of proportionality (LOP) may be more appropriate since
357 exceeding this limit is associated with damage and material degradation. Additionally, stipulating the
358 LOP as the design value of interest is consistent with the use of the modulus of elasticity which is
359 calculated at strains below the LOP. The average LOP values and associated characteristic values (Eq.
360 9) are summarised in Table 5. The authors argue, that these are the appropriate values of stress for
361 use in design.

362 **7. Conclusions and Recommendations**

363 The characterisation of Brazilian *P. edulis* bamboo is presented as an example of the adoption of ISO
364 22157 test methods. The efficacy of and parameters affecting the test specimen behaviour were
365 investigated using digital image correlation (DIC) techniques. The DIC helped to identify and quantify
366 specimen behaviour, particularly in the presence of a node. In particular, nodes are shown to have a
367 significant local effect on behaviour. In compression and shear, the presence of a node has little
368 impact. In tension, however, the node is a 'weak link' significantly reducing the available capacity of
369 the culm. This behaviour is an artefact of the morphology of the bamboo fibres in the nodal regions.
370 Specimen damage development was also described by DIC and the adoption of the limit of
371 proportionality (LOP) was proposed as a measure of useful material capacity.

372 **7.1 Recommendations for Testing Mechanical Properties of Bamboo**

373 While this study has demonstrated the efficacy of using DIC, such instrumentation is available to
374 only a handful of bamboo researchers and is not presently suitable for field implementation.
375 Nonetheless, the observations made using DIC can inform bamboo materials testing practice. The
376 following recommendations are made.

- 377 1. In addition to ultimate capacity, the limit of proportionality (LOP) should be reported for all
378 tests. This requires a measure of either specimen displacement or strain. Absent such a method,
379 machine cross head travel can be used as a surrogate for displacement sufficient to identify the
380 LOP. Machine cross head travel should never be used to calculate a real displacement, strain or
381 modulus however.
- 382 2. Full-culm compression and 'bowtie' shear tests parallel to the fibres are relatively insensitive to
383 the presence of a node. ISO 22157:2019 prescribes that both tests use 50% samples including a
384 node to establish characteristic values. While reasonable, a small degree of conservativeness will
385 result if values are determined for a sample containing no nodes.
- 386 3. The ISO 22157:2019 tension test has not been validated considering the new restrictions placed
387 on specimen orientation and boundary conditions. In the present study – enforcing these

restrictions – relatively low variability (COV = 0.11) was observed. Some issues with the tabs affecting test performance were observed; further investigation of alternative tension tab arrangements and materials is required to improve the utility of this test method.

4. The ISO 22157:2019 tension test also specifies that specimens contain one node in the gauge length. This will result in conservative values of tension strength (Table 3). However, the relatively local effect of the node (Figure 4b) will make strains and modulus of elasticity obtained from this test unreliable and a function of the gauge length used. While bamboo tensile strength is conservatively represented in the presence of a node, modulus of elasticity may be unrealistically low. In this perspective, the utility of the ISO 22157 tension test requires further investigation.

5. Although beyond the scope of the present study, researchers and practitioners are reminded that it is critical to report bamboo density and moisture content since both of these parameters are well known to affect material properties.

Small coupon bending of bamboo specimens has been demonstrated applying a method used for reinforced plastics, ASTM D7264 (Procedure A: three-point bending). It is proposed that a similar method be adopted into ISO 22157. The small coupon geometry is appropriate for determining the material properties for bamboo intended to be used in engineered products such as glue-laminated bamboo or cross laminated bamboo timbers. In such applications, bamboo strip orientation should be randomised, therefore standardising the bending test in the OT orientation will result in uniformly conservative design values. It is not believed that the inclusion of a node is necessary in bending tests.

If strain data is to be determined or data beyond that derived from Equations 5 and 6 is necessary, four-point bending (ASTM D7264 Procedure B) is required in order to establish a constant moment region unaffected by the application of load. However, maintaining the geometry of the four-point bend specimen while also ensuring that the shear span remain greater than $8t$ requires a test specimen that is at least $32t$ long. This may be impractical for many species considering the internode length available. Further development of a small coupon flexural test for bamboo is recommended.

416

417 **Acknowledgements**

418 This research was partially supported through National Science Foundation Award 1634739
419 *Collaborative Research: Full-culm Bamboo as a Full-fledged Engineering Material*. The authors
420 acknowledge the support of National Council for Scientific and Technological Development (CNPq
421 Process #307723/2017-8) and São Paulo Research foundation, FAPESP Grant No 2018/18571-8 and
422 2016/26022-9, which supported the first author's work at the University of Pittsburgh and the
423 University of São Paulo.

424

425 **References**

426 Akinbade, Y., Harries, K.A., Flower, C., Nettleship, I., Papadopoulos, C., and Platt, S.P. (2019)
427 Through-Culm Wall Mechanical Behaviour of Bamboo, *Construction and Building Materials*, **216**,
428 485-495.

429 *ASTM D2915-17 Standard Practice for Sampling and Data-Analysis for Structural Wood and Wood-
430 Based Products*, ASTM International, West Conshohocken PA USA.

431 *ASTM D7264 – 15 Standard Test Method for Flexural Properties of Polymer Matrix Composite
432 Materials*, ASTM International, West Conshohocken PA USA.

433 Cruz, M.L.S. (2002) *Caracterização física e mecânica de colmos inteiros do bambu da espécie
434 phyllostachys aurea: comportamento à flambagem* [Physical and mechanical characterization of
435 whole stems of phyllostachys aurea bamboo: buckling behaviour]. Master's Thesis, Pontifícia
436 Universidade Católica – Rio de Janeiro, 114 pp (in Portuguese).

437 Deng, J., Chen, F., Wang, G. and Zhang, W. (2016) Variation of Parallel-to-Grain Compression and
438 Shearing Properties of Moso Bamboo Culm, *BioResources*. **11**, 1784–1795.

439 Dixon, P.G., Ahvenainen, P., Aijazi, A.N., Chen, S.H., Lin, S., Augusciak, P.K., Borrega, M., Svedström,
440 K. and Gibson, L.J., (2015) Comparison of the structure and flexural properties of Moso, Guadua
441 and Tre Gai bamboo, *Construction and Building Materials* **90**, 11–17.

442 Gauss, C. (2019) *Preservative treatment and chemical modification of bamboo for structural
443 purposes*, PhD Dissertation, University of São Paulo.

444 Gauss, C., Harries, K.A., Kadivar, M., Akinbade, Y. and Savastano, H. (2019) Quality assessment and
445 mechanical characterization of P. edulis bamboo treated with CCB and DOT, *Holzforschung* (in
446 review)

447 Glucksman, B., and Harries, K.A. (2015) In-the-Field Test Methods for Bamboo – The test-kit-in-a-
448 backpack, Proceedings 15th International Conference Non-conventional Materials and
449 Technologies (NOCMAT 15), Winnipeg, Canada. August 2015.

450 Gottron, J. Harries, K. and Xu, Q. (2014) Creep Behaviour of Bamboo, *Journal of Construction and*
451 *Building Materials*, **66**, 79–88.

452 Habibi, M.K., Samaei, A.T., Gheshlaghi, B., Lu, J. and Lu, Y. (2015) Asymmetric flexural behaviour
453 from bamboo's functionally graded hierarchical structure: Underlying mechanisms, *Acta*
454 *Biomaterialia* **16**, 178–186.

455 Harries, K.A., Ben Alon, L. and Sharma, B. (2019) Chapter 4: Codes and Standards Development for
456 Nonconventional and Vernacular Materials. In *Nonconventional and Vernacular Construction*
457 *Materials: Characterisation, Properties and Applications*, 2nd edition. K.A. Harries and B. Sharma,
458 editors. Woodhead (Elsevier) Publishing Series in Civil and Structural Engineering.

459 Harries, K.A., Sharma, B. and Richard, M.J. (2012). Structural Use of Full Culm Bamboo: The Path to
460 Standardisation, *International Journal of Architecture, Engineering and Construction*. **1**(2), 66–75.

461 Huang, X. Hse, C.Y. and Shupe, T.F. (2015) Study of moso bamboo's permeability and mechanical
462 properties, *ICE Emerging Materials Research* **4**, 130–138.

463 INBAR (1999) *An International Model Building Code for Bamboo*. Janssen, J.J.A (editor). The
464 International Network on Bamboo and Rattan, Beijing.

465 *ISO CD 22156:2019 Bamboo – Structural Design*, International Organization for Standardization,
466 Geneva. [Committee Document: ongoing revisions to ISO 22156:2004, expected publication in
467 2021]

468 *ISO 22156:2004 Bamboo – Structural Design*, International Organization for Standardization, Geneva.

469 *ISO 22157:2019 Bamboo structures -- Determination of physical and mechanical properties of*
470 *bamboo culms -- Test methods*, International Organization for Standardization, Geneva.

471 *ISO 22157-1:2004 Bamboo -- Determination of physical and mechanical properties -- Part 1:*
472 *Requirements* [withdrawn], International Organization for Standardization, Geneva.

473 *ISO/TR 22157-2:2004 Bamboo -- Determination of physical and mechanical properties -- Part 2:*
474 *Laboratory manual* [withdrawn], International Organization for Standardization, Geneva.

475 *ISO 19624:2018 Bamboo structures -- Grading of bamboo culms -- Basic principles and procedures*,
476 International Organization for Standardization, Geneva.

477 Janssen, J. (1981) *Bamboo in Building Structures*. Doctoral Dissertation, Eindhoven University of
478 Technology, Netherlands.

479 Liese, W. (1998) *The Anatomy of Bamboo Culms*, Brill, 204 pp.

480 Mitch, D., Harries, K.A., and Sharma, B. (2010) Characterization of Splitting Behavior of Bamboo
481 Culms, *ASCE Journal of Materials in Civil Engineering*, **22**(11), 1195–1199.

482 Moreira, L.E. (1991) *Desenvolvimento de estruturas treliçadas espaciais de bamboo* [Development of
483 bamboo space trusses]. Doctoral Dissertation, Pontifícia Universidade Católica – Rio de Janeiro,
484 (in Portuguese).

485 Richard, M., Gottron, J., Harries, K.A. and Ghavami. K. (2017) Experimental Evaluation of Longitudinal
486 Splitting of Bamboo Flexural Components, *ICE Structures and Buildings Themed issue on bamboo*
487 *in structures and buildings*, **170**(4), 265-274.

488 Richard, M.J., Harries, K.A., (2015) On Inherent Bending in Tension Tests of Bamboo, *Wood Science*
489 *and Technology* **49**(1), 99-119.

490 Sharma, B. (2010) *Performance Based Design of Bamboo Structures*. Doctoral Dissertation, University
491 of Pittsburgh, 201 pp.

492 Sharma, B., Harries, K.A. and Ghavami, K. (2012) Methods of Determining Transverse Mechanical
493 Properties of Full-Culm Bamboo, *Construction and Building Materials*, **38**, 627-637.

494 Trujillo, D., Jangra, S. and Gibson, J. (2017). Flexural properties as a basis for bamboo strength
495 grading, *ICE Structures and Buildings Themed issue on bamboo in structures and buildings*,
496 **170**(4), 284-294

497 Virgo, J., Moran, R., Harries, K.A., Garcia, J.J. and Platt, S. (2018) Flat Ring Flexure Test for Full-Culm
498 Bamboo, *Materials Research Proceedings*, **7**, 349-358.

499 Xu, Q. Harries, K.A., Li, X, Lui, Q and Gottron, J. (2014) Mechanical properties of structural bamboo
500 following immersion in water, *Engineering Structures* **81**(15), pp 230-239.

501 Yu, H.Q., Jiang, Z.H., Hse, C.Y., and Shupe T.F. (2008) Selected physical and mechanical properties of
502 moso bamboo (*phyllostachys pubescens*), *Journal of Tropical Forest Science* **20**, 258–263.

503

504

Table 1 Full culm compression parallel to fibre test results.

	Internode specimen			Specimen with node			p-value	All specimens		
	n	average	COV	n	average	COV		n	average	COV
f_c , MPa	41	57.5	0.09	14	59.5	0.06	0.19	55	57.9	0.08
E_c , MPa		20,300	0.10		20,640	0.12	0.61		20,380	0.10
LOP, MPa		50.9 $0.89f_c$	0.10		50.7 $0.85f_c$	0.10	0.90		50.7 $0.88f_c$	0.10
NOTES:		Moisture content = 10.2% (COV = 0.04) Specimens sampled from 17 different culms p-value from unpaired t-test comparing internode specimens to specimens with nodes								

505

506

Table 2 Full culm shear parallel to fibre test results.

	Internode specimen			Specimen with node			p-value	All specimens		
	n	average	COV	n	average	COV		n	average	COV
f_v , MPa	36	18.0	0.08	13	18.1	0.07	0.83	49	18.1	0.08
G , MPa		2850	0.10		2790	0.10	0.52		2830	0.10
LOP, MPa		12.2 $0.68f_v$	0.09		12.2 $0.67f_v$	0.10	1.00		12.2 $0.67f_v$	0.10
NOTES:		Moisture content = 10.3% (COV = 0.04) Specimens sampled from 16 different culms p-value from unpaired t-test comparing internode specimens to specimens with nodes								

507

508

Table 3 Tension parallel to fibre test results.

	Internode specimen			Specimen with node			p-value
	n	average	COV	n	average	COV	
f_t , MPa	57	275	0.11	27	100	0.20	0.0001
E_t , MPa		17,470	0.09		11,190	0.18	0.0001
NOTES:	Moisture content = 6.8% Specimens sampled from 11 different culms p-value from unpaired t-test comparing internode specimens to specimens with nodes						

509

510

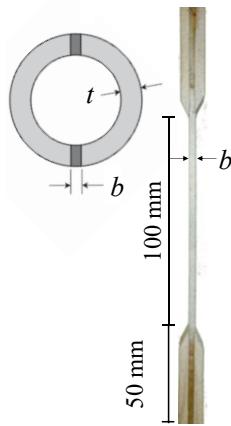
Table 4 Coupon flexure test results.

	Internode specimen outer culm wall in compression (OC)			Internode specimen outer culm wall in tension (OT)			p-value	Specimen with node at midspan		
	n	average	COV	n	average	COV		n	average	COV
f_R , MPa	54	205	0.06	10	183	0.08	0.0001	24	127	0.11
E_R , MPa		16,320	0.06		15,570	0.06	0.03		15,050	0.07
SE , kJ/m ²		39.5	0.13		78.5	0.23	0.0001		13.6	0.23
LOP, MPa		124 $0.61f_R$	0.06		67 $0.37f_R$	0.15	0.0001		87 $0.68f_R$	0.11
NOTES:	Moisture content = 7.3% (COV = 0.09) Specimens sampled from 11 different culms p-value from unpaired t-test comparing OC specimens to OT specimens									

511

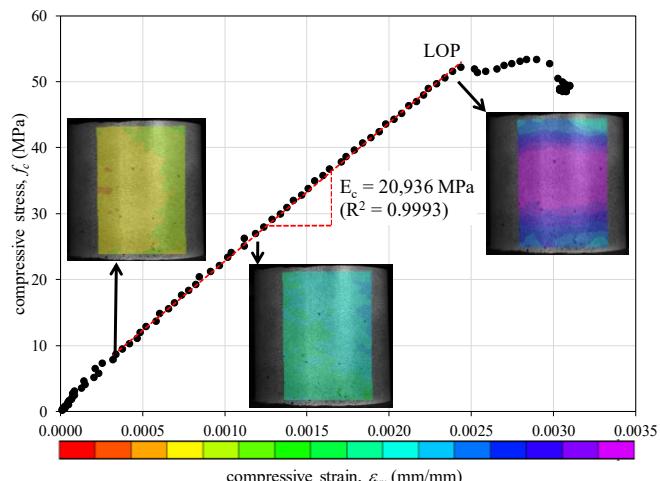
512

Table 5 Comparison with *P.edulis* data available in literature.

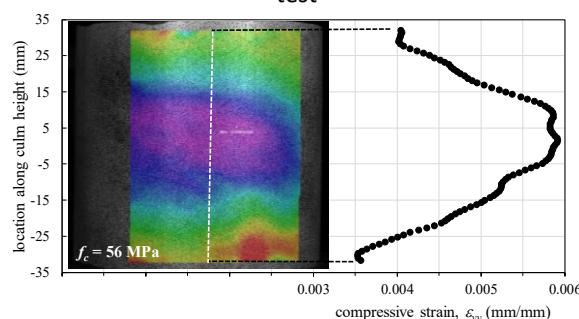

source	ρ	MC	f_c	E_c	f_v	G	f_t	E_t	f_r	E_r
	kg/m ³	%	MPa	MPa	MPa	MPa	MPa	MPa	MPa	MPa
this study strength	810	7-10	57.9	20,380	18.1	2830	275 (no node)	17,470	205 (OC)	16,320
this study LOP			50.7		12.2		100 (node)	11,190	183 (OT)	
this study characteristic strength			49.5	18,040	15.4	2520	220 (no node)	15,660	124 (OC)	15,570
this study characteristic LOP			41.5		10.0		63 (node)	8874	67 (OT)	
Akinbade et al. (2019)	896	14	48.1	-	15.1	-	-	-	-	-
Deng et al. (2016)	655	8-12	-	-	11.8	-	48 (node)	-	-	-
	799		-	-	15.9	-	62 (node)	-	-	-
Dixon et al. (2015)	400	4	-	-	-	-	-	-	52	4350
	850		-	-	-	-	-	-	215	16,680
Habibi et al. (2015)	-	-	-	-	-	-	-	-	146 (OC)	11,400
Huang et al. (2015)	-	12	61.3	-	12.9	-	197 (no node)	-	149	9,900
Xu et al. (2014)	-	10	46.0	11200	11.2	-	-	-	-	-
Yu et al. (2008)	703	10	-	-	-	-	168 (no node)	16,400	-	-

a) compression specimen showing sulphur capping and DIC speckle pattern. Specimen height is approximately 90 mm.

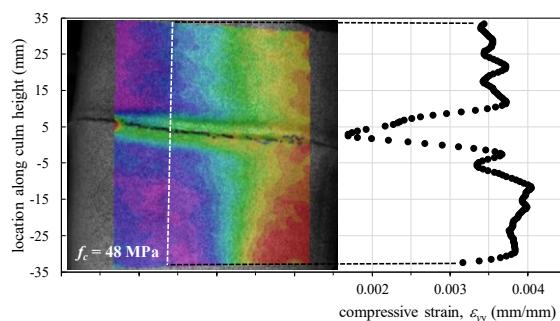
b) "bowtie" test set-up and typical specimen failure. Specimen height is approximately 90 mm.



c) test specimen geometry and test set-up showing DIC speckling and extensometer

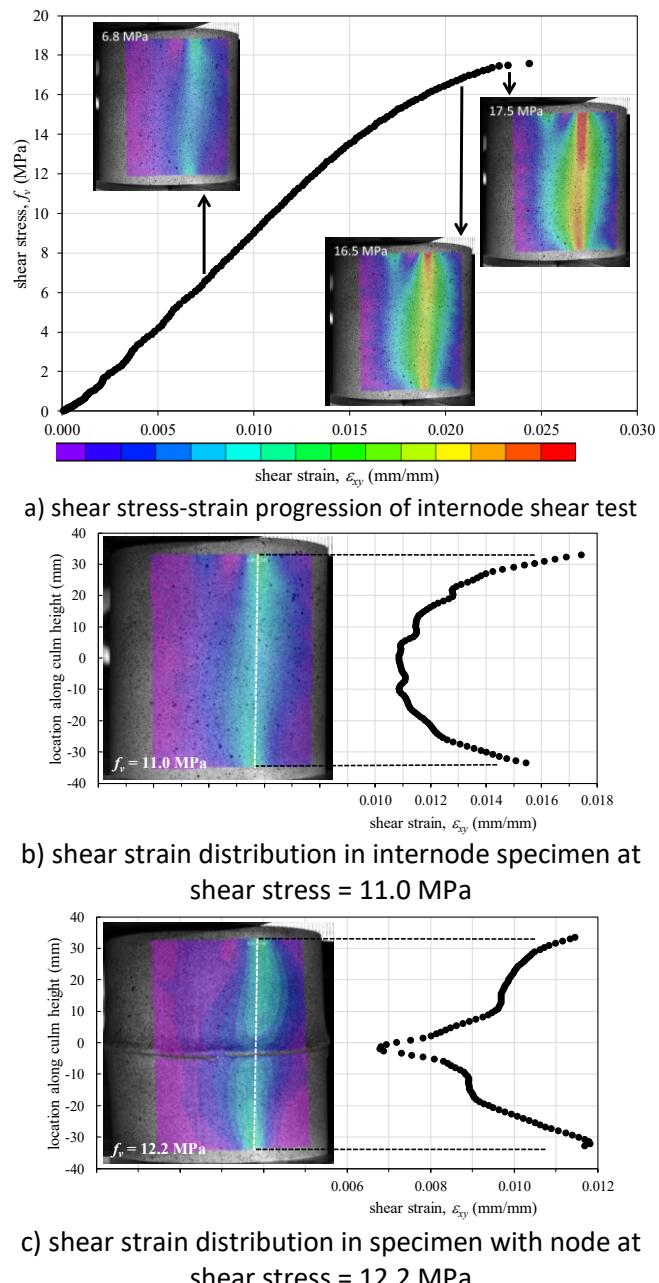


Outer culm wall in compression (OC) Outer culm wall in tension (OT)
d) three point bending test of coupon and specimen orientation. Flexural span is 160 mm and specimen depth is approximately 7 mm


Figure 1 Bamboo test methods.

a) longitudinal stress-strain progression of internode compression test

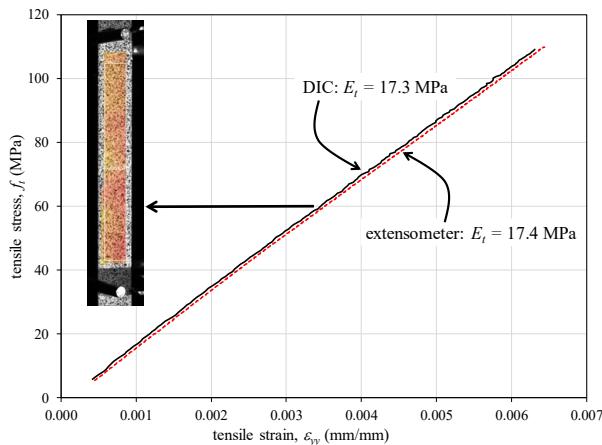
b) longitudinal strain distribution in internode specimen at stress = 56 MPa



c) longitudinal strain distribution in specimen with node at stress = 48 MPa

517
518

Figure 2 Representative results of longitudinal full-culm compression test
(compressive strain shown as positive in this figure).


519

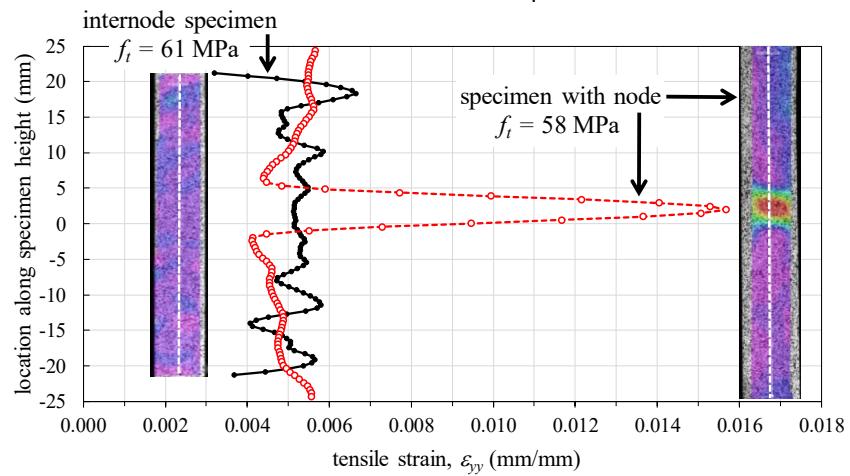
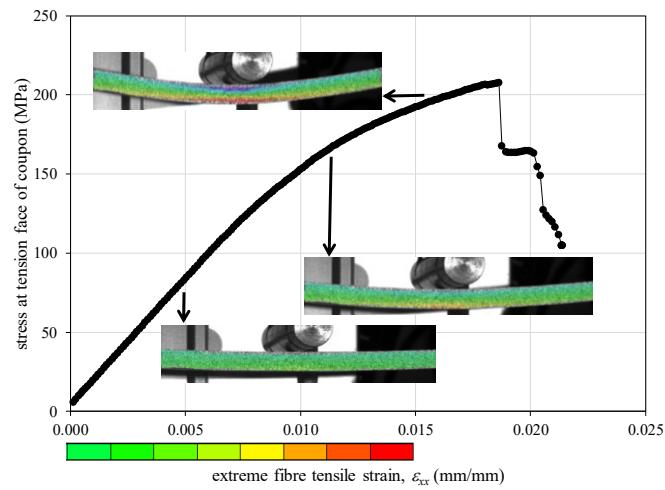

520

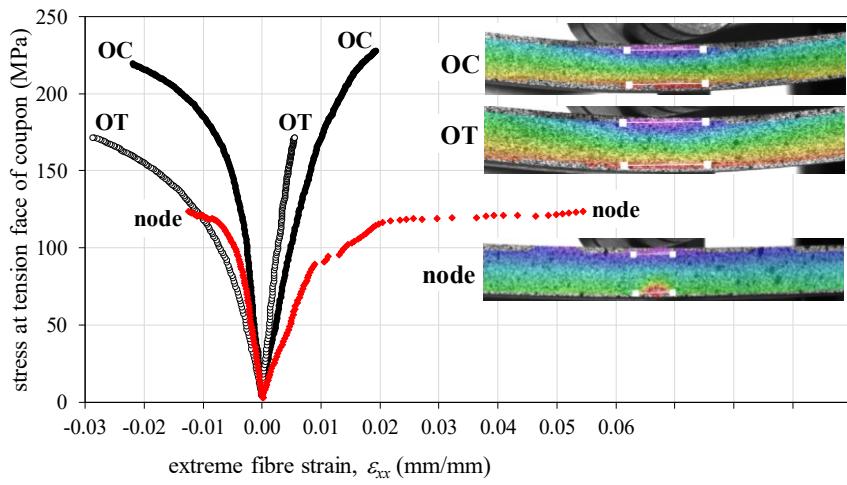
Figure 3 Representative results of longitudinal “bowtie” shear test.

521

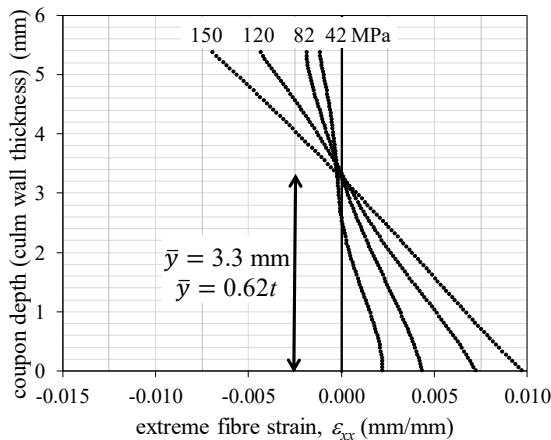
a) comparison between DIC and extensometer derived longitudinal stress-strain curve for internode specimen

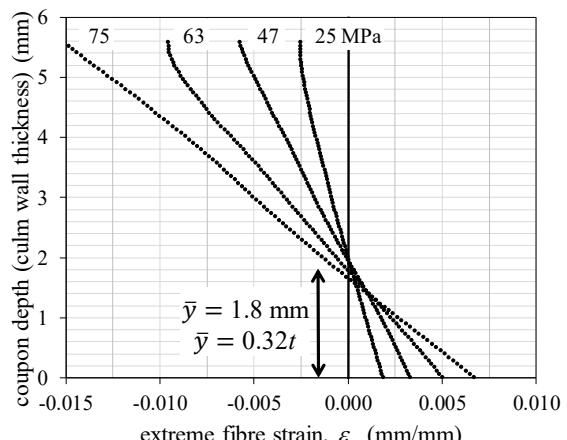


b) longitudinal strain distribution in specimens with and without nodes

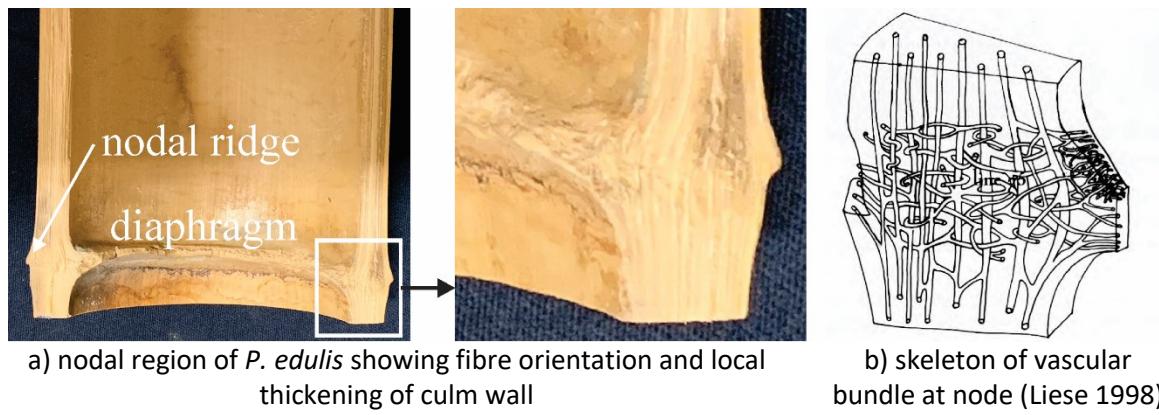

522

523


Figure 4 Representative results of tension test.

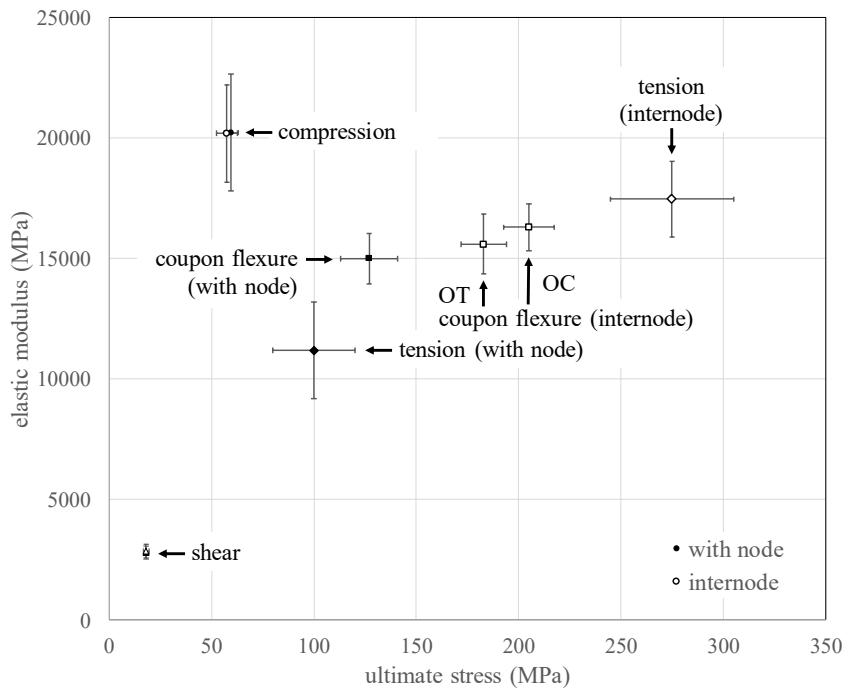

a) longitudinal shear stress-strain progression of OC internode coupon test

b) longitudinal strain distribution in coupon bending tests



c) strain distributions through depth of OC coupon

d) strain distributions through depth of OT coupon


Figure 5 Representative results of three-point coupon bending test.

526

Figure 6 Fibre morphology at node.

527

528

529 Figure 7 Mechanical characterisation of *P. edulis*: strength and modulus (bars indicate one standard
530 deviation in all cases)

531