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Abstract— Modeling complex networked systems as graphs
is prevalent, with nodes representing the agents and the links
describing a notion of dynamic coupling between them. Passive
methods to identify such influence pathways from data are
central to many applications. However, dynamically related
data-streams originating at different sources are prone to
corruption caused by asynchronous time-stamps of different
streams, packet drops and noise. Earlier results have shown
that spurious links are inferred in the graph structure identified
using corrupt data-streams. In this article, we provide a novel
approach to detect the location of corrupt agents in the network
solely by observing the inferred directed graph. Here, the
generative system that yields the data admits bidirectionally
coupled nonlinear dynamic influences between agents. A simple,
but novel and effective approach, using graph theory tools is
presented to arrive at the results.

I. INTRODUCTION

For an effective abstraction, many complex systems are
modeled as networks of interacting components. This is
prevalent across several application domains such as geo-
science [1], finance [2] neuroscience [3] and in engineered
networked systems such as internet-of-things [4]. Identifica-
tion of influence pathways is a primary objective in such
complex systems whose data are dynamically related as
dictated by the physics of the interacting agents.

In scenarios such as the power grid [5] and financial
markets, it is impossible or impermissible to actively inject
signals to influence the system. Here, network structure
identification must be achieved via passive means. With ad-
vancements in information measurement, data processing and
communication systems, passive identification of networks
has become more tenable.

Often, the measurements in such large systems are sub-
jected to effects of noise [6], asynchronous sensor clocks
[7] and packet drops [8]. When dealing with problems of
identifying structural and functional connectivity of a large
network, there is a pressing need to rigorously study such
uncertainties and address the problem of locating corrupt
agents and removing spurious links for performing accurate
system identification on networked systems.

Network identification for linear systems using instrument
variables has been studied in [9]. However, the effects
of data corruption are not studied in this work. Authors
in [10] leveraged multivariate Wiener filters to reconstruct
the undirected topology of the generative network model.
With assumptions of perfect measurements, and linear time
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invariant interactions, it is established that the multivariate
Wiener filter can recover the kin graph. In other words, for
each node, its parents, children and spouses are detected.

For a network of interacting agents with nonlinear and
strictly causal interactions, the authors in [11] proposed
the use of directed information to determine the directed
structure of the network. Here too, it is assumed that the
data-streams are ideal with no distortions.

The effects of data corruption in network reconstruction
was studied in [12] and [13] wherein the spurious links
in the inferred network structure was characterized. In this
work, we extend the analysis to identify the location of
corrupt nodes in a network. We consider causal and non-
linear dynamical systems. Here, every coupling is assumed to
be a bi-directional. Such a framework is applicable in many
domains such as power networks [14], thermal monitoring
[15], networks of oscillators [16] and consensus networks
[17].

In this article, directed information method is first em-
ployed to infer the corrupt graph from uncertain data-
streams. We then use graph theory tools to isolate the corrupt
nodes by observing the directed graph inferred. We remark
here, that the solution methodology provides an effective
method to detect sources of corruption that only involve
examining paths in the constructed graph.

The paper is organized as follows. Graph theory prelimi-
naries and the generative model that generates the measured
data is described in Section II. Corruption models are
highlighted in Section III. Section IV describes the method
of network inference using Directed Information. The main
result to detect the corrupt nodes is presented in Section V.

II. PRELIMINARIES

Notations:

z[-] denotes a sequence and z(*) denotes the sequence
z[0], z[1], . .. 2[t].

Px represents the probability density function of a random
variable X.

1 — j indicates an arc or edge from node ¢ to node j in a
directed graph.

i <> j denotes ¢ — j and ¢ < j.

1—j denotes an undirected edge or link between nodes ¢ and
7 in an undirected graph. If the graph is directed, then ¢ — j
denotes at least one of ¢ — j or ¢ < j.

E[-] denotes the expectation operator.

A. Definitions

In this subsection, some graph theory notions that will be
used in the article are presented. See [18] for more details.



(a) Generative Graph G (b) Topology G™

Fig. 1: This figure shows la generative graph and its topology
1b

Definition 1 (Directed and Undirected Graphs): A
directed graph G is a pair (V,A) where V is a set of
vertices or nodes and A is a set of edges or links given by
ordered pairs (i,j) where i,j € V. If (i,5) € A, then we
say that there is an edge from ¢ to j which is also denoted
as i — j € A. (V, A) forms an undirected graph if V is a
set of nodes or vertices and A is a set of the un-ordered
pairs {i,7}.

Definition 2 (Topology): Suppose G = (V,A) is a di-
rected graph. The fopology of the graph G is an undirected
graph G7 = (V, A7), where A" = {i —j | i — j €
AYU{i—jli+je A}l

Definition 3 (Trail/Path): Nodes v1,vs,...,v, € V
forms a trail/path in a graph G (directed or undirected) if for
every ¢ = 1,2,...,k—1 we have v; — v;11. We will denote
the path connecting v1 and vi by v1 —vg — -+ —vV_1 — Vg.

Definition 4 (Collider): A node v is a collider in a
directed graph G, if there are two other nodes v;,v; such
that v; — v < v; holds.

Definition 5 (Tree): An undirected graph G = (V, A) is
called a tree if there is a unique path connecting any two
nodes in V.

B. Generative Model

In this subsection, the generative model that is assumed to
generate the measured data is described. Consider [V agents
that interact over a network. Let Y denote the set of all
random process {y1, ..., yn} with a parent set P(i) defined
for ¢ = 1,..., N. The generative model for y; is described
by the structural relationship:

viltl = £ | U o Valt | (1)
JEP()
where f;’s are arbitrary functions.

Here, to each agent we associate a discrete time sequence
y;i[-] and another sequence e;[-]. The process e;[-] is consid-
ered innate to agent ¢ and thus e; and e; are independent for
1 # j. It is also assumed that e;[] is independent across time.
All discrete time sequences have a finite horizon assumed to
be T'. The structural description of (1) induces a generative
graph G = (V, A) formed by identifying the set of vertices,
V, with random processes y; and the set of directed links, A,
obtained by introducing a directed link from every element
in the parent set (i) of agent 4 to i.

In this article, we consider bi-directional generative mod-
els whose associated generative graph G = (V, A), is bi-

directional. That is for all i — j € A, we also have
j—ie A

For an illustration, consider the dynamics of a generative
model described by:

1, -1

yilt] = A8 Y et]),
yalt] = fa (08, Y ealt]),
yg[t]=f3(y§t_”,y§t_” 4(; 1)763[t])7
yalt] = fa(ys ™l Y, ealt),

Its associated generative graph is shown in Fig. 1(a). Note
that for all ¢ in {1,2,...,4}, ¢ — ¢ is not shown. Figure 1(b)
shows the topology.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncer-
tainty affects the time-series y;. We interchangeably use
corruption or perturbation to denote uncertainties in mea-
surement.

A. General Perturbation Models

Consider i*" node in a generative graph and it’s associ-
ated unperturbed time-series y;. The corrupt data-stream wu;
associated with ¢ is assumed to follow:

gily” Y Gl ®)

where wu; can depend dynamically on y; till time ¢, its
own values in the strict past, and (;[t] which represents a
stochastic process that is independent across time. We high-
light a few important perturbation models that are practically
relevant. See [13] for more details.

Temporal Uncertainty: Consider a node ¢ in a generative
graph. Suppose t is the true clock index but the node i@
measures a noisy clock index which is given by a random
process, (;[t]. One such probabilistic model is given by the
following IID Bernoulli process:

di,
Glt] = {d;

where d; and dy are any non-positive integers such that at
least one of d; and d2 are not equal to 0. Randomized delays
in information transmission can be modeled as a convolution
operation with the impulse function §[¢] shifted by ¢;[t] as
follows :

u;ft] =

with probability p;
with probability (1 — p;),

Noisy Filtering: Given a node ¢ in a generative graph, the
data-stream y; is causally filtered by a stable filter L; and
corrupted with independent measurement noise (;[-]. This
perturbation model is described by:

ui[t] = (Lq * ys)[t] + Gt “4)

=6t + Gt]] * ws[t]. 3)



Packet Drops: The measurement u;[t] corresponding to a
ideal measurement y;[t] packet reception at time ¢ can be
stochastically modeled as:

yilt], with probability p;
uilt] = . s )
u;[t — 1],  with probability (1 — p;).

Consider an IID Bernoulli process (; described by,

Gl = 1,  with probability p;
710,  with probability (1 — p;).

The corruption model in (2) takes the form:

ui[t] = Gltyilt] + (1 — Glt)uilt — 1] (6)
IV. NETWORK INFERENCE USING DIRECTED
INFORMATION

In this section, we will recall how to infer directed graphs
for networks from corrupt data-streams [13].

Definition 6 (Directed Information): Denote the
measured data-streams by U = {uj,...,un}. The
directed information (DI) from data stream u; to u; is given
by:

) _ N PUiHuj»UE;
I(uj = u; || Uy;) = E |log ——*1 , @)
Puz'l\Uzj

T
L Pt e vt Puos =

where Py, |ju;,u;; =
t=1

T

tl;llpui[t”ugt_l):[];(;_l) and UB =U \ {ui,uj}.

Definition 7 (Perturbed Graph): Let G = (V,A) be a
generative graph. Suppose Z C V is the set of perturbed
nodes where each perturbation is described by (2). The
perturbed graph, Gz = (V, Az), is a directed graph where
there is an edge i« — j € Ay if and only if there is a trail
i =1v1—vy—--—Vg_1—vU = j in G such that the following
conditions hold:

Pl) If j ¢ Z, then vp_1 — j € A.

P2) For m € {2,3,...,k — 1}, if v;—1 — vy < VU1,
and vy, ¢ Z, then v,,41 € Z.

P3) If v, is a node such that v,,_1 — vy, — Vpy41 1S @ sub-
path of the path v; — ... — vy and v, is not a collider,
then v,, € Z.

Remark 1: Note that the existence of any trail that does
not meet the ‘if’ conditions in P1), P2) and P3) guarantees
that i — j € Ayz. For example, if ¢ — j € A then i —
j € Az. Indeed, if j ¢ Z then i« — j € Az by condition
P1). Conditions P2) and P3) are not applicable. On the other
hand, if j € Z, then none of the conditions P1), P2) or P3)
are applicable to the trail i — j. So, i — j € Ay.

Definition 8 (Spurious Links): Let G = (V, A) be a gen-
erative graph, Z C V be the set of perturbed nodes and
Gz = (V,Az) be the perturbed graph. Spurious links are
those links ¢ — j € Az that do not belong to A.

The following theorem from [13] states that the the per-
turbed graph can be determined using directed information.

Theorem 1: Consider a generative graph G = (V, A)
consisting of N nodes. Let Z = {vy,...,v,} CV be the set

of n perturbed nodes where each perturbation is described
by (2). Let U = {uy,...,un} be the measured data-streams.
There is a directed edge from i to j in the perturbed graph,
Gz = (V,Agz), if and only if I(u; — u; || Uz;) > 0.

Remark 2: We consider dynamical interactions such that
they are faithful. (See [13].) This condition means that every
directed edge in G can be detected via directed information
using measured data-streams.

A. Perturbed Graphs in Bi-directional Networks

The following proposition provides a precise and simpli-
fied characterization for perturbed graphs for networks whose
generative graphs are bi-directional.

Proposition 1: Let G = (V, A) be a bi-directional gen-
erative graph. Let Z C 'V be set of perturbed nodes and
let Gz = (V,Az) be the corresponding perturbed graph.
Then, i — j in Az if and only if either one of the following
condition holds:

Bl) i< jin G or

B2) There is a trail of length at least 3, 1 = v <> vy <>
V3 > .-+ &> v = j, such that for every pair of
consecutive nodes Vy,, Umy1 With m > 2 at least one
of Uy, OF Vppy1 is in Z.
Proof: Let Ay be the edge set described in the

proposition. We will show that A, = A .

First, we show that AZ C Ayz. Suppose, i — j € AZ. If
i <> j was an edge of G, then i — j € Ay.

Now, consider the case of a trail of length at least 3 with
T =101 $> Vg 4> Vg 4> -+ > U = 7.

Since the network is bi-directional, we can choose the
directionality of the edges. We will show that by suitable
choice of directionality, we can retrieve a directed path
between ¢ and j that satisfy all the conditions P1), P2) and
P3) for the link ¢ — j to be in Az. So, for each pair of
nodes along the trail, set the directionality as follows:

o Form > 2,if v, € Z, set Uy—1 — U < Umt1-

o Set all other edges in the — direction.

Since no two consecutive nodes, v,, and v,,+; with m > 2
are unperturbed, this construction is feasible.

Pl) If v, = j ¢ Z, then, since the trail has k > 3, we
must have £k — 1 > 2. So, we must have that v,_; € Z.
Thus, by our convention for choosing directions, we have
Vk_1 — Uk. Thus, P1) holds.

P2) If v,, is a collider, then we have v,, < Vm41-
This directionality is chosen only when when v,, ¢ Z.
Furthermore, since v, is a collider, we must have m > 2.
Thus, we have v,,11 € Z. Therefore, P2) holds.

P3) If v, is an intermediate node which is not a collider,
then by construction, it cannot be unperturbed. Thus, P3)
holds.

Now, we show that Ay C A. Say that i — j € Az. Let

i =wv; —---— v, = j be trail in G that satisfies conditions
P1), P2), and P3). If the trail is ¢ — j, then from B1) we have
i—>jeAy.

Now consider the case that the trail has length of at least
3. We must show that for any pair v,,, vp41 With m > 2,
at least one of the nodes is in Z. Since m > 2, we must



have vy, 1 — Uy, — Upm+1 On the trail. If m is a collider, then
P2) implies that v,,,+1 € Z. If m is not a collider, then P3)
implies that v,, € Z. Thus, at least one of v, or v,,+1 is
perturbed. Thus, ¢ — j € Ag. [ ]

V. IDENTIFICATION OF CORRUPT NODES

In this section, we present the main result of the paper
to detect the location of corrupt nodes in a network of bi-
directional systems. For the rest of the article we have the
following assumption on the perturbations.

Assumption 1: Let G = (V, A) be a bi-directional gen-
erative graph. Let Z C V be the set of perturbed nodes
satisfying (2). We consider perturbations that satisfy the
following: for every unperturbed node ¢ € V there exists
at least one more unperturbed node j € V such that i <> j
holds in G.

Remark 3: The above assumption states that we consider
perturbations such that every unperturbed node in the gen-
erative graph is connected to at least one other unperturbed
node. However, any node(corrupt/unperturbed) can be can be
connected to multiple perturbed nodes.

A. Main result: Corruption ldentification

Theorem 2 is the main result which detects the exact
location of all the corrupt nodes in the network. To this, we
will require the following definitions.

Definition 9 (Bi-directional Clique): Suppose,

G = (V,A) is a directed graph. A subset of nodes
S C V forms a bi-directional clique in G if i — j € A and
j—ieAforalli,jes.

Definition 10 (Bi-directional Neighbors): Suppose, G =
(V,A) is a directed graph. The bi-directional neighbors of
a node i € V, bidNr(i), is given by: bidNr(i) = {j | i +
j holds in G}.

Theorem 2: Suppose G = (V,A) is a bi-directional
generative graph with the topology, GT = (V, A7), a tree.
Let Z C V be the set of perturbed nodes satisfying (2)
and Assumption 1. Let U = {uy,...,un} be the measured
data streams. Let Gz = (V, Az) be the perturbed graph.
Consider the following statements:

TI) i »j€ Ay

T2) j —>i¢ Ay

T3) j and bidNr(j) form a bi-directional clique in Gy.

If statements T1) and T2) hold, then j is corrupted if and
only if statement T3) holds.

Proof: Let statements T1) and T2) be true. Now, we

will show that j is corrupted if and only if statement T3)
holds.
(=) Say that j is corrupted. Let p and ¢ be bi-directional
neighbors of j in Gz. We will show that p — ¢ in Gz as
well. Since p and ¢ are arbitrary, switching their roles shows
that we must have p <> ¢. Furthermore, since p and ¢ are
arbitrary bidirectional neighbors of j, {j} U bidNr(j) must
form a bidirectional clique in G 2.

Now, we will show that p — ¢ € Az. Since p <> j € Az
and j > g € Az, by Proposition 1, there must be a trail in

G of the form
p:’UlH"'Hvk:j:le"'le:q (8)

such that the following conditions hold:

o If v, <> V41 With m > 2, then at least one of v, or
Upm+1 must be perturbed.

o If wy, <> wyy1 with m > 2, then at least one of w,,
or w,,+1 must be perturbed.

Note that these conditions automatically hold if the paths
have length 2.

Since j € Z, at least one node is perturbed on each of
vg—1 <> J and j < ws. Thus, there are no consecutive
unperturbed nodes along the subtrail:

Vg > - - V1 > J S We- - W =q 9)

Thus, p — q.

(&)Asi—jeAzandj — i ¢ Ay, i — jis a spurious
link. By Proposition 1, there exists a trail in G, trig : i =
V1 > Vg 4> V3 > - -+ 4> Vp_1 <> U = J, such that there no
two consecutive unperturbed nodes along the subtrail vs <+
Vg > v 4> Vp—1 <> vp = j. Suppose, j ¢ Z for the
sake of contradiction. We will show that T3) does not hold,
leading to a contradiction. That is, we will show that there
exists at least one subset of nodes S C bidNr(j), such that
S does not form a bi-directional clique with j in G z. Since
j ¢ Z, by Assumption 1, there is at least one unperturbed
node [ such that j <+ [ holds in G. Therefore, vi_1 <> j <> [
exists in G. That is, vi_1 and [ are bi-directional neighbors
of j. We will now prove that {vy_1,!} does not form a bi-
directional clique with j in Gz. Particularly, we will show
that v,_1 — { ¢ Ag.

To show that vy — [ ¢ Az, we will show that
there exists no trail connecting viy—1 and [ in G satisfying
conditions P1), P2) and P3). Suppose, there exists a trail
different from vi_1 <+ j <> [ in G. Such a trail will imply
two paths connecting v, and [ in the topology, G”, of G.
This contradicts the assumption that G” is a tree. Therefore,
Vgp—1 &> j > lis the only trail in G that connects v, _1 and [.
Now, we will show that all directed paths in this trail violate
at least one of P1), P2) and P3). Consider the directed path
Vk—1 — j < | where j is a collider. As j ¢ Z and | ¢ Z,
condition P2) is not met. Now consider vix_1 — j — L.
Then, as j ¢ Z, P3) is violated. Consider the directed path
vk—1 < J — 1. As j ¢ Z, P3) is violated. Finally consider
vg—1 < j < l. Again, as j ¢ Z, P3) is violated. Thus
all possible directed paths in vg_; <> j <> [ violate atleast
one of P1), P2) and P3). Thus vg_; — [ cannot be in the
perturbed graph. Therefore, {vi_1,[,j} does not form a bi-
directional clique in GGz. This completes the proof that j
must be a perturbed node. [ ]

B. Illustrative Example

In this subsection we provide examples and discuss the
significance of the detection procedure described above.

Example | (Non-Linear System): Consider a network
consisting of 3 nodes as shown in Figure 2a). The true
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(c) Comparison of directed information estimates
between perfect measurements and corrupted data-
streams. DIR I is shown along X-axis and the sample
length n is along Y-axis.

Fig. 2: This figure shows how node 3 can be inferred as a
perturbed node. The only unidirectional link is 1 — 3 and 2
is the only bi-directional neighbor of 3. Using Theorem 2,
node 3 is detected as a corrupt node.

generative model is described by:

yi[t] = ea[t].yalt — 1], (10a)
Y2lt] = yit — 1] +yalt — 1] - e2[t], (10b)
ys[t] = yo[t — 1] + es]t] (10c)

where eq[t] ~ Bernouilli(0.2), es[t] ~ Bernouilli(0.2) and
es[t] ~ Bernouilli(0.35), and ‘+’ is the logical ‘OR’ op-
eration and ‘-’ is the logical ‘AND’ operation. Each of
y1[t], y2[t] and ys[t] has a finite alphabet {0,1}. The per-
turbation considered here is the time-origin uncertainty at
node 3. The corruption model takes the form:

_ y3[t_3]a
uslt] = {yg[tL

with probability 0.33

. o (1)
with probability 0.67.

We used the methods proposed in [19] to compute directed
information rate(DIR). The perturbed graph is shown in
Figure 2b). Here, the only unidirectional spurious link
introduced is 1 — 3. Also, bidNr(3) = {2}. Clearly, 2
forms a bi-directional clique with 3. Applying Theorem 2,
therefore, we can conclude node 3 as a perturbed node just
by observing the graph structure.

Example 2 (Linear System): Let the generative graph, G,
be as showin in Fig. 3a) with the following dynamics:

yilt] = (Haiz x y2)[t] + ex[t]
Ya[t] = (Ha1 * y1)[t] + (Has * y3)[t] + e2[t]
ys[t] = (Hsa * y2)[t] + (Hsa * ya)[t] + es]t] (12)
Yalt] = (Haz * y3)[t] + (Has = ys)[t] + ealt]
Ys[t] = (Hsa * ya)[t] + e5]t]
where H;; are stable LTI filters for all 4,5 € {1,2,3,4,5}.

O—Q——D—0O
(a) True Generative Graph

(b) True kin graph

X

(c) Perturbed kin graph

P
~ R 4 / S
S o > -

(d) Directed perturbed graph

Fig. 3: This figure shows how graph theory notions can
detect corrupt nodes from the inferred directed perturbed
graph. In 3d), node 3 forms bi-directional clique with all
its bi-directional neighbors as shown in dashed red arrows.
This does not hold for unperturbed nodes.

Suppose, node 3 is perturbed. That is, the measured data-
stream for node 3, ug[t], is given by a noisy filter:

(L * y3)[t] + Gs[t]

where, L is a stable first-order filter and (3[¢] is an IID Gaus-
sian noise. Let U[t] = [y1[t] walt] wslt] walt] yslt]
be the vector of observed signals.

If the measurements were unperturbed, the true kin graph
(undirected graph) can be recovered using multivariate
Wiener filter [10]. See Fig. 3b). However, if the measure-
ments of ys are perturbed, then the undirected network
structure identified using Wiener filtering will contain spu-
rious links as proved in [12]. In this case, the perturbed
kin graph will be complete, as shown in Fig. 3c. (See [12]
for more details on this construction). The Wiener filtering
method implies that if ¢ — 7 is in the kin topology, then the
corresponding entry in the inverse power spectrum satisfies
(Pyu(e’)~1);; # 0 for all w. From a trajectory of length
5 x 10%, we estimated:

us [t] =

1.052  —1.233 0.007 0.242 —0.073
-1.233 1.621 —0.036 —0.538  0.227
dyy(1)~t = | 0.007 —0.036 0028 —0.034 0.005
0242 —0.538 —0.034 1.515 —1.146
—-0.073  0.227  0.005 —1.146  0.983
13)

Thus, the Wiener filter method predicts a full graph. Due
to high symmetry and completeness of the graph, it is not
possible to detect the corrupt node purely by looking at the
inferred graph structure. Moreover, separation techniques as
described in [20] cannot be used to remove spurious edges.

However, directed perturbed graph yields more insightful
results. This could be estimated from data using directed
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Fig. 4: Residual Errors. Each line depicts a running esti-
mate of the residual gap, (14). The dashed lines correspond to
theoretical predictions, while the solid lines are the estimates.
The green lines correspond to true links ¢ — j € A, the
blue lines correspond to spurious links ¢ — 7 € Az \ A,
and the red lines correspond to pairs (4, j) with no predicted
link ¢ — j ¢ Az. As can be seen the green and blue lines
plateau near predicted values while the red lines continue to
decrease.

information [11], or in the case of linear systems, Granger
causality [21]. As discussed in [21] Granger causality is
equivalent to directed information in the case of linear
Gaussian dynamic systems. Let U; denote the entries of U
other than j and let Ui—j denote the entries of U other than
¢ and j. For the Granger filter methods, we used recursive
least-squares to estimate the difference in prediction error
residuals:

rig = | (w5l Bfulaiv )] -
E [(uj[ﬂ - ]E[Uj[tHU%l])Q] (14

It can be shown that for linear Gaussian systems that r; ; >
0 if and only if I(u; — u;|Uz) > 0. The results of the
estimation are shown in Fig. 4. As can be seen, Fig. 3d is
the inferred perturbed graph, Gz. Applying Theorem 2, we
can conclude node 3 as a perturbed node just by observing
the graph structure.

VI. CONCLUSION

We studied the problem of identifying the location of
corrupt nodes in a network. We described a method to detect
all the corrupt nodes in a network admitting causal and non-
linear dynamical interactions with bi-directional coupling
between its agents. We showed that solely by examining the
perturbed graph structure we can locate corrupt nodes. In
particular, we showed that a corrupt node will always form
a bi-directional clique with all its bi-directional neighbors.
Immediate future extension entails removing spurious edges
in the network reconstructed. Furthermore, determining suf-
ficient conditions and detection algorithms to locate corrupt
nodes in networks that admit unidirectional coupling between
agents will be addressed in future.
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