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A B S T R A C T

Psychedelic drugs, such as psilocybin and LSD, represent unique tools for researchers investigating the neural
origins of consciousness. Currently, the most compelling theories of how psychedelics exert their effects is by
increasing the complexity of brain activity and moving the system towards a critical point between order and
disorder, creating more dynamic and complex patterns of neural activity. While the concept of criticality is of
central importance to this theory, few of the published studies on psychedelics investigate it directly, testing
instead related measures such as algorithmic complexity or Shannon entropy. We propose using the fractal
dimension of functional activity in the brain as a measure of complexity since findings from physics suggest that as
a system organizes towards criticality, it tends to take on a fractal structure. We tested two different measures of
fractal dimension, one spatial and one temporal, using fMRI data from volunteers under the influence of both LSD
and psilocybin. The first was the fractal dimension of cortical functional connectivity networks and the second
was the fractal dimension of BOLD time-series. In addition to the fractal measures, we used a well-established,
non-fractal measure of signal complexity and show that they behave similarly. We were able to show that both
psychedelic drugs significantly increased the fractal dimension of functional connectivity networks, and that LSD
significantly increased the fractal dimension of BOLD signals, with psilocybin showing a non-significant trend in
the same direction. With both LSD and psilocybin, we were able to localize changes in the fractal dimension of
BOLD signals to brain areas assigned to the dorsal-attenion network. These results show that psychedelic drugs
increase the fractal dimension of activity in the brain and we see this as an indicator that the changes in con-
sciousness triggered by psychedelics are associated with evolution towards a critical zone.
Author summary

The unique state of consciousness produced by psychedelic drugs like
LSD and psilocybin (the active component in magic mushrooms) are
potentially useful tools for discovering how specific changes in the brain
are related to differences in perception and thought patterns. Past
research into the neuroscience of psychedelics has led to the proposal of a
“general theory” of brain function and consciousness: the Entropic Brain
Hypothesis proposes that consciousness emerges when the brain is sitting
near a critical tipping point between order and chaos and that the mind-
expanding elements of the psychedelic experience are caused by the
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brain moving closer to that critical transition point. Physicists have
discovered that near this critical point, many different kinds of systems,
frommagnets to ecosystems, take on a distinct, fractal structure. Here, we
used two measures of “fractal-quality” of brain activity, as seen in fMRI,
to test whether the activity of the brain on psychedelics is “more fractal”
than normal. We found evidence that this is the case and interpret that as
supporting the theory that, psychedelic drugs are move the brain towards
a more critical state. We also found that these measures behave similarly
to a well established, non-fractal measure of signal complexity frequently
used in previous studies of consciousness.
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1. Introduction

Since the turn of the century, there has been a renewal of interest in
the science of serotonergic psychedelic drugs (LSD, psilocybin, mesca-
line, etc.), both in terms of possible medical applications of these drugs
(Vollenweider and Kometer, 2010; Tupper et al., 2015), and what they
might tell us about the relationship between activity in the brain and the
phenomenological perception of consciousness (Andrew, 2015; Carhar-
t-Harris, 2018). For those interested in the relationship between activity
in the brain and consciousness, psychedelic drugs are particularly useful,
as volunteers under the influence of a psychedelic are still able to report
the nature of their experience and recall it even after returning to normal
consciousness. This contrasts favourably with the other class of drugs
commonly used to explore consciousness: anaesthetics, which by the very
nature of their effects, make it difficult to gather first-person experiential
data from a volunteer (Michael, 2005). The subjective experience of the
psychedelic state is associated with radical alterations to both internal
and external senses, including visual distortions, vivid, complex
closed-eye imagery, alterations to the sense of self, emotional extremes of
euphoria and anxiety, and in extreme cases, psychosis-like effects (Stu-
derus et al., 2011). The psychedelic experience can also have profound
personal, and even spiritual or religious character (Griffiths et al., 2006;
Barrett and Griffiths, 2017), which has made them central to the religious
practices of many cultures around the world (Evans Schultes et al., 2001).

Neuroimaging studies using fMRI and MEG have suggested that the
experiential qualities of the psychedelic state can be explained, in part,
by the effects these drugs have on the entropy of brain activity: a theory
known as the Entropic Brain Hypothesis (EBH) (Carhart-Harris et al.,
2014; Carhart-Harris, 2018). The EBH posits that during normal waking
consciousness, activity in the brain is near, but slightly below, a critical
zone between order and disorder, and that under the influence of psy-
chedelic drugs the entropy of brain activity increases, bringing the sys-
tem closer to the zone of criticality. In this context, ‘criticality’ refers to a
zone between two qualitatively different states (a phase transition): the
sub-critical state, which is comparatively inflexible, highly ordered and
displays low entropy, while the super-critical state may be highly
entropic, flexible, and disorganized. A canonical example of a critical
phase transition is the heating of a magnet: at a critical temperature the
magnet rapidly looses is magnetic properties (a hallmark of a globally
organized, sub-critical state), as the atomic spins become disorganized (a
high entropy, low-order super-critical state). The hypothesis that the
brain operates in, or near, the critical zone is a much-discussed one
(Beggs and Timme, 2012; John, 2019) and it is well-established that
critical systems posses appealing information-processing properties, such
a memory, communication, and maximized dynamic range (Cocchi et al.,
2017). Near the critical point, as will be discussed late, systems tend to
take on particular, highly stereotyped structures, including fractal char-
acter, which can serve as an indirect test of criticality.

Studies with psilocybin have found that the patterns of functional
connectivity in the brain undergo dramatic reorganization, characterized
primarily by the rapid emergence and dissolution of unstable commu-
nities of interacting brain regions that do not occur in normal waking
consciousness (Petri et al., 2014). Similarly, under psilocybin, the
repertoire of possible states functional connectivity networks can occupy
is increased, which is interpreted as an increase in the entropy of the
entire system (Tagliazucchi et al., 2014). Work on other psychedelics
with pharmacology related to psilocybin has found similar results: under
the influence of Ayahuasca, a psychedelic brew indigenous to the
Amazon, the Shannon entropy of the degree distribution of functional
connectivity networks is increased relative to normal consciousness (Viol
et al., 2017) (encouragingly, the opposite effect has been shown under
the conditions of sedation with propofol (Pappas et al., 2018)). Analysis
of MEG data from volunteers under the influence of lysergic acid dieth-
ylamide (LSD) has shown an increase in the Lempel-Ziv complexity of the
signals, which is thought to reflect increased complexity of activity in the
brain (Schartner et al., 2017a). LSD has also been recently shown to alter
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the connectome harmonics of brain networks, in a manner that suggests
an increase in the complexity of network harmonics describing brain
activity (Atasoy et al., 2017). For a comprehensive review of the current
state of psychedelic research into the EBH see The Entropic Brain -
Revisited (Carhart-Harris, 2018).

While a core element of the EBH is the theory that the psychedelic
experience moves the brain closer to the zone of criticality, many of the
measures that have been tested so far do not address the phenomena of
criticality directly. These measures usually test where the brain falls on a
unidimensional axis of order vs. randomness. Lempel-Ziv complexity
(Schartner et al., 2017a), nodal entropy (Viol et al., 2017; Pappas et al.,
2018) and the entropy of possible states (Tagliazucchi et al., 2014), all
describe a movement towards higher entropy, which is consistent with
the entropic predictions of the EBH, but not necessarily informative
about the relative proximity to the zone of criticality. In many of these
analyses, a completely random system would score maximally high on
complexity (for instance a completely random time-series would have a
normalized Lempel-Ziv score of unity, which is the upper bound of the
measure). While these analyses are interesting and have clearly been
fruitful, they paint a limited picture of the brain as a complex system, and
don’t directly test the central thesis of the EBH. To date, the only study
that has directly addressed the criticality aspect of the EBH is the study of
LSD and connectome harmonics (Atasoy et al., 2017), although other
studies have found evidence of scale-free, power-law behaviour generally
thought to be indicative of critical phenomena (Muthukumaraswamy and
Liley, 2018). We stress that entropy is not identical to randomness in all
circumstances (it is entirely possible to have a highly structured system
with higher entropy), but rather in this context, many of the measures,
such as LZC monotonically increase with randomness. This is a useful, but
limited understanding of “complexity”, particularly in the context of
critical systems, prompting our proposal of fractal dimension as an
additional measure that can be related to critical processes. We also note
(discussed below) that there are many ways to assess the complexity of a
time-series which provide different information about system dynamics,
and which can be successfully applied in human neuroimaging para-
digms relevant to the quality of consciousness (Varley et al., 2020a).
None of the measures discussed or reported here should be considered
the archetypal measure of complexity (if such a thing is even possible, or
desirable (Feldman and Crutchfield, 1998)), and each measure comes
with strengths and weaknesses.

To address the relative lack of studies testing criticality directly, in
this paper, we propose the fractal dimension of brain activity as a novel
measure of complexity that provides insights into the criticality of the
psychedelic state, as well as providing a measure of ‘complexity’ that is
related to, but distinct from, the entropic measures described above.

Fractals are ubiquitous in nature and dramatic visualizations of col-
ourful constructs like the Mandelbrot set have even permeated popular
culture (Mandelbrot, 1983). Fractals are defined by the property of
having a non-integer dimension, which can be naively thought of as how
‘rough’ or ‘complex’ the shape in question is, or slightly more formally,
the extent to which it maintains symmetry across different scales
(Falconer, 2003). In systems that display self-organizing criticality, as the
system naturally evolves towards a critical point, its dynamic structure
will tend to take on increasingly fractal character that can be described in
terms of fractal dimension (Bak and TangKurt, 1987; Watanabe et al.,
2015; Mizutaka, 2018), and in systems which can be ‘tuned’ to a critical
state (such as the Ising model, which has been explored as a model of
critical brain activity (Haimovici et al., 2013; Das et al., 2014; Abeya-
singhe et al., 2018)), fractal structures emerge near the critical point
(Stinchcombe, 1989). If, under the influence of a psychedelic, the brain is
moving closer towards a state of criticality, as the EBH posits, then we
might expect any fractal character in brain activity to become more
pronounced. There is some evidence of a symmetrical effect when con-
sciousness is lost: in states of sleep and drug-induced anaesthesia, the
fractal dimension of brain activity drops significantly, with the exception
of REM sleep, during which the fractal dimension rises again (Pereda
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et al., 1998; Klonowski et al., 2005; Ferenets et al., 2006; Klonowski
et al., 2010). As REM sleep is the state of sleep when the greatest quantity
of phenomonological experience takes place (in the form of dreams), this
suggests that the fractal dimension of brain activity is related to the
‘quantity’ of experiential consciousness available to an individual.
Similarly, in rats, during ketamine-induced anaesthesia the fractal
dimension of brain activity is significantly higher in key-brain regions
associated with consciousness when compared with anaesthesia induced
by other drugs (Sladjana Spasic et al., 2011), and as ketamine is known to
induce vivid, dream-like states of consciousness at high doses (Paul and
Galloon, 1975), which comports with the REM sleep finding. A recent
study exploring the relationship between temporal and spatial fractal
dimension and consciousness found that the fractal dimension was reli-
ably reduced following loss of consciousness in sleep and sedation,
proving a powerful means of intra-subject state discrimination (Ruiz de
Miras et al., 2019). Temporal fractal dimension is also sensitive to subtler
changes in cognition, including differentiating between internally and
externally generated perceptions (Iba�a~nez-Molina and Iglesias-Parro,
2014), attentional states (Bornas et al., 2013), and hypnosis (Solhjoo
et al., 2005).

Past research has found evidence that both the physical structure of
the brain itself, and the patterns of activity measured by neuroimaging
paradigms display pronounced fractal character (Ieva et al., 2014; Di Ieva
et al., 2015). Changes to the fractal dimension of brain structures are
associated with changes in cognition and clinically significant diagnoses,
such as schizophrenia and obsessive-compulsive disorder (Ha et al.,
2005), Alzheimer’s disease (King et al., 2009), as well as characteristics
such as intelligence (Kiho et al., 2006) and ageing (Mustafa et al., 2012).
There is some preliminary evidence that cortical functional connectivity
networks display fractal character, both during rest and tasks (Gallos
et al., 2012a) and that this fractal character plays an important role in
regulating how information is propagated through the brain (Gallos
et al., 2012b).

To test the relationship between the fractal dimension of activity of
brain and consciousness, we used fMRI data from subjects under the
influence of either LSD or psilocybin, provided by the Psychedelic
Research Group at Imperial College London (Carhart-Harris et al., 2012,
2016). From this data, we created 1000-node functional connectivity
networks and performed a network-specific variation of the box-counting
algorithm (Song et al., 2007) to extract the fractal dimension. We also
used a secondmeasure, the Higuchi fractal dimension (Higuchi, 1988), to
test the temporal fractal dimension of BOLD time-series. These two
measures capture two axes on which the complexity of brain activity
might be measured: spacial (network fractal dimension) and temporal
(Higuchi fractal dimension). If the psychedelic state is associated with a
movement towards a critical zone associated with increased fractal
character, we would expect to see this when examined on multiple
measures, and so these two measures serve as internal validation for
each-other. While the network fractal dimension is not spacial in the way,
for example, a 2-dimensional box-counting analysis of activity at the
cortical surface would be, it does return insight into how information
processing may be distributed across multiple, spatially distinct brain
regions. Previous work has shown that both of these measures are sen-
sitive to changes in level of consciousness following traumatic or anoxic
brain injury in patients with disorders of consciousness (Varley et al.,
2020b). Both measures were reliably able to discriminate between
healthy controls, those in a minimally conscious state, and those in a
vegetative state, suggesting that they are sensitive to dynamics important
for the maintenance of complex consciousness.

In addition to the measures of fractal dimension, we also imple-
mented a Lempel-Ziv complexity.

(LZC) analysis, as described in (Schartner et al., 2015, 2017a, 2017b)
as a check of validity. LZC has historically been used in temporally dense
signals (EEG, MEG), although recent evidence suggests that it, and
several other non-linear signal analysis tools are also applicable to fMRI
BOLD signals (Varley et al., 2020a), and we hypothesize that the patterns
3

observed in previous studies (increased complexity under psychedelics)
should be apparent here as well.

2. Materials & methods

2.1. Ethics statement

The data analyzed here have been reported in previous studies
(Carhart-Harris et al., 2012, 2016). Both studies described herein were
approved by a UK National Health Service research ethics committee,
and the researchers complied with all relevant regulations and ethical
guidelines, including data privacy and participant informed consent.

2.2. Calculating network fractal dimension

When calculating the fractal dimension of a naturally occurring sys-
tem, researchers commonly use a box-counting algorithm, which is an
accessible and computationally tractable method that captures the dis-
tribution of elements across multiple scales (Falconer, 2003). Intuitively,
the box-counting dimension defines the relationship between a measured
quality of a shape in space, and the metric used to measure it. The ca-
nonical example is the question of how long the coastline of Britain is
(Mandelbrot, 1967). If one wishes to measure the length of Britain’s
coast, they could estimate it by calculating the number of square boxes
NBðlBÞ, of a given width lB, that are necessary to tile the entire coastline.
For very large values of lB, NBðlBÞ will be small, while as the value of lB
decreases, NBðlBÞ will asymptotically approach some value. If the shape
being tiled is a fractal, then:

NBðlBÞ∝l�dB
B (1)

Where dB is the box-counting dimension. Algebraic manipulation shows
that dB can be extracted by linear regression in log-log space as:

lim
lB→1

lnðNBðlBÞÞ
lnðlBÞ ∝ � dB (2)

A similar logic is used when calculating the box-counting dimension
of a graph. For a graph G ¼ ðV ;EÞ, a box with diameter lB defines a set of
nodes B⊂V where for every pair of nodes vi and vj the distance between
them lij < lB. Here, the distance between two nodes vi; vj is the graph
geodesic between the vertices: the number of edges in the shortest path
between them. To quantify the fractal dimension of the functional con-
nectivity networks, a box counting method, the Compact Box Burning
algorithm (CBB) (Song et al., 2007), was used to find NBðlBÞ for a range of
integer lB values 1.10. If G has fractal character, a plot of lnðNBðlBÞÞ vs.
lnðlBÞ should be roughly linear, with a slope of � dB. If, during the iter-
ation lnðNBðlBÞÞ ¼ 0, we stopped the iteration, as all subsequent boxes of
size lB will equal 0, which would bias the estimate of network fractal
dimension. For a visualization of the linear regressions, see 5.

Unfortunately, because of the logarithmic relationship between box-
size and fractal dimension, exponentially higher resolutions are
required to achieve modest increases in the accuracy of the measured
fractal dimension. Computational explorations, where a box-counting
method is used to approximate a fractal dimension that has already
been solved analytically, show that the box-counting dimension con-
verges to the true dimension with excruciating slowness (Joosten et al.,
2016), necessitating the highest-resolution parcellation that is compu-
tationally tractable.

It should be noted that there has been much discussion surrounding
the appropriateness of this method for describing the presence (or
absence) of power-laws in empirical data (Clauset et al., 2009). We chose
the above-described method for a few reasons: the first was to remain as
consistent as possible with the method used in previous analysis of the
fractal dimension of human FC networks (Gallos et al., 2012a, 2012b),
the second was because of the tractability of the analysis, and finally, the
relatively small size of the network forced a limited range of box sizes lB
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(approximately a single order of magnitude), which precluded many of
typical power-law fitting algorithms (Clauset et al., 2009). We stress that,
given the ongoing discussion around the optimal way to find power-law
relationships, the results reported here should not be interpreted as an
unambiguous claim of incontrovertible proof that such a power-law
relationship holds here - rather a preliminary result to establish the
possibility that fractal topologies and brain dynamics may be related to
the maintenance of consciousness.

The implementation of the CBB was provided as open-source code by
the Mackse lab, and can be found at: http://www-levich.engr.ccny.cun
y.edu/webpage/hmakse/software-and-data/

2.3. Calculating BOLD time-series fractal dimension

To calculate the temporal fractal dimension, we used the Higuchi
method for calculating the self-similarity of a one-dimensional time-se-
ries, an algorithm widely used in EEG and MEG analysis (Kesi�cSladjana
and Spasi�c, 2016). The original method is recorded in detail in the
original paper (Higuchi, 1988), but will be briefly described here. The
algorithm takes in a time-series XðtÞ with N individual samples, defined
as:

XðtÞ¼ x1; x2; x3;…; xN (3)

In this case, every XðtÞ corresponds to one Hilbert-transformed BOLD
time-series HðtÞ extracted from our functional brain scans (details
below). Hilbert-transforming was chosen to be consistent with
previously-reported studies of time-series complexity and consciousness
(Schartner et al., 2015, 2017a, 2017b). From each time-series XðtÞ, we
create a new time-series XðtÞmk , defined as follows:

XðtÞmk ¼ xm; xmþk ; xmþ2k;…; x
mþ

�
N�m
k

�
k

(4)

where m ¼ 1; 2;…;k.
For each time-series XðtÞmk in k1; k2;…kmax, the length of that series,

LmðkÞ, is given by:

LmðkÞ¼
�PN�m

k
i¼1 jximþk � xði�1Þk j

�
N�1
N�m
k k

k
(5)

We then define the average length of the series 〈LðkÞ〉, on the interval
½k; LmðkÞ� as:

〈LðkÞ〉¼
Xk

m¼1

LiðkÞ
k

(6)

If our initial time-series XðtÞ has fractal character, then 〈LðkÞ〉∝k�D.
As with the procedure for calculating the network fractal dimension, the
algorithm iterates through values of k from 1:::kmax and calculates
lnð〈LðkÞ〉Þ vs. lnðk�1Þ, extracting D by linear regression. The various
values of k can be thought of as analogous to the various values of lB used
to calculate the network fractal dimension. The Higuchi algorithm re-
quires a pre-defined kmax value as an input, along with the target time-
series. This value is usually determined by sampling the results
returned by different values of kmax and selecting a value based on the
range of kmax where the fractal dimension is stable. For the psilocybin and
LSD datasets, we sampled over a range of powers of two ð2;…;128). Due
to the comparably small size of BOLD time-series (100 entries for the
psilocybin dataset and 434 entries for the LSD dataset), the range of kmax

values that our algorithm could process without returning an error was
limited. We ultimately decided on kmax ¼ 64 for the LSD dataset and
kmax ¼ 32 for the psilocybin dataset.

The implementation we used was from the PyEEG toolbox (Bao et al.,
2011), downloaded from the Anaconda repository. Interestingly, the
Higuchi fractal dimension algorithm can also be applied to
two-dimensional images, such as histological photographs (Ahammer,
4

2011; Klonowski et al., 2013; Aliahmad et al., 2014). An interesting
follow-up to this work might be to explore the distribution of instanta-
neous activations over a two-dimensional the cortical surface, thus
providing another test of whether the spacial distribution of cortical
activity follows a fractal pattern.
2.4. Lempel-Ziv complexity of temporal BOLD series

Lempel-Ziv complexity (LZC), is a commonly-used measure of signal
complexity in consciousness studies (Schartner et al., 2015, 2017a;
Schaefer et al., 2017). Lempel-Ziv complexity can be best thought of as a
measure of the entropy rate of a signal, giving an estimate of the
information-density per unit time (Amig�o et al., 2004). Alternately, it can
be understood as an upper-bound on the algorithmic complexity of a
time-series based on how compressible it is (Ruffini, 2017a). The algo-
rithm itself is sensitive the length of the signal being analyzed (Ruffini,
2017a), which we account for in the following analysis. The algorithm
has been detailed elsewhere (see cited research), but in short, the LZC
measures the “complexity” of a signal by quantifying the size of the
dictionary necessary to reconstruct the signal in question.

For every ROI in our parcellated brain, the absolute value of the
Hilbert-transformed time-series FðtÞ is binarized according to the
following procedure:

FBðtiÞ¼
�
1; if FðtiÞ � meanðFðtÞÞ
0; otherwise

The resulting time-series are stacked into a binary matrix where every
row corresponds to an ROI and every column is a time-point in the scan.
The matrix is then flattened orthogonally to T, resulting in a vector on
which the Lempel-Ziv analysis was performed.

The Lempel-Ziv algorithm creates a dictionary D, which is the set of
binary patterns that make up V and returns a value LZC∝jDj. For every
time-series FBðtÞ 2 X, a random time-series was created, by shuffling all
the entries in FðtÞ. These were stacked into a binary matrix Mrand, with
the same dimensions as M, however containing only noise. This random
matrix was flattened and its LZC value calculated. As the randomness of a
string increases, LZC → 1, so this value was used to normalise the “true”
value of LZC, which was divided by LZCrand to ensure all values were
within a range ð0; 1Þ.

In electro-physiological studies, LZC is commonly used in conjunction
with HFD as a synergistic measure of complexity (e.g. (G�omez and
Hornero, 2010; Akar et al., 2015; Husseen Al-Nuaimi et al., 2018)). While
LZC and HFD often behave similarity (high HFD appears with high LZC
and vice-versa), they index different elements of temporal dynamics: LZC
provides an estimate of the algorithmic complexity and entropy rate of a
binary (or otherwise-discretized time-series), while the HFD takes a
renormalization-like approach to the distribution of values in the
time-series. As far as we know, there has been no investigation into the
analytic relationship between the measures, although, if such a rela-
tionship can be derived, this would provide significant insights into the
analysis of complexity in time-series.
2.5. Data acquisition & preprocessing

Both the LSD data and the psilocybin data were provided by the
Psychedelic Research Group at Imperial College London, having already
been preprocessed according to their specifications (Carhart-Harris et al.,
2012, 2016).

2.5.1. LSD data
The data acquisition protocols and preprocessing pipelines were

described in detail in a previous paper (Carhart-Harris et al., 2016), so we
will describe them in brief here. 20 healthy volunteers underwent two
scans, 14 days apart. On one day they were given a placebo (10-mL sa-
line) and on the other they were given an active dose of LSD (75 μg of LSD

http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/
http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/
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in 10-mL saline). BOLD scanning consisted of three 7 min eyes closed
resting state scans. The first and third scans were eyes-closed, resting
state without any in-ear auditory stimulation (music), and these were
what were used in this report.

Anatomical imaging was performed on a 3T GE HDx system (the same
machine was used for both datasets). These were 3D fast spoiled gradient
echo scans in an axial orientation, with field of view¼ 256� 256� 192
and matrix ¼ 256� 256� 129 to yield 1 mm isotropic voxel resolution.
TR/TE ¼ 7.9/3.0 ms; inversion time ¼ 450 ms; flip angle ¼ 20�. BOLD-
weighted fMRI data were acquired using a gradient echo planer imaging
sequence, TR/TE ¼ 2000/35 ms, FoV ¼ 220 mm, 64� 64 acquisition
matrix, parallel acceleration factor¼ 2, 90� flip angle. Thirty five oblique
axial slices were acquired in an interleaved fashion, each 3.4 mm thick
with zero slice gap (3.4 mm isotropic voxels). The precise length of each
of the two BOLD scans was 7:20 min (a third scan, recording during
music listening was collected, but excluded from this analysis). One
subject aborted the experiment due to anxiety and four others were
excluded for excessive motion (measured in terms of frame-wise
displacement).

The following pre-processing stages were performed: removal of the
first three volumes, de-spiking (3dDespike, AFNI), slice time correction
(3dTshift, AFNI), motion correction (3dvolreg, AFNI) by registering each
volume to the volume most similar to all others, brain extraction (BET,
FSL); 6 rigid body registration to anatomical scans, non-linear registra-
tion to 2 mm MNI brain (Symmetric Normalization (SyN), ANTS),
scrubbing (FD ¼ 0.4), spatial smoothing (FWHM) of 6 mm, band-pass
filtering between [0.01 to 0.08] Hz, linear and quadratic de-trending
(3dDetrend, AFNI), regressing out 9 nuisance regressors (all regressors
were bandpass-filtered using the same range described above).

2.5.2. Psilocybin data
The data acquisition protocols and preprocessing pipelines were

described in detail in a previous paper (Carhart-Harris et al., 2012), so we
will describe them in brief here. Fifteen healthy volunteers were scanned.
Anatomical and task-free resting state scans (each lasting 18 min) were
taken. Solutions were infused manually over 60 s, beginning 6 min after
the start of each functional scan. Subjects psilocybin (2 mg in 10-mL
saline) in the active scan. In this study we used only the
psilocybin-positive scan, comparing the pre-infusion condition to the
post-infusion condition for control.

All imaging was performed on a 3T GE HDx system. For every func-
tional scan, we obtained an initial 3D FSPGR scan in an axial orientation,
with FoV ¼ 256� 256� 192 and matrix ¼ 256� 256� 192 to yield 1-
mm isotropic voxel resolution (TR/TE ¼ 7.9/3.0 ms; inversion time ¼
450 ms; flip angle¼ 20�). BOLD-weighted fMRI data were acquired using
a gradient-echo EPI sequence, TR/TE 3000/35 ms, field-of-view ¼ 192
mm, 64� 64 acquisition matrix, parallel acceleration factor ¼ 2, 90� flip
angle. Fifty-three oblique-axial slices were acquired in an interleaved
fashion, each 3 mm thick with zero slice gap (3� 3� 3-mm voxels). A
total of 240 vol were acquired.

All data was preprocessed using the following pipeline: de-spiking,
slice time correction, motion correction to best volume, brain extrac-
tion using the BET module in FSL, registration to anatomy (using FSL
BBR), registration to 2 mm MNI (ANTS), scrubbing (FD ¼ 0.4),
smoothing with a 6 mm kernel, bandpass filtering [0.01–0.08 Hz], linear
and quadratic detrending, regression of 6 motion regressors and 3
nuisance regressors (all of the regressors were not smoothed and were
bandpassed with the same filters). At the suggestion of the original
research team that provided the data, six volunteers were excluded from
the analysis for excessive motion.

2.6. Formation of functional connectivity networks

BOLD time-series data were extracted from each brain in CONN
(CONN is a collection of SPM/MATLAB scripts with a GUI designed for
easy manipulation of fMRI, MEG, and EEG data. It is available at http:
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//www.nitrc.org/projects/conn) (Whitfield-Gabrieli and Nieto-
Castanon, 2012) and the cerebral cortex was segmented into 1000
distinct ROIs, using the “Schaefer Local/Global 1000 Parcellation”
(Schaefer et al., 2017) (https://github.com/ThomasYeoLab/CBIG/blob/
master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/
Parcellations/MNI/Schaefer2018_1000Parcels_7Networks_order_FSL
MNI152_1mm.nii.gz) Due to the slow-convergence of Eq. (2), and the
necessity of having a network with a wide enough diameter to accom-
modate a sufficiently wide range of box-sizes (if lB is greater than or equal
to the diameter of the network, then NðlBÞ is trivially one), we attempted
to strike an optimal balance between network resolution and computa-
tional tractability.

Every time-series FðtÞwas first transformed by taking the norm of the
Hilbert transform of each time-series, to ensure an analytic signal and
keep the signals consistent with the Higuchi fractal dimension analysis.

HðtÞ¼ jHilbertðFðtÞÞj (7)

Pearson Correlation was chosen largely due to its wide use in the field
and ease of interpretation. While more exotic, nonlinear similarity
functions exist (normalized mutual information, information-based
similarity, etc), for a prospective study of this sort, use of a well-
characterized, linear function was appropriate, although future studies
might explore the effect of different functions on large network topology.
The resulting time-series HðtÞ was then correlated against every other
time-series, using the Pearson Correlation, forming a matrixM such that:

Mij ¼ ρ
�
HiðtÞ;HjðtÞ

�
(8)

No significance testing was done (every ρ was included, regardless of
whether it met some arbitrary α value or not), because significance
filtering would result in an uneven distribution of edges and degrees
between graphs that may have effected the analysis. Due to the high
thresholding, the vast majority of weak, or potentially spurious connec-
tions were likely removed anyway. The correlation matrix has a series of
ones that run down the diagonal, corresponding the correlation between
each timeseries and itself which, if treated directly as a graph adjacency
matrix, would produce a graph where each node had exactly one self-
loop in addition to all its other connections. To correct for this, the
matrices were filtered to remove self-loops by turning the diagonal of
ones to zeros, ensuring simple graphs:

Mij ¼
�
0; if i ¼ j
Mij; otherwise

(9)

Finally, the matrices were binarized with a 95% threshold, such that:

Mij ¼
�
1; if Mij � P95

0; otherwise
(10)

The thresholding procedure was passed over all entries in the matrix,
regardless of whether they were positive or negative, and any surviving
edges became ones. The practical effect of such stringent thresholding is
that only positive values survived, and including the negative values
drove down the minimum edge weight that survived thresholding,
resulting in a marginally less sparse network than what might have
occurred if negative values had been thrown out prior to thresholding.
While binarization does throw out information, the CBB algorithm that
we used does not factor edge weight into whether two nodes constitute
members of the same box. A 95% threshold was chosen based on the
findings of Gallos et al. (2012b), who showed that functional connec-
tivity networks only display fractal character at high thresholds (see
Introduction). All surviving valuesMij < 0 7! 0. The results could then be
treated as adjacency matrices defining functional connectivity graphs,
where each row Mi and column Mj corresponds to an ROI in the initial
cortical parcellation, and the connectivity between all nodes is given by
Eq. (3). To see samples of the binarized adjacency matrices, and the
associated graphs see Fig. 1.

http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_1000Parcels_7Networks_order_FSLMNI152_1mm.nii.gz
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_1000Parcels_7Networks_order_FSLMNI152_1mm.nii.gz
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_1000Parcels_7Networks_order_FSLMNI152_1mm.nii.gz
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_1000Parcels_7Networks_order_FSLMNI152_1mm.nii.gz


Fig. 1. Whole-brain functional connectivity networks and matrices.
Two binarized, 1000-ROI adjacency matrices from a single, randomly chosen subject, and their associated functional connectivity graphs (A 7! A, etc). In the adjacency
matrices, every pixel represents an edge between two nodes: if the pixel is white, the edge exists, if black, the edge does not exist. A is the functional connectivity
matrix from the placebo condition, B is the matrix from the LSD condition. While the differences in fractal character are not intuitively obvious upon visual inspection,
subtle differences in the distribution of connections can be seen.
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When the corresponding networks are constructed, differences in
gross-scale connectivity can be seen, although, as with the matrices, a
change in fractal structure is not intuitively obvious. The networks are
constructed using axial projections of the 3-dimensional atlas: each node
is roughly at the centroid of it’s associated ROI.

2.6.1. Specific-network analysis
To localize changes in the complexity of brain activity, individual

ROIs were grouped into networks, using the mapping proposed by Yeo
et al. (2011). We used the 1000 ROI parcellation with seven networks:
default mode network, somato-motor network, visual network,
dorsal-attenion network, ventral-attenion network, limbic network,
and fronto-parietal control network. For each of the 1000 ROIs in the
Schaefer Local/Global parcellation, the mapping by Yeo et al. (2011)
provides an assignment of that node to one of the seven listed net-
works. After assigning each individual time-series to a network, we can
then explore statistics (HFD, LZC) in these smaller subsets of the sys-
tem, instead of aggregating over all 1000 nodes. This gives us a sense of
how LSD and psilocybin effect disparate brain systems. For visualiza-
tion of the assignment of nodes to these networks see Fig. 2. We then
used the Higuchi fractal dimension method described above on each
subset of regions to get a measure of the average time-series fractal
6

dimension of each network.

2.6.2. Statistical analysis
All analysis was carried out using the Python 3.6 programming lan-

guage in the Spyder IDE (https://github.com/spyder-ide/spyder), using
the packages provided by the Anaconda distribution (https://www.an
aconda.com/download). All packages were in the most up-to-date
version, with the exception of NetworkX: due to compatibility issues
with the CBB code, NetworkX v. 0.36 was used. Packages used include
NumPy (van der Walt et al., 2011), SciPy (Jones et al., 2001), and Net-
workX (Hagberg et al., 2008). NetworkX was used for the implementa-
tion of the CBB algorithm, NumPy was used for manipulation of
adjacency matrices and arrays, SciPy was used for statistical analysis,
primarily using the SciPy.Stats module. Unless otherwise specified, all
the significance tests are non-parametric: given the small sample sizes
and heterogeneous populations, normal distributions were not assumed.
Wilcoxon Signed Rank test was used to compare drug conditions against
their respective control conditions. To correct for multiple comparisons
within a single analyses (eg. assessing HFD for LSD and psilocybin, at
both the global and network levels), we used the Benjamini-Hochberg
procedure with an FDR of 5% for all tests within a single analysis.

https://github.com/spyder-ide/spyder
https://www.anaconda.com/download
https://www.anaconda.com/download


Fig. 2. Assignment of nodes to canonical networks.
A visualization of how the 1000-node functional connectivity networks were
parcellated into seven different brain regions, following the mapping described
by Yeo et al. (Yeo et al., 2011; Schaefer et al., 2017), The specific map file is
available from GitHub at https://github.com/ThomasYeoLab/CBIG/tree/maste
r/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/.
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3. Results

3.1. LSD & psilocybin network fractal dimension

The Wilcoxon signed-rank test found significant differences, when
corrected with the Benjamini-Hochberg procedure with an FDR of 5%
(BenjaminiYosef, 1995), between LSD and placebo conditions (H(4),
p-value ¼ 0.001), and between the pre-infusion and post-infusion psi-
locybin conditions (H(6), p-value ¼ 0.05). The mean fractal dimensions
for the LSD condition was 3:37� 0:15, and for the associated placebo
condition it was 2:939� 0:29. For psilocybin the mean fractal dimension
was 3:52� 0:049, and for control it was 3:277� 0:372. For a plot of the
relative fractal dimensions, see Fig. 3. For a visualization for how the
fractal dimension was calculated by linear regression for LSD see 4A and
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for Psilocybin, see Fig. 4B. For visualization of all box-counting plots, see
Figs. 5 and 6.

These results are consistent with the EBH, which posits that the
properties of criticality will increase during psychedelic states (Carhar-
t-Harris et al., 2014). These results are also consistent with the hypothesis
that the changes in brain activity induced by LSD are very similar to the
changes induced by psilocybin, which is unsurprising given their shared
serotonergic pharmacology and the phenomenological similarities be-
tween the associated experiences. The difference in base-line fractal
dimension [between LSD and psilocybin] is intriguing: we had expected
it to be consistent across both datasets, as normal waking consciousness is
presumably similar among volunteers in both datasets. We tentatively
hypothesize that it may be a result of differences in data acquisition and
processing specifications. It may be, however, that the base-line fractal
dimension of BOLD signals is not as consistent between populations as we
had assumed, and this may be an interesting future direction of
exploration.

3.2. LSD & psilocybin BOLD time-series fractal dimension

The Wilcoxon signed-rank test, when corrected with the Benjamini-
Hochberg procedure with an FDR of 5%, found significant differences
between the Higuchi fractal dimension of the LSD time-series and pla-
cebo time-series (H(3) p-value ¼ 0.001), but not between the pre-
infusion and post-infusion psilocybin time-series. The mean network
fractal dimension for the LSD-condition time-series was 0:91� 0:005 and
for the placebo condition it was 0:9� 0:006. For the post-infusion psi-
locybin condition, the mean network fractal dimension of the BOLD time-
series was 1:03� 0:015, while for the pre-infusion condition it was
1:02� 0:009. For visualization of the global Higuchi fractal dimension
for the LSD versus control conditions, see Fig. 7A, and for visualization of
the global Higuchi fractal dimension for the psilocybin versus control
conditions, see Fig. 7B.

In the LSD condition, we found a non-significant, positive correlation
between the network fractal dimension and the temporal fractal
dimension (ρ ¼ 0:26, p-value ¼ n.s.), but no meaningful correlation
between both measures in the psilocybin condition (ρ < 0:1). In the LSD
condition, this correlation was destroyed by truncating the BOLD time-
series, as described previously.

These results suggest that, at least for the LSD condition, the activity
of the brain tends towards increased fractal character in the temporal as
well as spatial dimension. This is consistent with the EBH and serves as
validation of the network fractal dimension results reported above. The
difference between the averages between the two non-drug conditions
(placebo condition of the LSD dataset, and the pre-infusion condition of
the psilocybin dataset) are most likely explained by the significant dif-
ference in the lengths of scans and number of time-points the algorithm
was fed. To test this, we re-ran the Higuchi fractal dimension analysis on
LSD signals that had been truncated to be the same length as the psilo-
cybin time-series (100 samples), and found that there was no longer a
significant difference between the drug and control conditions. We take
this as evidence that the lack of significant difference between psilocybin
and control conditions cannot be attributed to the drug directly but
rather, may be reflective of a fundamental limitation in the utility of the
Higuchi algorithm when working with sparse datasets.

3.2.1. Localizing time-series fractal dimension to sub-networks
To take advantage of the fact that the Higuchi method of calculating

fractal dimension works on one time-series at a time, we were able to test
whether any specific sub-networks of the brain displayed any changes in
the fractal-dimension of the associated time-series. For the psilocybin
condition, only one significant difference in the fractal dimension of
BOLD time-series was found: the fractal dimension increased in the
dorsal attenion network, at the edge of significance (H(6), p-value ¼
0.05). In light of our suspicion that the psilocybin time-series are too
short for meaningful Higuchi analysis, we strongly feel that these results

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/


Fig. 3. Network fractal dimension.
Swarm and box plots of the network fractal dimensions for the two psychedelic drugs tested. Note that both psychedelic conditions show less variability compared to
their respective controls.*p � 0.05, **p � 0.01, ***p � 0.001.

T.F. Varley et al. NeuroImage 220 (2020) 117049
should be replicated, using either longer fMRI scans, or, ideally, MEG or
EEG data. For a table of the Higuchi fractal dimensions for each network
tested in the psilocybin condition, see Table 1.

For the LSD condition, compared to the placebo condition, we found
significant increases in fractal dimension under LSD in the fronto-parietal
network (H(4), p-value¼ 0.001), in the dorsal-attenion network (H(0), p-
value ¼ 0.0005), and the visual network (H(4), p-value ¼ 0.001). For a
table of the Higuchi fractal dimensions for each network tested in the LSD
condition, see Table 2.
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The significant increase in the dorsal-attenion network in both the
LSD and psilocybin conditions suggests that this finding may be more
robust than the increases in the fronto-parietal network or visual network
that appear to be unique to LSD. An increase in the complexity of activity
in the visual system under LSD is somewhat unsurprising, although why
this did not appear in psilocybin is unclear (under the psilocybin con-
dition the mean complexity in the visual system did increase relative to
the pre-infusion condition, although this was not significant).



Fig. 4. Log-log regression of box length vs.
number of boxes to tile the network.
Here is the derivation of the fractal dimension for
the LSD and psilocybin tests. For a range of
integer-valued box-lengths ({1,2,…,10}), the
minimum number of boxes of that length neces-
sary to tile a 1000-ROI functional connectivity
measure is calculated. If the log-transformed
values display a linear relationship, that is evi-
dence of a power-law distribution, and the slope
characterizes the dimension of the network. Here,
each point is th the average number of boxes
across all subjects (n ¼ 15) in that condition, for
each box length. A steeper slope corresponds to a
higher fractal dimension, which is associated
with a more complex system. For this plot, we
took all data points into account when calculating
the average, for visualization purposes. See the
Methods section for a discussion on how indi-
vidual network fractal dimensions were calcu-
lated.
Note the log-log axes.
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3.3. LSD & psilocybin BOLD Lempel-Ziv complexity

TheWilcoxon signed-rank test found significant differences in the LZC
between the LSD time-series and the placebo timeseries (H(1), p-value ¼
0.001), but not between the pre- and post-infusion psilocybin conditions.
The mean complexity of the LSD condition was 0:95� 0:004, while the
control condition had a mean complexity of 0:93� 0:01. The psilocybin
condition had a mean complexity of 0:96� 0:01, while the pre-infusion
condition had a mean complexity of 0:95� 0:02. For visualization of
these results, see Fig. 8.

In the LSD condition, we found significant correlations between the
LZC and both the network fractal dimension (ρ ¼ 0:68, p-value <

0.0001) and Higuchi fractal dimension (ρ ¼ 0:62, p-value ¼ 0.0003), for
visualization see Fig. 9. In the psilocybin condition we found positive,
non-significant correlations between the LZC and the network fractal
dimension (ρ ¼ 0:16, p-value ¼ n.s.) and the Higuchi fractal dimension
(ρ ¼ 0:25, p-value¼ n.s.), visualization not shown. The finding that both
measures correlate better with Lempel-Ziv complexity than they do with
each-other is interesting and a potential area of further exploration.

Unlike the Higuchi fractal dimension measure, truncating the LSD
condition to 100 TRs did not abolish the significant difference between
the drug and placebo conditions (H(0), p-value ¼ 0.001). The signifi-
cance of this is unclear, although it suggests that the LZC measure may be
9

more “robust” when compared to the fractal dimension measure, at least
where temporally sparse signals such as BOLD are concerned.

3.3.1. Localizing time-series complexity to sub-networks
In the LSD condition, we found significant increases in the LZC in

several networks, including the fronto-pariental network (H(5), p-value
¼ 0.002), somato-motor network (H(0), p-value ¼ 0.001), ventral-
attenion network (H(23), p-value ¼ 0.04), dorsal-attenion network
(H(15), p-value¼ 0.01), and the visual network (H(0), p-value ¼ 0.001).
All networks showed higher complexity in the LSD condition relative to
the placebo condition. In the psilocybin condition, all networks had
higher complexity relative to controls as well, although none reached the
level of statistical significance (although ventral- and dorsal-attenion
networks approached significance).

These results are consistent with the results from the Higuchi fractal
dimension analysis, although the LZC algorithm found more significant
differences. In the LSD condition, both analysis found significant in-
creases in the fronto-parietal network, the dorsal-attenion network, and
the visual network.

4. Discussion

Here, we report that, using a Compact-Box Burning algorithm (Song



Fig. 5. CBB plots for LSD. The compact box-burning results for each of the 15 subjects under the influence of LSD vs. control.
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Fig. 6. CBB plots for psilocybin. The compact box-burning results for each of the 8 subjects under the influence of psilocybin vs. control.
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et al., 2007), the fractal dimension of high-resolution cortical functional
connectivity networks is increased under the influence of both psilocybin
and LSD, both serotonergic psychedelic compounds, and that the fractal
dimension of the BOLD time-series is increased by LSD, but not psilocy-
bin. Furthermore, for both LSD and psilocybin, we were able to show a
significant increase in the fractal dimension of the BOLD time-series in
the brain regions generally thought to make up the dorsal-attenion
network. These results suggest that psychedelic drugs increase the
11
fractal character of brain activity in both temporal (as measured by
Higuchi fractal dimension), and spatial domains (as measured by the
Compact-Box burning algorithm). This is in keeping with the predictions
of the Entropic Brain Hypothesis (EBH), which hypothesizes that the
level and quality of consciousness changes as the brain evolves towards
the zone of criticality, between distinct phases (Carhart-Harris et al.,
2014; Carhart-Harris, 2018). Our results using the well-established LZC
algorithm also line up nicely with other attempts to quantify the



Fig. 7. Whole-brain Higuchi fractal dimension
results.
The average Higuchi fractal dimension of BOLD
time-series from every one of the 1000 ROIs used
in the Network Fractal Dimension section. Plot A
corresponds to the LSD vs. LSD Control condition,
Plot B corresponds to the Psilocybin vs. Psilocy-
bin Control condition. For each time-series, the
fractal dimension was calculated using a kmax ¼
64. While the effect size is small in absolute
terms, given the small range that the fractal
dimension of a time-series usually falls, it remains
highly significant.
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complexity of brain activity under psychedelics, which have generally
reported increases in entropy relative to an unaltered baseline (Taglia-
zucchi et al., 2014; Petri et al., 2014; Lebedev et al., 2016; Schartner
et al., 2017a; Viol et al., 2017), as well as being consistent with the
temporal and spatial fractal dimension measures discussed here. These
results may also be significant for theories of consciousness beyond the
EBH, such as Integrated Information Theory (IIT) (Tononi, 2008; Tononi
et al., 2016), and the so-called algorithmic information theory of con-
sciousness (KT) (Ruffini, 2017b). Modelling work has found that inte-
grated information peaks near the critical phase transition in an Ising
model (Khajehabdollahi et al., 2019), and empirical analysis of
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dissociated organotypic neural cultures has found that criticality maxi-
mizes multi-scale complexity of neural activity (Timme et al., 2016).
These findings are arguably most relevant for KT, which explicitly pro-
poses that information dynamics in the brain are organized into an
entropic, but hierarchically modular structure characterized by both high
entropy rate (high Lempel-Ziv complexity) and fractal character (Ruffini,
2017b). Both sets of results reported here are consistent with these pre-
dictions. Under KT, a relative change in the entropy rate and fractal
character of brain data suggests a restructuring of the information dy-
namics the brain uses to model it’s environment, which is consistent with
the perceptual changes experienced under psychedelics.



Table 1
Higuchi fractal dimension during psilocybin.
Highuchi fractal dimension of BOLD time-series from specific sub-networks in
the Psilocybin vs. Control condition* p � 0.05 **p � 0.01 ***p � 0.005.

Sub-Network Condition BOLD Fractal Dimension p-Value

Default-Mode Network Control 1:023� 0:016 W(14)
Psilocybin 1:032� 0:017 p ¼ 0.31

Limbic Network Control 1:034� 0:017 W(13)
Psilocybin 1:044� 0:014 p ¼ 0.26

Fronto-Parietal Network Control 1:022� 0:021 W(17)
Psilocybin 1:03� 0:018 p ¼ 0.51

Somato-Motor Network Control 1:031� 0:017 W(21)
Psilocybin 1:028� 0:016 p ¼ 0.86

Ventral-Attentional Network Control 1:031� 0:018 W(21)
Psilocybin 1:033� 0:02 p ¼ 0.86

Dorsal-Attentional Network * Control 1:013� 0:023 W(6)
Psilocybin 1:027� 0:024 p ¼ 0.05

Visual Network Control 1:024� 0:025 W(17)
Psilocybin 1:021� 0:027 p ¼ 0.51

Table 2
Higuchi fractal dimension during LSD.
Highuchi fractal dimension of BOLD time-series from specific sub-networks in
the LSD vs. Control condition* p � 0.05 **p � 0.01 ***p � 0.005.

Sub-Network Condition BOLD Fractal
Dimension

p-Value

Default-Mode Network LSD 0:906� 0:008 W(54)
Control 0:905� 0:006 p ¼ 0.73

Limbic Network LSD 0:915� 0:006 W(57)
Control 0:913� 0:009 p ¼ 0.86

Fronto-Parietal
Network *** LSD 0:911� 0:009 W(4)

Control 0:9� 0:001 p¼ 0.001
Somato-Motor Network LSD 0:909� 0:006 W(45)

Control 0:9� 0:012 p ¼ 0.39
Ventral-Attentional Network LSD 0:911� 0:007 W(58)

Control 0:911� 0:007 p ¼ 0.9
Dorsal Attentional Network
***

LSD 0:907� 0:009 W(0)

Control 0:894� 0:007 0.0006
Visual Network *** LSD 0:913� 0:003 W(4)

Control 0:897� 0:013 p¼ 0.001
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While the theoretical implications for these results in the context of
the EBH are interesting on their own, we also try to ground these results
in the current literature concerning the neurobiology of psychedelic
drugs. All serotonergic psychedelics (eg: LSD, mescaline, psilocybin)
share agonist activity at the 5-HT2A receptor (David, 2016), a metabo-
tropic serotonin receptor known to be involved in modulating a variety of
behaviours. While the 5-HT2Ar is widely expressed in the CNS, a specific
population localized to Layer V pyramidal cells in the neocortex is both
necessary and sufficient to induce psychedelic effects (Gonz�alez-Maeso
et al., 2007). These Layer V pyramidal neurons serve as ‘outputs’ from
one region of the cortex to another (Nelson, 2008), and the 5-HT2Ar acts
as an excitatory receptor, decreasing polarization and increasing the
probability that a given neuron will fire (Andrade, 2011; AvesarAllan,
2012). This suggests a primitive model of 5-HT2Ar’s role in neural in-
formation processing: on Layer V pyramidal neurons, the 5-HT2Ar serves
as a kind of ‘information gate’. When a psychedelic is introduced to the
brain, it binds to the 5-HT2Ar, exciting the associated pyramidal neuron
and decreasing the threshold required to successfully transmit informa-
tion through the neuron. During normal waking consciousness, areas of
the brain that are physically connected by Layer V pyramidal neurons
may not be functionally connected because the signal threshold required
to trigger an action potential is too high but when a psychedelic is
introduced, that threshold goes down allowing novel patterns of infor-
mation flow to occur. This perspective also recalls the branching process:
(AlavaKent, 2009): in this case, increasing the probability of a pyramidal
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neuron firing may be analogous to increasing the branching ratio σ,
which, if σ is normally sub-critical, would bring the process closer to the
critical value of σc. As networks with fractal topology are related to the
trees generated by critical branching processes (Goh et al., 2006), this
may be a fruitful area to explore further. It should also be remembered
that both LSD and psilocybin act as effective agonists at a range of re-
ceptors, beyond the 5-HT2Ar (which has been the primary receptor of
interest). LSD, for instance, also has affinity for dopamine receptors
thought to regulate psychotic behaviours (Marona-Lewicka et al., 2005)
and both psilocybin and LSD also have high affinity for the 5-HT1Ar,
which is thought to also be significant for understanding the effects of
psychedelics (Carhart-Harris and Nutt, 2017). Furthermore, different
neurotransmitter systems co-regulate each-other (for instance, connec-
tions between adrenergic neurons in the locus coeruleus and serotonergic
neurons in the dorsal raphe nuclei (Pasquier et al., 1977; Morgane and
Jacobs, 1979)), and so the effects of psychedelic drugs are likely to rely
on multiple systems, including the serotonergic, dopaminergic, nora-
drengeric, and histaminergic systems (for review see (Halberstadt and
Geyer, 2011)). Future work combining fMRI and PET maps of cortical
receptor densities (eg. the CIMBI database (Knudsen et al., 2016; Vincent
et al., 2017)) will help to explain how these systems interact.

It is difficult to interpret the increase in the fractal dimension of the
BOLD time-series in the dorsal-attenion network. This network is
generally thought to be involved in a variety of processes related to visual
processing of the environment, such as attending to the orientation of
objects in space, visual feature-based attention, and biasing visual
perception in response to cues (Vossel et al., 2014). It was originally
proposed to be involved with top-down, conscious allocation of attention
to environmental objects (CorbettaGordon and Shulman, 2002). Human
studies with psilocybin have found that exposure to the psychedelic re-
duces attenion tracking ability, and the proposed mechanism given was
that psilocybin reduced the ability of the brain to filter out irrelevant or
distracting stimuli (Carter et al., 2005). This is consistent with findings
that psychedelics attenuate sensory-gating functions in a manner remi-
niscent of patients with schizophrenia (Riba et al., 2002; Vollenweider
et al., 2007).

The finding that LSD increased the fractal dimension of BOLD signals
in the fronto-parietal network is consistent with previous findings that
global increases in the functional connectivity density induced by LSD
overlap with brain regions commonly assigned to the FP network
(Tagliazucchi et al., 2016). We did not, however find significant changes
in the complexity of signals from nodes commonly assigned to the Default
Mode Network (DMN), which ran counter to our initial hypothesis. Many
neuroimaging studies of psilocybin and LSD have found associations
between changes in DMN activity and the phenomonology of the psy-
chedelic experience (Carhart-Harris et al., 2012, 2016; Tagliazucchi
et al., 2016; Wall, 2017). We hypothesize that this discrepancy might be
explained by the sheer number of nodes assigned to the DMN (212 nodes
in total): because the signal from every node was weighted equally, it is
possible that peripheral nodes assigned to the DMN by our parcellation
may not have been significantly effected, thus obscuring a real effect only
present in a subset of DMN nodes. Validation with a smaller atlas or more
conservative assignment of nodes may yet find an effect in the DMN
(although a smaller atlas would preclude the NFD analysis).

Finally, the increased complexity of BOLD signals in the visual
network under LSD is interesting. It has already been established that
LSD alters functional connectivity of visual cortices in humans (Roseman
et al., 2016), and EEG analysis of LSD users post-experience has found
alterations to the coherence of signals in visual areas thought to be
associated with the experience of hallucinations (Abraham and Duffy,
2001). It has been suggested that the qualitative nature of psychedelic
imagery may be informative about the structure and layout of the visual
system (Bressloff et al., 2002), and so we propose that this may be a
particularly fruitful avenue of psychedelic research going forward.

This study has several limitations that are worth considering. The first
is the comparatively small size of the psilocybin sample (n ¼ 9), which



Fig. 8. LZC by condition.
The average LZC of BOLD time-series. Plot A corresponds to the LSD vs. Control condition, Plot B corresponds to the Psilocybin vs. Control condition.
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means that it is harder to trust the replicability of the present findings
than if the sample had been larger. Second, the Higuchi fractal dimension
is not frequently used on BOLD signals, as the number of samples in each
time-series is far lower than it is for EEG or MEG, resulting in a less robust
analysis. In the case of psilocybin, the time-series may be so too short too
produce Higuchi fractal dimension values of any reliability. In light of
this, replication with EEG or MEG data should be a priority before these
results are considered strong. Simultaneous EEG-fMRI recordings under a
psychedelic would be particularly informative as it would enable us to
test the relationship between fractal dimension recorded across modal-
ities. Third, the parcellation resolution used here (1000 ROIs), which is
14
considerably larger than many commonly-used parcellations is still
smaller than would be desired for a truly comprehensive analysis of
fractal dimension of functional connectivity networks, and so future
analysis with a higher resolution cortical parcellation is needed. Given
the complexity of the brain as a system, it is unlikely that a single
exponent appropriately captures the extent of multi-scale dynamics
playing out, both under psychedelics or under normal circumstances. In
the future, a multi-fractal analysis would almost certainly provide a
richer portrait of brain dynamics, although the limitations inherent in
fMRI data made such an analysis infeasible for this study. Future research
projects, possibly combining multi-modal imaging paradigms such as



Fig. 9. LZC vs. HFD correlation.
The correlations between the LZC of BOLD signals and the network fractal
dimension (upper, ρ ¼ 0:68, p-value < 0.0001), and the Higuchi temporal
fractal dimension (lower, ρ ¼ 0:62, p-value ¼ 0.0003).
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MEG and fMRI may be able to explore this further. Future studies
comparing different psychedelics, like LSD and psilocybin, should also
strive to ensure some kind of dose-equivalence: given the nature of the
datasets, it was not possible to ensure that the subjective intensities of the
LSD and psilocybin experiences volunteers underwent was equivalent,
and this may be reflected in the differences in results. To control for this,
it would be valuable to have a universal, standardized measure of sub-
jective experience such as the ASC questionnaire (Matthias, 2017), with
graded doses for a variety of drugs, such as psilocybin, LSD, mescaline,
etc. This would allow researchers the ability to more fully explore the
commonalities, and differences between individual psychedelic
compounds.

6. Conclusions

In this study we report that, under the influence of two serotonergic
psychedelics: LSD and psilocybin, the fractal dimension of cortical
functional connectivity networks is significantly increased. Under LSD,
the fractal dimension of BOLD time-series is also significantly increased,
while psilocybin shows a non-significant increase as well. These results
are in line with previously published research suggesting that psyche-
delics increase the complexity of brain activity, and the specific measures
used here may be a particularly useful tool for understanding how con-
sciousness changes as the brain approaches criticality. We were able to
show that, under both LSD and psilocybin, the fractal dimension of BOLD
15
time-series from regions assigned to the dorsal-attenion network was
increased. In addition, we show that these results are largely consistent
with a different, non-fractal measure of complexity, Lempel-Ziv
compressibility, which has been widely used in the field previously.
These findings show that psychedelics increase the fractal dimension of
brain activity in both spatial and temporal domains and have implica-
tions for the study of consciousness and the neurobiology the psychedelic
experience.
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