
Corruption Detection in Networks of Bi-directional Dynamical Systems

Venkat Ram Subramanian, Andrew Lamperski, and Murti V. Salapaka

Abstract— Modeling complex networked systems as graphs
is prevalent, with nodes representing the agents and the links
describing a notion of dynamic coupling between them. Passive
methods to identify such influence pathways from data are
central to many applications. However, dynamically related
data-streams originating at different sources are prone to
corruption caused by asynchronous time-stamps of different
streams, packet drops and noise. Earlier results have shown
that spurious links are inferred in the graph structure identified
using corrupt data-streams. In this article, we provide a novel
approach to detect the location of corrupt agents in the network
solely by observing the inferred directed graph. Here, the
generative system that yields the data admits bidirectionally
coupled nonlinear dynamic influences between agents. A simple,
but novel and effective approach, using graph theory tools is
presented to arrive at the results.

I. INTRODUCTION

For an effective abstraction, many complex systems are

modeled as networks of interacting components. This is

prevalent across several application domains such as geo-

science [1], finance [2] neuroscience [3] and in engineered

networked systems such as internet-of-things [4]. Identifica-

tion of influence pathways is a primary objective in such

complex systems whose data are dynamically related as

dictated by the physics of the interacting agents.

In scenarios such as the power grid [5] and financial

markets, it is impossible or impermissible to actively inject

signals to influence the system. Here, network structure

identification must be achieved via passive means. With ad-

vancements in information measurement, data processing and

communication systems, passive identification of networks

has become more tenable.

Often, the measurements in such large systems are sub-

jected to effects of noise [6], asynchronous sensor clocks

[7] and packet drops [8]. When dealing with problems of

identifying structural and functional connectivity of a large

network, there is a pressing need to rigorously study such

uncertainties and address the problem of locating corrupt

agents and removing spurious links for performing accurate

system identification on networked systems.

Network identification for linear systems using instrument

variables has been studied in [9]. However, the effects

of data corruption are not studied in this work. Authors

in [10] leveraged multivariate Wiener filters to reconstruct

the undirected topology of the generative network model.

With assumptions of perfect measurements, and linear time
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invariant interactions, it is established that the multivariate

Wiener filter can recover the kin graph. In other words, for

each node, its parents, children and spouses are detected.

For a network of interacting agents with nonlinear and

strictly causal interactions, the authors in [11] proposed

the use of directed information to determine the directed

structure of the network. Here too, it is assumed that the

data-streams are ideal with no distortions.

The effects of data corruption in network reconstruction

was studied in [12] and [13] wherein the spurious links

in the inferred network structure was characterized. In this

work, we extend the analysis to identify the location of

corrupt nodes in a network. We consider causal and non-

linear dynamical systems. Here, every coupling is assumed to

be a bi-directional. Such a framework is applicable in many

domains such as power networks [14], thermal monitoring

[15], networks of oscillators [16] and consensus networks

[17].

In this article, directed information method is first em-

ployed to infer the corrupt graph from uncertain data-

streams. We then use graph theory tools to isolate the corrupt

nodes by observing the directed graph inferred. We remark

here, that the solution methodology provides an effective

method to detect sources of corruption that only involve

examining paths in the constructed graph.

The paper is organized as follows. Graph theory prelimi-

naries and the generative model that generates the measured

data is described in Section II. Corruption models are

highlighted in Section III. Section IV describes the method

of network inference using Directed Information. The main

result to detect the corrupt nodes is presented in Section V.

II. PRELIMINARIES

Notations:

z[·] denotes a sequence and z(t) denotes the sequence

z[0], z[1], . . . z[t].
PX represents the probability density function of a random

variable X .

i → j indicates an arc or edge from node i to node j in a

directed graph.

i↔ j denotes i→ j and i← j.

i−j denotes an undirected edge or link between nodes i and

j in an undirected graph. If the graph is directed, then i− j
denotes at least one of i→ j or i← j.

E[·] denotes the expectation operator.

A. Definitions

In this subsection, some graph theory notions that will be

used in the article are presented. See [18] for more details.
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Definition 1 (Directed and Undirected Graphs): A

directed graph G is a pair (V,A) where V is a set of

vertices or nodes and A is a set of edges or links given by

ordered pairs (i, j) where i, j ∈ V . If (i, j) ∈ A, then we

say that there is an edge from i to j which is also denoted

as i → j ∈ A. (V,A) forms an undirected graph if V is a

set of nodes or vertices and A is a set of the un-ordered

pairs {i, j}.
Definition 2 (Topology): Suppose G = (V,A) is a di-

rected graph. The topology of the graph G is an undirected

graph Gτ = (V,Aτ ), where Aτ = {i − j | i → j ∈
A} ∪ {i− j | i← j ∈ A}.

Definition 3 (Trail/Path): Nodes v1, v2, . . . , vk ∈ V
forms a trail/path in a graph G (directed or undirected) if for

every i = 1, 2, . . . , k− 1 we have vi− vi+1. We will denote

the path connecting v1 and vk by v1− v2− · · ·− vk−1− vk.

Definition 4 (Collider): A node vk is a collider in a

directed graph G, if there are two other nodes vi, vj such

that vi → vk ← vi holds.

Definition 5 (Tree): An undirected graph G = (V,A) is

called a tree if there is a unique path connecting any two

nodes in V .

B. Generative Model

In this subsection, the generative model that is assumed to

generate the measured data is described. Consider N agents

that interact over a network. Let Y denote the set of all

random process {y1, . . . , yN} with a parent set P(i) defined

for i = 1, . . . , N. The generative model for yi is described

by the structural relationship:

yi[t] = fi



y
(t−1)
i ,

⋃

j∈P(i)

y
(t−1)
j , ei[t]



 , (1)

where fi’s are arbitrary functions.

Here, to each agent we associate a discrete time sequence

yi[·] and another sequence ei[·]. The process ei[·] is consid-

ered innate to agent i and thus ei and ej are independent for

i 6= j. It is also assumed that ei[·] is independent across time.

All discrete time sequences have a finite horizon assumed to

be T . The structural description of (1) induces a generative

graph G = (V,A) formed by identifying the set of vertices,

V, with random processes yi and the set of directed links, A,
obtained by introducing a directed link from every element

in the parent set P(i) of agent i to i.
In this article, we consider bi-directional generative mod-

els whose associated generative graph G = (V,A), is bi-

directional. That is for all i → j ∈ A, we also have

j → i ∈ A.

For an illustration, consider the dynamics of a generative

model described by:

y1[t] = f1(y
(t−1)
1 , y

(t−1)
2 , y

(t−1)
3 , e1[t]),

y2[t] = f2(y
(t−1)
1 , y

(t−1)
2 , y

(t−1)
4 , e2[t]),

y3[t] = f3(y
(t−1)
1 , y

(t−1)
3 , y

(t−1)
4 , e3[t]),

y4[t] = f4(y
(t−1)
2 , y

(t−1)
3 , y

(t−1)
4 , e4[t]),

Its associated generative graph is shown in Fig. 1(a). Note

that for all i in {1, 2, . . . , 4}, i→ i is not shown. Figure 1(b)

shows the topology.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncer-

tainty affects the time-series yi. We interchangeably use

corruption or perturbation to denote uncertainties in mea-

surement.

A. General Perturbation Models

Consider ith node in a generative graph and it’s associ-

ated unperturbed time-series yi. The corrupt data-stream ui

associated with i is assumed to follow:

ui[t] = gi(y
(t)
i , u

(t−1)
i , ζi[t]), (2)

where ui can depend dynamically on yi till time t, its

own values in the strict past, and ζi[t] which represents a

stochastic process that is independent across time. We high-

light a few important perturbation models that are practically

relevant. See [13] for more details.

Temporal Uncertainty: Consider a node i in a generative

graph. Suppose t is the true clock index but the node i
measures a noisy clock index which is given by a random

process, ζi[t]. One such probabilistic model is given by the

following IID Bernoulli process:

ζi[t] =

{

d1, with probability pi

d2, with probability (1− pi),

where d1 and d2 are any non-positive integers such that at

least one of d1 and d2 are not equal to 0. Randomized delays

in information transmission can be modeled as a convolution

operation with the impulse function δ[t] shifted by ζi[t] as

follows :

ui[t] = δ[t+ ζi[t]] ∗ yi[t]. (3)

Noisy Filtering: Given a node i in a generative graph, the

data-stream yi is causally filtered by a stable filter Li and

corrupted with independent measurement noise ζi[·]. This

perturbation model is described by:

ui[t] = (Li ∗ yi)[t] + ζi[t]. (4)



Packet Drops: The measurement ui[t] corresponding to a

ideal measurement yi[t] packet reception at time t can be

stochastically modeled as:

ui[t] =

{

yi[t], with probability pi

ui[t− 1], with probability (1− pi).
(5)

Consider an IID Bernoulli process ζi described by,

ζi[t] =

{

1, with probability pi

0, with probability (1− pi).

The corruption model in (2) takes the form:

ui[t] = ζi[t]yi[t] + (1− ζi[t])ui[t− 1]. (6)

IV. NETWORK INFERENCE USING DIRECTED

INFORMATION

In this section, we will recall how to infer directed graphs

for networks from corrupt data-streams [13].

Definition 6 (Directed Information): Denote the

measured data-streams by U = {u1, . . . , uN}. The

directed information (DI) from data stream uj to ui is given

by:

I(uj → ui ‖ Uīj̄) = E

[

log
Pui‖uj ,Uīj̄

Pui‖Uīj̄

]

, (7)

where Pui‖uj ,Uīj̄
=

T
∏

t=1
P
ui[t]|u

(t−1)
i

,u
(t−1)
j

,U
(t−1)

īj̄

, Pui‖Uīj̄
=

T
∏

t=1
P
ui[t]|u

(t−1)
i

,U
(t−1)

īj̄

and Uīj̄ = U \ {ui, uj}.

Definition 7 (Perturbed Graph): Let G = (V,A) be a

generative graph. Suppose Z ⊂ V is the set of perturbed

nodes where each perturbation is described by (2). The

perturbed graph, GZ = (V,AZ), is a directed graph where

there is an edge i → j ∈ AZ if and only if there is a trail

i = v1−v2−· · ·−vk−1−vk = j in G such that the following

conditions hold:

P1) If j /∈ Z, then vk−1 → j ∈ A.

P2) For m ∈ {2, 3, . . . , k − 1}, if vm−1 → vm ← vm+1,

and vm /∈ Z, then vm+1 ∈ Z.

P3) If vm is a node such that vm−1 − vm − vm+1 is a sub-

path of the path v1 − . . .− vk and vm is not a collider,

then vm ∈ Z.
Remark 1: Note that the existence of any trail that does

not meet the ‘if’ conditions in P1), P2) and P3) guarantees

that i → j ∈ AZ . For example, if i → j ∈ A then i →
j ∈ AZ . Indeed, if j /∈ Z then i → j ∈ AZ by condition

P1). Conditions P2) and P3) are not applicable. On the other

hand, if j ∈ Z, then none of the conditions P1), P2) or P3)

are applicable to the trail i→ j. So, i→ j ∈ AZ .

Definition 8 (Spurious Links): Let G = (V,A) be a gen-

erative graph, Z ⊂ V be the set of perturbed nodes and

GZ = (V,AZ) be the perturbed graph. Spurious links are

those links i→ j ∈ AZ that do not belong to A.

The following theorem from [13] states that the the per-

turbed graph can be determined using directed information.

Theorem 1: Consider a generative graph G = (V,A)
consisting of N nodes. Let Z = {v1, . . . , vn} ⊂ V be the set

of n perturbed nodes where each perturbation is described

by (2). Let U = {u1, . . . , uN} be the measured data-streams.

There is a directed edge from i to j in the perturbed graph,

GZ = (V,AZ), if and only if I(ui → uj ‖ Uj̄ī) > 0.

Remark 2: We consider dynamical interactions such that

they are faithful. (See [13].) This condition means that every

directed edge in G can be detected via directed information

using measured data-streams.

A. Perturbed Graphs in Bi-directional Networks

The following proposition provides a precise and simpli-

fied characterization for perturbed graphs for networks whose

generative graphs are bi-directional.

Proposition 1: Let G = (V,A) be a bi-directional gen-

erative graph. Let Z ⊂ V be set of perturbed nodes and

let GZ = (V,AZ) be the corresponding perturbed graph.

Then, i→ j in AZ if and only if either one of the following

condition holds:

B1) i↔ j in G or

B2) There is a trail of length at least 3, i = v1 ↔ v2 ↔
v3 ↔ · · · ↔ vk = j, such that for every pair of

consecutive nodes vm, vm+1 with m ≥ 2 at least one

of vm or vm+1 is in Z.

Proof: Let ÂZ be the edge set described in the

proposition. We will show that ÂZ = AZ .

First, we show that ÂZ ⊂ AZ . Suppose, i → j ∈ ÂZ . If

i↔ j was an edge of G, then i→ j ∈ AZ .

Now, consider the case of a trail of length at least 3 with

i = v1 ↔ v2 ↔ v3 ↔ · · · ↔ vk = j.

Since the network is bi-directional, we can choose the

directionality of the edges. We will show that by suitable

choice of directionality, we can retrieve a directed path

between i and j that satisfy all the conditions P1), P2) and

P3) for the link i → j to be in AZ . So, for each pair of

nodes along the trail, set the directionality as follows:

• For m ≥ 2, if vm /∈ Z, set vm−1 → vm ← vm+1.

• Set all other edges in the → direction.

Since no two consecutive nodes, vm and vm+1 with m ≥ 2
are unperturbed, this construction is feasible.

P1) If vk = j /∈ Z, then, since the trail has k ≥ 3, we

must have k − 1 ≥ 2. So, we must have that vk−1 ∈ Z.

Thus, by our convention for choosing directions, we have

vk−1 → vk. Thus, P1) holds.

P2) If vm is a collider, then we have vm ← vm+1.

This directionality is chosen only when when vm /∈ Z.

Furthermore, since vm is a collider, we must have m ≥ 2.

Thus, we have vm+1 ∈ Z. Therefore, P2) holds.

P3) If vm is an intermediate node which is not a collider,

then by construction, it cannot be unperturbed. Thus, P3)

holds.

Now, we show that AZ ⊂ ÂZ . Say that i→ j ∈ AZ . Let

i = v1 − · · · − vk = j be trail in G that satisfies conditions

P1), P2), and P3). If the trail is i−j, then from B1) we have

i→ j ∈ ÂZ .

Now consider the case that the trail has length of at least

3. We must show that for any pair vm, vm+1 with m ≥ 2,

at least one of the nodes is in Z. Since m ≥ 2, we must



have vm−1− vm− vm+1 on the trail. If m is a collider, then

P2) implies that vm+1 ∈ Z. If m is not a collider, then P3)

implies that vm ∈ Z. Thus, at least one of vm or vm+1 is

perturbed. Thus, i→ j ∈ ÂZ .

V. IDENTIFICATION OF CORRUPT NODES

In this section, we present the main result of the paper

to detect the location of corrupt nodes in a network of bi-

directional systems. For the rest of the article we have the

following assumption on the perturbations.

Assumption 1: Let G = (V,A) be a bi-directional gen-

erative graph. Let Z ⊂ V be the set of perturbed nodes

satisfying (2). We consider perturbations that satisfy the

following: for every unperturbed node i ∈ V there exists

at least one more unperturbed node j ∈ V such that i ↔ j
holds in G.

Remark 3: The above assumption states that we consider

perturbations such that every unperturbed node in the gen-

erative graph is connected to at least one other unperturbed

node. However, any node(corrupt/unperturbed) can be can be

connected to multiple perturbed nodes.

A. Main result: Corruption Identification

Theorem 2 is the main result which detects the exact

location of all the corrupt nodes in the network. To this, we

will require the following definitions.

Definition 9 (Bi-directional Clique): Suppose,

G = (V,A) is a directed graph. A subset of nodes

S ⊂ V forms a bi-directional clique in G if i→ j ∈ A and

j → i ∈ A for all i, j ∈ S.

Definition 10 (Bi-directional Neighbors): Suppose, G =
(V,A) is a directed graph. The bi-directional neighbors of

a node i ∈ V , bidNr(i), is given by: bidNr(i) = {j | i ↔
j holds in G}.

Theorem 2: Suppose G = (V,A) is a bi-directional

generative graph with the topology, Gτ = (V,Aτ ), a tree.

Let Z ⊂ V be the set of perturbed nodes satisfying (2)

and Assumption 1. Let U = {u1, . . . , uN} be the measured

data streams. Let GZ = (V,AZ) be the perturbed graph.

Consider the following statements:

T1) i→ j ∈ AZ

T2) j → i /∈ AZ .

T3) j and bidNr(j) form a bi-directional clique in GZ .

If statements T1) and T2) hold, then j is corrupted if and

only if statement T3) holds.

Proof: Let statements T1) and T2) be true. Now, we

will show that j is corrupted if and only if statement T3)

holds.

(⇒) Say that j is corrupted. Let p and q be bi-directional

neighbors of j in GZ . We will show that p → q in GZ as

well. Since p and q are arbitrary, switching their roles shows

that we must have p ↔ q. Furthermore, since p and q are

arbitrary bidirectional neighbors of j, {j} ∪ bidNr(j) must

form a bidirectional clique in GZ .

Now, we will show that p→ q ∈ AZ . Since p↔ j ∈ AZ

and j ↔ q ∈ AZ , by Proposition 1, there must be a trail in

G of the form

p = v1 ↔ · · · ↔ vk = j = w1 ↔ · · · ↔ wl = q (8)

such that the following conditions hold:

• If vm ↔ vm+1 with m ≥ 2, then at least one of vm or

vm+1 must be perturbed.

• If wm ↔ wm+1 with m ≥ 2, then at least one of wm

or wm+1 must be perturbed.

Note that these conditions automatically hold if the paths

have length 2.

Since j ∈ Z, at least one node is perturbed on each of

vk−1 ↔ j and j ↔ w2. Thus, there are no consecutive

unperturbed nodes along the subtrail:

v2 ↔ · · · ↔ vk−1 ↔ j ↔ w2 · · · ↔ wl = q (9)

Thus, p→ q.

(⇐) As i→ j ∈ AZ and j → i /∈ AZ , i→ j is a spurious

link. By Proposition 1, there exists a trail in G, trlG : i =
v1 ↔ v2 ↔ v3 ↔ · · · ↔ vk−1 ↔ vk = j, such that there no

two consecutive unperturbed nodes along the subtrail v3 ↔
v4 ↔ · · · ↔ vk−1 ↔ vk = j. Suppose, j /∈ Z for the

sake of contradiction. We will show that T3) does not hold,

leading to a contradiction. That is, we will show that there

exists at least one subset of nodes S ⊂ bidNr(j), such that

S does not form a bi-directional clique with j in GZ . Since

j /∈ Z, by Assumption 1, there is at least one unperturbed

node l such that j ↔ l holds in G. Therefore, vk−1 ↔ j ↔ l
exists in G. That is, vk−1 and l are bi-directional neighbors

of j. We will now prove that {vk−1, l} does not form a bi-

directional clique with j in GZ . Particularly, we will show

that vk−1 → l /∈ AZ .

To show that vk−1 → l /∈ AZ , we will show that

there exists no trail connecting vk−1 and l in G satisfying

conditions P1), P2) and P3). Suppose, there exists a trail

different from vk−1 ↔ j ↔ l in G. Such a trail will imply

two paths connecting vk−1 and l in the topology, Gτ , of G.

This contradicts the assumption that Gτ is a tree. Therefore,

vk−1 ↔ j ↔ l is the only trail in G that connects vk−1 and l.
Now, we will show that all directed paths in this trail violate

at least one of P1), P2) and P3). Consider the directed path

vk−1 → j ← l where j is a collider. As j /∈ Z and l /∈ Z,

condition P2) is not met. Now consider vk−1 → j → l.
Then, as j /∈ Z, P3) is violated. Consider the directed path

vk−1 ← j → l. As j /∈ Z, P3) is violated. Finally consider

vk−1 ← j ← l. Again, as j /∈ Z, P3) is violated. Thus

all possible directed paths in vk−1 ↔ j ↔ l violate atleast

one of P1), P2) and P3). Thus vk−1 → l cannot be in the

perturbed graph. Therefore, {vk−1, l, j} does not form a bi-

directional clique in GZ . This completes the proof that j
must be a perturbed node.

B. Illustrative Example

In this subsection we provide examples and discuss the

significance of the detection procedure described above.

Example 1 (Non-Linear System): Consider a network

consisting of 3 nodes as shown in Figure 2a). The true
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(c) Comparison of directed information estimates
between perfect measurements and corrupted data-
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Fig. 2: This figure shows how node 3 can be inferred as a

perturbed node. The only unidirectional link is 1→ 3 and 2
is the only bi-directional neighbor of 3. Using Theorem 2,

node 3 is detected as a corrupt node.

generative model is described by:

y1[t] = e1[t].y2[t− 1], (10a)

y2[t] = y1[t− 1] + y3[t− 1] · e2[t], (10b)

y3[t] = y2[t− 1] + e3[t] (10c)

where e1[t] ∼ Bernouilli(0.2), e2[t] ∼ Bernouilli(0.2) and

e3[t] ∼ Bernouilli(0.35), and ‘+’ is the logical ‘OR’ op-

eration and ‘·’ is the logical ‘AND’ operation. Each of

y1[t], y2[t] and y3[t] has a finite alphabet {0, 1}. The per-

turbation considered here is the time-origin uncertainty at

node 3. The corruption model takes the form:

u3[t] =

{

y3[t− 3], with probability 0.33

y3[t], with probability 0.67.
(11)

We used the methods proposed in [19] to compute directed

information rate(DIR). The perturbed graph is shown in

Figure 2b). Here, the only unidirectional spurious link

introduced is 1 → 3. Also, bidNr(3) = {2}. Clearly, 2
forms a bi-directional clique with 3. Applying Theorem 2,

therefore, we can conclude node 3 as a perturbed node just

by observing the graph structure.

Example 2 (Linear System): Let the generative graph, G,

be as showin in Fig. 3a) with the following dynamics:

y1[t] = (H12 ∗ y2)[t] + e1[t]

y2[t] = (H21 ∗ y1)[t] + (H23 ∗ y3)[t] + e2[t]

y3[t] = (H32 ∗ y2)[t] + (H34 ∗ y4)[t] + e3[t]

y4[t] = (H43 ∗ y3)[t] + (H45 ∗ y5)[t] + e4[t]

y5[t] = (H54 ∗ y4)[t] + e5[t]

(12)

where Hij are stable LTI filters for all i, j ∈ {1, 2, 3, 4, 5}.

1 2 3 4 5

(a) True Generative Graph

1 2 3 4 5

(b) True kin graph

1 2 3 4 5

(c) Perturbed kin graph

1 2 3 4 5

(d) Directed perturbed graph

Fig. 3: This figure shows how graph theory notions can

detect corrupt nodes from the inferred directed perturbed

graph. In 3d), node 3 forms bi-directional clique with all

its bi-directional neighbors as shown in dashed red arrows.

This does not hold for unperturbed nodes.

Suppose, node 3 is perturbed. That is, the measured data-

stream for node 3, u3[t], is given by a noisy filter:

u3[t] = (L ∗ y3)[t] + ζ3[t]

where, L is a stable first-order filter and ζ3[t] is an IID Gaus-

sian noise. Let U [t] =
[

y1[t] y2[t] u3[t] y4[t] y5[t]
]⊤

be the vector of observed signals.

If the measurements were unperturbed, the true kin graph

(undirected graph) can be recovered using multivariate

Wiener filter [10]. See Fig. 3b). However, if the measure-

ments of y3 are perturbed, then the undirected network

structure identified using Wiener filtering will contain spu-

rious links as proved in [12]. In this case, the perturbed

kin graph will be complete, as shown in Fig. 3c. (See [12]

for more details on this construction). The Wiener filtering

method implies that if i− j is in the kin topology, then the

corresponding entry in the inverse power spectrum satisfies

(ΦUU (e
jω)−1)ij 6= 0 for all ω. From a trajectory of length

5× 105, we estimated:

ΦUU (1)
−1 =







1.052 −1.233 0.007 0.242 −0.073

−1.233 1.621 −0.036 −0.538 0.227

0.007 −0.036 0.028 −0.034 0.005

0.242 −0.538 −0.034 1.515 −1.146

−0.073 0.227 0.005 −1.146 0.983






.

(13)

Thus, the Wiener filter method predicts a full graph. Due

to high symmetry and completeness of the graph, it is not

possible to detect the corrupt node purely by looking at the

inferred graph structure. Moreover, separation techniques as

described in [20] cannot be used to remove spurious edges.

However, directed perturbed graph yields more insightful

results. This could be estimated from data using directed




