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Abstract. We develop discrete W2-norm error estimates for the Oliker—Prussner method applied
to the Monge—Ampére equation. This is obtained by extending discrete Alexandroff estimates and
showing that the contact set of a nodal function contains information on its second-order difference.
In addition, we show that the size of the complement of the contact set is controlled by the consistency
of the method. Combining both observations, we show that the error estimate ||u—uyp, HW}% (NT) con-

3P
verges in order O(h'/P) if p > d and converges in order O(h'/4 ln(%)l/d) if p < d, where ||- HW? D)
I:p v

is a weighted Wg—type norm, and the constant C' > 0 depends on HuHc?’,l(Q), the dimension d, and
the constant p. Numerical examples are given in two space dimensions and confirm that the estimate
is sharp in several cases.
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1. Introduction. In this paper we develop discrete Wg error estimates for nu-
merical approximations of the Monge—Ampeére equation with Dirichlet boundary con-
ditions:

(1.1a) det (D?u) = f in Q,
(1.1b) u=0 on 0f)

with given function f € C(Q) satisfying f < f < f in Q for some positive constants
f, f. Here, D?u denotes the Hessian matrix of u. The domain  C R? is assumed to
be bounded and uniformly convex. We seck a solution to (1.1) in the class of convex
functions, which ensures ellipticity of the problem and its unique solvability [16].
Because of its wide array of applications in, e.g., differential geometry, optimal
mass transport, and meteorology, several numerical methods have been developed
for the Monge—Ampere problem. These methods can be roughly divided into two
categories, namely, monotone methods and nonmonotone methods. The monotone
methods include finite difference schemes [27, 15, 7, 22] and semi-Lagrangian schemes
[14]. The convergence of this class of methods requires minimal regularity of the
true solution, and the theoretical tools are based on discrete maximum/comparison
principles and the theory developed in the foundational work [4, 19, 20]. On the
other hand, while this framework is robust with respect to the (lack of) smoothness
of the solution, these convergence results often come without explicit rates, and em-
pirical evidence suggests that these methods are low-order. In addition to theoretical
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convergence results, nonlinear solvers (e.g., Picard, Perron, and Howard iterations)
have been constructed and analyzed which are robust with respect to the initial guess
[26, 27, 14].

For the nonmonotone methods, their convergence is proved provided that the ex-
act solution is sufficient regular (e.g., H?-regularity) and the mesh sufficiently fine;
however, numerical evidence suggests that this regularity restriction might not be
needed in practice. In addition, nonlinear solvers (e.g., Newton’s method) only con-
verge provided the initial guess is sufficiently close to the exact discrete solution.
These methods are generally higher-order and relatively easy to implement on exist-
ing computing software. Examples of nonmonotone methods are finite element type
methods such as the vanishing moment method [13], C?! finite element methods [6, 3],
and C° penalty methods [8, 23, 2]. We also refer the interested reader to a review of
numerical methods for fully nonlinear elliptic equations [24].

The method we analyze in this paper is due to Oliker and Prussner [28, 7, 22] for
the Monge—Ampere problem, and a variant of it is applied to the optimal transport
problem in [1, 21, 17]. The method falls into the category of monotone methods and
it is based on a geometric notion of generalized solutions called Alexandroff solutions.
In this setting, the determinant of the Hessian matrix of w in (1.1a) is interpreted
as the measure of the subdifferential of u; see [16]. The method proposed in [28]
simply poses this solution concept onto the space of nodal functions and enforces the
geometric condition implicitly given in (1.1a) at a finite number of points. Namely,
the method seeks a nodal function uy satisfying the Dirichlet boundary conditions on
boundary nodes, and

|Oun(zi)| = fi
at all interior grid points x;. Here, Oup(x;) denotes that the subdifferential of uy
at x;, | - | is the d-dimensional Lebesgue measure, f; ~ hef(z;), and h is the mesh

parameter. The existence and uniqueness of the method and convergence to the
Alexandroff solution are shown in [28].

While the convergence of monotone methods is ensured under the framework in
[4, 19], the study of rate of convergence of these methods remains largely open for the
Monge—Ampere equation. Recently, a pointwise error estimate of the Oliker—Prussner
scheme is established in [26] and a coming paper [31]. There it is shown that, if the
exact convex solution to (1.1) is sufficiently smooth, and if the nodes are translation
invariant, then the error is of (optimal) order O(h?) in the L..-norm. We note that
standard scaling arguments based on this estimate yield O(1) errors in W;, i.e., no
convergence. Generalities of these L, estimates, depending on solution regularity,
are also given in [26]. However, in many applications, the variable of primary interest
is the gradient map Vu, instead the scale function u. For example, for the optimal
transport problems, the gradient Vu yields the optimal mapping which minimizes the
Lo-cost to transport one measure to another. Therefore, it is desirable to get an error
estimate for v in a Wpl—norm. While one might derive the VVp1 estimate for the Lo,
error estimate by an inverse inequality and obtain ||u — 'U/hHWZ}(Q) < O(h), such an
estimate is suboptimal as observed by numerical experiments; see section 6. Recently
H?' error estimates with rate O(h'/2?) have been established for the optimal transport
problem in [5]. The arguments given there are quite different from ours.

Our contribution in this paper is to develop a discrete W2 error estimates for all
p € [1,00). The idea is inspired by the PDE work [10, 12]. Let

v(z; + he) — 2v(x;) + v(x; — he)
le|2h2

dev(x;) =
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be the second-order difference operator of a nodal or continuous function v in the
direction e € Z? at a node z;, where |e| denotes the Euclidean norm of e. The
(weighted) Wg-norm of a nodal function v with respect to direction e on a set of
nodes S is given by

1/p
[vllwz (s) = <Z fz‘|5ev($i)|p>

z; €S

with f; given by (2.7). The main result of the paper, precisely given in Theorem 5.3,
is the estimate

| H _ Ch'/P if p > d,
u—u
MIWEOW = optidm (L)Y i p <.

Similar to the arguments in [26], operator consistency of the method is one of the
results we use. However, as Alexandroff maximum principles are inherently restricted
to the Loo-norm, there is no hope that the techniques given in [26] will yield error
estimates in Wz? Instead, we first make an observation that the contact set of a nodal
function contains useful information about its second-order difference, Lemma 4.1.
Based on this observation, we establish the key stability result in Proposition 4.1
and show that the size of the complement of the contact set is controlled by the
consistency error of the method. Along with a decomposition of nodal functions in
terms of its level sets (Lemma 5.1), we use these technical tools to construct the I/V]D2
error estimates stated above.

Another application of our results is to combine the Oliker—Prussner method
with a higher-order scheme. The aforementioned convergence results of a higher-
order scheme given in [23] require that the initial guess and the exact solution are
sufficiently close in a Wﬁ—norm. The Oliker—Prussner scheme, as we prove in this
paper, can be used as a convergent initial guess within a higher-order scheme. We
will explore this idea in a coming paper. We mention that the solution of the Oliker—
Prussner method can be solved by introducing a suitable triangulation of the nodal
set and by applying Newton’s iteration. At each iteration k > 1, the triangulation
may be altered to ensure that the piecewise linear interpolation of the nodal solution
u’,fb is convex. The procedure of changing triangulation is completely local and can be
efficiently implemented. We refer to [26] for these implementation details and to [18]
for alternative nonlinear solvers.

The organization of the paper is as follows. In the next section, we state the
Oliker—Prussner method and state some preliminary results. In section 3 we give
operator consistency results of the scheme. Section 4 gives stability results with
respect to the second-order difference operators, and in section 5 we provide W; error
estimates. Finally, we end the paper with some numerical experiments in section 6.

2. Preliminaries.

~ 2.1. Nodal set and nodal function. Let N be a set of nodes in the domain
Q. We denote the set of interior nodes N7 := Nj, N Q, the set of boundary nodes
Nf := Np N IN, and the nodal set

N, = NP UNB.

To ensure that the interior node is not too close to the boundary 90€), we require that

(2.1) dist(z,00) > 1

Z3 for any nodes z € N}Il.
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Such a nodal set can be obtained by removing the nodes whose distance to 02 is less
than h/2. We assume that the nodal set is translation invariant, i.e., there exist a
point b € R? and a basis {e;}&; in R? such that any interior node z € NI can be
written as

d
(2.2) z=>b+ Z hzie; for some integers z; € Z.
i=1

Since the basis e; can be transformed into the canonical basis in R? under a linear
transformation, hereafter to simplify the presentation, we will assume that N{L =
b+ hZ?%. We also make the following additional assumption on the boundary nodal
set N}Jf :

(2.3) dist (z,N}) <h/2  Vz € 09Q.

We say the nodal spacing of Ny, is h. It is worth mentioning that one can construct
a translation invariant N on a curved domain €. In fact, for a nodal set N}, to be
translation invariant, we only require the interior nodal set N7 to satisfy (2.2), while
no such requirement is made on the boundary nodes.

Associated with the nodes is a simplicial triangulation 75, with vertices Nj. We
denote by hr the diameter of T' € T}, and by pr the diameter of the largest inscribed
ball in T'. We assume that the triangulation is shape-regular, i.e., there exists o > 0
such that

ht

— <o VT € Tp,.
pT

We denote by {¢;}7; with n = #N/ the canonical piecewise linear hat functions
associated with J3,. Namely, the function ¢; € C(Q) is a piecewise linear polynomial
with respect to T3 and is uniquely determined by the condition ¢;(z;) = d;; (Kro-
necker delta) for all x; € N} and ¢;(z;) = 0 for all z; € NP. We denote by w; the
support of ¢;, i.e., the patch of elements in T, that have z; as a vertex.

A function defined on N, is called a nodal function, and we denote the space of
nodal functions by M. For a nodal function g with values {g;}+;en, , and for a subset
of nodal points € C Ny, we set the discrete £¢ norm as

1/d
H9||ed(e) = (Z 9i|d> :

z,€C

We say that a nodal function u, € M is convex if, for all x; € N{L, there exists a
supporting hyperplane L of uy, i.e.,

L(z;) <wup(x;) Yo € N and L(z;) = u(z;).
The convex envelope of uy, is the function T'(uy) € C(Q) given by

T(up)(z) = s%p{L(x) is affine : L(z;) < up(x;) Ya; € Np}.

Finally, we denote by Nj : C(Q) — M, the nodal interpolant satisfying Nyv(z;) =
v(x;) for all z; € Np,. Tt is easy to see that if v is a convex function on €2, then Njv
is a convex nodal function.
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2.2. The Oliker—Prussner method. To motivate the method introduced in
[28], we first introduce the notion of an Alexandroff solution to the Monge—Ampeére
equation (1.1). To this end, note that if the solution to (1.1) is strictly convex, and if
u € C%(Q), then a change of variables reveals that

/ fdx :/ det (D*u) dx :/ dx = |Vu(E)| for all Borel E C Q,
E E Vu(E)

where |[Vu(E)| denote the d-dimensional Lebesgue measure of Vu(E) = {Vu(z) :
x € E}. To extend this identity to a larger class of functions, we introduce the
subdifferential of the function u at the point zq as

ou(zo) = {p € R : u(z) > u(zo) +p- (v —m9) VreQ}.

Thus, du(xg) is the set of supporting hyperplanes of the graph of w at xg. If u is
strictly convex and smooth, then du(zrg) = {Vu(zg)}, and the same calculation as
above shows that

(2.4) / fdz =1|0u(E)| for all Borel E C Q.
E

DEFINITION 2.1. A convex function u € C(S) is an Alexandroff solution to (1.1)
provided that u =0 on 9 and (2.4) is satisfied.

The method introduced in [28] simply poses this solution concept onto the space
of nodal functions. To do so, the definition of the subdifferential is extended to the
spaces of nodal functions in the natural way:

(2.5) dup(z;) = {p € R : w(z;) > up(z:) +p- (xj — xj) Vo, € Np}.

The subdifferential of a convex nodal function uy defined above is simple to char-
acterize. The convex function I'(uy) is continuous and piecewise linear with respect
to a simplicial partition of 2. The subdifferential Juy at a node z is just the convex
hull of the piecewise gradients VI'(up)|r for all simplices T' that have z as a vertex;
see Figure 1 for a pictorial description and [25, 24| for further details. Thus, the
subdifferential Juy can be viewed as a map between the nodes and these polytopal
cells.

The discrete method is to find a convex nodal function w;, with u;, = 0 on N}?
and

(2.6) |Oun(zi)| = fi Vi € N,
where
27 fi= [ f@oiayda = [ fe)ote) e
Remark 2.1. The existence and uniqueness of a solution to (2.6) are given in

[28, 26].

2.3. Brunn—Minkowski inequality and subdifferential of convex func-
tions. In this subsection, we develop a few techniques which will be useful in estab-
lishing the error estimate. We start with the celebrated Brunn—Minkowski inequality
which relates the volumes of compact sets of R.
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Fic. 1. Left: The graph of the convex envelope of a nodal function on a coarse (top) and fine
(bottom) grid. Right: The convex hulls of the piecewise gradients of the convex envelopes on the
respective grids. These polygonal cells characterize the subdifferential of the nodal function.

PROPOSITION 2.1 (Brunn—Minkowski inequality). Let A and B be two nonempty
compact subsets of R® for d > 1. Then the following inequality holds:

|A+ BV > |A]Y¢ 4 B4,
where A + B denotes the Minkowski sum.:
A+B::{v+w€Rd:v€Aandw€B}.

Next, we make the following observation on the sum of two subdifferential sets.

LEMMA 2.2 (see [26, Lemma 2.3]). Let up and vy, be two convexr nodal functions.
Then there holds

Oup(z;) + Ovp(z;) C O(up + vp)(x;)

for all x; € Ni.

Proof. Let p; and py be in Oup(x;) and Ovp(x;), respectively. By the definition
of subdifferential (2.5), we have

p1-(zj — ;) <wup(zy) —up(zs) Vo € Np,
po - (zj —x;) < wvp(zg) —op(z) Vr; € Np.
Adding both inequalites, we obtain
(pr+p2) - (25 — @) < (un +vn)(25) — (un +vn)(@i) Ya; € Np.
This shows that p; + p2 € O(up, + vi)(x;). O

Combining both estimates, we derive the following result.

LEMMA 2.3. Let up and vy, be two convex nodal functions defined on Ny and Cp,
be the lower contact set of (up — vp):

Cp = {:cZ eN!: T(up —vp)(2i) = (up — vh)(mz)}
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Then for any node x; € Cy,
(28) 0T (un, — v ()] < [9un () 1/ — |9 ()| /.

Proof. The proof of this result is implicitly given in [26, Proposition 4.3], but we
give it here for completeness.
The definition of the convex envelope and the subdifferential shows that

Ol (up, — vp) (i) C Oup — vp)(25)
for all z; € Cp,. Applying Lemma 2.2 then yields
Ovp(z;) + O (up, — vp)(25) C Ovp(a;) + O(up — vp)(x;) C Qup(z;).
An application of the Brunn—Minkowski inequality (cf. Lemma 2.1) gets

|0vp (i) [V + |OT (wp, — va) () [ < |Ovn(2:) + OT (up — vp) ()|
< [Qup, (a:)| 4.

Rearranging terms we obtain (2.8). O

We also note that the numerical method (2.6) has a discrete comparison principle.
Here, we refer to [26] for a proof.

LEMMA 2.4 (discrete comparison principle [26, Corollary 4.4]). Let vy, wp, € My,
satisfy vy (z;) > wy(x;) for all x; € NB and |0vy(x;)| < [Own(z;)| for all x; € NE.
Then

vp(x;) > wp(z;) Vr; € Np.

3. Consistency of the Oliker—Prussner method. In this section, we state
the consistency of the method (2.6) given in [31]. The result shows that the relative
consistency error is of order O(h?) away from the boundary and of order O(1) in a
O(h) region of the boundary.

LEMMA 3.1. Let Np, be a translation invariant nodal set defined on the domain
Q. Ifue C’“*(Q) is a convex function with 0 < A\ < D?>u < Al and 2 < k+ a < 4,
there holds, for dist(xz;,0Q) > Rh,

(3.1) H(’?Nhu(a:i)\ — fi’ < opktatd=2
where R depends on A\ and A. Moreover, there holds for dist(z;,0Q) < Rh,
|ONyu(z;) — fi] < Ch®.

Remark 3.1. The regularity of f and 0f, the strict convexity of €, and the
positivity of f guarantee that the convex solution to (1.1) enjoys the regularity
u € CF(Q). For example, if f € C*~2(Q) and Q is smooth, then the solutions
satisfy u € C*(Q) [16, 9, 29]

Remark 3.2. We note that if the boundary nodes also form part of the regular
lattice (e.g., on a rectangular domain/lattice), then the consistency estimate could
hold up to the boundary, i.e., in this case estimate (3.1) holds for all z; € Np,.

Thanks to the consistency error of the method, Lemma 3.1, an L-error estimate
is derived in [26, 11] which states the following.
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PROPOSITION 3.2. Let 2 be uniformly convex and N,IL be translation invariant.
Suppose further that the boundary nodes satisfy (2.1), that f > f > 0, and that
the convex solution to (1.1) satisfies u € C*(Q) for some 2 < k +a < 4 and
0 < M < D2y < AI. Then the numerical solution to the discrete Monge—Ampeére
equation (2.6) satisfies

lun — Npull L) < CR*T72([ullora gy,

where ||vpll L. (n,) = MaXa,en, |VA(T3)].

We note that if u € C*1(€), then the optimal order of the L, error is O(h?).
By this Ly error estimate and the assumption (2.1) that the boundary node is at
least h/2 away from the boundary, we immediately deduce that |0.(Npu — up)(z;)| is
bounded. This observation will be useful in the following sections when we investigate
the discrete WI? error estimate.

4. Stability of the second-order difference of the Oliker—Prussner
method. Given two solutions uy and vy, of the discrete Monge—Ampere equations

|Oup(x;)| = fi and |OQvp(zi)| =¢; with wp =v, =0 on 09,

our goal in this section is to control the second-order difference of the error function
. . 1/d  1/d
vp — up, in terms of the consistency error f;’" —g;

T as

. We define a set of relative error

E, = {.’Cl € Np, 0c(vp —up) (i) > 7devp(x;) for some vector e € Zd} .

The main result of the section is to show that a measure of E. is controlled by the

. 1/d 1/d . . ..
consistency error fi/ — gi/ in #4-norm for any 7 > 0. The precise statement is in

Proposition 4.1.
We start with an observation that the contact set of a nodal function contains
interesting information on its second-order difference.

LEMMA 4.1 (estimate of second-order difference). Given two convex nodal func-
tions vy, and up, defined on the nodal set Ny, let

we =up — (L —€)vp,  and w® =vp — (1 —€)uy
for some 0 < e < 1 and the contact sets

(4.1) Cei={w; € Np, we(x;) =Twe(z;)},
(4.2) Coi={z; e Np, w(z;) =Tw(x;)}.

If a node x; € C. N CE, then

(4.3) —edovn(7:) < So(un — vp)(m:) < %56%(@)
—€

for any vector e € Z.2.

Proof. We observe that if a node is in the contact set x; € C, then the second-
order difference of w, satisfies ow,(;) > d.T'we(z;) > 0 for any vector e € Z?. Hence,
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-1
e=1 €=3
We = Up, We = U

~ -
-~
-~
-
-
~
~
-

Fic. 2. A pictorial description of Remark 4.1 with we = up, — (1 — €)vy. The graph of we is
depicted in blue, and the graph of its convex envelope is given by the dashed black line. If e = 1,
then we = uyp, 18 convex, and the noncontact set is empty (left). Otherwise for ¢ € [0,1), we is not
necessarily convez, and the noncontact set is nonempty (right).

for any node z; € C., we have
(4.4) Oc(up —vp)(x;) > —€devn ().

This inequality yields a lower bound of the second-order difference.
To derive the upper bound, we apply a similar argument above to the function
w® and derive

de(vp — up)(x;) > —€deup (x;)

for any node x; € C. A simple algebraic manipulation yields
€
(4.5) Oc(up — vp)(x;) < 1—_65€vh(:ci).
Combining both the lower bound (4.4) and upper bound (4.5), we obtain the desired

estimate. O

Remark 4.1. The lemma above shows that we have control of the error o, (up —vp)
on the contact sets G, and C¢. Define the set E, to be

(4.6) E, = {xi € Np, 0c(vp, — up)(z;) > 7devp(x;) for some vector e € Zd} ,

where 7 = €/(1 — €). Then the proof of Lemma 4.1 shows that E, is contained in the
noncontact set

(4.7) Se :=Np \ Ce.
Analogously,

E™ = {xz € Ny, de(up — vp)(x;) > Tcvp(x;) for some vector e € Zd}
C S :=Np\ e

In the next step, we estimate the cardinality of S.. Heuristically, if € = 1, then
we = up, which is a convex nodal function, and so we have S, = (. As e decreases
to zero, the function w, becomes “less convex” and the cardinality #(S.) increases;
see Figure 2. Therefore, our next goal is to estimate how fast #(S.) increases as
€ — 0. The following lemma shows that this is controlled by the consistency error of
the method.

PROPOSITION 4.1. Let uy, and vy, be two convex nodal functions satisfying up = vp,
on Nf, up < vp in Ni, and

(4.8) Oun(:)| = fi,  and  |Ovp(xi)| = gi
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for all x; € N,Il. For any subset S C N,IL, let
d
(4.9) W(S)= 3" fi and (S ( FH —1”),
T, €S T, €S
where e;/d = (fil/d - gil/d. Then
(410) M(ET) < M(Se) < V‘r(ee) - :u'(ee)v

where C, is given by (4.1), Se is given by (4.7), and 7 = €¢/(1 — €). Consequently,
there holds

(4.11) u(Er) < p(S) < 771Cy [t/

ZICH)
with Cy = dHfl/dHed(Nz
Proof. Since E. C S, by Remark 4.1, we only need to show that

p(S) < vr(€o) — (@), and p(S.) < 7iCy e

ZICo

We first show that

(4.12) Z edup(x Z OTw(x;),

i €NY, ;€N
where w. = up, — (1 — €)vp,. Since up, < vy in N}Il and uj, = v, on Nﬁ we get
we < euy, in N,Il and w. = euy, on NE.
Taking a convex envelope on both sides of the inequality, we obtain
(4.13) Twe(z) < eTup(z) in Qand Twe(z) = eTup(z) on IN.

Since up = I'up, on Ny, due to the convexity of uyp, the inequality (4.13) implies (4.12).
Taking measure on both sides of (4.12) and substituting (4.8) yields

et N fi=et D Joun(x)| < Y |0Twe(x

z;eNT z; €NY z;€Ce

In view of the convexity of the measure of the subidfferential (2.8),

O we(w)] < | £ = (1 - )9}
Therefore, we infer that
d
1/d 1/d
AN =t 3 i< 3R - gl
€N}, x; €Ce

Thus, subtracting €?u(€.), we obtain

= ¢ Z fi < Z (‘efil/d—i—(1—e)eg/d‘d—edfi>.

z; €S, x; €EC,
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Therefore, dividing €%, we obtain

p(Se) < vr(Ce) — p(Ce).

To derive the estimate (4.11), we first see that (4.10) is equivalent to
1/d < H 1/d —1_1/d
Hf ANEY T FrtTe
and therefore ||f1/d||gd(Nz - ||f1/ngd T’1||el/d||gd(ee) by the Minkowski in-

equality. From this estimate and the mequality ad — bt < dad_l(a —b) for a > b, we
derive

9

24(C)

d
174 H 1/d
)= ooy~ e,
<dH ik H 1/d H 1/d
f C4(NT) f C4(NT) / IZIGCH
< CfTil Hel/d . 0
d(e.)

5. sz-estirnate of the method. To establish Wf—estimates of the method,
we first introduce an estimate of the discrete L1 norm of a nodal function in terms of
its level sets.

LEMMA 5.1. Let s, be a bounded nodal function with |sp(z;)] < M for some
M > 0. Then, for any o > 0,

(5.1) Z filsn(z)| < UZM Ag),

wleN

where
Ag = {z; € NL + |sp(xi)| > ko),

u(:) is given by (4.9), and N = [M/o].

Remark 5.1. Roughly speaking, Lemma 5.1 gives a relation between Riemann
and Lebesgue sums. For example, if f; = h for all 4, then the left-hand side of (5.1)
yields a discrete Riemann integral of s;, (“areas of vertical bars”), and the right-hand
side is an approximation of a discrete Lebesgue integral of s, (“areas of horizontal
bars”); see Figure 3.

Proof. Set
Ppi={z; e Nj : ko < |sp(z;)| < (k+1)o}.
Then we clearly have
N N
> filsn(zi)| = Z Z filsn(x Z k+ 1)ou(Py).

We also have
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N
Z%GN}IL fi‘sh| < UZk:O M(Ak)-

Ay

F1G. 3. A pictorial illustration of Lemma 5.1. Here, the measure pu(Ag) == >, JEA fi. The
summation 3 en! filsn| can be viewed as the integral of |sp| with respect to measure the Y fi0z,

(or the area under the blue curve), and ou(Ag) can be viewed as the area of rectangle with bases
1w(Ag) and height o. The rectangles with base (Ao) and (A1) are plotted in gray.

and so, since the sets { P} are disjoint,

N
w(A) = 3 1P,

=k
Therefore
N N N N
JZ/L(Ak):UZZ/L(Pm):UZ(k+ Yu(Py) > Z filsn(xs)] O
k=0 k=0 m=k k=0 z NI

5.1. Ideal case. Now we are ready to prove the estimate in the case that the
consistency error (3.1) holds for all interior grid points.

THEOREM 5.2. Let u be the solution of the Monge—Ampere equation (1.1). As-
sume that

(5.2) |\8Nhu(xi)| - fi| < Ch**%  for every node x; € NI

where Npu is the interpolation of u on the nodal set Ny. Assume further that f is
uniformly positive on 2. Then the error in the weighted I/Vp2 -norm satisfies

R2|Inh| ifp=1,
HNhu - “h”W?’p(N{I) < C{ h2/p ifp>1

provided that h is sufficiently small.

Proof. We start by setting v, = (1 — Ch?)Y¢Nj,u, where the constant C' > 0 is
large enough, but independent of h, to ensure that (cf. (5.2))

i = |0 ()] = (1 — ChQ) |ONpu(z;)| < fi.
By a comparison principle (cf. Lemma 2.4), we have uj, < vy on N,Il, and we see that

(5.3) |fi —gil <CR*T Va; e NI
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due to the assumption (5.2). We also have g; > Ch? provided h is sufficiently small,
and |(v, — Npu)(z;)| < Ch2.
Note that

INkw = unllwz iy < llow = unllwz o) + Ch? | Nuullwz o)
Thus, to prove the theorem, it suffices to show that
h2|Inh| ifp=1
. — NP )
> Sildelwn —un)@)l” < C{ h2 ifp>1.
@ ENJ,
Define the positive and negative parts of d.(v, — up)(x;), respectively, as
5T (vp, — up) () = max{d.(vy — up)(x;), 0},
0, (vp — up)(z;) = max{—0(vy — up)(z;),0}.
We shall prove

h?|Inh| ifp=1
E |5t _ P ’
fl|5e (Uh U’h)('q"l)‘ S C{ h2 lfp > 1.

:CiGN;Il

The estimate for the negative part can be proved in a similar fashion.

Due to the regularity assumption of u, a Taylor expansion shows that |d.vp, (z;)]| <
Cy for all z; € NI, where Cy > 0 depends on lullc11¢q). Moreover, from the Lo
error estimate, Proposition 3.2, and the assumption (2.1) that interior nodes are at
least h/2 away from the boundary, we deduce that

5 (vn —un)(2;) < Cos Y, €NJ,

where the constant Co > 0 depends on [[ul|¢s.1(q)-
Let 7, = Cgkl/th, and define the set

Ay = {xz S N{L, 5T (vp — up)(z) > Tk}.

By Lemma 5.1 with sp,(x;) = |0 (v, —up)(x:)|P, 0 = CYh?P, and M = CZ,, we obtain

Ch~?r
(5.4) S A0 (on —un) @) P < OB | (NE) + D7 u(Ay)
wleNi k=1

We aim to estimate the measure of set p(Ax). Due to the relations of the second-
order difference and contact set given in Remark 4.1, we have Ay C S, = N{L \ Ce,
with € € (0,1) satisfying 7, = €x/(1 — €). Therefore, by the estimate (4.11) given
in Proposition 4.1,

1(Ar) < p(Se,) < i Hgl/d e Gy Hgl/d _ fu/d
Tk

ZIC R

ZICR

From the concavity of t — t'/¢, we have (t 4 €)1/4 — t1/d < d—1¢'/4=1¢, Setting t = g;
and € = f; — g; > 0, we get

fz-l/d - gil/d‘ = ,ff/d - gil/d < d’lgil/d_l(fi —gi) <Ch?
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due to the consistency error (5.3) and the lower bound g; > Ch?. Consequently, we
find that
1/d _ 1/d H < OR2
H ! g I ’

and therefore p(Ag) < klc;p. Applying this bound in (5.4), we derive the estimate

Ch™??
1 R2|Inh| ifp=1

N6F (wr — NP 2p ’
D SilsE (un — o)) P < CHP Y7 kl/péC{ R ifp> 1

x; ENi, k=1

This completes the proof. 0

Remark 5.2. It is worth mentioning that the assumption on the consistency error
(5.2) holds for nodes bounded away from the boundary 9Q provided that u € C31(Q).
However, for nodes close to the boundary 0f2, such an estimate holds only for a
structured domain, such as a rectangle domain; see Remark 3.2 and the first numerical
experiment in section 6. In general, this estimate may not be true. In fact, Lemma 3.1
shows that the (relative) consistency error, O(h) away from the boundary, is of order
O(1). In the following subsection, we take into account the lack of consistency in the
boundary layer.

5.2. Estimate on general domain. We define the barrier nodal function

(5.5) bn () =

h? if z; € N,IL,
0 if x; € NE,

which will be used to “push down” the graph of the nodal interpolant of u and as
such, develop error estimates in a general setting.

THEOREM 5.3. Let u € C*1(Q) be the solution of the Monge-Ampére equation
(1.1) with 0 < M < D?u < AI, and assume that the nodal set NI is translation
invariant and that f is uniformly positive on Q. Then the error in the weighted
W2P_norm satisfies

n/p if p>d,

Nou — <C
[Nnu = unllwz o) < {hl/d(ln(%))l/d ifp<d,

where Npu is the interpolation of u on the nodal set Ny, and the constant C' depends
on |lull¢a.1(q), the dimension d, and the constant p.

Proof. We define the boundary layer:
(5.6) Qp = {z; € Nj, dist(z;,00) < Rh},

where the constant R is the constant in the consistency error, Lemma 3.1, which
depends on the ellipticity constants A and A of D?u. We set

(5.7) vp, = Npu — Cby, gi = |0vp ()],

where the constant C' > 0 is sufficiently large so that u; < vp; see Proposition 3.2. It
is clear from the definition of by that

(5.8a) |Ovk (x;)| = |ONpu(z;)| for any z; € N}IL \ Qp,
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and
(5.8b) |ONpu(x;)| > [0vp(x5)| > 0 for any z; € Q.
This implies that |f; — g;| < Ch**4 in NI\ Q, and |f; — ;] < Ch? in Q). We have

that |[0cvp(x;)| < Cy and [de(vn, — up)(x;)| < Co for all z; € N}Il. As in Theorem 5.2,
we shall prove the estimate for the positive part:

{C’h ifp>d,

Z fz (5j(vh — Uh)(il'z))p < Chln (%) lfp =d.

meN]

The estimate for the negative part can be proved in a similar fashion. Also note that
the estimate for p < d follows from the estimate of p = d and Hélder’s inequality:

1/p—1/d

||Nhu - Uh||W};:p(N£) S C’MHNhu — uhHW;(N{l)v where CH =N (N;[l) P .
We set 7, = Cok!/Ph and define the set

(5.9) Ap = {mi € NL (57 (on —wn) (@) = 70} -

Then, by similar arguments as in Theorem 5.2, we find by Lemma 5.1 that

h*P
(5.10) > fi (65 (vn —un)(@)” < Coh? | n(NE) + > n(A)
z; €N} k=1

To estimate the measure of set j(Ay), we note that Ay C Se, = NI \ €., with
T = €/(1—€x). Invoking the estimate of the measure of the noncontact set S, stated
in Proposition 4.1, we obtain

M(Ak) < :U(Sek) < VTlc(eﬂc) - /L(eek)'

We then divide the estimate of v, (C., ) — p(C,, ) into two parts:

d
Vr (GEk) - M(GEk) = Z [(.fil/d + %ell/d) - fz]

fl'ieeek

d
> o+ X Kﬁ/u%e;/d) . fl

i €Ce, N2 2;€C, \ N

where we recall that eg/d = fil/d — gil/d. Since fil/d = O(h) and gil/d = O(h), we have

1d . 1 174 ¢ d 1d 1 14| /4 -t 1/d
i+ —e; — fil £ —max < |f,""+—e/"|, f; e; ‘
Tk Tk T
< Chdil }/d’
— Tg 7 .

In the set C., N Oy, the consistency error satisfies |€3/d| = O(h); see Lemma 3.1.
Therefore, we have

d
1 Chd
‘(ﬁ/d + _ezl/d> — fi| < — Va; € Cep, N Q.
Tk Tk
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On the other hand, in the set C,, \ €5, we conclude as in Theorem 5.2 that |P1/d| =

O(h?), and
‘(fl/d_l_ 1/d> —fl< C’h2+d.

= d
Tk

Combining both estimates and applying the fact that #(C., N Q) < Chl~¢ and
#(C.,, \ Q) < Ch™4 we obtain

d >4
Tk Tk

Ch Ch* _Ch
U (Ce) — p(Ce) < —a <
k

because h < 1. Hence, we conclude that
Ch
n(Ag) < —-
Tk

Applying this estimate to (5.10), we arrive at

h—P

h
> Filod (vn = un)(@i)P < Coh? Z TR
z; €N}
Since
hz 1 C(d,p) ifp>d
P da/p Cln (%) ifp=d
we conclude that
Ch ifp>d
>° Ao (on — w) @)l < {cmn (0 ity
This completes the proof. 0

5.3. Estimate for solutions with less regularity. In this subsection, we
exploit our stability estimate established in section 4 and show that it may be possible
to apply the arguments given in the previous sections to solutions with low regularity,
in particular, with regularity lower than C31(Q2). We show this by means of an
example, which is a modification of the test problem in the numerical experiments
below.

Set the domain 2 to be a unit ball centered at 0 in R?, and define

1 1 5

(5.11) pa) = (lz] = 1/2)", u(z) = 51}(56)2 + §|9L'|2 3

It is easy to see that u € W2,(Q), but u ¢ C%(Q), and therefore the hypotheses of
Theorem 5.3 do not hold. Nonetheless, we are still able to prove a error estimate with
the same rate established in the theorem.

THEOREM 5.4. Let Q C R? be the unit ball, and let u € W2 (Q), defined by
(5.11), be the solution to the Monge—Ampére problem. Let uy be the solution of the
Oliker—Prussner method. Then there holds

1/2
1
INpu — U’hHWf?,Q(Nf,,) < Cht/? <1n <E>) .
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Proof. Our goal is to find a nodal function vy, satisfying the following three con-
ditions:

(5.12a) up(x;) < wvp(x;) for all nodes x; € Ny,

+
(5.12b) lelifaensy = O(h),  where e = (|dv(w:)| /2 = |Dun(x:)]/2) ",
(5.12¢)

lon = Nuull2ys oxr) = O(h)

With such a function vj, we can show by the same arguments as in the previous

theorem that
S i (85 (on —un)(@:)” < Ch <ln <%>) .

2?1€N}11

The bound for the negative component of the error can be proved in a similar way.
We construct the nodal function vy in three steps.
Step one. We define

p'(z) = (jz] — 1/2 = 2RR) ™,
2
1 1 1 1/1
by s b2t (L4 (L
and set u"(z) = 5P (z) —|—2\33| (2+2 <2 2Rh) ),

where R > 0 is defined in Lemma 3.1. We assume that h is sufficiently small so that
1/2 — 2Rh > 0, implying that p” = 1/2 — 2Rh on 9Q. It is then easy to check that
u=u" =0 on 99.

We first show that D?u" < D%y for all z € Q. To do so, we divide the unit ball
into three regions

{|z] < 1/2}U{1/2 < || < 1/2 +2Rh} U{1/2 + 2Rh < |z| < 1}.

=:Dq =:Dy =:D3

By direct calculation, we immediately have
D*u=1 inD;, and D?*u=1I+D?(p*) in DyU Ds,
while
D=1 inDyUD;, and D' =1+D*((p")’) inDs.
Since p(x)? is a convex function in Q and D?(p?) > 0, we obtain

D*u" < D*u in Dy U Ds.

Next, we show that D?u" < D?u in Dj. Since V|z| = fa7> We obtain for all |z| >
1/2 + 2Rh,
Vulz) = 2+ (o] = 1/2)~ = 22— 22
] 2 x|’
|z’ I —z®x

2 _
D*u(x) =2I — R
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Similarly,

1 |z|?] — 2 ®x
D*u"(z)=2I — ( = + Rh | —————
N
Hence, we get
27 _
2] —z®x >0,
|z[? -

=:A(z)

D?u — D*u" = 2Rh and A(x) < 2|z|"'RhI <4RhI in Dj,

and thus, D?u > D?u" in Ds as desired.
Moreover, a direct calculation shows that

(513)  [|D* (u—u")|[}2 0 = /D | D> (p2)’2dx+/D3 ((2RR)A(z)|2dz = O(h).

Step two. Let by, be defined by (5.5), and set wj, = Npu" — Cby,. Since u” is a
quadratic polynomial in D U D5, and the adjacent set of z; € D1 N Nh ib contained
in D; U Ds (see [26, Lemma 5.3] for details), and [du ()| = fi = [, f( x)dr =
Jo det(D?*u(z))¢;(x)dx, we have for any x; € D1 NN,

|Own (z;)] = / det (D2uh) (2)pi(x)dx = / f(x)di(x)dx = |Oup(x;)].
Q Q
For nodes x; € (Da U D3) NNy, we have
|Owp ()] = |8Nhu (2i)] < |ONpu(z;)]

because D?u”(x) < D?u(x) for all z € Brp(x;). By Lemma 3.1 (consistency error),
we obtain

|ONpu(z;)| = h*det (D?u) (z;) £ O (h*) = |Oun(z;)] £ O (h?)

for all nodes x; € (D2UD3)NN}, and dist(x;, Q) > Rh. To deal with the consistency
error at nodes dist(z;, 9Q) < Rh, we note that for the constant C' large enough, the
second difference
6ewh(xi) = 6euh($z) - Céebh(xz) <0,
where e = Vd(z;) and d(z) = dist(x,dQ). This implies that |Qwy,(x;)| = 0 at z; close
to the boundary (dist(x;,0§2) > Rh) with sufficiently large constant C.
Combining all these estimates, we get

/= (|0wh( )2 — |dup (x )|1/2> =0 Vz; € D1NN,

2

and

A2 |Owp, ()] — |Oun ()]
' |Own ()12 + |Dup ()12

<O (fLS) Vx,; € (DQ U Dg) NNp.

By a discrete Alexandroff estimate [26, Proposition 4.3], we have

(5.14) sup(wp, —up)” < C|rlleon,) < Ch?.
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Let vy, = wp, — Cby,. From the estimate (5.14), there holds uy, < vy, for all x; € Ny,
i.e., the first condition (5.12a) is satisfied.
Step three. To verify (5.12b), we set

;= (&) 2U T A\ )axr an h: (&) 2’1,Lh T S\ Z.
fz—/th(D ) (@)¢i(x)dz and f! /thw ) (@)éi(2)d

. 1/2
Since ||D2(ufuh)||2L2(Q) = O(h), we have ||fz/ - UZh)lm”?"‘(Nﬁ) = O(h). On the
other hand, we have

1/2 (|2

[ 10wn (o2 = (1) —o(n)

e(Nf)
by Lemma 3.1 (consistency error). It then follows that ”6”52(N1) = 0O(h), i.e., (5.12b)
h
is satisfied.
Step four. It remains to verify (5.12¢). Since v, = Npu” — Cby, by definition,
lon = Nuullwz vty < Clibnllw, s ovn) + (| Npu® — Nh“HW?)?(Ni)

S C”bh”W?Q(Né) "‘ C H_D2 (’U,h _ u)
<0 (hl/2> +0 <h1/2> ,

20

where the estimate of ||[D?(u” — )| 2(q) follows from (5.13). This completes the
proof. 0

6. Numerical experiments. In this section, we perform numerical examples
to illustrate the accuracy of the method, and to compare the results with the theory.
In the tests, we replace the homogeneous boundary condition (1.1b) with u = g on
0f). For simplicity, we carry out numerical experiments on a box, instead of a strictly
convex domain. The theoretical results developed in the previous sections can be
applied to this slightly more general problem with minor modifications.

We consider three different test problems, each reflecting different scenarios of
regularity. FEach set of problems is performed in two dimensions (d = 2), and errors
are reported in the (discrete) Loo, H*, W2, and W2 norms. Here, a nine-point stencil
is used in the definition of the W} norms with e; = (1,0), ez = (0,1), e3 = (1,1), and
eq = (1,—1). That is, with an abuse of notation, we set

4
D DI D)

Jj=1 LEiGN}IL

As explained in [26] and in section 2.2, a convex nodal function induces a triangulation
of Q2 whose set of vertices corresponds to Nj,. For a computed solution uy, we associate
with it a piecewise linear polynomial on the induced mesh, which we still denote by
up, and use the quantity ||u — ux||g1(q) to denote the H' error in the experiments
below.

A summary of the theoretical results in sections 2.3 and 5 when d = 2 is

INvu = unllp oy = O (B?) [Nnw = unllwz o) = O (hmﬂ) , p=12,

for any € > 0, provided that u € C31(Q).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/03/20 to 132.174.255.116. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3118 MICHAEL NEILAN AND WUJUN ZHANG

TABLE 1
Rate of convergence for a smooth solution (Example 1).

h L Rate H! Rate w2 Rate W2 Rate
1 1.12e-01 | 0.00 | 2.24e-01 4.49e-01 1.44e+01
1/2 4.78e-02 | 1.23 | 1.35e-01 | 0.73 | 6.02e-01 | -0.42 | 4.24e-01 | 5.08
1/4 1.37e-02 | 1.80 | 4.35e-02 | 1.63 | 2.94e-01 1.03 1.93e-01 1.13
1/8 3.55e-03 | 1.95 | 1.16e-02 | 1.91 | 9.93e-02 1.57 6.34e-02 1.61
1/16 | 8.96e-04 | 1.99 | 2.94e-03 | 1.98 | 2.86e-02 | 1.80 | 1.80e-02 | 1.82
1/32 | 2.24e-04 | 2.00 | 7.39e-04 | 1.99 | 7.66e-03 | 1.90 | 4.79e-03 | 1.91
1/64 | 5.61e-05 | 2.00 | 1.85e-04 | 2.00 | 1.98¢-03 | 1.95 | 1.24e-03 | 1.95

Example I: Smooth solution u € C°°(2). We consider the example

22442

(61)  u(ey)=e T, flry) = (a2 +9?) e and Q= (1,12,

and list the resulting errors and rates of the scheme in Table 1. The table clearly
shows that the errors decay with rate O(h?) in all norms. This behavior matches the
theoretical results of Proposition 3.2 but indicates that the W3 estimates stated in
Theorem 5.2 may not be sharp. This numerical experiment is done on a laptop with
a single core processor of 2.90 GHZ. To compute on the finest mesh in this table with
approximately 16,000 degrees of freedom, it takes approximately 85 seconds.

Example II: Piecewise smooth solution u € cho In this example, the
domain is 2 = (—1,1)2, and the exact solution and data are taken to be

u(z) = 2|x|? in |z|] <1/2,
Tl 2(|z| = 1/2)2 4+ 20z>  in1/2<|z|,
| 16 in |z] <1/2,

fl@) = { 64 — 16]z| in1/2 < |z.

This is essentially the example we consider in Theorem 5.4. A simple calculation
shows that u € C11(Q) and v € C*(Q\ dBy), but u & C?(Q). The errors and rates
of convergence are given in Table 2. The table shows that, while all errors tend to
zero as the mesh is refined, the rates of convergence in the Lo, and W2 norms are
less obvious than the previous set of experiments. Nonetheless, while Theorem 5.3
assumes more regularity of the exact solution, we do observe a convergence rate of
approximately O(hl/ %) in the W2 as stated in Theorem 5.4. It takes approximately
150 seconds to compute the solution on the finest mesh with approximately 16,000
degrees of freedom.

Example III: Singular solution u € W; with p < 2. In the last series of
experiments, the domain is Q = (—1,1)2, and the solution and data are

at + 5yP 2 in [y < |zf?,
u(z) = { %x2y2/3 + 2y4/3 in |y| > |z|?,

36 — 9y2 /a8 in Jy| <[z,
f(z) = { % _ gx2/y2/3 in |y > |z|3.
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TABLE 2
Rate of convergence of piecewise smooth viscosily solution (Exzample I1).

Rate of convergence of Wﬁ solution with p < 2

(Ezample 111).

h L Rate H! Rate w32 Rate w2 Rate
1 4.02e-01 | 0.00 | 8.04e-01 | 0.00 1.61 0.00 1.61 0.00
1/2 4.19e-02 | 3.26 | 1.30e-01 | 2.63 | 6.08e-01 | 1.40 | 5.39e-01 | 1.58
1/4 2.89e-02 | 0.53 | 6.84e-02 | 0.92 | 6.46e-01 | -0.09 | 5.54e-01 | -0.04
1/8 1.27e-02 | 1.18 | 3.50e-02 | 0.97 | 5.14e-01 | 0.33 | 4.54e-01 | 0.29
1/16 | 4.58e-03 | 1.47 | 1.38e-02 | 1.34 | 2.76e-01 | 0.90 | 3.15e-01 | 0.53
1/32 | 8.02e-04 | 2.51 | 3.59e-03 | 1.94 | 1.08e-01 | 1.35 | 2.08e-01 | 0.60
1/64 | 4.33e-04 | 0.89 | 1.50e-03 | 1.26 | 6.36e-02 | 0.77 | 1.56e-01 | 0.42
TABLE 3

h Loo Rate H? Rate | W2 | Rate | W2 | Rate
1 8.36e-01 | 0.00 1.67 0.00 | 3.35 | 0.00 | 3.35 | 0.00
1/2 | 2.34e-01 | 1.84 | 9.11e-01 | 0.88 | 5.48 | -0.71 | 3.94 | -0.24
1/4 | 1.86e-01 | 0.33 | 4.80e-01 | 0.92 | 4.90 | 0.16 | 4.02 | -0.03
1/8 | 8.52e-02 | 1.13 | 2.41e-01 | 1.00 | 4.00 | 0.29 | 3.94 | 0.03
1/16 | 3.41e-02 | 1.32 | 1.02e-01 | 1.24 | 2.38 | 0.75 | 3.33 | 0.24
1/32 | 1.35e-02 | 1.34 | 4.79e-02 | 1.09 | 1.59 | 0.58 | 3.17 | 0.07

3119

This example is constructed in [30] to show that D?u(x) may not be in W for large
p for discontinuous f. The errors of the method for this problem are listed in Ta-
ble 3. Because the exact solution does not enjoy W2 regularity, it is not expected
that the discrete solution will converge in the discrete W3 norm, and this is observed
in the table. However, we do observe convergence in the L., H!, and W norms
with approximate rates |[Nyu — unllr_ oniy = O(h*3), | Npu — un|l g vty = O(h),

and | Npu — uh||ng_’1(N£) = O(h'/?). Finally, we would like to mention that it takes

approximately 150 seconds to compute the solution on the finest mesh with approxi-

mately 4,000 degrees of freedom.
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