

1 Visualizing Genotypic and Developmental Differences of Free Amino 2 Acids in Maize Roots with Mass Spectrometry Imaging

3 Kelly C. O'Neill, Young Jin Lee*

4 Iowa State University, Department of Chemistry, Ames, IA, 50011, USA

5 * Correspondence:

6 Young Jin Lee

7 yjlee@iastate.edu

8 **Keywords:** mass spectrometry imaging, maize root, amino acids, nitrogen assimilation,
9 nitrogen transportation, on-tissue derivatization

10

11 Abstract

12 Amino acids are essential biological compounds in plants as they store nitrogen, an essential
13 nutrient, and are the building blocks for proteins that drive biological activity. Amino acids have
14 been studied using a wide variety of analytical techniques in different plant systems; however, mass
15 spectrometry imaging (MSI) is a particularly useful technique as it allows for the simultaneous
16 collection of both chemical and spatial information. In this work, matrix-assisted laser
17 desorption/ionization (MALDI)-MSI is used to study the different localization of free amino acids in
18 the roots of maize inbred lines B73 and Mo17 and their reciprocal hybrids. Because amino acids are
19 difficult to detect in mass spectrometry, especially directly on tissues, a chemical derivatization
20 protocol is utilized to increase the ionization efficiency and improve their detection. We report
21 differences in both abundance and localization of amino acids in B73 and Mo17 maize roots and
22 suggest the hybrids show evidence of inheriting characteristics from both parents. Most genotypic
23 differences are found in the cross-sections near the seed (~2 cm away) at a later stage of development
24 (10-11 cm in length). Here, B73 has lower amino acid abundance localized primarily to the center of
25 the roots for most amino acids, while Mo17 has much higher abundance localized mainly to the root
26 cortex. This difference in localization is minimized when grown in ammonium ion rich conditions.
27 Roots grown in the presence of ¹⁵N-ammonium ions provided additional insight about the amino acid
28 synthesis. The localization of some amino acids, particularly leucine/isoleucine and glutamine, is not
29 affected by the addition of nitrogen and is consistent regardless of the nitrogen source, either from the
30 seeds (¹⁴N-labeled) or environment (¹⁵N-labeled). Nitrogen uptake from the environment is confined
31 to glutamine, asparagine, and alanine, consistent with their roles in amino acid storage and
32 transportation.

33

34 1 Introduction

35 Nitrogen is an essential nutrient for crop plants that has a major impact on crop production
36 and yields. Nitrogen has an important role in plant growth and development; therefore, understanding
37 nitrogen uptake and metabolism can help determine how to best and most efficiently care for plants.¹
38 Amino acids are responsible for the storage and transportation of nitrogen in plants and are an

39 important aspect of nitrogen metabolism.² Recently, maize roots have been used as a model species
40 for biological studies;³ studying roots at their early stage can provide numerous benefits. The
41 emergence of the primary root allows early morphological, histological, and physiological analysis of
42 the seedling, while the fast germination and growth of maize seedlings in laboratory environments
43 allow for high-throughput experiments under controlled and standardized conditions.³ Studying the
44 spatial arrangement of amino acids in maize roots can shed light on nitrogen assimilation and
45 transportation in early plant development.

46 Mass spectrometry imaging (MSI) has become a valuable analytical tool to visualize
47 metabolites such as lipids and small molecules directly on plant tissues.^{4,5} Matrix-assisted laser
48 desorption ionization (MALDI)-MSI is a commonly used technique, particularly for cellular and sub-
49 cellular resolution imaging, due to its combination of high-spatial resolution, high sensitivity, and
50 chemical versatility. Recently, MALDI platforms have been optimized to reach pixel sizes from 1-10
51 μm ,^{6,7} which enables the study of biological tissue at the cellular and even sub-cellular level. Recent
52 advances in t-MALDI-2 have even allowed for spatial resolutions of less than 1 μm .⁸ Visualizing
53 detailed metabolite information at this scale can offer unprecedented details in terms of metabolite
54 composition and localization which can be crucial for elucidating their biological roles.

55 Our group has developed a MALDI-MSI platform that allows for 5-10 μm high-spatial
56 resolution. This setup has been used for various applications including the visualization of numerous
57 different metabolites in maize leaves,^{7,9} seeds,^{10,11} and roots.¹² The work of Dueñas et al. has applied
58 this platform to show that the fatty acyl localizations of some thylakoid membrane lipids such as PG
59 32:0 are different depending on the genotype of maize. Additionally, the hybrid maize exhibit the
60 characteristics resembling that of the maternal parent (maternal inheritance).¹³ Previous work out of
61 our group has also shown the benefits of utilizing various chemical derivatization reactions to
62 enhance the ion signals for metabolites with certain functional groups. This strategy of using multiple
63 different chemical derivatizations on adjacent tissue sections has allowed for expanded metabolite
64 coverage.¹³

65 In this work, we used MALDI-MSI to visualize amino acids in roots of two agronomically
66 important inbred lines of maize, B73 and Mo17, and their reciprocal hybrids, B73 x Mo17 (BxM)
67 and Mo17 x B73 (MxB). We focus primarily on the differences in amino acid localization and
68 abundance between the genotypes and at different developmental stages of the root. Amino acids
69 play an essential role in plant biology; they are the building blocks for proteins and have influence in
70 many biochemical pathways relating to growth, development, stress resistance, and signaling.¹⁴
71 Many research efforts have been made previously on the role of amino acids in maize, especially how
72 they relate to nitrogen assimilation and transportation. Employed methods in these studies include
73 colorimetry, high performance liquid chromatography (HPLC), mass spectrometry, and various
74 assays.¹⁵⁻¹⁷ Despite extensive research in this area, very little is known about the localization of
75 amino acids in maize. Our group has done some work showing the distribution of amino acids in the
76 maize seed during germination, however, this was rather limited due to low ion signals.¹¹

77 The current study aims to determine the abundance and distribution of amino acids in maize
78 roots under various conditions and find evidence for how hybrid maize inherit molecular
79 characteristics relating to amino acid localization from their parents. In addition to the
80 aforementioned benefits of working with maize roots as a model system, there are additional
81 advantages for this particular study focusing on the early stage of root development. Once vegetative
82 tissue begins to develop and photosynthesis starts, the transportation of nitrogen and amino acids
83 becomes more complex. Overall, focusing on the early development of the root simplifies the study.

84 It has been established that Mo17 has more abundant amino acids in its seeds than B73,¹¹ but it was
85 not well known how that is translated to the hybrids, especially as the seedlings germinate and
86 develop. As amino acids are not easily detectable with MALDI-MSI, derivatization is often necessary
87 in order to increase their ionization efficiency. Coniferyl aldehyde (CA) has previously been used to
88 derivatize primary amines, including amino acids, in MALDI-MSI experiments.^{17,18,19} This
89 derivatization strategy is utilized here to investigate amino acid differences in B73, Mo17, and their
90 reciprocal hybrid maize genotypes.

91

92 2 Materials and Methods

93 2.1 Materials

94 Gelatin from porcine skin (300 bloom) was purchased from Electron Microscopy Sciences
95 (Hatfield, PA). 4-hydroxy-3-cinnamaldehyde (coniferyl aldehyde; CA), deuterated alanine,
96 ammonium chloride, and 98 atom percent ¹⁵N ammonium chloride were purchased from Sigma
97 Aldrich (St. Louis, MO). Potassium acetate was purchased from Fisher Scientific (Hampton, NH).
98 The gold sputter target was purchased from Ted Pella, Inc (Redding, CA, USA). B73, Mo17, MxB,
99 and BxM maize seeds were obtained courtesy of Dr. Marna Yandeu-Nelson at Iowa State
100 University.

101 2.2 MALDI Sample Preparation

102 B73, Mo17, BxM, and MxB maize seeds were grown using a method described previously.¹²
103 A row of maize seeds were placed along the edge of two wetted paper towels stacked on top of one
104 another. The paper towels were wetted with either water, 10 mM ammonium chloride, or 10 mM ¹⁵N
105 labelled ammonium chloride depending on the experiment. The seeds were then rolled up in the
106 paper towels tightly enough to keep them in place. The paper towel rolls were then placed in a beaker
107 filled with water, 10 mM ammonium chloride, or 10 mM ¹⁵N labelled ammonium chloride for the
108 isotope labelling experiments. The beaker was placed in the dark while the seeds began to grow and
109 was monitored to make sure the paper towel stayed moist throughout growth. The roots were
110 harvested when the length of the primary root was 2.5-3 cm, 6-7 cm, or 10-11 cm as measured from
111 the tip of the root. The length of the root at harvesting differed depending on the experiment and is
112 stated in each section of the results.

113 Once the roots reached the desired length, a razor blade was used to cut the root about 2 cm
114 below the seed. This area of interest was embedded in a 10% w/v gelatin solution and flash frozen in
115 liquid nitrogen. The area of interest was about 2 cm from the seed regardless of the stage of
116 development, except in the case where multiple positions on the same root were embedded. The
117 embedded roots were stored at -20 °C and allowed to thermally equilibrate. The root tissue was cryo-
118 sectioned (CM 1850, Leica Microsystems; Buffalo Grove, IL, USA) to 10 µm thickness, collected
119 with Cryo-Jane tape (Leica Biosystems), and attached to a pre-chilled glass slide. The prepared slides
120 were stored at -80 °C until use, when they were placed on an aluminum block stored at the same
121 temperature and vacuum dried. The dried sample tissues were derivatized using a TM sprayer (HTX
122 Technologies, LLC, Chapel Hill, NC). A 20 mg/mL solution of CA was used for derivatization at a
123 flow rate of 0.03 mL/min and passing 8 times over the sample tissue. After derivatization, the tissue
124 sections were sprayed with 6.5 mM potassium acetate using the same TM sprayer method. This was
125 done to ensure the formation of potassium adducts while limiting protonated or sodiated adducts.
126 They were then subject to matrix deposition by sputter coating (108 Auto Sputter Coater, Ted Pella

127 INC, Redding, CA, USA) gold at 40 mA for 20 seconds. One set of experiments incorporated
128 deuterated alanine as an internal standard. The internal standard (5 mM) was sprayed onto the sample
129 using the same TM sprayer method as previously described.

130 **2.3 Mass spectrometry imaging analysis**

131 A MALDI linear ion trap-Orbitrap instrument (MALDI-LTQ-Orbitrap Discovery; Thermo
132 Finnigan, San Jose, CA, USA) was used to collect all mass spectrometry imaging data. The
133 instrument was modified to incorporate an external 355 nm frequency tripled Nd: YAG laser (UVFQ;
134 Elforlight, Daventry, UK). Tuneplus and XCalibur (Thermo Finnigan) were used to develop the mass
135 spectrometry method and acquire data, respectively. Mass spectra were acquired in positive ion mode
136 with the Orbitrap mass analyzer for a scan range of *m/z* 100-1000.

137 MS images were generated using ImageQuest (Thermo Finnigan) and MSI Reader20 with a
138 mass window of ± 0.003 Da. Serial tissue sections were prepared as previously described and used for
139 MS/MS analysis. MS/MS was done using the ion trap mass analyzer and were analyzed with a mass
140 window of 1.0 Da and normalized collision energy of 35 were used.

141 **2.4 LCMS Sample Preparation and Analysis**

142 Maize roots of each genotype were grown in the same manner as previously described for the
143 MALDI-MSI analysis. Once the roots were 10-11 cm in length, they were flash frozen in liquid
144 nitrogen, homogenized, and stored at -80 °C until analysis. Only the top 4 cm of each root was
145 homogenized (2 cm on either side of the portion embedded for MALDI). This was done in an attempt
146 to include the portion of the root that would most resemble the imaged root sections. In order to
147 ensure there was sufficient tissue for good analyte signals, two roots of each genotype were
148 combined for each biological replicate. Amino acids were extracted and simultaneously derivatized
149 with 500 μ L of 20 mg/mL CA in methanol. They were vortexed for 10 minutes and then centrifuged
150 at 14,000 rpm for 10 minutes. 100 μ L of the supernatant was aliquoted out and dried down. They
151 were then reconstituted in 100 μ L of 50:50 methanol:water.

152 Positive mode LCMS analysis was done on an LCMS 2020 single quadrupole mass
153 spectrometer (Shimadzu, Kyoto, Japan). 1 μ L of each sample was injected onto a 4.6 x 150 mm
154 Agilent XDB C18 column with 1.8 μ m particle size. Solvent A was water with 0.1% formic acid and
155 solvent B was acetonitrile with 0.1% formic acid. A flow rate of 600 μ L/min was used along with the
156 following gradient: 0% B for the first 2 minutes, up to 30% B over the next 18 minutes, 100% B over
157 2 minutes, and back down to 0% B after another 2 minutes, where it was held for an additional 9
158 minutes. This gradient was first used by Manier et al. to separate CA derivatized amino acids and
159 neurotransmitters.¹⁸ Chromatograms were extracted for each of the detected amino acids and the
160 corresponding peaks were integrated.

161

162 **3 Results and Discussion**

163 **3.1 Coniferyl Aldehyde Derivatization**

164 Amino acids are important biological molecules that have numerous roles in plant growth and
165 development. However, due to poor ionization efficiency, amino acids are difficult to study by mass
166 spectrometry. For this reason, coniferyl aldehyde (CA) was employed as a chemical derivatization

reagent to modify the amino acids and increase their ionization efficiency.^{18, 19} The reaction scheme is shown in **Scheme 1**. CA (**1**) reacts with primary amines, such as amino acids (**2**), and forms a product with an imine moiety that improves ionization efficiency (**3**). **Figure 1** shows representative MALDI-MS images for 12 amino acids visualized in the maize root. A total of 16 amino acids were detected with the derivatization (14 proteogenic and 2 non-proteogenic) but only those with high enough signal are displayed. As leucine and isoleucine are isomers, they are not distinguishable by mass and are shown as a mixture of the two. Without derivatization with CA, only 3 amino acids are detected in positive mode (asparagine, glutamine, and histidine) and there is no signal present at the derivatized masses. Once CA derivatization is utilized, there is significant signal improvement to generate ion images for 12 amino acids. Four more amino acids (tyrosine, glutamic acid, proline, and aminobutenoic acid) could be also detected with derivatization but had very low ion signals and could not provide meaningful localization information. This implies the utility of the adopted derivatization technique for the study of amino acids in maize root tissues. The reaction efficiency of glutamine is 80~90%. This was calculated from dividing the ion signal of derivatized glutamine by the sum of the ion signals for derivatized and underivatized glutamine. All amino acids were identified based on the exact mass of the derivatization product and three of the most abundant, alanine, valine, and leucine, were also confirmed by MS/MS and comparing with that of a CA derivatized standard.

MSI was used to explore amino acids in maize roots of inbreds B73, Mo17, and their reciprocal hybrids. Differences in abundance and localization as the roots develop and between genotypes were studied. Maize roots have a unique architecture which allows for an efficient uptake of water and nutrients.²¹ Bright-field microscope images and anatomical assignments are shown in **Figure S1** for the cross-section of a B73 root. Maize roots exhibit a central vascular cylinder composed of the pith, xylem vessels, and the pericycle (the outermost cell layer of the inner cylinder). The ground tissue is made up of a single endodermis layer, multiple layers of cortex tissue, and a single epidermis cell layer.

3.2 Developmental changes in the localization of amino acids in maize roots

In order to determine how amino acids change in maize roots throughout development, roots were harvested at three different times. Harvesting times were when the total length of the root measured from the tip was between 2.5-3 cm, 6-7 cm, and 10-11 cm. These roots were each embedded and cryosectioned at about 2 cm away from the seed regardless of the developmental stage. The resulting images are shown in **Figure 2** comparing B73 vs Mo17. Three biological replicates were tested at each stage with similar results; however, only one representative replicate is shown here. **Figure 2** shows localization changes in the amino acids between different developmental stages. For the purposes of this figure, only the six most abundant amino acids in the maize root tissue are shown. For B73, the early stage of root development (2.5-3 cm in length) has greater amino acid signal in the cortex. As the root develops, amino acid signals are the highest abundance at 6-7 cm in length with growing abundance at the center of the root; then, at the length of 10-11 cm, there is a significant reduction of amino acid signals, especially in the cortex. A possible explanation for this is that in the early stages of development, amino acids are synthesized in the outer cortex of the root and as the plant develops, it begins to rely more on the transportation of amino acids and/or nitrogen from other parts of the plant or the surrounding environment. These ideas are supported by evidence in literature indicating that certain amino acids flow to the root from other parts of the plant.²² Another interesting note is that the intermediate root (6-7 cm in length) has a higher abundance of amino acids overall than the earlier or later stages. While there is quite a bit of biological variation between roots at the same stage of development, the mid-length roots have

213 higher signal intensities for the derivatized amino acids on average. This is especially apparent for
214 the B73 roots. **Figure S2** in the supplementary information compares the average absolute signal
215 intensities for the six most abundant amino acids at the different developmental stages.

216 In the case of Mo17 maize roots (right panel of **Figure 2**), the localizations are similar to that
217 of B73 in the first two development stages. Both have the highest abundance of amino acid signal in
218 the cortex of the root in the early stage (2.5-3 cm in length). In addition, they have a more or less
219 even distribution between the center of the root and the cortex in the intermediate stage (6-7 cm in
220 length). The major difference in the two genotypes occurs at the later stage of development (10-11
221 cm in length). While B73 loses amino acid signals in the cortex as they become concentrated to the
222 pith and xylem, Mo17 does the opposite. Mo17 loses amino acid signals at the center of the root
223 while those at the cortex remain similar. This suggests that B73 and Mo17 may have differences in
224 the synthesis and/or transportation of amino acids during root development, especially at the later
225 stage.

226 One hypothesis to explain the differences in localization at different developmental stages is
227 that there is some gradient of amino acids along the length of the root, causing the localization to be
228 different depending on the height. As a proof of concept, B73 maize roots at a later stage of
229 development (16 cm in length) were embedded and sectioned at several different points along the
230 length of the root. A representative data set is shown in **Figure S3**. All amino acids are localized to
231 the cortex near the root tips (11 or 15 cm distance from seed), similar to the early stage of root
232 development (2 cm cross-section for 2.5-3cm in length in **Figure 2**). However, they are more or less
233 evenly distributed at the mid height (5 or 8 cm distance from seed), similar to an intermediate stage
234 (2 cm cross-section at 6-7 cm in length in **Figure 2**). Finally, some amino acids, especially
235 leucine/isoleucine and glutamine, are primarily localized to the center of the root at the 2 cm position
236 near the seed, similar to the later stage of root development cross-sectioned at 2 cm from the seed for
237 the root length of 10-11cm in **Figure 2**. Namely, there are three distinguished stages of root
238 development in terms of amino acid localization; the early stage near the tip of the root, the mid-stage
239 at the middle of root, and the later stage near the seed. Genotypic differences between B73 and Mo17
240 are minimal for the first two stages as shown in **Figure 2**, but apparent in the last stage. The cross-
241 section 2 cm from the seed at a later stage of development was therefore used in the further study to
242 compare their differences with the hybrids.

243 3.3 Genotypic Differences in Amino Acid Abundance and Localization

244 The hybrid roots were compared to the parents at 10-11 cm in total length cryosectioned at 2
245 cm from the seed. Separate B73 and Mo17 plants were grown and processed at the same time to
246 minimize experimental variation. Signal intensities for the most abundant amino acids are displayed
247 in **Figure 3** for each of the maize genotypes. These are the signal intensities averaged across the root
248 areas in three biological replicates. There is a lot of biological variability in the abundance of amino
249 acids even for the same genotype, making it difficult to determine how significant differences are;
250 however, overall B73 and BxM have much lower amino acid signals compared to MxB and Mo17.
251 Regardless of the genotype, alanine, valine, leucine/isoleucine, asparagine, and glutamine are the
252 most abundant amino acids in maize root tissues. To confirm these findings with a more quantitative
253 method, CA derivatized amino acids were also measured using LCMS for a similar region of the
254 roots, harvested and extracted from 0-4 cm portion of the roots at 10-11 cm in total length. The
255 genotypic differences are much less apparent in LCMS data due to the concentration gradient of
256 amino acids along the root length (as seen in **Figure S3**). The general trend of LCMS results,
257 nonetheless, corroborated the MALDI-MSI findings; the same amino acids were found to be the most

258 abundant and Mo17 and MxB have higher average signal levels than B73 and BxM. The LCMS data
 259 did include derivatized proline, which was detected with good signal intensity, unlike the MALDI-
 260 MSI data. We hypothesize that the on-tissue reaction might be too slow for secondary amines and
 261 does not provide high enough yield with the limited reaction time, unlike the in-solution reaction
 262 used for LCMS.

263 **Figure 4** shows representative MS images of the six most abundant amino acids detected in
 264 maize roots (10-11 cm in length or about 8-10 days old, embedded and cryosectioned about 2 cm
 265 away from the seed) across all four genotypes. The same intensity scale is used for MS images of
 266 each amino acid to allow for a fair comparison of the relative abundances between the genotypes.
 267 Similar to the signal intensities in **Figure 3**, the MS images show that Mo17 has much higher amino
 268 acid signal than B73 and the hybrids each have signal levels similar to that of the maternal parent. In
 269 addition to the obvious differences in overall signal and abundance, there are also more subtle
 270 differences in localization of amino acids between the two inbred lines, similar to **Figure 2**. In Mo17,
 271 most amino acids have the highest signal intensity in the cortex and minimal signal in the pith and
 272 xylem, with asparagine as a possible exception. In contrast, B73 has much of the amino acid signal
 273 localized to the center of the root and very little in the cortex, except for glycine and asparagine,
 274 which have a more even distribution. In fact, leucine/isoleucine and glutamine have almost no signal
 275 intensity in the cortex of B73. Interestingly, similar localizations are found in the hybrids, which
 276 mostly follow maternal inheritance; MxB obtains characteristics relating to amino acid localization
 277 from Mo17, whereas BxM obtains characteristics from B73. For example, leucine/isoleucine and
 278 glutamine are mostly localized at the center for BxM while significantly present in the cortex for
 279 MxB. Another example of possible maternal inheritance is the increased amino acid signal in MxB
 280 over BxM. This evidence for maternal inheritance is similar to the previous finding that the
 281 localization of thylakoid membrane lipids, specifically phosphatidylglycerols (PGs), in maize hybrids
 282 also follow characteristics of the maternal parent.¹³ Despite this example of maternal inheritance,
 283 there are other factors suggesting the hybrids inherit some characteristics from the paternal parent as
 284 well. For example, the increased abundance of amino acids in the center of the roots in MxB
 285 compared to Mo17 suggests characteristics of B73 in MxB.

286 Some may argue that these differences in localization are simply due to changes in ionization
 287 efficiency for different portions of the root if chemical composition is somewhat different between
 288 the genotypes. To address this issue, one root of each genotype was sprayed with an internal
 289 standard, deuterated alanine, and the images were created for several amino acids normalized to the
 290 deuterated alanine peak. As shown in **Figure S4**, localizations look the same after this normalization
 291 suggesting there is no significant difference in ionization efficiency between different parts of the
 292 tissue. The localization differences described above are more apparent in **Figure 5**, which shows the
 293 signal intensity for amino acids in the pith normalized to the signal intensity in the cortex for each
 294 root. These intensities are also normalized to the overall size of the pith or cortex to account for the
 295 different tissue areas; namely, $(\Sigma_{\text{Pith}} I / \text{Area}_{\text{Pith}}) / (\Sigma_{\text{Cortex}} I / \text{Area}_{\text{Cortex}})$. The y-axis of this figure is in a
 296 logarithmic scale and a ratio of one, located where the x-axis crosses the y-axis, indicates an even
 297 distribution of amino acids. With the exception of glycine, which is more abundant in the cortex than
 298 the pith in every genotype, B73 has ratios above one for every amino acid and Mo17 has ratios below
 299 one. For the most part, the hybrids have ratios in between those of the two parents, however, to
 300 varying degrees. For example, both hybrids have ratios close to one for alanine, valine, and
 301 asparagine, indicating a fairly even distribution. However, for leucine/isoleucine and glutamine, the
 302 hybrids both have ratios greater than one, but lower than that of B73. Some high standard deviations
 303 associated with asparagine and glutamine are likely due to the dramatic changes in localization along
 304 the length of the root for the two amino acids as shown in **Figure S3**. Amino acids that have less

305 biological variability exhibited some statistically significant differences. For example, the differences
 306 observed between B73 and each of the other genotypes are statistically significant for alanine and
 307 leucine/isoleucine with p values <0.01. For asparagine, the difference is significant only when
 308 comparing B73 to Mo17 or MxB to Mo17 with a p value <0.05. Overall, **Figure 5** nicely displays
 309 how the localization of most amino acids in the hybrids is a blended inheritance from both parents.
 310 The intermediate normalized intensities observed for alanine, valine, leucine/isoleucine, and
 311 asparagine especially correspond to more evenly distributed amino acids in the pith and cortex
 312 compared to the parents.

313 Amino acids localized primarily in the center of the root, in the pith and xylem, such as
 314 leucine/isoleucine and glutamine in B73 and BxM, may suggest these amino acids are transported to
 315 the root from other parts of the plant as opposed to being synthesized in the root itself. This would be
 316 consistent with the pith and xylem being the cells primarily responsible for the transportation of
 317 nutrients.²³ Mo17 has very little amino acid signal in the pith and xylem compared to the other maize
 318 genotypes. Therefore Mo17 may be synthesizing more amino acids in the root cortex itself and rely
 319 less on the transport of amino acids from other parts of the plant or the environment. Previous
 320 research has shown that many of the enzymes necessary for synthesizing amino acids are located in
 321 plastids and plastids achieve their highest level of development in cortical tissue.^{24, 25} This supports
 322 the hypothesis that amino acids are being synthesized in the root cortex.

323 3.4 Changes in amino acid abundance and localization in nitrogen rich conditions

324 All of the data shown up to this point has been from maize roots grown in pure water, which
 325 is nitrogen deficient compared to growing in soil. As plants are typically grown using fertilizer for a
 326 source of nitrogen, roots were also grown in a 10 mM solution of ammonium chloride, which acts as
 327 a nitrogen source during root development. **Figure 6** displays the representative MS images of B73
 328 and Mo17 maize roots from three replicates grown in ammonium chloride compared to water. Not
 329 surprisingly, overall signals are higher for both B73 and Mo17 with the addition of ¹⁴NH₄Cl. Mo17
 330 roots show changes in the localization when grown under nitrogen rich conditions with a more even
 331 distribution across the anatomy of the root. Rich nitrogen absorbed from outside might encourage the
 332 transportation of amino acids out of the roots once they are synthesized in the root cortex. In
 333 addition, the signal difference for amino acids between B73 and Mo17 maize is not as apparent when
 334 grown in the nitrogen containing solution compared to water, with the possible exception of
 335 glutamine. We hypothesize that B73 has a higher abundance of amino acids in the center of the root
 336 compared to the cortex because it relies on transportation from other parts of the plant; therefore,
 337 additional nitrogen provided from the environment may allow the B73 maize to synthesize more
 338 amino acids than would otherwise be possible. It is known that plants grown in nitrogen deficient
 339 conditions have less abundant amino acids in the roots and an altered proteome that will impact
 340 amino acid metabolism.²⁶ Interestingly, leucine/isoleucine and glutamine are still highly enriched at
 341 the center of the B73 roots, potentially suggesting that pathways involving these amino acids are not
 342 affected by the availability of external nitrogen. Another interesting note is the increased abundance
 343 of glutamate by two orders of magnitude, which is almost invisible without additional nitrogen. This
 344 is consistent with glutamate being important for nitrogen assimilation in roots.¹⁵

345 As there are two different nitrogen sources (transported from other parts of the plant, and
 346 absorbed from environment), we performed an experiment to determine whether we can distinguish
 347 the two by growing roots in 10 mM ¹⁵N-ammonium chloride. This will determine which amino acids
 348 take up nitrogen from the environment most efficiently during development. Images from this
 349 experiment are also available in **Figure 6** (two sets of images to the right). One would expect the

350 images of amino acids with ^{14}N (labeled M in the figure) to be similar to the control because the
 351 nitrogen from the environment is ^{15}N and would appear as an isotope peak at M+1. However, these
 352 root images look much more like the ones grown in ^{14}N ammonium chloride than the ones grown in
 353 water. This suggests that the plant does not process environmental nitrogen any different from
 354 nitrogen already present in the seed. Instead, additional nitrogen (or ammonium ion) from the
 355 environment may trigger some biological pathway that does not operate under nitrogen deficient
 356 conditions. The mass resolution of the instrument used was not high enough to resolve peaks with
 357 ^{13}C - vs. ^{15}N -amino acids. As shown in **Figure S5**, the isotope of derivatized glutamine appears as a
 358 single peak for $^{13}\text{C}_1$ - or $^{15}\text{N}_1$ -isotope at 'M+1' position and $^{13}\text{C}_2$ -, $^{15}\text{N}_2$ -, or $^{13}\text{C}_1^{15}\text{N}_1$ -isotope at 'M+2'
 359 position. As the ^{13}C and ^{15}N peaks were not resolved, the M+1 peak contains both $^{13}\text{C}_1$ - and $^{15}\text{N}_1$ -
 360 glutamine peaks. Considering the natural abundance of ^{13}C and ^{15}N , M+1 peak in the maize root
 361 grown in ^{15}N -ammonium solution shown in **Figure S5** is made up of ~90% ^{15}N from external ^{15}N -
 362 ammonium ion. The final two columns in **Figure 6** show the amino acids synthesized from nitrogen
 363 in the environment, thus ^{15}N -labeled and composing most of the M+1 peak. They show similar
 364 localization with the ^{14}N -labeled M peak, amino acids synthesized from nitrogen already present in
 365 the seed. This provides further support for our hypothesis that environmental nitrogen only triggers a
 366 mechanism that affects abundance and localization of amino acids but does not differentiate between
 367 internal vs external nitrogen. Some of the detected amino acids significantly incorporated ^{15}N ,
 368 especially asparagine and glutamine, which is not surprising considering they are known to play the
 369 key role in nitrogen assimilation.¹⁵

370 To explore how much ^{15}N -labeled external nitrogen is incorporated for each amino acid, the
 371 peaks corresponding to each of the labeled amino acids were deconvoluted using an Excel
 372 spreadsheet developed by Gruber *et al.* considering the natural abundance of the isotope.²⁷ The
 373 relative level of the incorporated ^{15}N from three biological replicates of each genotype are
 374 summarized in **Figure 7**. These reported results represent the percent of nitrogen in each amino acid
 375 that has come from environmental ^{15}N . Glutamine has the highest level of ^{15}N incorporation (22-
 376 35%) followed by asparagine and alanine (5-19% and 2-18%, respectively). Glutamine and
 377 asparagine are well known for nitrogen storage¹⁴, so they would take up nitrogen from the
 378 surrounding environment and store it throughout the early development of the plant. Alanine also has
 379 been known to shuttle nitrogen between cells in crop plants, which could explain its environmental
 380 nitrogen uptake.²⁸ In contrast, other amino acids, such as glycine, valine, and leucine/isoleucine, did
 381 not incorporate any appreciable amount of nitrogen from the environment. In a much later stage of
 382 development, a majority of nitrogen would be eventually replaced by ^{15}N in every amino acid;
 383 however, at this stage of development, most nitrogen still seems to be coming from the seeds except
 384 in the case of the three amino acids related with nitrogen storage or transportation.

385 In addition to the differences between amino acids, there also are some differences depending
 386 on the genotype of maize. There is significantly less incorporation of ^{15}N in the three amino acids in
 387 Mo17 maize than in B73, with the possible exception of glutamine. P values associated with the
 388 environmental nitrogen uptake for alanine and asparagine are <0.01 and <0.05 respectively when
 389 comparing B73 and Mo17. As noted earlier, Mo17 has much higher amino acid content in seedlings¹⁵
 390 and the localization of amino acids in Mo17 roots indicates it could be synthesizing most of the
 391 necessary amino acids directly in the cortex of the root. This may be the reason Mo17 is not taking in
 392 as much nitrogen from the nutrient solution in the surrounding environment. For the most part, the
 393 nitrogen incorporation in the hybrids was in between that of the two parents, although statistically
 394 insignificant due to the large error bars, with the exception of alanine. This is further evidence that
 395 the hybrid maize has blended traits from the two inbred lines and benefits from characteristics of both
 396 parents.

397

398 **4 Conclusion**

399 In this study, MALDI-MSI combined with CA chemical derivatization was utilized to study
400 amino acids in maize root tissue. New insight into the localization of amino acids throughout the
401 growth and development of maize seedlings as well as inheritance patterns of hybrid maize was
402 observed that would not have been possible without this method. The surface imaging allowed for
403 previously unknown differences in relative quantification between different parts of the maize root
404 with relatively little sample preparation compared to LCMS and gas chromatography (GC)-MS. In
405 contrast to MALDI-MSI, LC and GCMS both require lengthy extractions, resulting in the destruction
406 of the sample and inability to obtain spatial information. Although this study highlighted the use of
407 MALDI-MSI for the analysis of free amino acids, the technique is versatile so other classes of
408 compounds can be detected and visualized in the same sample. This approach, however, comes with
409 its own limitations, most notably the difficulty in quantification compared to other techniques. An
410 additional disadvantage due to the derivatization is the possibility of side reactions, i.e. CA reacting
411 with compounds other than primary amines. The latter makes utilizing this technique for untargeted
412 analyses challenging, but it may be overcome through systematic study in side reactions and more
413 selective reagents.

414 While the overall abundance and localization changed in different developmental stages as well
415 as at different points along the length of the root, locations near the seed (~2 cm away) displayed
416 major differences between genotypes at later stages of development. Specifically, B73 had lower
417 amino acid abundance and showed a localization primarily in the center of the root for most amino
418 acids. In contrast, Mo17 had higher abundance and amino acids were mostly localized to the root
419 cortex. Both the hybrid roots grown and prepared in the same way as the parents had abundance
420 levels that were similar to that of the maternal parent. BxM had abundance similar to or slightly
421 higher than B73, but much lower than MxB or Mo17. Likewise, MxB had signal levels similar to
422 Mo17. In terms of localization, a blended inheritance was observed for most amino acids, as noted by
423 the pith/cortex signal intensity ratios, with the exception of glycine. Alanine and valine provided the
424 best examples of blended inheritance with B73 having a signal ratio much greater than one,
425 indicating localization primarily to the pith, Mo17 having a ratio much less than one, indicating
426 localization primarily to the cortex, and both hybrids having a ratio close to one, indicating an even
427 distribution. Comparing the characteristics relating amino acids in inbred lines of maize to their
428 reciprocal hybrids gave insight into hybrid inheritance patterns. In addition, understanding the
429 changes in amino acid localization and abundance provides essential information relating to the
430 transportation of nutrients in the early stages of plant development.

431 Differences in amino acid localization and abundance were also observed for roots grown in
432 nitrogen rich conditions compared to those grown in water. The addition of a nitrogen source in the
433 form of an ammonium ion to the growth environment caused changes such as lessened signal
434 discrepancy for amino acids between B73 and Mo17 compared to nitrogen deficient conditions, and
435 more uniform distribution of amino acids, especially in Mo17. An isotope labelling experiment using
436 $^{15}\text{NH}_4\text{Cl}$ provided some insight about nitrogen uptake from environment. First of all, there is no
437 difference between the localization of ^{14}N -amino acid and ^{15}N -amino acid, regardless of whether they
438 are grown in $^{14}\text{NH}_4\text{Cl}$ or $^{15}\text{NH}_4\text{Cl}$. This suggests the change in the abundance and localization due to
439 the ammonium ion is the result of triggering a new mechanism or biochemical pathway, and not due
440 to different distributions of nitrogen from environment. When comparing the relative amount of ^{15}N
441 uptake for each amino acid, only glutamine, asparagine, and alanine incorporated a significant

442 amount of nitrogen from the environment in this early stage of root development, consistent with
443 their major roles in nitrogen storage and transport. In terms of the amount of ^{15}N incorporation, B73
444 and Mo17 show the most and the least incorporation, respectively; the two hybrid maize have an
445 intermediate level of ^{15}N incorporation between the two parents, which provides further evidence that
446 the characteristics of the hybrids are inherited from both parents. These experiments can help shed
447 light on nitrogen assimilation and nitrogen use efficiency in maize. Studying amino acids in maize
448 roots has not only given insight into differences between maize genotypes and inheritance patterns,
449 but has also shown how amino acids accumulate throughout roots as they grow and develop.
450 Considering the success of this method for the current application, there is room to expand this work
451 for additional applications in the future. For example, amino acids such as phenylalanine and tyrosine
452 could be related back to the localization of defense compounds derived from the phenylpropanoid
453 pathway.

454

455 **5 Conflict of Interest**

456 The authors declare no conflicts of interest. The research was conducted in the absence of any
457 financial or commercial relationships that could possibly be construed as a conflict of interest.

458

459 **6 Author Contributions**

460 KO and YL both designed the experiment. KO did all of the sample preparation and data collection
461 for the experiment. Data was analysed by KO with the help and guidance of YL. The manuscript was
462 prepared and written by both KO and YL.

463

464 **7 Acknowledgments**

465 This work is partially supported by National Science Foundation, Division of Chemistry, Chemical
466 Measurement and Imaging. The authors would like to thank Dr. Marna Yandau-Nelson for providing
467 the maize seeds for the purposes of this research and ISU Chemical Instrumentation Facility staff for
468 assistance with the LCMS experiment.

469

470 **8 References**

- 471 1. Lemaître, T.; Gaufichon, L.; Boutet-Mercey, S.; Christ, A.; Masclaux-Daubresse, C., Enzymatic and
472 Metabolic Diagnostic of Nitrogen Deficiency in *Arabidopsis thaliana* Wassileskija Accession. *Plant and Cell
473 Physiology* **2008**, *49* (7), 1056-1065.
- 474 2. Pratelli, R.; Pilot, G., Regulation of amino acid metabolic enzymes and transporters in plants. *Journal
475 of Experimental Botany* **2014**, *65* (19), 5535-5556.
- 476 3. Paschold, A.; Marcon, C.; Hoecker, N.; Hochholdinger, F., Molecular dissection of heterosis
477 manifestation during early maize root development. *Theoretical and Applied Genetics* **2010**, *120* (2), 383-388.

478 4. Sturtevant, D.; Lee, Y.-J.; Chapman, K. D., Matrix assisted laser desorption/ionization-mass
479 spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. *Current Opinion in*
480 *Biotechnology* **2016**, 37, 53-60.

481 5. Lee, Y. J.; Perdian, D. C.; Song, Z.; Yeung, E. S.; Nikolau, B. J., Use of mass spectrometry for imaging
482 metabolites in plants. *The Plant Journal* **2012**, 70 (1), 81-95.

483 6. Zavalin, A.; Yang, J.; Caprioli, R., Laser Beam Filtration for High Spatial Resolution MALDI Imaging
484 Mass Spectrometry. *Journal of The American Society for Mass Spectrometry* **2013**, 24 (7), 1153-1156.

485 7. Korte, A.; Yandea-Nelson, M.; Nikolau, B.; Lee, Y., Subcellular-level resolution MALDI-MS imaging
486 of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer. *Analytical and Bioanalytical*
487 *Chemistry* **2015**, 407 (8), 2301-2309.

488 8. Niehaus, M.; Soltwisch, J.; Belov, M. E.; Dreisewerd, K., Transmission-mode MALDI-2 mass
489 spectrometry imaging of cells and tissues at subcellular resolution. *Nature Methods* **2019**, 16 (9), 925-931.

490 9. Dueñas, M. E.; Klein, A. T.; Alexander, L. E.; Yandea-Nelson, M. D.; Nikolau, B. J.; Lee, Y. J., High-
491 Spatial Resolution Mass Spectrometry Imaging reveals the genetically programmed, developmental
492 modification of the distribution of thylakoid membrane lipids among individual cells of the maize leaf. *The*
493 *Plant Journal* **2017**, 89 (4), 825-838.

494 10. Dueñas, M. E.; Carlucci, L.; Lee, Y. J., Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids
495 at High-Spatial Resolution. *Journal of The American Society for Mass Spectrometry* **2016**, 27 (9), 1575-1578.

496 11. Feenstra, A. D.; Alexander, L. E.; Song, Z.; Korte, A. R.; Yandea-Nelson, M.; Nikolau, B. J.; Lee, Y.-J.,
497 Spatial Mapping and Profiling of Metabolite Distributions During Germination. *Plant Physiology* **2017**.

498 12. Feenstra, A. D.; Dueñas, M. E.; Lee, Y. J., Five Micron High Resolution MALDI Mass Spectrometry
499 Imaging with Simple, Interchangeable, Multi-Resolution Optical System. *Journal of The American Society for*
500 *Mass Spectrometry* **2017**, 28 (3), 434-442.

501 13. Dueñas, M. E.; Larson, E. A.; Lee, Y. J., Toward Mass Spectrometry Imaging in the Metabolomics
502 Scale: Increasing Metabolic Coverage Through Multiple On-Tissue Chemical Modifications. *Frontiers in Plant*
503 *Science* **2019**, 10, 860.

504 14. Hildebrandt, Tatjana M.; Nunes Nesi, A.; Araújo, Wagner L.; Braun, H.-P., Amino Acid Catabolism in
505 Plants. *Molecular Plant* **2015**, 8 (11), 1563-1579.

506 15. Fentem, P. A.; Lea, P. J.; Stewart, G. R., Ammonia Assimilation in the Roots of Nitrate- and Ammonia-
507 Grown *Hordeum Vulgare* (cv Golden Promise). *Plant Physiology* **1983**, 71 (3), 496.

508 16. Toro, A. A.; Medici, L. O.; Sodek, L.; Lea, P. J.; Azevedo, R. A., Distribution of soluble amino acids in
509 maize endosperm mutants. *Scientia Agricola* **2003**, 60, 91-96.

510 17. Seebauer, J. R.; Moose, S. P.; Fabbri, B. J.; Crossland, L. D.; Below, F. E., Amino Acid Metabolism in
511 Maize Earshoots. Implications for Assimilate Preconditioning and Nitrogen Signaling. *Plant Physiology* **2004**,
512 136 (4), 4326.

513 18. Manier, M. L.; Spraggins, J. M.; Reyzer, M. L.; Norris, J. L.; Caprioli, R. M. C. J. M. S. R., A
514 derivatization and validation strategy for determining the spatial localization of endogenous amine
515 metabolites in tissues using MALDI imaging mass spectrometry. *Journal of Mass Spectrometry* **2014**, 49 (8),
516 665-673.

517 19. Esteve, C.; Tolner, E. A.; Shyti, R.; van den Maagdenberg, A. M. J. M.; McDonnell, L. A., Mass
518 spectrometry imaging of amino neurotransmitters: a comparison of derivatization methods and application
519 in mouse brain tissue. *Metabolomics* **2016**, 12 (2), 30.

520 20. Robichaud, G.; Garrard, K. P.; Barry, J. A.; Muddiman, D. C., MSIREADER: AN OPEN-SOURCE
521 INTERFACE TO VIEW AND ANALYZE HIGH RESOLVING POWER MS IMAGING FILES ON MATLAB PLATFORM.
522 *Journal of the American Society for Mass Spectrometry* **2013**, 24 (5), 718-721.

523 21. Hochholdinger, F., The Maize Root System: Morphology, Anatomy, and Genetics. In *Handbook of*
524 *Maize: Its Biology*, Springer New York: New York, NY, 2009; pp 145-160.

525 22. Oaks, A., Transport of Amino Acids to the Maize Root. *Plant Physiology* **1966**, 41 (1), 173.

526 23. Tegeder, M.; Hammes, U. Z., The way out and in: phloem loading and unloading of amino acids.
527 *Current Opinion in Plant Biology* **2018**, 43, 16-21.

528 24. Miflin, B. J., The Location of Nitrite Reductase and Other Enzymes Related to Amino Acid Biosynthesis
 529 in the Plastids of Root and Leaves. *Plant Physiology* **1974**, *54* (4), 550.

530 25. Whatley, J. M., PLASTIDS IN THE ROOTS OF PHASEOLUSVULGARIS. *New Phytologist* **1983**, *94* (3), 381-
 531 391.

532 26. MØller, A. L. B.; Pedas, P. A. I.; Andersen, B.; Svensson, B.; Schjoerring, J. K.; Finnie, C., Responses
 533 of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and
 534 ammonium. *Plant, Cell & Environment* **2011**, *34* (12), 2024-2037.

535 27. Gruber, C. C.; Oberdorfer, G.; Voss, C. V.; Kremsner, J. M.; Kappe, C. O.; Kroutil, W., An Algorithm
 536 for the Deconvolution of Mass Spectroscopic Patterns in Isotope Labeling Studies. Evaluation for the
 537 Hydrogen-Deuterium Exchange Reaction in Ketones. *The Journal of Organic Chemistry* **2007**, *72* (15), 5778-
 538 5783.

539 28. Shrawat, A. K.; Carroll, R. T.; DePauw, M.; Taylor, G. J.; Good, A. G., Genetic engineering of
 540 improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. *Plant
 541 Biotechnology Journal* **2008**, *6* (7), 722-732.

542

543 **9 Figure legends**

544 **Scheme 1.** Reaction scheme for the on-tissue derivatization of an amino acid with coniferyl
 545 aldehyde.

546 **Figure 1.** MS images for the 12 amino acids detected in Mo17 maize roots. The first 2 columns are
 547 control roots without CA derivatization and the last column is with CA derivatization. 'M+K'
 548 indicates the non-derivatized amino acids detected as potassium ion adduct. 'M+CA+K' indicates the
 549 derivatized amino acids detected as potassium ion adduct. The numbers below each amino acid label
 550 correspond to the maximum intensity scale used to produce the false color image. The scale bar is
 551 500 μ m.

552 **Figure 2.** MS images of amino acids in B73 (left) and Mo17 (right) maize roots cryosectioned at 2
 553 cm below the seed for each different stage of development. The numbers below each amino acid
 554 label correspond to the maximum intensity scale used to produce false color image. The scale bar is
 555 500 μ m.

556 **Figure 3.** Comparison of amino acid abundance in each genotype analyzed by MALDI-MSI of tissue
 557 section compared to LC-MS extract. MALDI-MS data presents signal intensities for selected amino
 558 acids normalized to gold matrix peak (n = 3). LC-MS data presents integrated peak areas for the
 559 extracted ion chromatogram of each amino acid normalized to the tissue weight (n = 4).

560 **Figure 4.** MS images of the six most abundant amino acids in B73, BxM, MxB, and Mo17 maize
 561 roots cryosectioned at 2cm below the seed for the development stage of 10-11 cm length. The
 562 numbers below each amino acid label correspond to the maximum intensity scale used to produce
 563 false color image. The scale bar is 500 μ m.

564 **Figure 5.** The ratio of amino acid signals in the pith vs. cortex per unit area (n = 3). The * and **
 565 indicate a p-value < 0.05 and < 0.01, respectively. The y-axis is on a logarithmic scale with the x-axis
 566 crosses the value of one, where the pith and cortex have the same signal intensity per unit area.

567 **Figure 6.** MS images of selected amino acids in B73 and Mo17 maize root sections grown in 10 mM
 568 ammonium ion, either $^{14}\text{NH}_4\text{Cl}$ or $^{15}\text{NH}_4\text{Cl}$, compared to the control grown in water. The first three

569 sets of images are of the monoisotopes (M peak) containing only ^{12}C and ^{14}N . The last set is of the
570 isotope (M+1 peak) from $^{15}\text{NH}_4\text{Cl}$ data containing one isotope of either ^{15}N or ^{13}C . The root sections
571 were made at 2 cm below the seed when the root reached the length of 10-11 cm. The numbers below
572 each amino acid label correspond to the maximum intensity scale used to produce false color image.
573 The scale bar is 500 μm .

574 **Figure 7.** Mol percent of ^{15}N incorporation into amino acids of maize roots grown at 10 mM ^{15}N -
575 ammonium ion and cryosectioned at 2 cm below the seed at the root length of 10-11cm. The error
576 bars come from three biological replicates. The * and ** indicate a p-value < 0.05 and < 0.01,
577 respectively.

578

579 **10 Data Availability Statement**

580 The raw data supporting the conclusions of this manuscript will be made available to any qualified
581 researcher without any reservations.