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Such constructions naturally lead to structure-preserving discretizations for the 

Stokes/Navier–Stokes problem as well as problems in linear elasticity. For example, 

in recent work [5, 7] specific mesh refinements were used to build spaces of 

continuous piecewise polynomial k-forms with continuous exterior derivative. In 

particular, it is shown in [7] that locally, smooth finite element spaces form an exact 

sequence on so-called Alfeld splits in any spatial dimension and for any polynomial 

degree. Global spaces in three dimensions are also constructed in Fu et al. [7], 

leading to stable finite element pairs for the Stokes problem (also see [16]). On the 

other hand, Christiansen and Hu [5] considered low-order approximations in any 

dimension. However, they use different splits as they move along the de Rham 

sequence. For zero forms they use the finest split (e.g., in two dimensions it is the 

Powell–Sabin split). For n forms, where n is the dimension, they use the Alfeld split 

if the n forms are assumed to be continuous. If the n forms may be discontinuous, 

they do not use a splitting. Furthermore, in two dimensions, they define a de Rham 

sequence with arbitrarily high polynomial order, where each split in the sequence 

is Clough-Tocher. 

In this paper we construct smooth finite element spaces on Powell–Sabin splits 

that form an exact sequence. In the lowest order case, the first space in the 

sequences coincides with the piecewise quadratic C1 Powell–Sabin space [12, 14]. 

However, we construct these spaces for any polynomial degree which appears to 

be new (cf. [8, 9]). We also define smooth spaces on Powell–Sabin splits for vector-

valued polynomial spaces, define commuting projections onto the finite element 

spaces, and characterize the range and kernel of differential operators acting on 

the finite element spaces. The last two spaces in the sequence form stable finite 

element pairs for the Stokes problem that enforce the incompressibility constraint 

exactly; see [11]. 

A potential advantage of the use of Powell–Sabin splits is that the minimal 

polynomial degree of the global spaces is not expected to increase with respect to 

the spacial dimension. For example, the lowest polynomial degree of C1 spaces on 

Powell–Sabin splits is two in both two and three dimensions. In contrast, the 

polynomial degree of smooth piecewise polynomials must necessarily increase with 

dimension on Alfeld splits. In two dimensions, C1 piecewise polynomials have 

degree of at least three, whereas in three dimensions the minimal polynomial 

degree is five [1, 12]. These degree restrictions for C1 conforming spaces also 

dictate the polynomial degrees of other finite element spaces on Alfeld splits. For 

example, finite element spaces that approximate the velocity in the Stokes problem 

must have degree of at least the spatial dimension [2, 10, 16]. 

Let us describe the Powell–Sabin split here. Let 𝛺⊂
ℝ2 be a polyhedral domain, 

and let Th be a simplicial, shape-regular triangulation of 𝛺 . Then the Powell–Sabin 

triangulation Th
ps is obtained as follows. We select an interior point of each triangle 

T∈Th and adjoin this point with each vertex of T. Next, the interior points of each 
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adjacent pair of triangles are connected with an edge. For any T that shares an edge 

with the boundary of 𝛺 , an arbitrary point on the boundary edge is selected to 

connect with the interior point of T, so that each T∈Th is split into six triangles. See 

Fig. 1. In order for the resulting refinement Th
ps to be well-defined, the interior 

points must be selected such that their adjoining edge intersects the edge shared 

by their respective triangles in Th , in which case Th
ps is the Powell–Sabin refinement 

of Th . One common choice of interior points that produces a well-defined 

triangulation is the incenter of each T∈Th , i.e., the center point of the largest circle 

that fits within T [12]. We define the set M(Th
ps) to be the points of intersection of 

the edges of Th with the edges that adjoin interior points. An interesting fact about 

the meshes constructed is that the points in M(Th
ps) are singular vertices of the 

mesh Th
ps ; see [15].  

 

Fig. 1  (left) A triangulation of the unit square, and (right) its Powell–Sabin refinement 

Hence, the last space in our sequence has to be modified accordingly; see the global  

space V2
r(
T
h
ps) below. 

Related to the current work is [17, 18], where conforming finite element pairs 

are proposed and studied for the Stokes problem on Powell–Sabin meshes. There 

it is shown that if the discrete velocity space is the linear Lagrange finite element 

space, and if the pressure space is the image of the divergence operator acting on 

the discrete velocity space, then the resulting pair is inf-sup stable. 

Note that, by design, the discrete pressure spaces in [17, 18], and 

correspondingly the range of the divergence operator, is not explicitly given. 

Practically, this issue is bypassed by using the iterative penalty method to solve the 

finite element method without explicitly constructing a basis of the discrete 

pressure space. In this paper we explicitly construct the discrete pressure space and 

characterize the space of divergence-free functions for any polynomial degree. 

The rest of the paper is organized as follows. In the next section we state some 

preliminary definitions and results on a single macro-triangle. In Sect. 3 we show 

that the smooth finite element spaces form an exact sequence on macro-triangles, 
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