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Abstract—Ensuring completion-completeness is required for 

delay-insensitivity when utilizing bit-wise completion to pipeline 

NCL circuits comprised of input-incomplete logic functions. 

Hence, this work presents an automated formal method to detect 

NCL circuits that are not completion-complete.  

Keywords— asynchronous circuits, formal verification, formal 

methods, equivalence checking, NULL Convention Logic 

I. INTRODUCTION  

NULL Convention Logic (NCL) [1] is a Quasi-Delay 
Insensitive (QDI) asynchronous design paradigm that has been 
shown to be able to operate correctly in more extreme 
environments than its synchronous counterpart [2]. NCL circuits 
do not utilize a clock signal for synchronization; instead NCL 
utilizes multi-rail logic, such as dual-rail, along with a 4-phase 
handshaking protocol to achieve delay-insensitivity. A dual-rail 
signal, D, consists of two wires, D0 and D1, which may assume 
any value from the set {DATA0 (i.e., 0b01), DATA1  
(i.e., 0b10), and NULL (i.e., 0b00)}. The DATA0 state (D0 = 1 
and D1 = 0) corresponds to a Boolean logic 0, the DATA1 state  
(D0 = 0 and D1 = 1) corresponds to a Boolean logic 1, and the 
NULL state (D0 = 0 and D1 = 0) corresponds to the empty set 
meaning that the value of D is not yet available. The two rails 
are mutually exclusive, such that both rails can never be asserted 
simultaneously; this state is defined as an ILLEGAL state. NCL 
systems contain at least two DI registers, one at both the input 
and at the output. Two adjacent register stages interact through 
their request and acknowledge handshaking signals, Ki and Ko, 
respectively, to prevent the current DATA wavefront from 
overwriting the previous DATA wavefront, by ensuring that the 
two DATA wavefronts are always separated by a NULL 
wavefront. An asserted handshaking signal represents request 
for DATA (rfd), while it being deasserted represents request for 
NULL (rfn). Handshaking can be performed using either full-
word or bit-wise completion [3]. Full-word completion requires 
that the acknowledge signals from each bit in registeri be 
conjoined together by the completion component, whose single-
bit output is connected to all request lines of registeri-1. On the 
other hand, bit-wise completion only sends the completion 
signal from bit b in registeri back to the bits in registeri-1 that took 
part in the calculation of bit b. This method may potentially 
require fewer logic levels than that of full-word completion, thus 
increasing throughput. 

In order to achieve delay-insensitivity, NCL circuits must be 
input-complete and observable [4]. Input-completeness requires 

that all outputs of a combinational circuit may not transition 
from NULL to DATA until all inputs have transitioned from 
NULL to DATA, and that all outputs of a combinational circuit 
may not transition from DATA to NULL until all inputs have 
transitioned from DATA to NULL. In circuits with multiple 
outputs, it is acceptable according to Seitz’s “weak conditions” 
of delay-insensitive signaling [5], for some of the outputs to 
transition without having a complete input set present, as long 
as all outputs cannot transition before all inputs arrive. 
Observability requires that no orphans may propagate through a 
gate, where an orphan is defined as a wire that transitions during 
the current DATA wavefront, but is not used in the 
determination of the output. NCL circuits that utilize the bit-wise 
completion strategy along with input-incomplete logic 
functions/components must also be completion-complete [6] to 
ensure delay-insensitivity. Completion-completeness requires 
that completion signals only be generated such that no two 
adjacent DATA wavefronts can interact within any 
combinational logic (C/L) component. Note that completion-
completeness is inherent when using full-word completion.  

While [7] presents automated formal methods for ensuring 
that NCL circuits utilize correct handshaking, and are input-
complete and observable, this paper describes an automated 
formal method to ensure that NCL circuits are also completion-
complete.  

II. PREVIOUS WORK 

 The need for completion-completeness was demonstrated in 

[6] by showing a number of example NCL circuits that utilized 

proper handshaking connections and were input-complete and 

observable, but still were not delay-insensitive, since they 

allowed two adjacent DATA wavefronts to interact within a 

C/L component. Take for example the partial product 

generation circuit for X(1:0) × Y(1:0) utilizing bit-wise 

completion, as shown in Fig. 1. AND functions Y(1) • X(1) and 

Y(0) • X(0) are input-complete, as shown in Fig. 2(a), while the 

other two AND functions are input-incomplete, as shown in 

Fig. 2(b), such that the entire circuit is input-complete (i.e., all 

outputs cannot become DATA until all inputs are DATA). To 

show that this circuit is not completion-complete, and therefore 

not delay-insensitive, let Xi and Yi be 002 and 112, respectively, 

which would result in PPi = 00002; and let  

Xi+1(0) = DATA1 and Yi+1(1) = DATA0, which would result in 

PPi+1(1) = DATA0, where the subscript, i, refers to the 



 

Fig. 1. Completion-Incomplete NCL Circuit 

wavefront. Now, assume that the signals transition as follows, 

starting from the NULL state (i.e., all dual-rail signals are 

NULL and all Ki and Ko signals are rfd): Xi changes to DATA 

(i.e., 002), Yi(0) changes to DATA (i.e., DATA1), and Yi(1) 

remains NULL. This causes PPi(2:0) to become 0002, as 

expected, while PPi(3) remains NULL, which in turn causes 

Kic0 and Kic1 to become rfn, allowing NULL to flow through 

these two input registers. This in turn causes PPi(1:0) to 

become NULL, assuming their respective Ki signals are rfn, 

which transitions Kic0 to rfd, allowing Xi+1(0) = DATA1 to flow 

through its register. Yi(1) now finally transitions to DATA1, 

which causes two adjacent DATA wavefronts, Xi+1(0) and 

Yj(1), to interact within the combinational logic, which violates 

the completion-completeness criterion; and this produces 

PPi+1(1) = DATA1, which is incorrect.  

 In addition to showing how to manually determine if an NCL 
circuit is completion-complete, [6] also presented a variety of 
methods to make NCL circuits completion-complete, so that 
they would be delay-insensitive. For this example, either the two 
input-incomplete AND functions could be replaced with input-
complete versions, or the completion logic sets would need to 
be modified. The work herein presents an automated method to 
formally verify that an NCL circuit is completion-complete. 

III. COMPLETION-COMPLETENESS VERIFICATION 

The proposed completion-completeness verification is as 
follows. The NCL circuit is partitioned into stages, and each 
stage is handled independently. If a stage has p inputs, then p 
proof obligations are required for that stage. Below, we describe 
the generic proof obligation (PO) template that must be applied 
to each input of a circuit stage. The approach described using 
this template can be applied to any arbitrary NCL circuit. The 
POs are formulated such that they can be automatically checked 
using a Satisfiability Modulo Theories (SMT) solver [8].  

 

Fig. 2. (a) Input-Complete and (b) Input-Incomplete NCL AND Components 



Completion-Completeness Proof Obligation: Without loss 
of generality, an NCL circuit stage is assumed to have m 
threshold gates, p dual-rail inputs, and q dual-rail outputs, and 
include a p-bit input register and q-bit output register, as shown 
in Fig. 1 for p=q=4. To formulate the proof, three separate 
symbolic steps of the NCL circuit are required, denoted as Steps 
A, B, and C, respectively. 𝑔𝐴/𝐵/𝐶/𝐷

1, … , 𝑔𝐴/𝐵/𝐶/𝐷
𝑚, are 

Boolean variables that represent the current state of the threshold 

gates for the corresponding symbolic step. 𝑖𝐴/𝐵/𝐶
1, …, 𝑖𝐴/𝐵/𝐶

𝑝, 

are the symbolic values applied to the circuit inputs for the 

corresponding symbolic step; and  𝑖𝐴/𝐵/𝐶
𝑘 represents the circuit 

input that is being verified. 𝑜𝐴/𝐵/𝐶/𝐷
1, … , 𝑜𝐴/𝐵/𝐶/𝐷

𝑞 , are the 

output values acquired during the corresponding step of the 
circuit with current state and input values mentioned above. 

𝐾𝑜𝐴/𝐵/𝐶/𝐷
1, … , 𝐾𝑜𝐴/𝐵/𝐶/𝐷

𝑝 and 𝐾𝑖𝑐𝐴/𝐵/𝐶/𝐷
1, … , 𝐾𝑖𝑐𝐴/𝐵/𝐶/𝐷

𝑝 

represent the Ko outputs and Ki inputs, respectively, of the NCL 
input register for the corresponding step, as labeled in Fig. 1. 

𝐾𝑖𝐴/𝐵/𝐶
1, … , 𝐾𝑖𝐴/𝐵/𝐶

𝑞  corresponds to the Ki inputs to the 

output register for the respective steps. Note that Ko, Kic, and o 
are all threshold gate outputs, and are therefore accounted for in 
variable g. 

The predicates used to construct the completion-
completeness PO are shown in Table I. 𝑝0 indicates that all 
threshold gate output values are 0 for Step A, which indicates 
that the circuit is in the NULL state before a DATA 
transition. 𝑝1 indicates that all circuit inputs during Step A are 
NULL. 𝑝2 indicates that all circuit Ki inputs are 1, which 
indicates that the circuit is in a rfd state. 𝑝3 symbolically steps 

the circuit stage under test using dual-rail inputs (𝑖𝐴
1, … , 𝑖𝐴

𝑝), 

Ki inputs (𝐾𝑖𝐴
1, … , 𝐾𝑖𝐴

𝑞
) and threshold gate values 

(𝑔𝐴
1, … , 𝑔𝐴

𝑚), and stores the gate output values to 
(𝑔𝐵

1, … , 𝑔𝐵
𝑚). 𝑝4 indicates that the circuit stage input being 

tested for completion-completeness, 𝑖𝐵
𝑘, remains NULL, and all 

other inputs are DATA for Step B. 𝑝5 symbolically steps the 
circuit stage under test using the Step B inputs, and stores the 
gate output values to (𝑔𝐶

1, … , 𝑔𝐶
𝑚). 𝑝6 indicates that all circuit 

inputs during Step C are set to NULL. 𝑝7 is used to constrain the 
Ki inputs for Step C, such that if a particular circuit output is 
DATA, then its corresponding Ki input is constrained to 0, 
indicating rfn; and if the circuit output is NULL, then its 
corresponding Ki input is constrained to 1, indicating rfd. 𝑝8 
symbolically steps the circuit stage under test using the Step C 
inputs, and stores the gate output values to (𝑔𝐷

1, … , 𝑔𝐷
𝑚). 𝑝9 

checks the Kic and Ko values of the input register to ensure that 
they are correct for input ik being constrained to NULL (i.e., Kic 
and Ko for input registerk should both be 1, since ik never 
transitioned from NULL; and the rest of the input register bits’ 
Kic and Ko should not both be 1, as this would allow the 
subsequent DATA wavefront to pass through into the C/L, thus 
violating the completion-completeness criteria). The 
completion-completeness proof obligation is constructed as 
follows: 

{ 𝑝0 ∧ 𝑝1 ∧ 𝑝2 ∧ 𝑝3 ∧ 𝑝4 ∧ 𝑝5  ∧ 𝑝6 ∧ 𝑝7 ∧  𝑝8} → 𝑝9 

 At a high level, these predicates restrict the input under test 
so that it stays NULL and is therefore requesting DATA for all 
three symbolic steps (A, B, and C). The other inputs are not 
constrained, and can transition from NULL to DATA and back 

TABLE I.  COMPLETION-COMPELTENESS PREDICATES 

𝑝𝑛 PREDICATE 

𝑝0 
⋀(𝑔𝐴

𝑛 = 0)

𝑛=𝑚

𝑛=1

 

𝑝1 

⋀(𝑖𝐴
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

 

𝑝2 

⋀(𝐾𝑖𝐴
𝑛 = 𝐾𝑖𝐵

𝑛 = 1)

𝑛=𝑞

𝑛=1

 

𝑝3 (𝑔𝐵
1, … , 𝑔𝐵

𝑚)
= 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴

1, … , 𝑖𝐴
𝑝, 𝑔𝐴

1, … , 𝑔𝐴
𝑚, 𝐾𝑖𝐴

1, … , 𝐾𝑖𝐴
𝑞) 

𝑝4 

⋀(𝑖𝐵
𝑛 = {

0𝑏00, 𝑛 = 𝑘
(0𝑏01 ∨ 0𝑏10), 𝑛 ≠ 𝑘  

  )

𝑛=𝑝

𝑛=1

 

𝑝5 (𝑔𝐶
1, … , 𝑔𝐶

𝑚)
= 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐵

1, … , 𝑖𝐵
𝑝, 𝑔𝐵

1, … , 𝑔𝐵
𝑚, 𝐾𝑖𝐵

1, … , 𝐾𝑖𝐵
𝑞) 

𝑝6 

⋀(𝑖𝐶
𝑛 = 0𝑏00)

𝑛=𝑝

𝑛=1

 

𝑝7 

⋀(𝐾𝑖𝐶
𝑛 = {

   0,   𝑜𝐵
𝑛 = (0𝑏01  ∨ 0𝑏10)  

1,  𝑜𝐵
𝑛 = 0𝑏00 

)

𝑛=𝑞

𝑛=1

 

𝑝8 (𝑔𝐷
1, … , 𝑔𝐷

𝑚)
= 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐶

1, … , 𝑖𝐶
𝑝, 𝑔𝐶

1, … , 𝑔𝐶
𝑚, 𝐾𝑖𝐶

1, … , 𝐾𝑖𝐶
𝑞) 

𝑝9 

⋀ {
  (𝐾𝑜𝐷

𝑛 = 𝐾𝑖𝑐𝐶 = 1), 𝑛 = 𝑘   

~(𝐾𝑜𝐷
𝑛

 ⊼  𝐾𝑖𝑐𝐶), 𝑛 ≠ 𝑘  

𝑛=𝑝

𝑛=1

 

 
to NULL, as allowed by their respective handshaking signals. If 
the circuit is completion-complete, then the unconstrained 
inputs can transition from DATA to NULL, but not back to 
DATA before the constrained input transitions to DATA and 
then to NULL. An unconstrained input that could transition back 
to DATA indicates that the circuit is not completion-complete. 
Essentially, 𝑝9 indicates that none of the unconstrained inputs 
could transition back to DATA, which is what the SMT solver 
is checking. This can be observed when looking back to the  
Fig. 1 example in Section II. The property is violated when the 
constrained input, Y(1) is tested, as both Kic0 and KoX0 are 1 after 
NCLStep C, such that Xi+1(0) would be allowed to pass through 
into the C/L. If the solver is able to prove the PO, then this 
indicates that the circuit is completion-complete w.r.t. input k. If 
however, there is a violation, then the solver will provide a 
counter example to the proof obligation, which can then be used 
to trace the source of the completion-completeness violation. 



TABLE II.  COMPLETION-COMPLETENESS VERIFICATION BENCHMARKS 

N COMPLETION-COMPLETE 

RUN TIME (SEC) 

COMPLETION-INCOMPLETE 

RUN TIME (SEC) 

4 2.785 . 186 

8 2.785 . 186 

12 7.131 . 315 

16 15.315 . 525 

20 30.135 . 797 

24 49.909 1.142 

28 78.887 1.628 

32 115.078 2.092 

36 169.248 2.745 

40 229.685 3.278 

44 314.026 3.967 

48 429.539 4.776 

52 564.778 5.739 

56 709.051 6.835 

60 1042.379 8.469 

64 1170.315 10.883 

IV. RESULTS 

For the verification results presented herein, partial-

product generation of N-bit × N-bit unsigned dual-rail NCL 

multipliers were used as benchmarks, where 4 ≤ 𝑁 ≤ 64. The 

verification proof obligations were checked using the Z3 SMT 

solver [9] running on an Intel® Core™ i5-6600k CPU with 

16GB of RAM, operating at 3.50 GHz; however, any SMT 

solver could be used. The results are listed in Table II, where 

the first column is N, corresponding to an N-bit × N-bit dual-

rail NCL unsigned multiplier partial product generation circuit. 

The second column is the verification time in seconds of 

completion-complete multipliers that are constructed using 

only input-complete AND2 components, shown in Fig. 2(a). 

The third column is the verification time in seconds of 

completion-incomplete multipliers, where the input-complete 

AND2 components are replaced with their input-incomplete 

version, shown in Fig. 2(b), for partial products 𝑋𝑖𝑌𝑗, where 

𝑖 ≠ 𝑗. These are used to test the time to detect circuits that are 

input-complete but not completion-complete. The time reported 

for each completion-complete circuit is the total time to verify 

that all inputs are completion-complete; and the time reported 

for each completion-incomplete circuit is the total time until 

one input is found to be completion-incomplete. Z3 detected all 

completion-incomplete circuits and provided a counter 

example. 

In addition to the multiplier partial product generation 

circuits, the other two circuits described in [6] where tested as 

well: a) the final stage of an unsigned multiplier with 

completion-complete and completion-incomplete GEN_S7 

components, and b) the six 2-input AND function circuit. The 

developed automated completion-completeness verification 

method correctly verified the completion-complete versions 

and flagged the completion-incomplete circuits.  

V. CONCLUSIONS AND FUTURE WORK 

This paper presents the first automated methodology for 

formal verification of completion-completeness of NCL 

circuits. The results are very promising, as even a 64 × 64 

multiplier partial product generation circuit could be fully 

verified in 19.5 minutes. The limitation to verification using the 

computer described above was not verification timeout of more 

than one day, but storage limitation as circuit size grew. 

Techniques to further improve efficiency and scalability could 

be explored as future work.  
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