
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Formal Verification of Completion-Completeness

for NCL Circuits

Son N. Le

Electrical and Computer Engineering

North Dakota State University

Fargo, USA

son.ngoc.le@ndsu.edu

Sudarshan K. Srinivasan

Electrical and Computer Engineering

North Dakota State University

Fargo, USA

sudarshan.srinivasan@ndsu.edu

Scott C. Smith

Electrical Engineering and Computer Science

Texas A&M University Kingsville

Kingsville, USA

scott.smith@tamuk.edu

Abstract—Ensuring completion-completeness is required for

delay-insensitivity when utilizing bit-wise completion to pipeline

NCL circuits comprised of input-incomplete logic functions.

Hence, this work presents an automated formal method to detect

NCL circuits that are not completion-complete.

Keywords— asynchronous circuits, formal verification, formal

methods, equivalence checking, NULL Convention Logic

I. INTRODUCTION

NULL Convention Logic (NCL) [1] is a Quasi-Delay
Insensitive (QDI) asynchronous design paradigm that has been
shown to be able to operate correctly in more extreme
environments than its synchronous counterpart [2]. NCL circuits
do not utilize a clock signal for synchronization; instead NCL
utilizes multi-rail logic, such as dual-rail, along with a 4-phase
handshaking protocol to achieve delay-insensitivity. A dual-rail
signal, D, consists of two wires, D0 and D1, which may assume
any value from the set {DATA0 (i.e., 0b01), DATA1
(i.e., 0b10), and NULL (i.e., 0b00)}. The DATA0 state (D0 = 1
and D1 = 0) corresponds to a Boolean logic 0, the DATA1 state
(D0 = 0 and D1 = 1) corresponds to a Boolean logic 1, and the
NULL state (D0 = 0 and D1 = 0) corresponds to the empty set
meaning that the value of D is not yet available. The two rails
are mutually exclusive, such that both rails can never be asserted
simultaneously; this state is defined as an ILLEGAL state. NCL
systems contain at least two DI registers, one at both the input
and at the output. Two adjacent register stages interact through
their request and acknowledge handshaking signals, Ki and Ko,
respectively, to prevent the current DATA wavefront from
overwriting the previous DATA wavefront, by ensuring that the
two DATA wavefronts are always separated by a NULL
wavefront. An asserted handshaking signal represents request
for DATA (rfd), while it being deasserted represents request for
NULL (rfn). Handshaking can be performed using either full-
word or bit-wise completion [3]. Full-word completion requires
that the acknowledge signals from each bit in registeri be
conjoined together by the completion component, whose single-
bit output is connected to all request lines of registeri-1. On the
other hand, bit-wise completion only sends the completion
signal from bit b in registeri back to the bits in registeri-1 that took
part in the calculation of bit b. This method may potentially
require fewer logic levels than that of full-word completion, thus
increasing throughput.

In order to achieve delay-insensitivity, NCL circuits must be
input-complete and observable [4]. Input-completeness requires

that all outputs of a combinational circuit may not transition
from NULL to DATA until all inputs have transitioned from
NULL to DATA, and that all outputs of a combinational circuit
may not transition from DATA to NULL until all inputs have
transitioned from DATA to NULL. In circuits with multiple
outputs, it is acceptable according to Seitz’s “weak conditions”
of delay-insensitive signaling [5], for some of the outputs to
transition without having a complete input set present, as long
as all outputs cannot transition before all inputs arrive.
Observability requires that no orphans may propagate through a
gate, where an orphan is defined as a wire that transitions during
the current DATA wavefront, but is not used in the
determination of the output. NCL circuits that utilize the bit-wise
completion strategy along with input-incomplete logic
functions/components must also be completion-complete [6] to
ensure delay-insensitivity. Completion-completeness requires
that completion signals only be generated such that no two
adjacent DATA wavefronts can interact within any
combinational logic (C/L) component. Note that completion-
completeness is inherent when using full-word completion.

While [7] presents automated formal methods for ensuring
that NCL circuits utilize correct handshaking, and are input-
complete and observable, this paper describes an automated
formal method to ensure that NCL circuits are also completion-
complete.

II. PREVIOUS WORK

 The need for completion-completeness was demonstrated in

[6] by showing a number of example NCL circuits that utilized

proper handshaking connections and were input-complete and

observable, but still were not delay-insensitive, since they

allowed two adjacent DATA wavefronts to interact within a

C/L component. Take for example the partial product

generation circuit for X(1:0) × Y(1:0) utilizing bit-wise

completion, as shown in Fig. 1. AND functions Y(1) • X(1) and

Y(0) • X(0) are input-complete, as shown in Fig. 2(a), while the

other two AND functions are input-incomplete, as shown in

Fig. 2(b), such that the entire circuit is input-complete (i.e., all

outputs cannot become DATA until all inputs are DATA). To

show that this circuit is not completion-complete, and therefore

not delay-insensitive, let Xi and Yi be 002 and 112, respectively,

which would result in PPi = 00002; and let

Xi+1(0) = DATA1 and Yi+1(1) = DATA0, which would result in

PPi+1(1) = DATA0, where the subscript, i, refers to the

Fig. 1. Completion-Incomplete NCL Circuit

wavefront. Now, assume that the signals transition as follows,

starting from the NULL state (i.e., all dual-rail signals are

NULL and all Ki and Ko signals are rfd): Xi changes to DATA

(i.e., 002), Yi(0) changes to DATA (i.e., DATA1), and Yi(1)

remains NULL. This causes PPi(2:0) to become 0002, as

expected, while PPi(3) remains NULL, which in turn causes

Kic0 and Kic1 to become rfn, allowing NULL to flow through

these two input registers. This in turn causes PPi(1:0) to

become NULL, assuming their respective Ki signals are rfn,

which transitions Kic0 to rfd, allowing Xi+1(0) = DATA1 to flow

through its register. Yi(1) now finally transitions to DATA1,

which causes two adjacent DATA wavefronts, Xi+1(0) and

Yj(1), to interact within the combinational logic, which violates

the completion-completeness criterion; and this produces

PPi+1(1) = DATA1, which is incorrect.

 In addition to showing how to manually determine if an NCL
circuit is completion-complete, [6] also presented a variety of
methods to make NCL circuits completion-complete, so that
they would be delay-insensitive. For this example, either the two
input-incomplete AND functions could be replaced with input-
complete versions, or the completion logic sets would need to
be modified. The work herein presents an automated method to
formally verify that an NCL circuit is completion-complete.

III. COMPLETION-COMPLETENESS VERIFICATION

The proposed completion-completeness verification is as
follows. The NCL circuit is partitioned into stages, and each
stage is handled independently. If a stage has p inputs, then p
proof obligations are required for that stage. Below, we describe
the generic proof obligation (PO) template that must be applied
to each input of a circuit stage. The approach described using
this template can be applied to any arbitrary NCL circuit. The
POs are formulated such that they can be automatically checked
using a Satisfiability Modulo Theories (SMT) solver [8].

Fig. 2. (a) Input-Complete and (b) Input-Incomplete NCL AND Components

Completion-Completeness Proof Obligation: Without loss
of generality, an NCL circuit stage is assumed to have m
threshold gates, p dual-rail inputs, and q dual-rail outputs, and
include a p-bit input register and q-bit output register, as shown
in Fig. 1 for p=q=4. To formulate the proof, three separate
symbolic steps of the NCL circuit are required, denoted as Steps
A, B, and C, respectively. 𝑔𝐴/𝐵/𝐶/𝐷

1, … , 𝑔𝐴/𝐵/𝐶/𝐷
𝑚, are

Boolean variables that represent the current state of the threshold

gates for the corresponding symbolic step. 𝑖𝐴/𝐵/𝐶
1, …, 𝑖𝐴/𝐵/𝐶

𝑝,

are the symbolic values applied to the circuit inputs for the

corresponding symbolic step; and 𝑖𝐴/𝐵/𝐶
𝑘 represents the circuit

input that is being verified. 𝑜𝐴/𝐵/𝐶/𝐷
1, … , 𝑜𝐴/𝐵/𝐶/𝐷

𝑞 , are the

output values acquired during the corresponding step of the
circuit with current state and input values mentioned above.

𝐾𝑜𝐴/𝐵/𝐶/𝐷
1, … , 𝐾𝑜𝐴/𝐵/𝐶/𝐷

𝑝 and 𝐾𝑖𝑐𝐴/𝐵/𝐶/𝐷
1, … , 𝐾𝑖𝑐𝐴/𝐵/𝐶/𝐷

𝑝

represent the Ko outputs and Ki inputs, respectively, of the NCL
input register for the corresponding step, as labeled in Fig. 1.

𝐾𝑖𝐴/𝐵/𝐶
1, … , 𝐾𝑖𝐴/𝐵/𝐶

𝑞 corresponds to the Ki inputs to the

output register for the respective steps. Note that Ko, Kic, and o
are all threshold gate outputs, and are therefore accounted for in
variable g.

The predicates used to construct the completion-
completeness PO are shown in Table I. 𝑝0 indicates that all
threshold gate output values are 0 for Step A, which indicates
that the circuit is in the NULL state before a DATA
transition. 𝑝1 indicates that all circuit inputs during Step A are
NULL. 𝑝2 indicates that all circuit Ki inputs are 1, which
indicates that the circuit is in a rfd state. 𝑝3 symbolically steps

the circuit stage under test using dual-rail inputs (𝑖𝐴
1, … , 𝑖𝐴

𝑝),

Ki inputs (𝐾𝑖𝐴
1, … , 𝐾𝑖𝐴

𝑞
) and threshold gate values

(𝑔𝐴
1, … , 𝑔𝐴

𝑚), and stores the gate output values to
(𝑔𝐵

1, … , 𝑔𝐵
𝑚). 𝑝4 indicates that the circuit stage input being

tested for completion-completeness, 𝑖𝐵
𝑘, remains NULL, and all

other inputs are DATA for Step B. 𝑝5 symbolically steps the
circuit stage under test using the Step B inputs, and stores the
gate output values to (𝑔𝐶

1, … , 𝑔𝐶
𝑚). 𝑝6 indicates that all circuit

inputs during Step C are set to NULL. 𝑝7 is used to constrain the
Ki inputs for Step C, such that if a particular circuit output is
DATA, then its corresponding Ki input is constrained to 0,
indicating rfn; and if the circuit output is NULL, then its
corresponding Ki input is constrained to 1, indicating rfd. 𝑝8
symbolically steps the circuit stage under test using the Step C
inputs, and stores the gate output values to (𝑔𝐷

1, … , 𝑔𝐷
𝑚). 𝑝9

checks the Kic and Ko values of the input register to ensure that
they are correct for input ik being constrained to NULL (i.e., Kic
and Ko for input registerk should both be 1, since ik never
transitioned from NULL; and the rest of the input register bits’
Kic and Ko should not both be 1, as this would allow the
subsequent DATA wavefront to pass through into the C/L, thus
violating the completion-completeness criteria). The
completion-completeness proof obligation is constructed as
follows:

{ 𝑝0 ∧ 𝑝1 ∧ 𝑝2 ∧ 𝑝3 ∧ 𝑝4 ∧ 𝑝5 ∧ 𝑝6 ∧ 𝑝7 ∧ 𝑝8} → 𝑝9

 At a high level, these predicates restrict the input under test
so that it stays NULL and is therefore requesting DATA for all
three symbolic steps (A, B, and C). The other inputs are not
constrained, and can transition from NULL to DATA and back

TABLE I. COMPLETION-COMPELTENESS PREDICATES

𝑝𝑛 PREDICATE

𝑝0
⋀(𝑔𝐴

𝑛 = 0)

𝑛=𝑚

𝑛=1

𝑝1

⋀(𝑖𝐴
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

𝑝2

⋀(𝐾𝑖𝐴
𝑛 = 𝐾𝑖𝐵

𝑛 = 1)

𝑛=𝑞

𝑛=1

𝑝3 (𝑔𝐵
1, … , 𝑔𝐵

𝑚)
= 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴

1, … , 𝑖𝐴
𝑝, 𝑔𝐴

1, … , 𝑔𝐴
𝑚, 𝐾𝑖𝐴

1, … , 𝐾𝑖𝐴
𝑞)

𝑝4

⋀(𝑖𝐵
𝑛 = {

0𝑏00, 𝑛 = 𝑘
(0𝑏01 ∨ 0𝑏10), 𝑛 ≠ 𝑘

)

𝑛=𝑝

𝑛=1

𝑝5 (𝑔𝐶
1, … , 𝑔𝐶

𝑚)
= 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐵

1, … , 𝑖𝐵
𝑝, 𝑔𝐵

1, … , 𝑔𝐵
𝑚, 𝐾𝑖𝐵

1, … , 𝐾𝑖𝐵
𝑞)

𝑝6

⋀(𝑖𝐶
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

𝑝7

⋀(𝐾𝑖𝐶
𝑛 = {

 0, 𝑜𝐵
𝑛 = (0𝑏01 ∨ 0𝑏10)

1, 𝑜𝐵
𝑛 = 0𝑏00

)

𝑛=𝑞

𝑛=1

𝑝8 (𝑔𝐷
1, … , 𝑔𝐷

𝑚)
= 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐶

1, … , 𝑖𝐶
𝑝, 𝑔𝐶

1, … , 𝑔𝐶
𝑚, 𝐾𝑖𝐶

1, … , 𝐾𝑖𝐶
𝑞)

𝑝9

⋀ {
 (𝐾𝑜𝐷

𝑛 = 𝐾𝑖𝑐𝐶 = 1), 𝑛 = 𝑘

~(𝐾𝑜𝐷
𝑛

 ⊼ 𝐾𝑖𝑐𝐶), 𝑛 ≠ 𝑘

𝑛=𝑝

𝑛=1

to NULL, as allowed by their respective handshaking signals. If
the circuit is completion-complete, then the unconstrained
inputs can transition from DATA to NULL, but not back to
DATA before the constrained input transitions to DATA and
then to NULL. An unconstrained input that could transition back
to DATA indicates that the circuit is not completion-complete.
Essentially, 𝑝9 indicates that none of the unconstrained inputs
could transition back to DATA, which is what the SMT solver
is checking. This can be observed when looking back to the
Fig. 1 example in Section II. The property is violated when the
constrained input, Y(1) is tested, as both Kic0 and KoX0 are 1 after
NCLStep C, such that Xi+1(0) would be allowed to pass through
into the C/L. If the solver is able to prove the PO, then this
indicates that the circuit is completion-complete w.r.t. input k. If
however, there is a violation, then the solver will provide a
counter example to the proof obligation, which can then be used
to trace the source of the completion-completeness violation.

TABLE II. COMPLETION-COMPLETENESS VERIFICATION BENCHMARKS

N COMPLETION-COMPLETE

RUN TIME (SEC)

COMPLETION-INCOMPLETE

RUN TIME (SEC)

4 2.785 . 186

8 2.785 . 186

12 7.131 . 315

16 15.315 . 525

20 30.135 . 797

24 49.909 1.142

28 78.887 1.628

32 115.078 2.092

36 169.248 2.745

40 229.685 3.278

44 314.026 3.967

48 429.539 4.776

52 564.778 5.739

56 709.051 6.835

60 1042.379 8.469

64 1170.315 10.883

IV. RESULTS

For the verification results presented herein, partial-

product generation of N-bit × N-bit unsigned dual-rail NCL

multipliers were used as benchmarks, where 4 ≤ 𝑁 ≤ 64. The

verification proof obligations were checked using the Z3 SMT

solver [9] running on an Intel® Core™ i5-6600k CPU with

16GB of RAM, operating at 3.50 GHz; however, any SMT

solver could be used. The results are listed in Table II, where

the first column is N, corresponding to an N-bit × N-bit dual-

rail NCL unsigned multiplier partial product generation circuit.

The second column is the verification time in seconds of

completion-complete multipliers that are constructed using

only input-complete AND2 components, shown in Fig. 2(a).

The third column is the verification time in seconds of

completion-incomplete multipliers, where the input-complete

AND2 components are replaced with their input-incomplete

version, shown in Fig. 2(b), for partial products 𝑋𝑖𝑌𝑗, where

𝑖 ≠ 𝑗. These are used to test the time to detect circuits that are

input-complete but not completion-complete. The time reported

for each completion-complete circuit is the total time to verify

that all inputs are completion-complete; and the time reported

for each completion-incomplete circuit is the total time until

one input is found to be completion-incomplete. Z3 detected all

completion-incomplete circuits and provided a counter

example.

In addition to the multiplier partial product generation

circuits, the other two circuits described in [6] where tested as

well: a) the final stage of an unsigned multiplier with

completion-complete and completion-incomplete GEN_S7

components, and b) the six 2-input AND function circuit. The

developed automated completion-completeness verification

method correctly verified the completion-complete versions

and flagged the completion-incomplete circuits.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the first automated methodology for

formal verification of completion-completeness of NCL

circuits. The results are very promising, as even a 64 × 64

multiplier partial product generation circuit could be fully

verified in 19.5 minutes. The limitation to verification using the

computer described above was not verification timeout of more

than one day, but storage limitation as circuit size grew.

Techniques to further improve efficiency and scalability could

be explored as future work.

Acknowledgement: This paper is based upon work supported by

the National Science Foundation under Grant No. CCF-

1717420.

REFERENCES

[1] K. M. Fant and S. A. Brandt, “NULL Convention Logic: A Complete and
Consistent Logic for Asynchronous Digital Circuit Synthesis,”
International Conference on Application Specific Systems, Architectures,
and Processors, pp. 261-273, August 1996.

[2] J. Di and S. C. Smith, “Asynchronous Digital Circuits,” in Extreme
Environment Electronics, pp. 663 – 673, CRC Press, November 2012.

[3] S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson,
“Delay-Insensitive Gate-Level Pipelining,” Elsevier’s Integration, the
VLSI Journal, Vol. 30/2, pp. 103-131, October 2001.

[4] S. C. Smith and J. Di, “Designing Asynchronous Circuits using NULL
Convention Logic (NCL),” Synthesis Lectures on Digital Circuits and
Systems, Morgan & Claypool Publishers, Vol. 4/1, July 2009.

[5] C. L. Seitz, “System Timing,” in Introduction to VLSI Systems, Addison-
Wesley, pp. 218-262, 1980.

[6] S. C. Smith, “Completion-Completeness for NULL Convention Digital
Circuits Utilizing the Bit-wise Completion Strategy,” International
Conference on VLSI, pp. 143-149, June 2003.

[7] A. A. Sakib, S. Le, S. C. Smith, and S. K. Srinivasan, “Formal
Verification of NCL Circuits,” in Asynchronous Circuit Applications,
pp. 309-338, IET, December 2019.

[8] D. Monniaux, “A survey of Satisfiability Modulo Theory” [online].
Available: https://hal.archives-ouvertes.fr/hal-01332051/document
[Accessed April 25, 2020].

[9] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science, C. R. Ramakrishnan and
J. Rehof, Eds., vol. 4963, Springer, 2008, pp. 337–340.

