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Abstract
We construct smooth finite elements spaces on Powell-Sabin triangulations that
form an exact sequence. The first space of the sequence coincides with the classical

! Powell-Sabin space, while the others form stable and divergence-free yielding

pairs for the Stokes problem. We develop degrees of freedom for these spaces that
induce projections that commute with the differential operators.
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1 Introduction

In the finite element exterior calculus [3, 4], sequences of discrete spaces that
conform to the continuous de Rham complex are used to approximate solutions of
the Hodge—Laplacian. While this framework has been successfully applied to the de
Rham complex with minimal L? smoothness, recent progress has extended this
methodology to higher order Sobolev spaces, i.e., spaces with greater smoothness.
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Such constructions naturally lead to structure-preserving discretizations for the
Stokes/Navier—Stokes problem as well as problems in linear elasticity. For example,
in recent work [5, 7] specific mesh refinements were used to build spaces of
continuous piecewise polynomial k-forms with continuous exterior derivative. In
particular, it is shown in [7] that locally, smooth finite element spaces form an exact
sequence on so-called Alfeld splits in any spatial dimension and for any polynomial
degree. Global spaces in three dimensions are also constructed in Fu et al. [7],
leading to stable finite element pairs for the Stokes problem (also see [16]). On the
other hand, Christiansen and Hu [5] considered low-order approximations in any
dimension. However, they use different splits as they move along the de Rham
sequence. For zero forms they use the finest split (e.g., in two dimensions it is the
Powell-Sabin split). For n forms, where n is the dimension, they use the Alfeld split
if the n forms are assumed to be continuous. If the n forms may be discontinuous,
they do not use a splitting. Furthermore, in two dimensions, they define a de Rham
sequence with arbitrarily high polynomial order, where each split in the sequence
is Clough-Tocher.

In this paper we construct smooth finite element spaces on Powell-Sabin splits
that form an exact sequence. In the lowest order case, the first space in the
sequences coincides with the piecewise quadratic C* Powell-Sabin space [12, 14].
However, we construct these spaces for any polynomial degree which appears to
be new (cf. [8, 9]). We also define smooth spaces on Powell-Sabin splits for vector-
valued polynomial spaces, define commuting projections onto the finite element
spaces, and characterize the range and kernel of differential operators acting on
the finite element spaces. The last two spaces in the sequence form stable finite
element pairs for the Stokes problem that enforce the incompressibility constraint
exactly; see [11].

A potential advantage of the use of Powell-Sabin splits is that the minimal
polynomial degree of the global spaces is not expected to increase with respect to
the spacial dimension. For example, the lowest polynomial degree of C* spaces on
Powell-Sabin splits is two in both two and three dimensions. In contrast, the
polynomial degree of smooth piecewise polynomials must necessarily increase with
dimension on Alfeld splits. In two dimensions, C' piecewise polynomials have
degree of at least three, whereas in three dimensions the minimal polynomial
degree is five [1, 12]. These degree restrictions for C' conforming spaces also
dictate the polynomial degrees of other finite element spaces on Alfeld splits. For
example, finite element spaces that approximate the velocity in the Stokes problem
must have degree of at least the spatial dimension [2, 10, 16].

Let us describe the Powell-Sabin split here. Let .QCRZ be a polyhedral domain,

T

and let *p, be a simplicial, shape-regular triangulation of /2. Then the Powell-Sabin

T

triangulation **is obtained as follows. We select an interior point of each triangle

TET;7 and adjoin this point with each vertex of T. Next, the interior points of each
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adjacent pair of triangles are connected with an edge. For any T that shares an edge
with the boundary of /2, an arbitrary point on the boundary edge is selected to

connect with the interior point of T, so that each el

T

n is split into six triangles. See

Fig. 1. In order for the resulting refinement *4* to be well-defined, the interior

points must be selected such that their adjoining edge intersects the edge shared

T T

by their respective trianglesin * 1, in which case " 4**is the Powell-Sabin refinement

T

of *n . One common choice of interior points that produces a well-defined

triangulation is the incenter of each TET;7 , i.e., the center point of the largest circle

that fits within T [12]. We define the set M(Thps) to be the points of intersection of

the edges of Th with the edges that adjoin interior points. An interesting fact about

the meshes constructed is that the points in lV[(Thps) are singular vertices of the

mesh Thps ; see [15].

* o o °

o o ° ® & a = » o AN 1

Fig. 1 (left) A triangulation of the unit square, and (right) its Powell-Sabin refinement

Hence, the last space in our sequence has to be modified accordingly; see the global

VZ,(ThpS) below.

space

Related to the current work is [17, 18], where conforming finite element pairs
are proposed and studied for the Stokes problem on Powell-Sabin meshes. There
it is shown that if the discrete velocity space is the linear Lagrange finite element
space, and if the pressure space is the image of the divergence operator acting on
the discrete velocity space, then the resulting pair is inf-sup stable.

Note that, by design, the discrete pressure spaces in [17, 18], and
correspondingly the range of the divergence operator, is not explicitly given.
Practically, this issue is bypassed by using the iterative penalty method to solve the
finite element method without explicitly constructing a basis of the discrete
pressure space. In this paper we explicitly construct the discrete pressure space and
characterize the space of divergence-free functions for any polynomial degree.

The rest of the paper is organized as follows. In the next section we state some
preliminary definitions and results on a single macro-triangle. In Sect. 3 we show
that the smooth finite element spaces form an exact sequence on macro-triangles,
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and in Sect. 4 we develop degrees of freedom and projections for these spaces, and
prove commutative properties of these projections. We extend these results to the
global setting in Sect. 5 and derive similar results. We end the paper in Sect. 6 with
some concluding remarks.

2 Spaces on one macro-triangle

Let T be a triangle with vertices z1,z2, and z3, labelled counter-clockwise, and let zo
be an interior point of T. Denote the edges of T by {ei}*i1 , labelled such that z; is
not a vertex of e;, i.e., ej=[zi+1,zi+2] . We denote the outward unit normal of JT
restricted to e; as n ; and the tangent vector by t; . Let z3:; be an interior point of
edge eoi . We then construct the triangulation < < b Tpsps ={T1,...,T6 } by connecting

eachzitozfor1i6;see Fig. 2. We let E (T) be the set containing the six boundary

edges of T**. We also let M(T”S) ={z4,25,26 } and use the notation for z EM(TPS) , T(z)
={K1,K2}, where K; €T* have z as a vertex. We also set T(z) = K1 UK: . Let

2]

Fig. 2 A pictorial description of a Powell-Sabin split of a triangle

z EM(TPS) and suppose that T(z) ={K1,K2 } with common edge e. Then we define the
jump as follows

[lp11(2) = p1(2)m1+p2 (2)m2,

where p;=p x and m; is the outward pointing normal to K; perpendicular to e. We

see then that [[Pi]](Z) = (p1(2) = pr()Im; = =(p,(2) — p2(2))my)

13
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Let #be the unique piecewise linear function on the mesh 7% such that /z0) = 1

and #=0 on JT . We use the notation V4 :=V#|e=V 4| 1(z:.) and note that

1|Vl Via=-ni (i=1,23), (2.1)

and hence

Vu-ti=0 (i=1,2,3). (2.2)

2.1 Local finite element spaces

In this section we consider three classes of finite element spaces each with varying
smoothness on T°* . First we define the differential operators

(
aq _Aq)" i darot g=,-, div=+,

X2 o1 o1 O

and corresponding spaces, for an open bounded domain SCRZ,
H(rot;S) = {gEL?(S) : rot gEL?(S)}, H(div;S) = {ve [L2 (S)]?: divveL?(S)},

H (rot;S) = {gEH(rot;S) : g| 5=0}, A (div;S) = {vEH(div;S) : v - ns| =01},

where ns denotes the outward unit normal of S. We also denote by L %(S) the space
of square integrable functions on For , let denote the space of polynomials of

degree S with vanishing mean. < with domain r EN Pr(S) r

S, and we use the convention Pr(S) = {0} for r <0 . Define the piecewise polynomial
space on the Powell-Sabin split as

Pr(T7) = {gEL*(T) : q|s EPAS), VSETS}.

Remark 1 For any qEP,(TPS) satisfying g sr =0, there exists pEPr_l(TpS) such that

q=up- |
13
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Definition 1 Let r EN . The Nédélec spaces (of the second-kind) with and without

boundary conditions are given by [13]

V2 (T%) = PATP)nH(rot ;T), V 2 (T°) = P(TP*)nH (rot ;T),

o

VA (T75) = PATPS)nH(div;T), V A (T7) = PAT*)nH (div;T), Vi2 (Tps)

=PTps), V2 (TP%) = PAT*)nL2(T).
Definition 2 The Lagrange space LX(T%) (resp., L X(T7%) ) is the subspace of V,X(T%)
(resp., \;rk(Tps) ) consisting of continuous piecewise polynomials, i.e.,
LO(TP%) = PATP*)NC(T), L2 (T7%) = L (TP*)nH (rot ;T),
(A (T7) = [LO(TP)]? ) [ (TP = [H,)(Tps)]zl L2 (Tes) =
Lo (Tos), L r2(Tos) = L 10 (Tes) NV 12 (Tis)

Remark 2 Note the redundancies in notation, L,°(T°%) = V,9(T7%) and
ErO(Tps) = \7,0(Tps).

Definition 3 We define the smooth spaces with and without boundary conditions
as

S(r)(Tps) ={ve L(r)(TpS) ‘rotv € [C(D)P}, g?(Tps) ={ve S(r)(TpS) *V=0androtv=0o0n dr},

SA(TPs) ={veLr (T™) : divveC(T)}, s A(TP) ={veS (T?):v=0and divv=0o0n JT}, S,2(Tps) = L2 (T

ps), Sn (Tps) =Lp (Tps).

3 Exact sequences on a macro triangle

The goal of this section is to derive exact sequences consisting of the piecewise
polynomial spaces defined in the previous section. As a first step, we state a
wellknown result, that the Nédélec spaces form exact sequences [3, 4].
Proposition 1 The following sequences are exact, i.e., the range of each map is the
kernel of the succeeding map

rot div
R> & & Viro(Tps) > € V-1 (Tps) D & V-2 (Tps) 2 €& 0,
rot div

0> &<V 1r0(Tps) > €& V r1-1 (Tps) > €& V r2-2 (Tps) D<€ 0.

13
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The goal now is to extend Proposition 1 to incorporate smooth spaces. An
integral component of this extension is a characterization of the range of the
divergence operator acting on the (vector-valued) Lagrange space. For example, it

. . e LI(TP) R .

is known [15, Proposition 2.1] that if v= & then divv is continuous at the
vertices z4,z5,26 . In particular, this is because each of these vertices is a singular
vertex, i.e., the edges meeting at the vertex fall on exactly two straight lines. Hence,

in order to extend Proposition 1 and to characterize the range of div L A(T%) , we
will consider the spaces

V2(T7%) = {g€ V% (T™) : gis continuous at 74,25 ,26 },

\% Zr(Tps) = VZr(Tps)ﬂLOZ (T)

° ) 02 .
We then have that div L rl(Tps) c Vr—l(Tps). In this section we show that div
<) 0?2 ) o ) 02 "
: Li(TpS)evr_l(Tps)is surjective, i.e., div L l(TPS) = Vr—](Tps).

The proof of this result is based on several preliminary lemmas. As a first step,
we state the canonical degrees of freedom for the lowest order Nédélec H(div) -
conforming finite element space on the unrefined triangulation [13].

Lemma 1 Any we [P1(T))? is uniquely determined by the values

/(w -n)k Vi € P(e;)

S 1 S
Lemma 2 Let & VAT™) gnd r21, then there exists > w €L.(TY) gng g
2 :
€V (T™) sych that 12q = div(£w)+41g for any s 0.

Proof Let b;epl(e,-) be the linear function such that g ;- bi vanishes at the end points

of e; . Because g — bj vanishes at the endpoints and | g is continuous at z3., there

i 0 S
exists ai#€ L, (T™) such that ailei= (g — bi)|e: and suppai € T(zs+) . Note that agj.=0

forij.

13
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| Next, using (2.1) and the Nédélec degrees of freedom stated in Lemma 1, we

construct a unique function w1 € [Pl(T)]2 such that

(s+1)w:i-Vu=bi one, i=1,23.
We set fi |_=VV/l/ﬂi2,

I 1

Wy = (a1 f1+a2f2+a3€3), and w=wi+w;.

s+1
We then see that, on ¢;,

(s+1)w-Vu=(s+1)wi-Vu+(s+1)w2-Vu=bi+ai=q.

Therefore the function (s+1)w - V4~q vanishes on JT , which implies that @ =

eV (T

(s+1)w - Vg for some v ); see Remark 1.

Finally we compute

£6q = g+ div (L w)-£ 1 div (w)-£2(s+ 1 )w - V= div (£ w)-22*1 (div (w)+v).

2
The proof is complete upon setting g = —(divw+v) . Lemma 3 For any &= V(™)
1 (Tps
with r 20 , there exists /= Li(T™) gngd Y €V2,(T%) such that
2
1£6=div (£ )+ yfor any s 2 0. (3.1) Proof Given & V; (T™)
0 S
, we define ;€ Ly(T™) uniquely by the conditions

ai(z)=0,j=0,1,2,3, ai(zs) = 0, j # i, [[Vai- t]](z3+) = [[£)](z3+). We clearly have suppa;
€ T(z3+) . Setting /= a1t1 + axt, + astz we have

diV wl erzval ° tl[

and therefore, by the construction of a;, y:= £- div ;ﬁEVZ,(TPS) . Furthermore, we

have ¢ Vi 1234 = aiti- Ve 125.) =0 for i=1,2,3 by (2.2), and so ¢ - V4=0 in
T. It then follows that| |

13
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#6-div (@) = p£(6-div P-spt™ V- Y= py.

We combine the previous two lemmas to obtain the following.

1
Lemma 4 Let & VIT™) and 21 . Then there exists > v L/(T™) ang Q< Vi, (TP)

such that ¢£q= div(£*2v)+4+Q for any s 0.

Our last lemma handles the lowest order case which follows from [7, Lemma
3.11].

S i 1
Lemma 5 Let g€ V(z)(Tp ) with > [74£q=0 . Then there exists wE Ly(T™) sych that /q
= div(*w) for any s 0.

We can now state and prove the main result.

o 1 S
Theorem 1 For each pEV 2,(77%) , with r 20, there exists a ve Lr+1(Tps)such that
divv=p.
Proof We adopt similar arguments to those given in [< £ 10]. Let pr=p and suppose

€L (T €V, (TP

we < < have found wr; )for 0j¢-1and pr; ' )for 0, € such that

div (+1Wr-)) = £4pr-j —f4+1pr-(i+1) forall0<j<f-1. (3.2)

Ps
We can then apply Lemma 4 to find wr—¢ EL-¢(T7%) and p,~“+D € Vﬁ—(ﬂl)(T )
such that

div (pe+1 Wr—¢) = pepr—e —pte+1 pr-(£+1). (3.3)

1 ps
Hence, by induction we can find w,; €L r—j(T )for 0<j <r -1 and prj
€ Vf—,i(Tps) for0 < Sr such that (3.3) holds. Therefore,

div (fWr+42 Wr-1 ++--+4/ W1 ) = p—4/po .

13
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1 S
We have that [r #po =0 and hence by Lemma 5 we can find w0 € Ly(T™) sych
that  div(#*'wo) =4#po. The result follows after setting

V=4Wr +R2Wr-1 +++ Lr W1 +£-+1W0 .

We have several corollaries that follow from Theorem 1. First we show that the
analogous result without boundary conditions is satisfied.

S 1 S
e V2(TP) eL! (1)

Corollary 1 For each p there exists a v such that divv=p.

2 (TP 1 (7ps
Proof Let p€ V(1™ By Lemma 3 there exists w€ Li(T™) and gEVZr(TPS) with
p=div w+g.

1 1 1 X
We let ¢=< T /r8>2x € L,(T") and hence

then have

— - Jdivy=[rg . We

I p = div (w+#)+(g- div ).

7l S
By Theorem 1 there exists a & Lr+1(Tp )

have

such that divé=g- divy . Therefore, we

p =div (w+y¢+6).
The proof is complete after we set v=w+y+4.

72 S 2 S °1 S
Corollary 2 For each p€ Ly (T™) (resp., p € Li(T™)) there exists a vE re1l "5 T

1 S o
(resp., v €S, \(T™) sych that div=p . Likewise for each vel T%) (resp.,

1 S Q0 S 0 S
v € L.(T™)) with divv= 0 there exists a z€ Sr+l (7? )(resp., € Sr+1 (%) such
thatrot z = v.

72 S 02 S 21 S
Proof Let p€ L;(T™) C V. (T™) and we can apply Theorem 1 to find v€ Lri (T)
i el (1™
such that divv=p . However, clearly v= “r+1 .

717D 1 (7P
Next, let vE L(T?) C V. (T™) pe divergence-free. Proposition 1 shows that

°70
there exists z€ Vr (™) such that rot z = v.. Since v is continuous and vanishes on
€ S0(1™)

the boundary, we have by definition.This proof applies rot z € [((T)]2 and to the
statements without boundary condiz| /=0, rot z| ;r=0. Thus z -

mutatis mutandis

13
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tions.

Remark 3 To summarize, Proposition 1, Theorem 1, and Corollaries 1 and 2 show
that the following two sets of sequences are exact:

rot div
R—>L,O( Tps) — Vi1 (Tps) — Vi, (Tps) — 0,
rot div

R—>5,0(Tps) — L1 (Tps) — V2o (Tps) — 0,

rot div R—>S,0(Tps) —5r1-1 (Tps) — L2 (Tps) — 0,

and

0 —>L° ,O(Tps) —rot \7r1—1 (Tps) —sdiv ‘7r2—2 (Tps) 4 0,

0—S rO(Tps) —rotL -1 (Tps) —divy Zr-z (Tps) — 0,
0 —>5° ,O(Tps) —>r°t5° rl-1 (Tps) —>diVL°r2_2 (Tps) — 0.

3.1 Dimension counting

We can easily count the dimensions of the smooth spaces S*(7) via the rank-
nullity theorem and the exactness of sequences ( k=0,1):

dimS/(77%) =dimrangeS/*(77*)+ dimkerS/(T?*) =dimkerLrk-+11
(Tos)+ dimkerLrk(Tps)
=dimLrk-+11 (Tps)— dimrangeLrk-+11 (Tps)+ dimLrk(Tps)- rangeLrk(Tps)
=dimLrk-+11 (Tps)+ dimLek(Tps)— dimkerVik-+22 (Tps)— dimkerVik-+11 (Tps)

=dimLrk-+11 (Tps)+ dimLrk(Tps)— dimVirk-+11 (Tps).

Now we easily find

3r’+3r+1k=0,
C ) (M=

dimLk(Tos) =2k[3 r2+ 3 r+1],dimVi ps | d | (63 rrop++ 91207446 6
kk == 12.,

13
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Thus, we have
l 3r°

-3r+3 q = 0, dimS(T%) =6 r?

+3k=1, | k3r2+3r+1k=2.

Similar calculations also show that
l 3 (r-

2)(r—3)k={ 0, dim$ X(77%) =6 (r-

)ir-2k=1, 1 1 Usr- 1) k=2,

4 Commuting projections on a macro triangle

In this section we define commuting projections. In order to do so, we give the
degrees of freedom for C! polynomials on a line segment. Let a<m<b , and define
the space

Wi({a,m,b}) = {veC* ([a,b]) :V| ra,m EP[a,m]) on v|ims EPA[m,b])).

The classical degrees of freedom for W ({a,m,b}) is given in the next result. Lemma

lowing degrees of freedom. 6 Let r>1.A function z
z(a),z(b)
Z(a)Z(b)  ify22,if €  Wllampb) s
z(m),z(m)
m rz3, uniquely determined
z(x)a(x)  for all gEP,-4([a,m]),
a
b I by the fol-

z(x)q(x)  for all gEP,-4([m,b]).

13
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m

Other degrees of freedom are given in the next lemma. Its proof is found in the
Appendix.

Lemma 7 Let r 21 . A function z € W,{a,m,b}) is uniquely determined by the fol-

lowing degrees of freedom.

z(a),z(b) (4.1a)
J
z(x)g(x)  for all g€Pr-2 ([a,m]), (4.1b)
b
J
z(x)qg(x) for all g€Pr-2 ([m,b]). (4.1¢)

Lemma 8 Suppose that |

0 (TP !
GESO(T) with g =0 for some i r-1T") 1y and p € C(T(z34)

€{1,2,3}. Then

| 3+i

p o and p

then

G T(zs+) =HP T(z3+) fOr some pEL. In particular, if | glaor=0, | g=up for some €L°

(T%°) | () € CH(T(234)) for

i=1,2,3.
Proof The statement q 7(z:.) =4 1(23+) iS @ consequence of Remark 1. Because g and
#are continuous, it follows that | | pis continuous, i.e., pEL0-1(Tps) | | T(zs+) . We also

have Vq=/Vp+pVx, and therefore

VP | Tzs) = (Vg-pV i) | T(z3+).

13
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Since Vu is constant on T(z3+) , we find that /Vp 7.) is continuous. Because x is

positive in the interior of T(zs.i) , we conclude that |Vp is continuous on T(z3.) .

We are now ready to give degrees of freedom (DOFs) for functions in S,°(7%).

0 (7ps
Lemma 9 A function qe Sr(Tps), with r 22 , is uniquely determined by

q (z1),Vq (z) 1<i<3, (9DOFs) (4.2a)
q (z3+i),2q (z3+i) 1<i<3,ifrz3, (6 DOFs) (4.2b)
J
onap Vp€EP,-3(e), eEEL(T™), (6(r-2) DOFs) (4.2¢)
J

ap Vp€EP,-4(e), eEEL(T™), (6(r-3) DOFs) (4.2d)

“r 0 S
rotq - rotp vp € SU(T™ ) (3(r-2)(r-3) DOFs) (4.2e)

T

Proof The number of DOFs given is 3r>- 3r + 3 = dimS,°(7°°) . We will show that the
only function g for which (4.2a)—(4.2e) are equal to zero must be zeroon T.
Suppose that g vanishes on (4.2a)—(4.2d) restricted to a single edge = e;. Then g

satisfies all conditions of Lemma 6 on each edge of T, so g 0 on e . It then fol-
i

)

lows from Lemma 8 that g r(z.) =0 1) , Where p € CY(T(zs:'' is a piecewise

polynomial of degree (r-1|) . We then have | [Vg|e=pV/4|ei, and so by (4.2a), p=0

ei . Also (4.2c) yields epwdhz=0 for all WEPr—3(€) and for on the endpoints of

Jall e€EEb(Tps) with ecei . Since dhu is constant on each edge e€En(Tps) =, we have

epw=0 for all wEPr—s(e) and ecei . Using Lemma 7, it follows that p O on ei .

13
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Thus Vg |e=0.
: : - €80Ty .
We conclude that if g vanishes on (4.2), then = g= °» . Finally, condition

(4.2e) yieldsrotg=00on T, and henceqgOon T.

Lemma 10 A

function v v(zi), 1<i<3, (6DOFs),
e L:(Tps) is (4.38)
uniquely Fwonitr=1,
determined by e (4.3b)
[[divv]](z3+1) 1<i<3, (3 DOFs), (4.3¢)
V(z3+i) - n i 1<i<3,ifr>2, (3 DOFs), (4.3d)
J
Ve w VYwe [P-2(e)]?, for all eEE?(Ts), (12(r-1) DOFs),
e
(4.3e)
! vw e 80 (7P
V- rotw we&S, (T") (3(r-1)(r-2) DOFs),  (4.3f)
.
! vw e V_ (17
div vw we&V._(T™) (3¢(r+1)-4 DOFs). (4.3g)
.

Proof The number of degrees of freedom given is 6r2 +6r+2 which equals the

dimension of L(T") . We show that if vE€ Li(ps) vanishes on (4.3), then v is
identically zero.

Suppose that v vanishes on (4.3a)—(4.3e) restricted to a single edge e; . Recall
that T(zs+i) = T2is1 UTais2 is the union of two triangles that have zs.; as a vertex, and n
iand t; are, respectively, the outward normal and unit tangent vectors of the edge

13
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ei= JdT NJT(z3+i) . Let sj be a unit vector that is tangent to the interior edge (20,23 +i]
, Which is necessarily linearly independent of t;. Thus we may write

V| T(z3+) = Qiti+ bisi

for some a;,b; EL° (T*) 7(z5.) . We then see that

div V| T(zi+3) =cdkiai+0sibi.

Because b; is continuous on T(z3+)) we have that [[Z:bi]](zi+3) = 0 and hence
0 = [[divV]](z3+) = [F¢ ai](z3+) . Therefore ai¢ is C' on e; . To continue, we split the

proof into two step. |

Caser =1:

By the first set of DOFs (;4.3a), there holds ai(z)) = bi(z;) =i 0= for j €{1,2,3}\{i} .
Because a;. is piecewise linear and C', we conclude that a 0 on e . Next, using

(4.3b) yields| J

bi(Si' n i) =0.

€

Because s;- n ;20 , we conclude that [ bi=0 . Since b; vanishes at the endpoints of e;
, and since b; is piecewise linear on e; , we conclude that b; =0 on e;, and
therefore vei=0. 2

Caser2:

Again, there holds ai(zj) = bi(zj) = 0 by the first set of DOFs (4.3a). Combining Lemma
7 with the DOFs (4.3e), noting that a; is C* on e;, then yields ;=0 on e; . Likewise
the DOFs (4.3a), (4.3e), and (4.3d) show that b;=0 on e; . We conclude that v ¢=0.

Thus, if | v vanishes on (4.3) vEIi}(TPS) then . The DOFs (4.3g) then
show that ps divwv= 0 , and therefore, by Corollary = 2, v =

rot z for some z € S +1(T) . Finally, by

13



Exact sequences on Powell-Sabin splits Page 17 of 3213

(4.3f), we conclude that v 0.

Lemma 11 A € VA(T™)
’ ) [[g 1U(z3+) 1<i<3, (3 DOFs),
function q is (4.43)
uniquely
determined i q(1 DOF),
by T (4.4b)
[gp VpeVv Zr(Tps), (3(r+1)(r+2)-4 DOFs), (4.4c¢)

T

2 S
Proof< <If c/e V. (T™)s such that (4.4ar) are zero then ps g is continuous at z3.; for

1i3 . Then (4.4b) yields that qev (T), and it follows from (4.4c) that g 0 on T.

1 S
Lemma 12 A function € S,(T%) js uniquely determined by the following degrees of

freedom.
1<i<3, (9 DOFs),
v(z:), divv(z)) (4.5a)
voni f 1<i<3,ifr=1,

o (4.5b)
V(z3+) - 0, div v(z34) 1<i<3,ifr22 (6 DOFs), (4.5c)
I vw VWE [Pra(e)], e€EE(T?),  (12(r-1) DOFs),  (4.5d)

/(div V)
e q Vq €P,s(e), eEEP(T™), (6(r-2) DOFs), (4.5e)
[ rv-rotg, Vg €5} (T™)  (3(r-1)(r-2) DOFs), (4.5f)

di . .
T( v V)q, Vg €L \(T™)  (3(r-1)(r-2) DOFs). (4.5g)

S~
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1 1
Proof If v vanishes at the DOFs, then ve §,(T?) C L,(T™) yanishes on (Jr  4.3a)-

(4.3e). The proof of Lemma 10 then shows that v sr=0, and therefore divv=0. Using
. . . . °2 (TP)
(4.5a),(4.5c), and (4.5e), we also find that = div| v|sr=0, i.e., div VEL r-1 . The

DOFs (4.5g) yield divv= 0 in T, and therefore v= rot g for some qe S?+1(Tps) by

Corollary 2. Finally (4.5f) gives v 0 . Noting that the number of DOFs is 6r? +3 , the
1 (7ps
dimension of 5. (") , we conclude that (4.5) form a unisolvent set over

Srl(Tps) .

2 S
Lemma 13 Let qe LL(T™) wjth r21. Then q is uniquely determined by the following

degrees of freedom.

qlz) 1<i<3, (3 DOFs), (4.6a)

q (234) 1<i<3, (3 DOFs), (4.6b)

Jeqp Vp€EP,-1(e), eEEL(T™), (6(r-1) DOFs), (4.6¢)
[rq (1 DOF), (4.6d)

[Tqp Vp€EL A (T7), (3r(r-1) DOFs). (4.6e)

2(TPps
ProofLet q € L,(T*) gych that all DOFs (4.6) are equal to zero. The conditions =

(4.6a)—(4.6=c) yield that g 0 on JT . Therefore, using (4.6d)9 q€ LE(TPS) , and by

(4.6e),g0onT.

13



Exact sequences on Powell-Sabin splits Page 19 of 3213

The next two theorems show that projections induced by the degrees of
freedom given in Lemmas 9-13 commute.

Theorem 2 Let /7l C”(T)eer(TPS) be the projection induced by the DOFs (4.2),
that is,

Hop) =& p), Vb Eporsin (4.2).

Likewise, let /7" : [C(T)]?> 5L -1(T) be the projection induced by the DOFs (4.3),

and let /4>"%:C(T) > V,2-2(T") be the projection induced by the DOFs
(4.4). Then for r 2 , the following diagram commutes

—c? (1) — c* ()] ——c* (1) ——

R
lna ln -t ln 52
— sH ™) ot (™) Myt () —
rot2divO R r-1r-20.
In other words, we have for r 22
div /A"t v =/A"2div v, Yve [C(T)]?, (4.7a)
_Hr—l
rot Z'p~""1 rotp, VpeC™=(T). (4.7b)
Proof (1) Proof of  (4.7a). We  take VE [C*(T)]?. Since

C= dile’_lv— Hz’_2

2 N
V7, e V. ,(T™), we only need to prove that

div v < < pvanishes

at the DOFs (4.4). For the jump condition at points z3+ for 1i 3, we have
[Lo1)(z3 +) = [[div /At v—-/7A"2 div V]](z3+) = [[div A v- div v]](z3+) = 0,
where we have used the definitions of /42 and /A" along with the DOFs (4.4a)

and (4.3c).
For the interior DOFs, we have,

I r—1 :/ (le_l"_")’”:
o= (div/ZZd V" divv) or 0,
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T T
where we have used the definitions of > /4™ 5 and /772 and DOFs
(4.4b) and either eV (1)

(4.3b) if r=2 or (4.3e) if r 3. Finally, for any p,

I v — I, divy)

pp=[ (div/Z p=0
T T

by the definitions of /A" and /A2 along with DOFs (4.4c) and (4.3g). By Lemma
11, pis exactly zero on T, and the projections in (4.7a) commute.

. -1 I s
(2) Proof of (4.7b). Let peC=(T) and set g = Ot Hip = I o p€ L, (T7)
We will show that g vanishes for all DOFs (4.3).< <

First, for each vertex z; with 1i 3,
r
Azi) =rot 76P(@) — 11 rot p(zi) = rot p(z)-/Z"rot p(z)) = 0, (4.8)

by (4.2a) and (4.3a). Furthermore, at nodes z3.i, we have by (4.3c)
[[dival](z3 +) = [[divrot /Z'p- div/A"™! rot p]](zs +i)
= —[[div/ZA rot p]](z3 +)

= —[[divrot p]](z3+) = O,

For the DOFs on each edge eeEzb(TPS) , we will use that rot @ - n=digpandrot ¢ t

=—0h@ . Then we have, forr 3,
= (rot H(;p(z3+l-)) “n; — (le‘lrotp(z3+,-)) .

( ) - n;

/Ar-1rot p(z3+i) (4.9)

Az3+i) - nini

= op(z3+i)-

= gp(z3+i)- rot p(z3+) ni=0

1 S
by (4.2b) and (4.3d). If r =2 (so that pe Ly(T? )),

I Sp—1'_rotp) -n,-=/<9,i(H?P—P) =0
o+ ni=f (rot 7

ei ej

13
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by (4.3b) and >(4.2a), so (4.7b) is proved.

Now let r 3. We have, for all g EPr_g(e) and for all eEEb(TPS),

/(p-n)q=/(r0t (IT5p - p) -n)q
=/6,(176p—p)
e q

:_/e( Op_p)o"tq=0,

by (4.3e), (4.2b) and (4.2d). Likewise, for g EPr-s(E),

I Sp—H]’_lrotp) 1)
(o-tlg=]((rot 77 q

e e

= /(rot (I1gp —p) - t)
==/;@KE@—p)

%0 s
by (4.3e) and (4.2c). For the interior DOFs, for any wE S (T™) , we have

q

q=0

) op — I 'rot p) -
L rot w=[ (rot /7 rot w=0
T T
by (4.2e) and (4.3f). Finally, for any w S f/f_z(TP‘“)'
J 61? - H]r_ll‘Otp>
div pw = [ div (rot /7 w
T T

= [ —div (rot p)w=0
.

where we used the DOF (4.3g). Therefore pis equal to zero on T, and the identity
(4.7b) is proved.
The proof of the following result can be found in the Appendix.

Theorem 3 Let /% COO(T)QSP(TPS) be the projection induced by the DOFs (4.2),
that is,

AIp) = dp), V) €EpoFsin (4.2).

13



13 Page 22 of

32J. Guzman et al.

Likewise, let zn™t: [C=(T)]*> 5S5-1(T") be the projection induced by the DOFs (4.5),

and let @>2""2:C=(T) >L2-2(T*) be the projection induced by the DOFs
(4.6). Then for r 2 , the following diagram commutes

—c® () — [c*(1)] —— ¢~ (1) ——

R
lna lmrl | lzzrﬁ— ?
—— sUrP) 2 gt () 2 2 () —
rot2divO R r-1r-20.
In other words, we have for r 22
rot /Z'p =@n"*rot p, VpeC™=(T), (4.10a)
div @nr-1v =anr-2div v, Yve [C*(T)]?. (4.10b)

5 Global spaces

In this section, we study the global finite element spaces induced by the degrees of

T

freedom in Sect. 4. We let ", represent the simplicial triangulation of the polygonal

domain .OCRZ , and Thps represents the Powell-Sabin refinement of Th , as

discussed in the introduction. We define the set M(Thps) to be the points of

intersection of the edges of Th with the edges that adjoin interior points. We also

let Eb(ThF’-") be the collection of all the new edges of Thps that were obtained by sub-
dividing edges of

T welet E(Th) be the edges of Th . By the construction of Thps every xEM(ThPS) h
belongs to four edges that lie on two straight lines. Therefore, these vertices are
singular vertices [15]. It is important to note that to make our global spaces to have
the correct continuity it is essential to construct the meshes in such a way [12, 14].
Furthermore, as previously mentioned, the divergence of continuous, piecewise
polynomials have a weak continuity property at singular vertices, i.e., at the
vertices in

M(Thps) . In detail, let z EM(T;,F’S) and suppose that z is an interior vertex. Then it is

T

a vertex of four triangles Ki,...,Ks € * p** . For a function g we define

&(q) := 1q|k(2)-qlk(2)+q | (2)-q |k (2) .

13
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v is a continuous piecewise polynomial with respect to Thps , there holds
Then, if &,(divv) = 0 [15].
The degrees of freedom stated in Lemmas 9—-13 induce the following spaces
S0
| VTEThH,

SA(TyP) ={v € [C(4A]?:|div v € C(LD,v rE S (T")
LA (TwP) ={v € [C(LA)?: v|TE LA(T) VT €T},

ps

(I =lgeC'(Q) 1 g7 €S)T™) VT €T,)

Lr2(Th) ={p € C(42) : p| TTE Lr2 r2(Tpsps) VT EThh}, 2 hps

Var(Thps) ={p € L2 (/) : p| EV(T)VTET, #(p) =0, Yz EM(T ) and z an interior node}.

Remark 4 Let z EM(Thps) be an interior vertex and T1,T> ETh share a common edge

where z lies. Then &,(q) =0if and only if [[g1]]1(2) = [[g2]](z) where g i= g 7.. Therefore,

2 S
the local degrees of freedom for Vr (T") with the jump condition (4.4|a) do indeed

induce the global space V2r(Thps) above.

We list the degrees of freedom of these spaces. The global DOF come directly

from the local DOF. We list them here to be precise. >

€ 5% , Tes

It follows from Lemma 9 that a function g , with r 2, is uniquely

determined by

J
a(z), Vq(z) q(2), for every vertex z of Th,
2q(z2) Vz EM(THP), ifr=3,

ohqp Vp €P,3(e), for all e EEP(T™h)

e
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I qp Vp €P.-4(e), for all e EEL(TPS),
erotq-rotp Vp €S °9(T7), forall T

E€Th.

Remark 5 The degrees of freedom for r =2 coincide with the known degrees of
freedom of Powell-Sabin [12, 14]. Recently, results for polynomial degrees r = 3,4
have appeared [8, 9].

1(7Ps
Lemma 10 shows that a function v€ Lr(Th )is uniquely determined by the
values

v(z2), for every vertex z of Th,
(v-n)
e , Ve €E(Ty), ifr=1,
J
[[divv]](2), Vz eM(TxP),
v(z) - n,
Vz EM(TH), if r>2,
V- w, VYw € [Pr-2(e)]?, Ve EEY(TPS),
e
V- rotw, vw € $ 21 (T%), VT €T,
) ‘
1 rdivvw, YweV,_(I™), VT eT,
T
A function qevzr(Thps) , for r >0, is uniquely determined by
[[q]](2), vz eM(T™),
I g=0, VTET,
;
J .
qp Vp €V 2(Tr), VT ETh.
.
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1 (Ps
A function v€ Sr(% )is determined by the following degrees of freedom.

J

v(z), divv(z) for every vertex z of Tj,
I (v-ni), Ve €E(Th),ifr=1,
e

v(z) - n, divv(2)
Vz eM(Tr®), ifr= 2,

Ve w VYw € [Pr-2(e)]? e EEL(THP),
e

(divv)g Vq €P,3(e), e EEP(TH),
e

&0 s
V-rotw Yw €S (T™) gor all T E€Th,
72 S
I rdivvw Yw € L (T™) for all T €Ty

T

A function g€L E(Z,PS)’ ifr>1 | js determined by the degrees of
freedom <<

q(z) 1<i<3,foreveryvertexzof Ty, qf(z) 1

3, Yz EM(Thps)l
eqp Vp EPr-2 (e), Ve EEY(T™),

i .
Jrap Vp € L}(T,

Tq ps
).
Each of the following sequences of spaces forms a complex.
R—5r0(Thps) —rot Lri-1 (Thps) —div V2r-2(Thps) — 0, r=2, (5.2a)
R—>Sro(Thps) —rot Si—l(Thps) —>div Lr2—2(7;zps)—> 0,r=3. (5.2b)
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Remark 6 The spaces L11(Th'°s) and div Lll(Thps) were considered by Zhang [17] for
approximating incompressible flows. In particular, he proved inf-sup stability of this

1 ps
pair. However, he did not explicitly write the relationship Vf— (Thz PS) = div Lr-1 (7;: )

, which we know holds.

Additionally, we can define commuting projections. For example, for the , _ _ N
==

TirTsequences (5.2a) and (5.2b), we define 7z such that, for0i2, zv = /7(v) for all

TETh . By using Theorem 2, we find that following diagram commutes: | |

—c*l)— )] —— 2 () ——

N S -2
lﬂo J/n{ lnﬁ

— 2T P )t () e () —

R

rot2divO R r-1nr-210.

Similarly, defining the projections /v r= a@y(v 1) fori=1,2, it follows from

Theorem 3 that the following diagram commutes: | |

—c*)——c* )] —— ¢ () ——

lﬂ(’) lxi' ! lxé' :

— M) o st () s 2 () —

R rot2divO R r-14r-210.

The proofs that these projections commute are similar to the local cases. The
top sequences (the non-discrete spaces) are exact if S is simply connected [6]. In
the next result, we will show that the bottom sequences (the discrete spaces) are
also exact on simply connected domains.

Theorem> 4 Suppose that /2is simply connected>. Then the sequence (5.2a) is exact

for r 2, and the sequence (5.2b) is exact for r 3.

1 ps
Proof Suppose that vELr-1 (7;1 )

1
r I(T

satisfies divv= 0. Using the inclusion

s #P%) cH(div;/2) and standard results, there exists
g€EH(rot; /2 such that v=rot g . Because v is a piecewise polynomial
of degree r-1, it follows that g is a piecewise polynomial of degree
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r. Moreover, v is continuous and therefore geC*(S) . Thus it follows
0(PS 1 ps
that g€ 5-(Z, ) . Note that this result shows that if v€ Lr_1(Z, )
i<fies di e SUTH)
satisfies divv= 0, then v=rot g for some g= “r*“n /.
Thus to prove the result, it suffices to show that the mappings

div: L B2V @ D and div ssia(Te) 7 02T Tl = 5 ey
r=2 "h

are surjections. This dimV and will be accomplished by showing that dim(divL,-1

dim(divsr—1(Zy ) =dim 2 (T,

V E T

Denote by ~ , ™, and © the number of vertices, edges, and triangles in > h,

respec-
tively. The degrees of freedom given above show that, forr 2,

dimS° (Tr**) =3V +(4r-8)E+3 (r- 2 )(r- 3)T,

dimLA-1 (Th*) =2V +(4 r(- 6 )E+ 3 (r-)2 )(r- 3)T +(3 (- 1 )r- 4 )T, dimV,%,

(Tp*) =E+T+3(—-1)—4T.

We then find, by the rank-nullity theorem and the Euler relation V—]E+T =1 that
PS\y _ 1 ps .
dim(div Lrl—l(% ) = dimtr-1(Z, ) = dlm(rot SO(TxP))
1 ps
= dimLr—1Ty ) = dims,2 (TP5)+ 1

r h
=2V + (4r — 6)E +3(r - 2)(r — )T + (3(r — hr—4) dimL
— 3V+@r—8)E+3(r-2)(r-3)T +(V-E
1T = dimso (T »2)+ (V-E+T)
T

( )
+T)

2 S
= E+T +(3 (r—-1)r-4)T =dimV, —2(Thp ).

Likewise, we have for r 23,
dimsi_1(Z7) = 3V + (6r — 12)E + 3(r — 2)(r = 3)T + 3(r — 2)(r — 3T,
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dimi? 2TV =V+Qr=SE+T+3(-2(-3)
and therefore

1 S\ 1 S
dim(div Sr—1Zi ) = dimsr—1Zy ) = dims,0 (T4*)+(V-E+T)

=3V *‘?,ﬂ’,‘ 12 )+ (3V +@r -9 +3¢- -2 -3y1) °V72N3
—V+Qr—5E+3(r—-2(r-3)T+T =
HV-E+T)
dimLf-z(j;zps).

6 Conclusion

We have developed smooth finite element spaces on Powell-Sabin splits that form
exact sequences in two dimensions. We plan to investigate the extension to higher-
dimensions in the near future. Another interesting question is whether smoother
finite element spaces (e.g., C?> ) fit an exact sequence on Powell-Sabin

triangulations.
Acknowledgements J. Guzman and A. Lischke were supported by the NSF grant DMS-1913083. M.
Neilan was supported by the NSF grant DMS-1719829.

Appendix
Proof of Lemma 7

Proof Suppose z € W,({a,m,b}) is such that (4.1a)—(4.1c) are all zero. We will show
that z must be identically zero on [a, b]. Let /(x) be a degree r polynomial on the
interval [0, 1] satisfying

#0)=1, A1) =0,

1
/ y(p(x) =0 Vp e P, ,(0,1])
0 . (A.1)

We note that these conditions uniquely determine % . Since z is continuous at m
and equal to zero at a and b, and in view of (4.1b)—(4.1c), it follows that z may be
represented by
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1

M1y

<

ym\ € la,m],zly) =

a-m
m-y
m—b

z(m)

2y € [m,b].

Since z (y) is continuous at m, it must hold that

-1 1

¥0)=——u(0). m-b

a-m

Furthermore, given the conditions (A.1) on #, we can show that #/(0) #0 . Suppose

that #£(0) = 0 in addition to (A.1). Then for any peF,_1([0,1]) with p(0) = 0,
1 1 1

I
Px)p(x) = =] Yx)p (x)+A1)p(1)-40)p(0) = -] #x)p'(x) = 0
0 0

0

since p'(x) EPr_z([O,l]) . But #(x) is itself such a function p(x), so it follows that

1
/ w'(x) 2 =0.
0 |

Then #(x) =0, and #is constant on [0,# 1]. This contradicts (A.1), so #(0) #0 .

Furthermore, since 1/(b—-m) 1/(a-m), it follows that z(m) =0 . Therefore z=0 on [a,

b]. Proof of Theorem 3

- e et p€ St (TP)
Proof (1) Proof of (4.10a). Let peC™(T) and = rot /&'p—an"'rot p= ©r-1 . We
show that g vanishes on (4.5).
First,

r—1
Az) =rot ZZp@) = @1 rot p(z) =0,
divp(z) = -dive/i™ rot p(z) = ~divrot p(z) = O,

-1
by the definitions of /4" and @ along with DOFs (4.2a) and (4.5a).
Next, if r =2,
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J
-1
o ni=[ (rot P — @} rotp)-n;

e ei

-1
=f (rot /P = I "rot p) - n =0,

€

using (4.5b), (4.3b) and (4.7b). Similar arguments show that, for >3,
Az) - n = (@0t p(za,) = 11 1ot pz5,)) - n =0,
I r r—1 r Hr—l
p-w=[(rot ZoP — @1 rotp)-w=](rot Z0P — 1 rotp)-w=0,

e ee

and

. -1
/Tp rotw=j(rot/751’_n1r rotp) - w=0.
Next using (4.5c) gives

divp(zs +i) = ~divai*rot p(zs +i) = =divrot p(z3 +) =0,

and (4.5e) yields

J
(divo)g = -f (divzmr_lrot p)g =-[ (divrot p)g =0

e ee

forall g EP,_4(e) and eEEb(TF’S) . The same arguments, but using (4.5g), gives

di -0 . .
v/]( IVP)q Vq eLE_](Tp)

Applying Lemma 12 shows that £#=0, and so (4.10a) holds.

(2) Proof of (4.10b). For someve [C*(T)]?, we define
oy w2 dive € L2 (TP) :
pi=div an 2 r-2 . Then we need only show that gis zero for

all DOFs in (4.6). For the vertex DOFs, we have for each z;,

Azi) = div @nt v(z))-a"% div v(z) = 0,
by (4.5a) and (4.6a). Next, for eachi=1,2,3,
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-1
Azs)=divar V(@) = Ty2diy y(z3.) = 0,
where we have used (4.5a) and (4.6b). Similar arguments show that

I
£9=0 Vg EPra (), eEE(T™),

e

by (4.5e) and (4.6c), and that

J
249

T

=0 Vgel?, (1™

by (4.5g) and (4.6e). Using (4.6d) and (4.5b) if r =2 or (4.5d) if r >2,

I r—1 r=2 =/div(w|r_lv_‘))=/ (wf_lv—v)-nz().
p=[divan ¥V~ divv r or

T T

Therefore, o=0 on T by Lemma 13, and (4.10b) is proved.
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