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Variations on a protective theme: Hamiltonella defensa
infections in aphids variably impact parasitoid success ]

Kerry M Oliver and Clesson HV Higashi

Protective mutualisms are common in nature and include insect
infections with cryptic symbionts that defend against
pathogens and parasites. An archetypal defensive symbiont,
Hamiltonella defensa protects aphids against parasitoids by
disabling wasp development. Successful defense requires H.
defensa infection with bacteriophages (APSEs), which play
other key roles in mutualism maintenance. Genomes of H.
defensa strains are highly similar in gene inventories, varying
primarily in mobile element content. Protective phenotypes are
highly variable across aphid models depending on H. defensa/
APSE, aphid and wasp genotypes. Infection frequencies of H.
defensa are highly dynamic in field populations, influenced by a
variety of selective and non-selective factors confounding
biological control implications. Overall, H. defensa infections
likely represent a global aphid protection network with effects
radiating outward from focal interactions.
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Cryptic protective mutualisms in insects

Protection mutualisms, in which one partner receives
shelter or nutrients in exchange for providing protection
against additional species are widespread in nature [1].
Although many of the best known protective mutualisms
involve macroscopic players (e.g. ant-tending of aphids),
cryptic defensive symbioses involving inconspicuous
microbes certainly represent the bulk of examples. Over
the preceding two decades, the importance of the resi-
dent microbiota in shaping the ecology and evolution of
animals, including insects, has become widely recognized
[2]. Symbionts are often sources of evolutionary novelty
that play critical roles in resource acquisition and defense,
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but they also can be costly to hosts and exploited by
cheaters [3,4].

Microbe-mediated defense of insects spans diverse inter-
action types varying in degree of specificity, specializa-
tion, localization, transmission and state or age of host-
restriction. Examples include environmentally acquired
microbes that establish in the gut and provide protection
against ingested pathogens [5], ectosymbionts that pro-
tect broods or food supply via antibiotic production [6,7]
and host-restricted, maternally-transmitted endosym-
bionts associated with diverse defensive phenotypes.
The latter include Wolbachia infections in natural and
transinfected hosts that protect against a range of micro-
bial pathogens and Spiroplasma-mediated protection
against entomopathogenic nematodes and parasitoids in

Drosophila [8].

Diverse defensive symbioses in aphids

Aphids are phloem-feeding herbivores and all individuals
are infected with an obligate nutritional symbiont, usually
Buchnera aphidicola, to supplement their nitrogen-limited
diet [9]. In addition, at least nine heritable facultative
symbiont (HFS) species regularly occur in aphids [10-12].
While some HFS have roles in expanding dietary breadth
[13], affecting reproduction during aphids’ sexual phase
[14], or transitioning to obligate roles to make up for
decaying Buchnera function [15°], most characterized
phenotypes involve protection against biotic threats
and abiotic stresses [16].

Aphids are great models for the study of defensive sym-
biosis. Clonal reproduction combined with the ability to
manipulate HFS infections allows isolation of symbiont
effects during enemy challenge [10]. The pea aphid,
Acyrthosiphon pisum, is the most intensively studied aphid
model using these experimental approaches, with all
seven naturally-occurring HFS species reported to impact
aphid defense.

Here we focus on the bacterial symbiont Hamiltonella
defensa, for which there is clear experimental evidence for
symbiont-based protection against specific parasitoids
across multiple aphid species (Table 1). While not all
H. defensa strains have conferred protection against the
specific parasitoid species they were tested against [e.g.
17], known target specificity (see below) indicates that
additional studies are needed to determine whether these
are truly non-protective or instead target different species
[18]. Another common aphid HFS, Servatia symbiotica was
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2 Parasites

Table 1

Five aphid systems where H. defensa confers variable protec-
tion (P; NP, no protection) against braconid (dark gray box) or
aphelinid (light gray) parasitoids [70-74]

Aphids Parasitoids APSEtype PorNP Refs
Acyrthosiphon Aphidius ervi APSE1- P 70
isum like
P P 48
APSE 2
P
APSE 3
P
APSE 8
Praon pequodorum NP 54
APSE 3
NP
APSE 8
Aphelinus abdominalis Unknown P 70
NP
Aphelinus atriplicis APSE 3 71
Aphis craccivora Binodoxys communis APSE 4 P 72
Binodoxys koreanus APSE 4 P
Lysiphlebus orientalis APSE 4 NP
Aphidius colemani APSE 4 NP
Lysiphlebus testaceipes  Unknown NP 73
Aphelinus atriplicis APSE 4 NP 71
Aphelinus glycinis APSE 4 NP
Aphis fabae Lysiphlebus fabarum APSE 3 P 50
APSE 6 P 51
Aphidius colemani Unknown NP
Binodoxys angelicae Unknown NP
Aphelinus chaonia Unknown NP 50
Rhopalosiphum padi  Aphidius colemani Unknown P 74
Sitobion avenae Aphidius ervi Unknown NP 17

Ephedrus plagiator Unknown NP

reported to reduce rates of successful parasitism in pea
aphids, both as a single infection and co-infection infec-
tion alongside H. defensa [19,20]. However, no direct
benefits to infections were found as surviving aphids were
largely castrated, indicating that protection against para-
sitoids is likely not the basis of §. symbiotica persistence in
pea aphid populations. Also, Regiella insecticola from Myzus
persicae when transferred to Aphis fabae provided protec-
tion against parasitoids [21], but strains tested from pea
aphids did not [19,22] and it remains unclear whether
anti-parasitoid defense is a common role for this HFS.

A brief history of Hamiltonella defensa

Hamiltonella defensa was first reported from pea aphids in
2001 as ‘PABS’ (pea aphid Bemisia-like symbiont) and as
“T'-type’ from multiple aphid species [23,24]. In a com-
mon pea aphid genetic background this symbiont was
shown to provide protection against the dominant para-
sitoid of pea aphids in North America, the braconid wasp
Aphidius ervi [19] and was named H. defensa in 2005 after
evolutionary biologist W.D. Hamilton in conjunction with
these recently discovered defensive properties [25]. A
member of the Yersiniaceae (Order Enterobacteriales:
Class Gammaproteobacteria), H. defensa is most closely
related to two other aphid HFS, R. insecticola and

Fukatsuia symbiotica (formerly X-type/PAXS)
(Figure 1a) [3,26]. In the pea aphid, H. defensa primarily
persist extracellularly in the hemocoel, although some
cells occur in the cytoplasm of bacteriocytes (aphid cells
housing Buchnera) and surrounding sheath cells [25,27°°].
Although screening effort varies among species, 34% (53/
154) of examined species are reported to carry H. defensa
[11]. Intraspecific infection frequencies are typically
intermediate, but infection appears fixed in some aphids,
including Uroleucon ambrosiae, possibly indicating transi-
tion to co-obligate status as seen for other HFS in Cinara
(Lachninae) aphids [10,15°%,24]. Outside of aphids, H.
defensa occurs in the Bemisia tabaci species complex where
it is restricted to bacteriocytes and likely has non-defen-
sive roles [28-30] and in psyllids and mealybugs where
roles are unknown [24,31].

Rates of maternal transmission of H. defensa are very high
under lab conditions, but are lower under field conditions
and vary with aphid genotype and co-infection states with
other HFS [32]. Though maternal transmission is the
primary route to new hosts, phylogenetic studies show
that H. defensa occasionally moves horizontally within and
among species potentially resulting in the instant acqui-
sition of novel defensive capabilities (Figure 1a)
[10,33,34°,35]. The contaminated ovipositors of parasi-
toids and aphid food plants are likely routes of lateral
transfer [36,37] but the contribution of this phenomenon
to H. defensa prevalence and distributions in field popula-
tions remains to be determined.

Genomics and mechanism of H. defensa-
based protection

Preliminary genome sequencing identified numerous
pathogenicity factors on the H. defensa chromosome as
agents of interest in disabling wasp development [38].
Most intriguing were intact podovirus-like bacterio-
phages called APSEs (for A. pisum secondary endosymbi-
ont) encoding putative eukaryotic toxins. While APSEs
were later experimentally shown to be required for pro-
tection [39], the specific factors that harm wasps have not
been identified. In addition to bringing protective traits
that enhance bacterial and aphid fitness, APSEs influence
the within-aphid abundance of H. defensa [40] and can
move protective traits horizontally between H. defensa
strains [27°°]. While APSEs are vertically transmitted at
high rates, phage loss can lead the rapid breakdown of the
defensive symbiosis due to loss of protection in conjunc-
tion with large fitness costs associated with increased H.
defensa titers [40].

Recent advances in the ability to culture H. defensa and
parasitoid tissues iz vitro confirms that H. defensa requires
APSE to harm wasps, and that this combination can do so
in the absence of aphid factors [27°°]. The ability to
culture key players in this defensive mutualism opens
exciting avenues to directly study function, including via
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(a) Phylogenetic relationships of H. defensa from aphids and whiteflies relative to other aphid HFS (bolded) and related bacteria. Colored H.
defensa strains indicate APSE infection type in pea aphid-associated strains (blue: APSE2, orange: APSES, red: No APSE). (b) Depiction of
Mauve-generated [75] locally collinear blocks for three H. defensa strains: AS3 and A2C are closely related strains with shared synteny but the
former encodes highly-protective APSES (p); The genome of NY26 is rearranged relative to A2C and AS3 and encodes moderately-protective
APSE2 (p). (c) Variable protection against Aphidius ervi by H. defensa depending on APSE presence/type (red, blue, yellow) or aphid genotypes
without H. defensa infection (light or dark gray). (d) The timing of mortality to developing A. ervi varies depending on H. defensa strain; the same
strains have no effect on the development of Praon pequodorum. Moderate increase in temperature (20 vs 25°C) compromise H. defensa-based

protection. Insect illustrations by Rebecca K Neher.

the manipulation of H. defensa, and through the ability to
produce RNA and DNA template with minimal eukary-
otic contamination. Such culture-assisted approaches
were recently used to produce high-quality genomes from
four pea aphid-acquired strains of H. defensa varying in
protective phenotype to complement an existing genome
[34°,41]. Together these show that H. defensa is an aerobic
heterotroph with strains showing large overlap in the
inventory of genes involved in metabolism, housekeeping
functions and nutrient acquisition. Strains differ largely in
the content of mobile genetic elements (MGEs) and
resulting genomic rearrangements (Figure 1b) [34°].
These genomic studies are consistent with key roles
for APSEs in defense. For example, two closely related
strains, one highly protective and the other non-protec-
tive, were nearly identical in gent content, including most
MGEs, except for the presence of APSE3 in the former.
Across strains, H. defensa cannot make many essential
nutrients and the presence of transporters for missing
pathways suggests this symbiont is an obligate parasite of
their insect hosts + obligate symbionts, and a conditional
mutualist when parasitoids are present. Variable costs to

infection with H. defensa have been identified in multiple
aphid species which may reflect constituent costs associ-
ated with resource parasitism, but also pathogenicity
when invading new tissues, or induced costs following
mobilization of wasp-killing factors that also harm aphids
[42-44]. Two additional H. defensa genomes from B. tabaci
indicate that whitefly-infecting strains are slightly
reduced (1.74 vs 2.27 Mb) relative to those occurring in
aphids and lack some pathogenicity factors, including
inactivation of APSEs, consistent with non-defensive
roles [34°,45,46].

Highly variable and specialized H. defensa-
mediated defense against parasitoids

One of the most striking features of H. defensa-mediated
defense is the tremendous variation in protective pheno-
type observed depending on aphid genotype, H. defensal
APSE strain, and wasp genotype. For instance, distinct H.
defensa strains confer widely varying levels of protection
(0-100% relative to uninfected controls) against particular
natural enemies (Figure 1¢,d). Variation largely correlates
with APSE type [47,48], but since H. defensa strain and
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APSE variant are typically co-inherited [34°,49] addi-
tional studies are required to partition relative contribu-
tions. In the Aphis fabae (black bean aphid) interaction,
which also features a parthenogenetic parasitoid Lysip/le-
bus fabarum, the specificity of the interaction is deter-
mined by wasp genotype and H. defensa strain rather than
aphid genotype; a phenomenon potentially mediated by
APSEs [50,51]. Additional variation occurs as some aphid
genotypes lacking H. defensa are also resistant to para-
sitoids (Figure 1c¢) [52,53] and aphids may have both
endogenous and symbiont-based resistance [43].

Across multiple aphid species, particular H. defensa strains
protect only against specific parasitoid species (‘Table 1).
In pea aphids, for instance, several H. defensa/APSE
strains tested showed significant protection against A.
ervi, but no protection again the related Praon pequodorum
(both aphidiine braconids) (Figure 1d) [54]. Such speci-
ficity can mediate competition between rival parasitoids
affecting parasitoid community composition [55°,56,57°].
For example, the introduction of A. ervi to control pea
aphids in North America resulted in the competitive
displacement of numerous native and introduced wasps,
except for P. pequodorum. Population cage studies showed
that A. ervi displaced P. pegquodorum in aphid populations
without H. defensa, but in cages containing 20% (or more)
H. defensa-infected aphids, P. pequodorum not only per-
sisted, but typically displaced A. ervr [58].

Are H. defensa effective defenders in the
field? Implications for biological control

The rapid spread of symbiont-mediated resistance in
response to wasp-induced mortality, as demonstrated in
simplified lab-based population cages [37], ostensibly
poses a serious challenge to biological control. However,
field surveys show that while H. defensa infections fluctu-
ate rapidly, and often dramatically, over spatial and tem-
poral scales, they do not reliably track parasitoid-induced
mortality [37,59]. Instead, a range of selective and non-
selective factors likely serve to attenuate defensive sym-
biont services under ‘real-world’ conditions or otherwise
serve to create mismatches between parasitoid-driven
mortality and H. defensa infection frequencies. As noted
above, protection levels and enemy specificity vary
among strains, such that mortality caused by the wasp
P. pequodorum, for example, would not favor the spread of
H. defensa in pea aphid populations. Further, the protec-
tive benefits of any given H. defensa strain depend on
environmental conditions as several strains of H. defensa
failed to protect pea aphids at only moderately warmer
temperatures while endogenous defenses remained
robust [60]. Thus, defensive symbionts may be less
effective depending on wasp species/genotype or in
warmer locations or times of year inhibiting symbiont
spread. Costs of infection can also vary independent of
benefits, such as when H. defensa infections occur in

resistant host genotypes resulting in redundant services
but increased costs [43,61].

Similarly, H. defensa infection may modify wasp behaviors
in ways that weaken links between parasitism pressure
and infection frequency. For example, A. ervi were shown
to selectively superparasitize H. defensa-infected aphids,
allowing them to partially overcome symbiont defenses
[62]. And in an amazing example of a very extended
phenotype, a recent study [63°°] found that plants fed on
by H. defensa-infected pea aphids emitted fewer induced
volatiles and attracted fewer parasitoids compared with
plants fed on by aphids without H. defensa.

Of course, parasitoids are not the only natural enemies
exerting selection pressure on aphids. Although, A. pisum
and A. fabae with H. defensa are protected against para-
sitoids in the field, the abundance of infected aphids did
not necessarily increase relative to uninfected ones
because of mortality from other agents such as fungal
pathogens [56,64]. Interestingly, field-collected pea
aphids harboring at least one HFS, typically have two
or more HFS, suggesting there may be selection for
‘generalist’ aphids that are resistant to multiple enemies
routinely encountered [32]. Consistent with this hypoth-
esis, co-infection studies show that having multiple HFS
can maintain or even improve protective phenotypes,
although costs can also be enhanced [20,65]. Community
context will also matter as H. defensa services may be less
important for ant-attended aphids [66,67] or impacted by
the infection status of other aphid species [57°,68].

Finally, the importance of non-selective factors, including
migration, vertical and horizontal transmission rates, on
H. defensa infection frequencies are largely unknown
under field conditions, although co-infection context
can impact transmission rates [32] and APSEs infecting
the most protective H. defensa strains are lost more readily
than those in moderately protective strains [40].

Together, diverse and specialized symbiont defenses and
wasp counter defenses, combined with mitigating envi-
ronmental factors, unpredictable costs and non-selective
factors limit its efficacy and invasion potential, which in
turn, may support the retention of attenuated biological
control services. These same factors also set the stage for
coevolutionary interactions that may contribute to the
substantial diversity observed in aphid, wasp and symbi-
ont genotypes [69°].

Conclusions

More than 1700 aphid species (5000 x 34%) are estimated
to be infected with H. defensa. Assuming protective roles
against parasitoids for most, this would represent an
extensive, global defensive mutualism network that
affects herbivore—parasitoid interactions across an even
more diverse suite of host plants. Although many features
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of protective symbiosis will be shared among aphid—
parasitoid systems, given the extensive phenotypic diver-
sity and complexity of interactions observed in the few
systems explored to date, we can expect additional sur-
prising variation. We also expect that phenotypes other
than anti-parasitoid defense will be discovered for H.
defensa, and 1t will be interesting to uncover the distribu-
tion of this symbiont inside and outside of hemipteran
insects as 16s rRNA amplicon studies accumulate. Stud-
ies investigating H. defensa-based protection under field
conditions, and how infection effects radiate through food
webs are underway and producing intriguing results.
These coupled with modeling will lead to a better under-
standing of H. defensa dynamics in natural populations
that may inform control strategies. In turn, lab-based
studies leveraging the advent of culturing protocols are
likely to advance our understanding of the mechanisms of
H. defensa protection and may lead to manipulations that
enhance control services.
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