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Abstract

In this paper we classify symplectic leaves of the regular part of the
projectivization of the space of meromorphic endomorphisms of a sta-
ble vector bundle on an elliptic curve, using the study of shifted Poisson
structures on the moduli of complexes from our previous work [11]. This
Poisson ind-scheme is closely related to the ind Poisson-Lie group asso-
ciated to Belavin’s elliptic m-matrix, studied by Sklyanin, Cherednik and
Reyman and Semenov-Tian-Shansky. Our result leads to a classification
of symplectic leaves on the regular part of meromorphic matrix algebras
over an elliptic curve, which can be viewed as the Lie algebra of the above-
mentioned ind Poisson-Lie group. We also describe the decomposition of
the product of leaves under the multiplication morphism and show the
invariance of Poisson structures under autoequivalences of the derived
category of coherent sheaves on an elliptic curve.
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1 Introduction

This paper is a continuation of [11]. Recall that in [11] we constructed a natural
0-shifted Poisson structure on the derived moduli stack RCplz(C) of complexes
of vector bundles over an elliptic curve C'. Furthermore, we showed that ho-
motopy fibers of the natural morphism from RCplz(C) to the product of the
moduli stack of perfect complexes and the moduli stack of graded vector bun-
dles, have a 0-shifted symplectic structure, so they can be viewed as derived
symplectic leaves of our 0-shifted Poisson structure.

In the present paper we proceed a little further in the special case of com-
plexes of the form E — FE(D), where FE is a stable vector bundle on C, and
D is a divisor on C of positive degree (both E and D are fixed). The coarse
moduli space of such complexes, denoted by M (E, D), is the projectivization of
the linear space A(FE,D) := Hom(E, E(D)). In the context of integrable sys-
tem and quantum algebra, the Poisson structure on A(FE, D) was first studied
by Sklyanin [20] and Cherednik [2][3]. In the case when F has rank 2 and D
has degree 1, Sklyanin constructed its quantization in [20]. The quantization
of A(E, D) for general E and D was constructed by Cherednik (see [3]). The
corresponding quantum algebras are known as generalized Sklyanin elliptic alge-
bras. Note that the orginal construction of Sklyanin (and of Cherednik) is based
on Belavin’s elliptic solution of the Yang-Baxter equation. The relation of the
corresponding Poisson bracket to vector bundles on elliptic curves was clarified
by Hurtubise and Markman (see [9]). Our geometric construction of a Poisson
structure on A(E, D) differs from that of Hurtubise and Markman: we first con-
struct a Poisson structure on its projectivization M (E, D) and then characterize
its Poisson lift to A(E, D) as a unique one for which the determinant morphism
is a Casimir map (see Section 2.3).

We also consider the inductive limit A(F) (resp., M(E)) of A(E, D) (resp.,
M(E, D)) over all effective divisors D. This is an infinite dimensional Poisson
ind-scheme. It can be viewed as the meromorphic part of the Manin triple
associated to a formal loop Lie algebra with the Poisson structure defined by
Belavin’s elliptic r-matrix (see Section 12 of [18]). We show that product map
on A(E) is Poisson.

The main result of this article is a complete description of symplectic leaves
on the regular part M**¢ C M(FE, D), i.e., the open subset consisting of injective
endomorphisms modulo isomorphisms of complexes, as well as a classification
of symplectic leaves on the regular part of A(E, D).

For a partition v of r-deg(D) we denote by S, C' the stratum in the symmetric
power of C' consisting of divisors of the form >~ v;x;, and we denote by STPC C
S, C' the fiber of the Abel-Jacobi map S, C' — Pic(C') over O(rD).

Main Theorem. Let E be a stable vector bundle of rank r and degree d, and
D be an effective divisor of degree k on a complex elliptic curve C. Given a
partition v = (11 > va > ... > vp) of -k, and a collection of partitions

A, = {1, such that |\ = v;, we set Imax(Ay) := max{I(A\})|i = 1,...n}.

1) The set of topological types of the symplectic leaves of M* € is in one-to-
(1) pological typ ymp



one correspondence with the set of pairs (v, A,) such that lnax(Ay) < 7.

(2) Given a pair (v, A,) such that lmax(A,) < 7, the union of symplectic leaves
of M*®& of the topological type (v, A,) fibers smoothly over STPC.

(8) Let A8 C A(E, D) be the open subset consisting of injective endomor-
phisms and let S C A™® be a nonempty fiber of the determinant map
det : A(E, D) — H°(C,0O(rD)). Let us consider the quotient map 7 : S —
M™@& and let F C M*°® be a symplectic leaf. Then connected components
of T 1(F) are symplectic leaves in A*® (and all leaves are obtained by this
construction).

The above theorem is proved in Section 3. In particular, part (1) corresponds
to Theorem 3.6, part (2) corresponds to Theorem 3.11, and part (3) corresponds
to Corollary 3.9. We also show that the product of two symplectic leaves under
the monoid structure on M (E) is the union of open subsets in a finite collection
of symplectic leaves that can be explicitly described (see Theorem 3.13).

Note that on finite dimensional complex reductive Lie groups with Poisson-
Lie structures defined by quasi-triangular r-matrices, the symplectic leaves are
orbits of the dressing action (see [26]). In the infinite dimensional case, this
method needs additional careful treatement (see [25] for a discussion for the
trigonometric case). In this paper, we take a different approach via derived
algebraic geometry, where the action of infinite dimensional (ind)-group can be
avoided.

In a somehow different direction, we prove the invariance of Poisson structure
on the moduli space of complexes under the auto-equivalence of the derived cate-
gory of coherent sheaves on C' (Theorem 5.1). As a corollary, we set up a Poisson
isomorphism between M (E, D) and the Poisson moduli space constructed by
Feigin and Odesskii [6].

The paper is organized as follows. In Section 2, we recall the construction of
shifted Poisson structure on moduli space of complexes and introduce the space
M(E, D) as a special case. Section 3 is the main body of this article. First,
we prove that the coarse moduli spaces of the derived symplectic leaves are
smooth schemes and show that the classical shadow of the 0-shifted symplectic
structure descends to a symplectic structure on the coarse moduli spaces. Then
the classification results are proved. In Section 4, we classify all symplectic
leaves for rank 2 case without assuming the regular condition, and give some
concrete examples of leaves. In Section 5, we prove the invariance of the Poisson
structure under auto-equivalences.
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Notations: We work over the field of complex numbers. We use letters
X.,Y,...todenote the stacks (derived or un-derived), and straight letters X, Y, ...
to denote their underlying coarse moduli schemes (if exist). The tangent and
cotangent complexes of X are denoted by Ty and Lx. There is a truncation
functor from the category of D~ -stacks to the category of (un-derived) stacks

to: D_St(k) — St(k),

induced by the embedding of the category of commutative k-algebras in the
category of simplicial k-algebras (see Section 2 [23]). In particular, if X is a
derived Artin 1-stack then to(X) is an algebraic stack in the sense of [1].

We freely use the notation from [11]. In particular, RCpla(X), RPerf(X)
and RVect(X) (and RVect® (X)) denote the derived moduli stacks of com-
plexes, perfect complexes and vector bundles (and graded vector bundles) on
X, respectively.

2 Poisson structures on meromorphic endomor-
phism algebras

Let E be a stable vector bundle over an elliptic curve C, and let D be a divisor on
C of positive degree. There exists a homogeneous quadratic Poisson structure on
A(FE, D) := Hom(E, E(D)), which is referred to as Mukai bracket by Hurtubise
and Markman (cf. [9, Lemma 3.16]). In this section, we will show that the
projectivization of A(E, D), with its natural Poisson structure induced by the
Mukai bracket, is obtained as the classical shadow (see Section 2.1) of the 0-
shifted Poisson structure on the moduli spaces of complexes on C' constructed
in [11]. We show that as D varies among all effective divisors, these Poisson
brackets on A(FE, D) are compatible and hence give a Poisson structure on the
algebra A(F) of meromorphic endomorphisms of E. Furthermore, we show that
the product map is Poisson.

2.1 Shifted Poisson structure and moduli space of com-
plexes

We refer to [16], [4] and [21] for the general theory of shifted symplectic and
Poisson structures.

Let X be a derived Artin stack over k. Then an n-shifted Poisson structure
h on X defines a morphism in the derived category

11y, : Lx[n] — Ty .
In the case when n = 0, taking the 0-th cohomology, we get a morphism

HO(II,) : HO(Ly) — H°(Tx).



We call this map the classical shadow of a 0O-shifted Poisson structure.

In [11], for a smooth projective CY d-fold we constructed a (1 — d)-shifted
Poisson structured on the derived moduli space RCpla(X) of (bounded) com-
plexes of vector bundles over X. It arises by a general procedure from a La-
grangian structure on the natural map

(¢,p) : RCpla(X) — RPerf(X) x RVeet® (X),

where ¢ (resp., p) sends a complex of vector bundles to the corresponding object
in D(X) (resp., the underlying graded vector bundle), and from (2 — d)-shifted
symplectic structures on RPer f(X) and RVect® (X) constructed in [16].

In this paper we are only interested in the case d = 1. In this case we have
the following result.

Theorem 2.1. ([11, Theorem 3.13, Corollary 3.20, Corollary 3.21]) Let C be
a smooth elliptic curve. The derived stack RCplax(C) has a 0-shifted Poisson
structure. Given an object in D*(C) (resp. a graded vector bundle on C), denote
its corresponding stacky point (see Definition 2.4 [11]) by x (resp. by y). The
homotopy fiber of q at x (resp. fiber of p at y), inherits the 0-shifted Poisson
structure from RCplax(C). Moreover, the homotopy fiber of the map (q,p) at
(x,y) has a 0-shifted symplectic structure.

As an analogue of the terminology in classical Poisson geometry, we call a
non-empty homotopy fiber of the map (gq,p) a derived symplectic leaf of the 0-
shifted Poisson structure on RCplz(C'). In Section 3 we will see that if restrict
to the complexes of the form F — E(D), then truncating the derived structure
on each derived symplectic leaf and passing to the coarse moduli spaces we get
the usual symplectic leaves on the classical Poisson variety PHom(E, E(D)).

2.2 Poisson structure on M(FE, D)

For a fixed elliptic curve C let Trp denote the derived moduli stack of triples

(Vo AN V1) on C, viewed as an open substack in RCpla(C) consisting of
complexes concentrated in degrees 0 and 1. Note that at the point where
Ext!(Vp, Vi) = 0 the derived structure is trivial, so near such a point we have a
smooth Artin stack. For fixed Vj and V; with Extl(Vo, V1) = 0 the homotopy
fiber of the morphism p : RCpla(C) — RVect® (C) over Vo @ Vi[—1] is a smooth
Artin stack which we denote as Trpy, v,- By Theorem 2.1, we get a O-shifted
Poisson structure on Trpy, v, -

Let us fix a stable vector bundle E on C of rank r, and let D be a divisor of
degree k > 0. We are interested in the open substack

M(E, D) C TTpE',E'(D)

consisting of ¢ # 0, with its 0-shifted Poisson structure. Note that M(FE, D) is
a trivial G,,-gerbe over its coarse moduli space, denoted by M (E, D), which is
isomorphic to the projective space PHom(E, E(D)). Unless different bundle
FE and divisor D are considered at the same time, we will denote
M(E, D) simply by M.




Proposition 2.2. The 0-shifted Poisson structure on M descends to its coarse
moduli space M = M (E, D).

Proof. By the vanishing of hypercohomology, the derived structure on M is
trivial. Because f: M — M is a G,,-gerbe,

[T 2 HY(Ta), Q= HY(Lp).

Hence, the classical shadow of II is a morphism HO(II) : f*Qu — f*Tas. But
[+Onr =2 Opy, since f is a G,y,-gerbe, so HY(IT) descends to a morphism Q —
Thy. O

Let us also set
A(E, D) := Hom(FE, E(D)).

We are going to show that the Poisson structure on M (E, D) lifts in a canonical
way to a quadratic Poisson structure on a vector space A(F, D) (see Theorem
2.7 below).

First, we are going to give an explicit formula for the Poisson structure on

M.

The tangent complex of M, at (E, E(D),¢), denoted by Ty, is quasi-
isomorphic to I'(C°*,C*[1]), where C°°® is a co-simplicial resolution of C' and
C* is the complex of vector bundles

&End(E) ® End(E) 2— &nd(E)(D),
with differential 0 defined by

da, B) = ag — ¢f3

for any local sections (o, 8) of End(E)®End(E). Using Cech model, I'(C®, C*[1])
is taken to be the Cech cochain complex that computes the hypercohomology
of C°.

The cotangent complex, denoted by Ly, is quasi-isomorphic to I'(C°*, (C*)V).
The complex (C*)Y[—1] can be written as

End(EY)(~D) —2% end(EY) ® End(EY)

where —9V (v)) = (—¢1p, @) for a local section 1.

It is computed in Theorem 4.7 of [11] that the O-shifted Poisson structure
I1;, (we will omit the homotopy h and write II instead) on RCplz(C) is induced
by the chain map S

7= (0,00t):(C*)[-1] —=C*
where t := tg — t; : End(EY) ® End(EY) — End(E) @ &nd(F) with ¢; is the
auto duality isomorphism

to: End(EY) — End(E), t1: End((E(D))Y) — End(E(D)).



Let ¢ and (a,b) be local sections of &nd(EY)(—D) and &nd(EY) & End(EY),

we have
(¢, (a,b)) = (0,a¢ + ¢b). (2.1)
The determinant map induces an isomorphism between ;. 4 and the Picard
stack Pic?(C). Composing it with p, we get
detop : My —= Uy X Uy.g — Pic*(C) x Pic*(C).

For simplicity of notations, we denote &nd(E) by g and the sheaf of trace-free
sections &ndy(E) by s.

The stupid truncation of C* and (C*)¥[—1] gives two long exact sequences
of cohomology groups

0 —— HO(C*) — HO(g)®2 —— HO(g(D)) —— H'(C*) — H'(g)®* —— 0

(2.2)
0—— H(g")®2 —2L HO((C*)Y) —— H' (g (=D)) —— H'(g")®2 —Z 5 HY((C*)") —— 0
(2.3)

The tangent map of the determinant map is
(tr,tr) : HO(g)%% — H°(Og)®?

Because E is stable, this is an isomorphism with inverse (t—TTI7 tr—rI) We identify
Hi(g) (resp. H'(g")) in the exact sequences with H'(O¢) by this isomorphism.

Let (U4,U-) be an open affine covering of C' and let us set Uy := UL NU_.
A covector of M is an element of cokernel of p* : H%(gV)®? — H((C*)V[-1]).
It can be represented by a cocycle (4, a4, a—,by,b_), where 14 € g(—D)(Ux),
at,by € g(Us), a—,b_ € g(U-). The cocycle condition is

_¢1/)i:a+_a77 1/}i¢:b+—b,. (24)

This cocycle is considered up to coboundary and up to adding elements of the
form (0,A-T,\-I -1, u-I) for any scalars A, 4. Let a be a local section of g.

Define
pr(a) :=a— trla) L
r

Clearly pr(a) is a local section of 5 C g. By stability of E, we have H'(s) = 0
for ¢« = 0, 1. Hence, there is a canonical isomorphism
L(Us,s)®T(U-,s) ZT(Uy,s).

Let us denote by Py : I'(Uy,s) — I'(Uy,s) and P_ : T'(U+,s) — I'(U-,s) the
corresponding projections. Using the decomposition g = s & O¢ we can rewrite
equation (2.4) as

pr(a+) = —Pi(pr(¢v1)), pr(bs) = Py (pr(v+9)),
pr(a_) = P_(pr(¢y+)), pr(b-) = —P-(pr(¢+9)),
tr(aq —a-) = —tr(¢hs), tr(by — b,) = tr(¢+9).



Now we can rewrite the expression in formula (2.1) as

tr(by)

a6+ 0bs = (prias) + "6 4 (oo, + 0

tr(ay + b4)
r

= [Py (pr(¢9+))¢ + Py (pr(v=9))] + ¢.
Recall that I, can be viewed as a linear map with the target H°(g(D))/(¢), so
the above formula gives

(s, ay,by) = =Py (pr(¢y+))é + ¢Pr (pr(y+¢)) mod (¢). (2.5)

Let us consider the bivector II on A(E, D) corresponding to the linear map
H'(g(—=D)) — H°(g(D)) given by

(¢2) == — Py (pr(¢ths))d + ¢Py (pr(tb6)). (2.6)

Thus, (2.5) is an explicit formula for the Poisson bivector II on M (E, D)
while (2.6) defines a bivector II on A(E, D), which is compatible with IT via the
natural projection A(E, D)\ {0} = M(E, D). Below we will prove that in fact
IT defines a Poisson structure on A(E, D).

2.3 Determinant map and Poisson structure on A(E, D)

Before turning to the bivector Il on A(FE, D) we make some general observations
about Poisson brackets.

Definition 2.3. Let X be a scheme equipped with a morphism h : Qx — Tx,
such that the corresponding bracket on O given by {¢, ¥} = (do, h(dy)) is
skew-symmetric. A morphism f : X — Y, where Y is a scheme with no
extra structure, is called Casimir if pull-backs of local functions on Y have
zero brackets with functions on X. Equivalently, the composition f*Qy —

Qx LN Tx should be zero.

If X and Y are smooth varieties then the condition that f : X — Y is Casimir
with respect to a bivector h is equivalent to saying that for every z € X, the
composition

* he dfz
T, X — T X — Tr)Y
is zero. In the case f is smooth this is equivalent to the fact that h: Qx — Tx
factors as
Qx — QX/Y — Tx/y — Tx

where Tx/y (resp., 2x,y) is the relative tangent (resp., cotangent) bundle.

It is easy to see that if f : X — Y is a Casimir morphism that factors
through a closed subscheme Z C Y then the corresponding morphism X — Z
is still Casimir.

In the case when X is a Poisson scheme, and f : X — Y is a Casimir
morphism then every fiber of f is a Poisson subscheme.



Lemma 2.4. Let f : X — Z be a smooth morphism of smooth varieties, and
let h € T(X, \> Tx) be a bivector on X such that f is Casimir. Then h defines
a Poisson structure if and only if for every z € Z the induced bivector h, on
f71(2) defines a Poisson structure on f=1(z).

Proof. The condition that h defines a Poisson structure is equivalent to the
identity

h(wr) - (h(w2),ws) — {[h(w1), h(w2)],ws) + ¢.p.(1,2,3) =0 (2.7)

for any local 1-forms wy,ws,ws on X (where the omitted terms are obtained
by cyclic permutation of the indices 1,2,3). The fact that f is Casimir means
that the vector fields h(w;) belong to the relative tangent bundle Tx,; C Tx.
Hence, for a local function ¢ on X, the value h(w;) - ¢ at € X depends only
on the restriction of ¢ to the fiber of f containing z. Similarly, the value of
the vector field [h(w;), h(w;)] at = depends only on the restrictions wi|s-1(f(x)),
Wil f-1(f(z))- It follows that (2.7) holds if and only if the same identity holds for
local 1-forms on every fiber f=1(z) (with h replaced by h.). O

We have the following general result about Poisson structures.

Proposition 2.5. Let p: X — X and f : X — Z be smooth surjective maps
of smooth wvarieties, and let h € /\2 Tx, h € /\2 Tx be compatible bivectors.
Assume that f is Casimir with respect to h, and that for every x € X the map

n,x PN p X T2

is injective. Then h defines a Poisson structure on X if and only if h defines a
Poisson structure on X.

Proof. The fact that h and h are compatible means that for evey x € X, the
map h : T;(w)y — TP(I)Y factors as the compoisition
« =~ D" % h dp —
p) X — T X — To X — T X.
It follows that for any local 1-form w on X the vector field h(p*w) on X belongs
to the subsheaf
Tp = (dp) " (™' ) C Tx

and has the property dp(h(p*w)) = h(w). Furthermore, the natural projection
dp:Tp — p_lTy is compatible with the Lie brackets, so we have

dp([h(p*w1), h(p*w2)]) = [R(wr), h(w2)].

Using this it is easy to see that the identity (2.7) for the bivector h and the 1-
forms p*wy, p*we, p*ws on X is equivalent to the same identity for the bivector
h and the 1-forms wy,ws,ws on X. This implies the “only if’ part (for this part
we do not need the map f).



Now let us prove the “if” part. By Lemma 2.4, it is enough to check that for
every z € Z the induced bivector h, on f~1(z) C X defines a Poisson structure
on f~1(z). But our assumption implies that the restricted map

ply-1y i f7M(2) = X

induces embedding on tangent spaces. Since this map is compatible with the
bivectors h, and h and the latter defines a Poisson structure on X, it follows
that h. defines a Poisson structure on f~1(2). Indeed, the closure of the image
of p[s-1(;) is a Poisson subvariety of X, so we can restrict to its open subset
over which p[;-1(;) is étale, and identify the induced bivector with the étale
pull-back of a Poisson structure, which is always Poisson. o

It turns out that the determinant map det : A(E,D) — H°(E,O(rD)) is
Casimir, where we equip A(E, D) with the bivector II given by (2.6).

Proposition 2.6. The determinant map det : A(E,D) — H°(E,O(rD)) is
Casimir with respect to Il. As a consequence, its projectivization M*8(E, D) —
PHO(rD) is Casimir with respect to I1.

Proof. Let A and B be two r x r matrices. Recall that the derivative of the
determinant map at A along B is equal to tr(B -adj(A)) where adj(A) refers to
the adjugate matrix of A. Now the assertion follows by a direct calculation:

det.I1y () = tr([6P+ (pr(v)) = Py (pr(¢v))d] - adi(9))
= tr(adj(6)¢ - P (pr(v9)) ) — tr(Pr(pr(sv)) - ¢ - adi(@))
= det(9) - tr(¢P+ (pr(¥9))) — det g - tr(Px (pr(ov)) = 0.
(]

Theorem 2.7. The bivector 11 given by (2.6) defines a quadratic Poisson struc-
ture on A(E, D).

Proof. Let Z C H°(E,O(rD)) be the closure of the image of the map det, and
let Z' € Z\ {0} be a dense open subset such that the map det is smooth and
surjective over Z'. Thus, if X C A(E, D) is the preimage of Z’ then we can apply
Proposition 2.5 to the projection p : X — PX, the morphism det : X — Z’
and the bivectors II and II. By Proposition 2.6, the morphism det is Casimir.
Since we know that II gives a Poisson structure on PX, we deduce that 1I gives
a Poisson structure on X. Thus, the Schouten-Nijenhuis bracket [IT, IT] vanishes
on a dense open subset X C A(FE, D). Hence, it vanishes identically. O

Remark 2.8. Theorem 2.7 can also be deduced from the results of Hurtubise
and Markman [9, Sec. 3]. They also proved that the Poisson structure associated
to formula (2.6) is induced by the Sklyanin bracket on the loop group defined
by Belavin’s elliptic r-matrix ([9, Theorem 3.24]).
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Remark 2.9. For any two stable vector bundles E and E’ of rank r, there
exists a line bundle L and an isomorphism E’ ~ E ® L. This leads to a canon-
ical identification &nd(E’) ~ &nd(E) and hence, A(E, D) = A(E’, D). Using
formula (2.6) it is easy to see that this isomorphism is compatible with Pois-
son brackets. Therefore, up to an isomorphism, the Poisson varieties A(F, D)
and M(E, D) depend only on the rank r and the isomorphism class of the line
bundle O(D).

Remark 2.10. If we fix realization of the elliptic curve C' and a stable vector
bundle E, one can compute the Poisson bracket associated to the bivector (2.6)
explicitly in terms of theta functions. Fix a lattice I' = Z + Z7 such that
C = C/I' and denote C for C/T. There exists a line bundle L on C and
an irreducible representation W, 4 of Heisenberg group of order 73 such that
FE is the quotient of L® W,.a by the torsion subgroup %F/ I". For simplicity,
we consider D = {e}, being the neutral element of C. Then A(E,nD) admits
a canonical basis (see Section 11.1 [18]). Under this basis, the kernel of the
projection operator Py in formula (2.6) turns out to be the Belavin elliptic -
matrix. Moreover, using Cech covering we can compute the associated bracket of
(2.6) explicitly (similar to Section 5 [11]). In this way, we recover the calculation
of bracket of Sklyanin in the case of rank 2 and simple pole (]20]), Reyman and
Semenov-Tian-Shansky in the case of rank 2 and arbitrary pole ([18, Section 12])
and Cherednik in the general case ([2]). The explicit form of these brackets is
used to derive their quantization, given by the generalized Sklyanin algebras [20]
[3]. It would be interesting to find out whether our coordinate-free approach
leads to a coordinate-free construction of generalized Sklyanin algebras. We
leave this question for future research.

2.4 Multiplication map

Now let us fix a pair of divisors of positive degree, D and D’. We have the
natural multiplication map

p:AE,D)x A(E,D') — A(E,D + D') : 1 @ ¢a — ¢1 0 ¢o.

Proposition 2.11. The map p is Poisson with respect to the Poisson structures
given by (2.6).

Proof. Fix a € A(E,D) and b € A(E,D’) and set ¢ := u(a,b) € A(E,D+ D").
The tangent map
p 9(D) & 9(D') = 9(D + D)

is p« (@i, ¢;) = ¢:b+ a¢;. The cotangent map
/14* 'gV(_D_D/)_>gV(_D)®g\/(_D/)
is p* () = (b, va). We need to compute the composition

0" (D= D) —5 gV (—D) @ g"(-D') — B g(D) @ g(D') s g(D + D).

11



Apply formula (2.6),

1 (T (1 (1)) = ps (L0, Ypar))
= pu (= Py (pr(aby))a + aPy (pr(bpa)), — Py (pr(bpa))b + bPy (pr(vab)))
= — Py (pr(¢9))o + aPy (pr(bba))b — aPy (pr(ba))b + ¢Py (pr(e))
= TI(v)
O

Note that since the Poisson structure on each A(F, D) is G,,-invariant, the
product map descends to a Poisson morphism

M(E,D) x M(E,D') — M(E,D + D).

In the case when the divisors D and D5 are effective and D1 < D, we can
view &nd(F)(D1) naturally as a subsheaf of &nd(E)(D2). This gives rise to
embeddings

A(E,Dl) — A(E,DQ), M(E,Dl) — M(E,DQ)

Corollary 2.12. For 0 < D; < Do, the embedding A(E,D1) — A(E, D3)
(resp., M(E,D1) — M(E, D3) is a Poisson map.

Proof. This follows from Proposition 2.11 together with the fact that the Poisson
structure on A(E, D) vanishes on the identity map Ig. The latter fact can be
seen immediately from formula (2.6). O

Thus, the ind-schemes

A(E) == liy A(E, D) and M(E) == liy M(E, D)
D>0 D>0

can be equipped with natural Poisson structures in the sense of [25, Sec. 3.2].

3 Symplectic leaves

Unlike in smooth Poisson geometry where the symplectic leaves are defined as
equivalent classes of points that are connected by Hamiltonian flow, in alge-
braic geometry we define a symplectic leaf of a Poisson scheme to be a smooth
connected Poisson subscheme that is symplectic. Therefore, the existence of
symplectic leaves in a Poisson scheme is not guaranteed from the definition.
The results in [11] provide a large class of examples of Poisson schemes that
admit symplectic foliations.

In this section we will classify the symplectic leaves of M = M(E, D) and
study their families over the strata of a certain parameter space. Our re-
sults can be summarized as follows. From Theorem 2.1, we get a foliation
of M = M(E, D) by derived symplectic leaves. In Section 3.1, we prove that
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the coarse moduli space of a derived symplectic leaf is a smooth scheme (see
Theorem 3.4). In Section 3.2, we provide a rough classification result of leaves
by certain combinatorial data (partitions) (see Theorem 3.6, Proposition 3.7).
In Section 3.4, we study the family of leaves of the fixed combinatorial type over
a certain stratum of the symmetric product of C' (see Theorem 3.11). In Section
3.5, we prove a decomposition formula for the product of two leaves under the
multiplication map (see Theorem 3.13).

Throughout this section we fix an elliptic curve C and a stable bundle E of
rank r. Everywhere except Sec. 3.5 we also fix a divisor D of degree k > 0 on

C.

3.1 From a derived symplectic leaf to its coarse moduli

Denote coh(C) for the category of coherent sheaves on C'. We will use the same
notation for the stack of objects in this category. Let H = (H°, H') € coh(C) x
coh(C) be a pair of coherent sheaves on C. Because C has dimension one, any
object in D?(coh(C)) is quasi-isomorphic to the direct sum of the shifts of its
cohomology sheaves. Let Fy denote the homotopy fiber of ¢ : M — RPerf(C)
over the stacky point H° @ H'[—1]. By Theorem 2.1, F3 carries a 0-shifted
symplectic structure, i.e. Fj is a derived symplectic leaf of M. Note that
even though M carries trivial derived structure, the symplectic leaf Fy has a
nontrivial derived structure (otherwise, it could not be symplectic, since it also
has a nontrivial stacky structure). We denote the coarse moduli space of the
truncation to(Fy) by Fj;. In general, the coarse moduli space of a (classical)
Artin 1-stack, if it exists, is an algebraic space.
We will constantly quote the following lemmas about stacks.

Lemma 3.1. [24, section 4] Let X be a derived Artin 1-stack and denote Ly
for its cotangent complex. Denote

jto(X)—)X

for the natural morphism from the truncation to(X) to X. Then j*Ly defines
an obstruction theory on to(X).

For the definition of obstruction theory on 1-stack (more generally, groupoid-
valued functor), we refer to Definition 2.6 of [1]. Given a groupoid valued functor
F with an obstruction theory and an object a € F(A), for any infinitesimal
extension A’ — A there exists a class 0,(A’) in certain obstruction sheaf so that
04(A’) vanishes if and only if the fibered category F,(A’) (see Section 1 of [1] for
the definition) is non-empty. We say F is un-obstructed if for every infinitesimal
extension A’ — A, the induced map F(A') — F(A) is surjective. Here F(A)
is the set of isomorphism classes of the groupoid F(A). And this holds if and
only if the obstruction class 0,(A’) vanishes for any a € F(A). Note that an
obstruction theory of a groupoid-valued functor only depends on its underlying
set-valued functor. In Lemma 3.1, the obstruction sheaf on to(X) is H?(j*Lx).
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Lemma 3.2. Let G — F be a surjective morphism of algebraic 1-stacks locally of
finite type, equipped with obstruction theories. * Assume that G is un-obstructed,
and that the induced map on H® of the tangent complexes is surjective. Then
F is un-obstructed. In particular, F is smooth.

The proof will be based on the following standard result in deformation
theory (for completeness, we give a proof).

Sublemma (c.f. Ex. 15.8 of [8]) Let G — F be a morphism of set-valued
functors of local Artin rings. Assume that G and F' admit mini-versal families,
G is un-obstructed, and that the tangent map is surjective. Then G — F is
strongly surjective and F' is un-obstructed.

Proof. Denote C for the category of local Artin k-algebras with residue field k.
Given A € C, we first show that G(A) — F(A) is surjective. Denote D for
the k-algebra of dual number. The sublemma can be proved by induction on
the dimension of A. By versality, surjectivity holds when A = k. Suppose the
surjectivity is proved for A. Let A’ — A be a small extension. Consider the
commutative diagram

G(A) —— F(4) (3.1)

R

Gy L p(ay
By the un-obstructedness of G, ¢ is surjective. Fix ' € F(A’) and define
7 := p(n'). By the induction assumption and the surjectivity of ¢, there exists
&" e G(A') with image n” € F(A’) so that p(n”) = n. By mini-versality
(Proposition 16.1 [8]), the action of F(D) on p~!(n) is transitive. Let vp € F(D)
be an element so that vp(n”) = n'. Because G(D) — F(D) is surjective, we
may choose a pre-image vg € G(D) so that f'(vg(€”)) = 1. This proves the
surjectivity of G(A") — F(A4').

Given a small extension B — A, we need to show the morphism A in the

diagram

is surjective. Fix {4 € G(A),nB € F(B),na € F(A) so that f(§a) = p(nB) =
na. By surjectivity of p’ and f’, there exists {p, &5 € G(B) so that f'(¢g)

1For an algebraic stack, there always exists an obstruction theory satisfying the conditions
in Artin’s representability theorem. We refer to Section 5 [1] for details.
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ng, P (£5) = €a. Because both f/(£g) and f/(£) belong to p~1(na), there
exists vp € F(D) such that vp(f'(£8)) = f' (%) by mini-versality of F'. Because
G(D) — F(D) is surjective, there exists a lift vg € G(D) of vp so that vg({p) =
€. The surjectivity of h is proved by induction. The un-obstructedness of F
follows from diagram 3.1. O

Proof of Lemma 3.2. It is enough to check the un-obstructedness of F for in-
finitesimal extensions of residue fields of points (see Proposition 4.2 of [1]). Thus,
we can fix a point of F and a point of G over it, and restrict our functors to
the category C of local Artin rings. Let us denote by G and F' the underlying
set-valued functors. By Artin’s representability theorem (Theorem 5.3 [1]), the
functors F' and G satisfy the Schlessinger’s criterion (c.f. condition (S1), (S2)
of Section 2 [1]), therefore admit mini-versal families. Hence, the sublemma
implies the un-obstructedness of F. O

The next lemma is an easy exercise. We omit the proof.

Lemma 3.3. Let X be a (un-derived) algebraic 1-stack. Suppose X is a G-
gerbe over an algebraic space X for some affine algebraic group G. Then X is
isomorphic to the coarse moduli space of X. Moreover, X is smooth if and only
if X is smooth.

The following is the main result of this section.

Theorem 3.4. Let (H°,H') be a pair of coherent sheaves on C such that
det(H!) ® det(H°)~t = O(rD). For H := H° & H'[-1] in RPerf(C) such
that Fy is non-emply, the coarse moduli scheme Fy, is a smooth symplectic
scheme. Denote hé-k for the dimension of Ext'(H7,H*) fori,j,k = 0,1. Then

the dimension of Fy, is equal to r*k — hJy — hY; — hd;.

Proof. Denote the stacky point in RPer f(C) corresponding to H° @ H![—1] by
1. Recall that Fy is defined to be the homotopy fiber product

Fy—1 s M (3.2)

|

T —5 RPerf(C)

Let P be a point in F that corresponds to a triple ¢ : E — E(D), so that
H® @ H'[—1] is quasi-isomorphic to the complex [E 2, E(D)]. The tangent
complex to RPerf(C) at this complex, has non-vanishing cohomology only in

degrees —1 and 0, because Ext'(E, E(D)) = 0. On the other hand, i induces
an isomorphism on H~! of the tangent complexes. Thus, from the long exact
sequence of tangent complexes associated to the homotopy fiber product, we
deduce an isomorphism

H™N(Tp,|p) ~ H7'((7"Tm)lp) = C
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(the latter identification is due to the fact that M is a G,,-gerbe), and a long
exact sequence

0 —— H(Tp, |p) —— H((*Tr)|p) —— H (g0 ) Trpers(cy|p)

—}Hl(TFH|p) — 0
(3.3)
The nondegeneracy of the shifted symplectic form on Fy implies that H'(T,, | p)
C, thus, the image of ¢ has codimension 1.

Let us consider the determinant map det : RPerf(C) — Pic(C) to the
Picard stack of C. Then the composition detoq factors through the stacky
point of Pic(C) corresponding to O(rD). Since det induces a surjection on
tangent spaces, it follows that the image of ¢ can be identified with the sub-
space consisting of first order deformations that preserve the determinant (up
to isomorphism).

Let RPerf"P (C) denote the derived moduli space of perfect complexes on
C with the determinant isomorphic to O(rD). As we observed above, ¢ factors
through RPerf™"(C). Let us denote by G the homotopy fiber product

Gy ————— M (3.4)

|

z3 — RPerf™2(0)

From the previous observations we get that the tangent morphism H%(T ) —
Ho(q*TRperfm(c)) is surjective. Therefore, H'(Tg,,) vanishes. The cotangent
complex IL—GH has non-zero cohomology groups concentrating in degree 0,1. By
Lemma 3.1, tg(G%) is un-obstructed.

There exists a morphism f : Gy — Fy because diagram 3.2 is Cartesian.
Note that f is a bijection on the sets of points. And f induces isomorphisms

Hil(TGH) gHil(f*TFH)v HO(TGH) gI—IO(][*’]PFq-¢)'

The morphism f induces a morphism of classical stacks to(Gy) — to(Fy).
Moreover, the induced morphism on H of the tangent complexes from to(G%)
to to(Fy) is an isomorphism. By Lemma 3.2, to(F%) is a smooth stack.

We claim that ¢o(F ) admits a coarse moduli space Fy,. This can be proved
as follows. Denote B for the open substack of RPerf(C) consisting of objects
F of Tor amplitude [—1,0] and satisfy the condition Ext<*(E, E) = 0. Clearly,
q factors through B. So we may identify Fp with the homotopy fiber product
Ty X.8,g M. Lieblich proved that to(B) is an Artin stack ([12]). Because g
functor commutes with (homotopy) fiber product (see Section 2.2.4 [7]), to(Fx)
is equivalent to the fiber product of Artin stacks

TH X8y M
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where 2, is equivalent with B Aut(#H), the classifying stack of the automorphism
group of H = H~1[1] & H° as an object in D(coh(C)). This is a group because
of the condition Hom(E(D), E) = 0.

It suffices to show that ¢o(Fy) is a gerbe since any gerbe admits a coarse
moduli space. Recall that an algebraic stack & is a gerbe if and only if the nat-
ural map from the inertia stack Iy — X is flat and locally of finite presentation
(Proposition 91.27.9 [22]). Because M is a Gy,-gerbe, the morphism Iy — M
is flat and locally of finite presentation. By Lemma 91.5.6 [22], the diagram

Ito(FH) —_— IM

|

to(Fy) — M

is Cartesian if to(Fy) — M is a monomorphism. Recall that a representable
morphism of stacks X — ) is a monomorphism if X ~ X' xy X'. Since monomor-
phism is stable under base change, it suffices to check B Aut(H) — to(B) is a
monomorphism. From the definition of stacky point, this is clearly a monomor-
phism of fibred categories. So we just need to show it is represented by algebraic
spaces, which is a consequence of the fact that ¢y(B) is an algebraic stack (see
[12]). The existence of coarse moduli space for to(F3) is then proved.

We claim that F}, is a scheme. Denote the coarse moduli of M by M.
Since M is a scheme, we need to show Fj, — M is representable. Because
to(Fn) — M is a monomorphism of G,,-gerbes, the induced morphism Fj, — M
on coarse moduli spaces is a monomorphism of algebraic spaces. By [22, 0463,
Lemma 27.10], a monomorphism of algebraic spaces locally of finite type is
quasi-finite. Then by Stein factorization theorem of algebraic spaces (Theorem
7.2.10 [14]), F5, = M is quasi-affine. In particular, it is representable.

Because to(Fy) is a Gy,-gerbe over its coarse moduli space, Fj; is a smooth
scheme by Lemma 3.3. The 0-shifted symplectic structure on F% descends to
F¥ via the isomorphism H®(Tp,, ) = TFY.

Finally, we compute the dimension of F},. The dimension of M is equal to
r?k — 1. By Serre duality, hY, = h};. The long exact sequence 3.3 implies that
the dimension of F}; is equal to

r?k — hdy — hYy — hd;.

3.2 Non-emptiness and connectedness of F7;

Since the spaces F}, are defined as fiber products they can turn out to be empty.
In this section, focusing on the case when H is of the form (0,7), we determine
for which torsion sheaves T' the space Fy := F(CO)T) is nonempty. We also show
that these spaces F;f are connected.
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We will use the following standard notation for partitions. If A = (A; >
Ag...) is a partition then () is its length and |)| is the number of boxes in the
Young diagram associated with A.

For every torsion sheaf T" of length IV supported on a set of distinct points

{z1,..., 2y}, we associate to it a collection of partitions A(T") = {A(x1), A(x2), ...
such that
n [I(A(@:)
7= Oai)y s (3.5)
i=1 \ j=1

where > | [A(z;)| = N. Equivalently, we can rewrite this using multiplicities
as

T=F (Po;]. (3.6)

i=1 \j>1
Define a positive integer lnax(T') associated to T by
Imax(T) := max{l(A(z;))li = 1,...,n}.

When T is supported at a single point, lpa.x(T) is simply the length of the
corresponding partition.
The following lemma is well known to experts.

Proposition 3.5. (13, Theorem 1.2]) Let C' be an elliptic curve and w: C' —
C be an étale covering of degree r. If E is a stable vector bundle on C of
rank v and degree d, then there exists a line bundle L' € Pic®(C") such that
E =~ (L'). Conversely, if ged(r,d) =1, then for any L' € Pic*(C") the vector
bundle E := m,(L') is stable of rank r and degree d.

Theorem 3.6. Let T be a torsion sheaf on C. Then there exists a monomor-
phism
¢: E— E(D)

such that T =2 Cok(¢) if and only if lmax(T) <7 and det(T) = O(rD).

Proof. The only if part is obvious. We now prove the if part.

Fix an étale map 7 : C’ — C of degree r and a line bundle L' on C’ so that
L' = E(D) (by Proposition 3.5). Let T be a torsion sheaf supported on a
collection of points {z1,...,2,} C C. Because ly.x(T) < 7, there exists a collec-
tion of torsion sheaves T7, ..., T supported on the fibers 71 (z1),...,7 1 (x,)
respectively so that T = 7, T" := m,(D._, T/). For example, if T is supported
on a single point  then we denote the unique partition by A. Set m = I()).
Since m < 7, we may choose points z/,...,z/, in the fiber 7=1(x) and torsion
sheaf to be T := @, Oy, fori=1,...,m.

There is a canonical surjective morphism j' : L’ — T, whose kernel is a line
bundle K’ on C’. Because 7 is étale, we get an exact sequence of sheaves on C

0 K’ E(D) T 0
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Since det(T) = O(rD), deg(n.K') = d. By Proposition 3.5, m, K’ is stable. It
is isomorphic to E since they have isomorphic determinants. O

The above lemma classifies all possible cokernels when ¢ is assumed to be
injective. When ¢ is not injective, it will not be enough to use only torsion
sheaves to index the symplectic leaves. This brings some additional complexity.
In next section, we give a complete classification of symplectic leaves (including
the non-injective case) for rank 2 stable triples. However, we will mainly focus
on the injective case.

The open subscheme in M = M(E, D) (resp. substack in M) consisting of
injective ¢ is denoted by M*8 (resp. M®8).

Next, we will prove connectedness of the fibers of ¢ in M™8. Thus, Ff are
indeed symplectic leaves in M8,

Proposition 3.7. Fix a coherent sheaf T. Denote the homotopy fiber of the
map q at T[—1] by Fr. Its coarse moduli space F¥. is connected.

Proof. We may assume that det(7') ~ O(rD), since otherwise F$ is empty.
Given an injective morphism ¢ : E — E(D) with Cok(¢) = T, we get a
surjection E(D) — T. Conversely, starting with a surjection ¢ : E(D) — T,
such that ker(t) is a stable bundle then we have ker(¢) = E (since ker(z)) has
the same determinant as F). Let U C PHom(E(D),T) be the open subset
corresponding to surjective ¢ with stable ker(¢)). Then we have a surjective
morphism U — Ff associating with ¢ the morphism ¢ : E ~ ker(y)) — E(D)
(well defined up to a scalar). This implies that F%. is irreducible.
o

Remark 3.8. The construction of Proposition 3.7 identifies Ff; with an open
locus of the quotient stack

Fr := Hom*(E(D), T)/ Aut(T), (3.7)

where Hom?® stands for the space of surjective maps (points of F. correspond
to maps with stable kernel). In fact, it is easy to see that the right action
of Aut(T) on Hom*(E(D),T) is free, so the coarse moduli space of Fr exists
as an algebraic space. Note that the group Aut(T") can be computed using
the decomposition (3.6). For example, let us consider the case of a generic
symplectic leaf when T is the direct sum of skyscraper sheaves of rk distinct
points. In this case, Fr is the rk-fold product of P"=1. In Section 4 we will
show that in the simplest case r = 2 and k = 1 the symplectic leaf Ff is the
complement to an elliptic curve in P! x P! of bidegree (2, 2).

3.3 Symplectic leaves in A™¢(E, D)

We denote by A™8(FE, D) C A(E, D) the open subset of injective ¢. The fol-
lowing corollary is a more precise version of some assertions stated in [9, Sec.
3.
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Corollary 3.9. Let S = det '(s) € A(E, D) be a nonempty fiber of the map
det, where s # 0. Then S C A(E,D) (resp., PS C M™8(E,D)) is a Poisson
subvariety and the union of a finite number of symplectic leaves. The natural
map © : S — PS, which is an étale covering of degree r, is Poisson. For each
symplectic leaf F C PS, each connected component of the preimage m—(F) is a
symplectic leaf in A(E, D). If s € H'(E,O(rD)) has only simple zeros then S
is a smooth symplectic subvariety in A(E, D).

Proof. The first assertion follows from the fact that det and its projectivization
are Casimir maps. For ¢ € PS the map ¢ : E — E(D) degenerates exactly on
zeros of s. Therefore, T = coker(¢) is a torsion sheaf supported on the divisor
of zeros of s. There are only finitely many possibilities for T, so P.S is a union
of finitely many symplectic leaves. The fact that the projection 7 : S — PS
is Poisson follows from the same fact about the morphism A(E, D) \ {0} —
M(E,D). If F C PS is a symplectic leaf then the map 7~ }(F) — F is étale
Poisson, hence, 7~ !(F) is symplectic.

In the case when the divisor of zeros, div(s), is simple, the fact that degree
of T is equal to the degree of div(s) implies that 7" >~ Ogjy(s). Thus, in this case
PS is a single symplectic leaf, which implies that S is symplectic. o

3.4 Stratification of )M/*e&

In Section 3.2, we gave a rough classification for symplectic leaves of M€ by
showing which torsion sheaves can occur as a cokernel. Now we are going to show
that M™® can be stratified by locally closed subschemes, where each stratum
has a structure of a smooth fibration with symplectic leaves as fibers.

Let TS(C) be the substack of coh(C) consisting of torsion sheaves. The
connected components of 7.5(C) is indexed by the length of the sheaf

TS(C)=| |T5'(©).

1>1
For T € TS(C), its cycle class [T] lies in the I-th symmetric product S'C.

Lemma 3.10. The assignment T +— [T] defines a morphism of stacks [ :
TS5Y(C) — StC.

Proof. This is a special case of corollary 7.15 of [19]. O
The assignments
{¢: E— E(D)} — Cok ¢ — [Cok ¢]
defines a sequence of morphisms
M8 — TS™ (C) — sT™*C.

Let AJ : S"*C' — Pic"™"(C) denote the Abel-Jacobi map. Using the fact that
det(Cok(¢)) ~ O(rD) for ¢ in M*8 we obtain morphisms

Mg — TS™P(C) — PHY(C,0(rD)) C S™*C,
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where TS™P(C) ¢ TS(C) is the substack of torsion sheaves T' with det(T') ~
O(rD) (here we identify the preimage of the Abel-Jacobi map over O(rD) with
PH(C,0O(rD))). Note that the composed map M*& — PH(C,O(rD)) is
precisely the Casimir map in Proposition 2.6.

For a partition v = (13 > va... > v, > 0) of I, we define a locally closed
subscheme of S'(C),

n

S, C = {Z%[%sz # x; for i # j}.

i=1
Note that we have a Galois covering
py: CIs 5 8 C

where C™4$ ¢ C™ is the complement to all the diagonals z; = z;. The corre-
sponding Galois group acts by permutations of the coordinates x; with equal
parts v;.

Now suppose that in addition to a partition v = (11 > va... > v,,) of | we
have a collection of partitions A, := {\"}?; so that |\!| = v; foralli =1,...,n.
Then we would like to define the stratum 7.5, 4, in the stack TS of torsion
sheaves of length [, corresponding to the sheaves of the form

n (A n
~ ®m; (X))
& (Do) =& (@o 59
i=1 \ j=1 i=1 \j>1
for a distinct collection of points x1,...,z,. Note that the underlying cycle of

such a sheaf would lie in the stratum S,C of S'C.
First, we observe that we can determine the isomorphism type of a torsion
Oc¢ z-module T, i.e., the partition A = (A1 > ... > A;) such that

k
T ~ @Oc?z/m)‘j,

j=1
where m C O¢; is the maximal ideal, from the numbers
aj =T ®oc., Oc../m).

Namely, let m, be the multiplicity of the part p in the partition A. Then one
has

J
aj=mep+j-Zmp for j > 1.
p=1 p>J

These equations can be solved for mq,mag, ..., so the numbers (a;) determine
the partition \.

Thus, the substack 75,4, C TS' should parametrize torsion sheaves T'
with the underlying cycle v1z1 + ... + vy, such that the lengths /(T ® Oj,)
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are fixed (and computed from the partitions \;). Let 7S, C TS’ denote the
preimage of the stratum S,C C S'C. Given a flat family of torsion sheaves T
in 7S, over the base S (so T is a sheaf on S x C), we can consider the induced
étale covering S’ — S, corresponding to the étale covering p, : C™% — C,,, so
that we have the support map

(J:l, o 7§Cn) : Sl — C".,dis'

Let 77 be the pull-back of T to S’ x C and let o; : S’ — S’ x C be the section
corresponding to x;. Let also J; C Og:xc be the ideal sheaf of the image of
;. Then by definition, the requirement that 7 is in 7.5, z, C TS' means that
the sheaves 7' ® O/ Jij are flat over S’ and their push-forwards to S’ have given
rank (determined by the partitions \;).

It is easy to see that in fact 7.5, 4, is a locally closed substack of TS
Indeed, given a flat family T of sheaves in 75! over a scheme S, locally over
S we can find a surjection O®! — T, so that T will be realized as a quotient
of a cokernel of vector bundles f : V — V’. Then we can use the well known
fact that the fibered product of 7S, A, with S will be given as intersection of
degeneracy and non-degeneracy loci of f (see [17, Lem. 4.1.3]).

Note that the morphism 7S5, s, — S, C factors through as the composition

TSV,A,, — SyyAV — S,/C,

where S, 5, is the quotient of C™% by the subgroup of o € S,, compatible with
A,, ie., such that ("= (* fori=1,...,n.

Let us denote by TSIT,f:/)\V the locally closed substack of 7.S™” obtained as
the intersection with 7.5, 4, .

For a collection of partitions A, = {\*}7_,, we define

Imax(A,) == max{I(A\)|i = 1,...n}.

For each A, with l;ax(A,) < r we define the stratum M;Cfu, as a locally closed
subscheme of M*8 defined as the fiber product

M ———— M™® (3.9)
| |
TSR, ——TS™P(0)

This defines a finite stratification on M"™8.
The following theorem is the main result of this section, which says the map
d has smooth restrictions to the stratification { M, ¥ }., 4, .

Theorem 3.11. For a partition v of r - k and a collection of partitions A, as
above, such that lymax(A,) <, the restriction of ¢,

Sun, s MIY — S1PC

s smooth and surjective.
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We need the following Lemma for the proof.

Lemma 3.12. Let ¢ : E — E(D) be an injective morphism. Denote T for
Cok(p). Given a first order deformation T, of T that preserves det(T), there
exists a first order deformation ¢. : E — E(D) so that Cok(¢.) = T..

Proof. Note that we can identify the open subset of PHom(E, E(D)) consisting
of injective ¢ with the locally closed subset of the Quot-scheme of quotients
¢ : E(D) — T such that ker(¢) is semistable and det(T) ~ O(rD). Thus, it is
enough to check that given a coherent sheaf 7 with 0-dimensional support on
C x S, where S = Spec C[e]/(€?), such that T is flat over S, and T' = T |5 (where
s € S is the unique point) is a quotient of E(D) then there exists a surjection
peE(D) — T, where pc : C x § — C is the projection. By the theorem on
cohomology and the base change, the natural restriction map

H°(C x S,peEY(-D)®T) — H°(C,EY(-D)®T)

is surjective, so we can extend a surjection E(D) — T to a morphism ¢ :
peE(D) — T. Since 9|, is surjective, 1 is surjective as well (by Nakayama
lemma). O

Proof of Theorem 3.11. Note that the surjectivity of §,, , follows from Theorem
3.6.

By Lemma 3.12, the tangent map to ¢ in diagram (3.9) is surjective. This
implies that the scheme Ml’f/g\u is smooth. Also, the subscheme S’ICD CccsS,Cis

smooth as the fiber of the smooth morphism A.J, : S, C — Pic™*(C).
Next, we claim that the morphism d,, 5, induces surjection on tangent spaces.
Indeed, this follows from its factorization into the composition

M) =TSR, = SiR ¢ — SPC

where the last arrow is étale, the first arrow is surjective by Lemma 3.12, and
the middle arrow admits a section,

rD rD
Sya,C— TS)A,

given by the family of sheaves (3.8).
Thus, d,,4, is a surjective morphism between smooth schemes with surjective
tangent map. Therefore it is a smooth morphism. o

3.5 Products of symplectic leaves

Recall that for any pair of divisors D and D’ of degrees k > 0 and k' > 0, we
have Poisson morphisms A(F, D) x A(E,D’) — A(E,D + D') and

w:M(E,D)x M(E,D") — M(E,D + D),
induced by the product map (see Proposition 2.11). It is clear that u sends
M*8(E,D) x M*8(E,D’) to M*¢(E,D + D").
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The following result might find an application in the study of irreducible
representations of quantization of U(gl[[¢]]). Recall that for a torsion sheaf
T € TS(C) we have the corresponding symplectic leaf F%. (defined as the coarse
moduli space of the homotopy fiber of T under q).

Theorem 3.13. Fiz T} € TS™”(C) and Ty € TS™2(C) such that Ff, and
Ff, are non-empty. Let us denote by [Ty, Ts] the set of isomorphism classes of

torsion sheaves T' € TST(D1+D2)(C) such that there exists a short exact sequence

0 T, T T, 0 (3.10)

Then u(Fg x Ff)) is contained in | |repr, 1) Ff. Moreover, for each T €
lmax (T)<r

[T, Ts] the intersection u(Fg, x Ff ) N Ff is a nonempty open subset of Fif.. In

the case when the supports of Ty and Ty are disjoint, the set [Th,Ts] consists of

a single element Ty ® Ts and the map

c c M c
F§, x FY, — F o, (3.11)

is an open embedding.

Proof. Let ¢1 : E — E(D1) and ¢2 : E — E(Dz) be two points in Ff, and
Ff,. Then their composition ¢; o ¢ is a map from E to E(D; + Dz). Then
T := coker(¢; o ¢2) fits into a short exact sequence of the form (3.10), so T is
[T}, T;]. Also, the condition lyax(Ti+;) < r holds by Theorem 3.6.

To show that for each T € [Ty, T3] the intersection u(Ff, x Ff) N Ff is
nonempty, let us fix some exact sequence of the form (3.10), and let 7 : T — T}

be the surjective map from this exact sequence. Note that the induced map
Hom(E(D1 + Dz),T) — Hom(E (D1 + D2), Tl) DY Y

is surjective. Now let us define two Zariski open subsets Uy, Us € Hom(E (D +
D,),T) as follows: U is the set of surjective ¢ such that ker(t)) is semistable,
and Us is the set of ¢ such that 7 is surjective and ker(w)) is semistable.
Note that U; is nonempty by Theorem 3.6, and Us is nonempty by Theorem 3.6
and by surjectivity of the map ¢ — mp. Hence, U; N Us is nonempty. Now for
¥ € Uy NUs, we have ker(v)) ~ E and ker(ny) ~ E(D3). Thus, the composition

¢ : E ~ker(y)) — ker(mp) < E(Dy + D3)

of the natural embeddings is a point in p(Fp x Ff ) N Ff.

To show that u(Ff, x Ff, ) N Ff is open in Ff, let us consider an auxiliary
scheme S defined as a locally closed subscheme in Hom(75,T) x Hom(T, T1)
consisting of the maps ¢ : To, — T, m : T — T3 such that ¢ is injective, w
is surjective, and m o« = 0. Note that for (¢,7) € S the maps ¢ and = fit
into an exact sequence (3.10). Now as above, we have an open subset U C
S x Hom(E(D1 + D5),T) consisting of (¢, 7, ) such that 1 is surjective, ker(¢))
is semistable and ker(w o ¢) is semistable. Let also V € Hom(E(D; + D3),T))
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be the open subset of ¢ such that ¢ is surjective and ker(¢)) is semistable. As
we have seen above, the intersection p(Ff, x Ff)) N Ff is exactly the image of
the composition

U -y Fs

where the first arrow is induced by the projection py : S x Hom(E(Dy +
D,),T) — Hom(E (D1 + D3),T), and the second arrow is the natural smooth
map corresponding to quotiening by the free action of Aut(T") (see Proposition
3.7). Thus, both these arrows are flat, and so the image is an open subset of
Fg.

In the case when T} and T have disjoint supports, we have Ext" (T}, T5) = 0,
so the only element of [T1,T5] is T1 @ T». We claim that in this case the map
(3.11) induces an isomorphism onto the open subset of Ff. o7, consisting of
¢ : E — E(D1+ D) such that the kernel of the composition

E(Dl + DQ) — coker(qﬁ) ~ Tl D TQ — Tl

is semistable. Indeed, it is clear that (3.11) factors through this subset. Con-
versely, if ¢ belongs to this open subset then the above kernel is isomorphic

to E(D2), so we get the required factorization of ¢ into a composition £ —

Remark 3.14. In general, the open subsets pu(Ff, x Ff)) N Ff C Ff in the
above theorem a proper, even in the case when 77 and T5 are disjoint. We will
give an example showing this in Section 4.3.

4 Rank two case

In this section, we go through a rank 2 example in details. This example was
the first discovered by Sklyanin in his seminal work [20]. We will compute the
symplectic leaves using the method developed in previous sections and make
a comparison with Sklyanin’s original computation. Then we will give a full
classification of leaves for the rank 2 case (Theorem 4.1).

4.1 Sklyanin’s example

Let C = C/T with T := Z + Z7 and C = C/ (3T) be two complex elliptic
curves. And D be the degree 1 divisor corresponding to the neutral element
e € C. Denote the group of 2-torsion points of C by I's := (%1—‘) /T, which is
kernel of the group homomorphism

71'2:6'—>C'.

It factors through a map g2 : C - Cc/ (Z + Z%) Let L' be the degree 1 line
bundle on C/ (Z + Z% ), whose associated divisor is the origin. There is a natural

action of T'y on gL' ® H°(C,q3L")V. Tts quotient is a vector bundle E on C
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of rank 2 and degree 1. It is easy to show that F is indecomposable, therefore
stable and det(E) = O¢(e). Denote D for m, * D, which is equal to Ty C C.
Let A € C be the complex coordinate of C. Let

L )~ By 2O

be the Jacobi elliptic function with elliptic modulus k associated to C and a
normalization constant p(k) such that Resow;(A)d\ = 1 for i = 1,2,3. Let
{04 : a =1,2,3} be the 2 x 2 Pauli matrices. As a convention, we set wy = 1
and og = I>. w, are meromorphic functions on C with simple poles at fg. B

The vector space Home (E, E(D)), identified with the I's-invariants of H°(C, ¢ L®
(95(13)) ® HO(C, g3 L)V, is spanned by {I5, wa0, : @ = 1,2,3}. A general mero-
morphic endomorphism of E with simple pole at D is of the form

3
1
d(N) = tols + - thawa()\)o—a, to, tq € C.

As elements of H°(C,&nd(E)(D)), we(\)o, has simple pole at e € C. For
our convienence, we identify the index set of @ with I'y and set we(\) = 1 and
Jae = 1for all a € Ty.

The functions w,(\) satisfies the quadratic relations

w?(\) — wi(\) = Jpa, a,b=1,2,3,

a

where Jp, are constants determined by k and p(k). Using these relations, it is
easy to compute that

det(p(N)) = 3 4 Ja1th + Jaats + (13 + 13 + t3)w3 (N).

By Proposition 2.6, determinant defines a Casimir map from A(E, D) =2 A4
equipped with the Poisson structure (2.6), to A2. Identifying t, ..., t3 with the
coordinate functions on A%, the determinant map is

(to, ... t3) > (82 + Ja1ts + Jaata, t1 +t5 +£3). (4.1)

The common zero of 3+ J31t3+ J3at3 and t34-t3+t3, denoted by Z, is isomorphic
to C.

Now we pass to the projective case. Consider the map ¢ : M(E,D) —
coh(C) x coh(C) by

T = (E, B(D), $) = (Ker(@), Cok(¢)).

Clearly, ¢ is injective if and only if det(¢p(A)) # 0.

Assume that det(¢(\)) # 0. Then it vanishes at p and ¢ such that p + ¢ is
lienarly equivalent with 2e. When p # ¢, Cok(¢) must be O, ®O,. If p = ¢ then
p is a point in the 2-torsion subgroup I'ys C C, and Cok(¢) is either O, ® O, or
Oyp. There are three types of leaves when ¢ is injective.
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(1) Forp # q, ¢~ 1(O, ® O,) is the hypersurface defined by 3 + Ji2t3 + J13t3 +
w(t? +t3 +t3) for a general p in P! without 4 points, taking away Z;

2) For a € T'y, ¢~ 1(Os,) is the hypersurface defined b Japt?, takin
Yy b#a b g
away Z U P, where P, is the point with ¢, = 0 for b # a.

(3) For a € 'y, ¢ (O, ® O,) is the projectivization of the subspace spanned
by wq(A)og, i.e. a 0-dimensional leaf consisting of a single point.

Assume that det(¢(A\)) = 0, then ¢ factors through a line bundle @
¢:E—Q— E(D).

Because p(E) = 1/2 and pu(E(D)) = 3/2, by stability @ must be of degree 1.
And the kernel K of the map E — @ has degree 0. Since Hom(F, Q) = C and
Hom(Q, E(D)) = C, Q (therefore K) determines ¢ up to isomorphisms.

(4) For K € Pic’(C), the fiber of ¢ is a 0-dimensional leaf consisting of a
single point on Z.

This gives the complete list of symplectic leaves of M (E, D).

4.2 Classification of leaves for rank two case

Without loss of generality, we assume that F is a stable vector bundle of rank
2 and degree 1 on C' and D be an effective divisor of degree 1. The goal of this
subsection is to classify all symplectic leaves of the Poisson manifolds M (E,nD)
for any n > 0.

Theorem 4.1. Let E and D be defined as above. For any ¢ : E — E(nD), one
of the following must hold:

(1) ¢ is injective, and Cok(¢p) is a torsion sheaf satisfying lmax(Cok(¢)) < 2
and det(Cok(¢)) = O(2nD).

(2) Cok(¢) 2 L@ T so that T is a torsion sheaf satisfying lmax(T) < 1, and
L is a line bundle of degree d(L) satisfying

2n+1/2—U(T) > d(L) >n+1/2,
where I(T) refers to length of T'.

Conversely, suppose a torsion sheaf T' (possibly zero) and a line bundle L (pos-
sibly zero) satisfy one of the following

(1) L is the zero sheaf, and T is a torsion sheaf satisfying lmax(T) < 2 and
det(T) =2 O(2nD).

(2") T is a torsion sheaf satisfying lmax(T) < 1, and L is a line bundle of
degree d(L) satisfying

2n+1/2—U(T) > d(L) >n+1/2,
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there exists a morphism ¢ : E — E(nD) such that Cok(¢) =T & L.

Proof. When ¢ is injective, condition (1) clearly holds.

Suppose ¢ is not injective. Because ¢ # 0, Cok(¢) is isomorphic to L & T,
where L is a line bundle and T is a torsion sheaf (possibly zero). Denote K
for the kernel of the surjection E(nD) — L & T. Let G be the kernel of the
surjection E(nD) — L. We have a short exact sequence

K—G——T

Both K and G are line bundles and the composition £ — K — G is nonzero.
Because L is a quotient sheaf of E(nD), the inequality d(L) > n + 1/2 holds.
From the above exact sequence, we obtain d(K) = 2n+1—1(T)—d(L). The other
half of the inequality follows from the slope inequality u(K) > u(E) because K
is a quotient of E.

Now we prove the reverse direction. When T satisfies condition (1’), the
claim follows from Theorem 3.6. Suppose condition (2’) holds. The stability
implies that there exists a surjection F(nD) — L with kernel G. Because
Imax(T) < 1, we may choose a surjection G — T with kernel K. Clearly, the
quotient F(nD)/K is isomorphic to L & T. Moreover, by inequality (2') there
exists a surjection £ — K. By composing it with K — FE(nD), we get the
desired map ¢. O

In the rank 2 case, the kernel of ¢ is a line bundle if it is nonzero. Therefore,
it is determined by Cok ¢ via a determinant calculation.

4.3 Example of a non-surjective product map

As before, let E be a stable vector bundle of rank 2 and degree 1, and D be a
divisor of degree 1. We want to construct an example of two symplectic leaves
F¢ and F%, in PHom(E, E(D)), corresponding to torsion sheaves of length 2, T
and 7", with disjoint support, such that the product F¥ - F%, is a proper subset
of Ffqq, i.e., the corresponding map (3.11) is not surjective.

Set L = det E. It is well known that F fits into an exact sequence

00— E-—2+ L0
We have the induced exact sequence
0 — Hom(L, L(D)) — Hom(E, L(D)) — Hom(O, L(D)) — 0

Thus, we can choose an element o € Hom(F, L(D)) such that its restriction to
O is any nonzero element s € H°(L(D)). Then the morphism

f=@ma):E— L& L(D)

is injective. Similarly (e.g., using duality) we can construct an injective mor-
phism
g:L® L(D)— E2D,).
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Futhermore, the cokernel of f is isomorphic to Oz, where Z(s) is the divisor
of zeros of the section s € H(L(D)), while coker(g) is of the form Oy, where
s’ is a global section of L=1(3D). Thus, we can choose f and g in such a way
that T = coker(f) and T” = coker(g) have disjoint support

Now the composition ¢ := g o f gives an injection F — FE(2D) and its
cokernel fits into an exact sequence

0 — coker(f) — coker(¢) — coker(g) — 0

Now we claim that ¢ € Hom(FE, E(2D)) cannot be decomposed as a composition

L. E(D) -2~ E(2D), with coker(f’) ~ T and coker(¢g’) ~ T’. Indeed,
otherwise in the corresponding exact sequence

0 — coker(f’) — coker(¢) — coker(g’) — 0

the map T & T" ~ coker(¢) — coker(g’) =~ T’ would differ from the standard
projection T & T’ — T’ by an automorphism of 77, so we would get

E(D) ~ ker(E(2D) — coker(g')) =~ ker(E(2D) — coker(g)) ~ L ® L(D),

which is a contradiction.

5 Relation to Feigin-Odesskii Poisson structures

In [6], Feigin and Odesskii constructed quadratic Poisson structures on PExt' (¢, O¢)
for any stable vector bundle €. In this section, we show that there exists a
Poisson isomorphism between M (E, D) and PExt! (¢, O¢), with an appropriate
choice of £. Recall that the Poisson structure on the space PExt!(Fp, F}), where
Fy and Fi are stable vector bundles, is obtained by identifying this space with

the moduli space of complexes of the form [Fp 2, F] with ker(¢) = 0 and
coker(¢) ~ Fi (see [11, Sec. 5] and Theorem 2.1). The Poisson bracket of Feigin-
Odesskii coincides with the classical shadow of the 0-shifted Poisson structure
of Theorem 2.1 in the case of Fy = O¢ and F} = £. We adopt the notation of
[6] to denote this Poisson manifold by ¢q.(£), where £ is a stable vector bundle
of rank r and degree d.

The following result is a generalization of [15, Prop. 4.1] (we also fill in some
details omitted in [15]).

Theorem 5.1. Let ® be an autoequivalence of D®(coh(C)), which, up to a
shift, is isomorphic to the composition of spherical twists and their inverses.
Let Ey and Ey be a pair of stable vector bundles such that u(Ep) < p(Er) and
rk(Ep) < rk(Ey). Assume that ®(Ey) = Fy, ®(Fy) = Fi[l] for some stable
bundles Fy and Fy. Then the isomorphism

PHom(Ey, Ey) — PExt*(Fy, F})

induced by ® is compatible with the Poisson structures.
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Before proving the theorem, we point out the corollary relevant for our setup.

Corollary 5.2. Fiz a stable vector bundle E of rank r and degree d so that
0<d<r andged(r,d) =1, and an effective divisor D of degree k. Let m,n be
the pair of integers so that mr +nd = 1 and n s the smallest positive integer
satisfying this. There exists a stable vector bundle £ of rank rkn —1 and degree
r?k so that M(E, D) is isomorphic to qy2 rkn—1(§) as Poisson manifolds.

Proof. By Theorem 5.1, it is enough to construct an autoequivalence & of
D®(coh(C)), which is a composition of spherical twists, such that

O(E)~¢,  B(E(D)) = Oolll.

To see that such an autoequivalence exists, first, let us consider this problem
on the level of discrete invariants. The vectors (deg,rk) for F and E(D) have
form (r,d) and (r,d + kr). While these vectors for ¢ and O¢[1] are (rkn —
1,7%k) and (—1,0). It is well known that the SLy(Z)-orbit of a pair of vectors
v1,v9 is determined by two invariants: det(vy,vs) and the invariant a(vy,vs) €
(Z/ det(v1,v2)Z)* such that

v1 = a(vy,ve)ve mod det(vy,vs) - Z2

It is easy to check that for both pairs the determinant is kr?, while @ = 1 — rkn.
Thus, there exists an element of SLy(Z) sending the pair (r,d), (r,d + kr) to
(rkn — 1,7%k), (—1,0). We can realize it by a composition of spherical twists,
®, so that ®(F (D)) ~ O¢[1]. Then ®(E) is necessarily a vector bundle of the
required form. O

Lemma 5.3. Let ® be an autoequivalence of D’(coh(C')), which is a composition
of spherical relections, their inverses, and of a shift. Then ® is compatible with
the 1-Calabi-Yau structure on DP(coh(C)) (coming from a fized trivialization
we ~ O¢): the composition

Hom(®(A), ®(B))* ~ Hom(4, B)* 2B Hom(B, A[1]) ~ Hom(®(B), ®(A)[1])

coincides with the Serre duality isomorphism SD(®(A), ®(B)).

Proof. 1t is easy to see that this assertion is equivalent to the fact that ® acts
trivially on HH;(C) = Hom (87!, 1[—1]), where S7! is the inverse of the Serre
functor. It is enough to consider the case when ® is a spherical twist with
respect to a spherical object E. Then the action of ® on HH,(C) is given by
the formula

x+— x — (ch(E),z) - ch(E),

where ch(FE) is the Chern character of E with values in HH,(C) and (-,-) is
the canonical pairing (the proof is similar to [10, Lem. 8.12]). Since ch(E) €
HHy(C) and HHy(C) is orthogonal to HH,(C'), we deduce that ® acts trivially
on HH,(C). O
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Let us say that a coherent sheaf on C is semistable if it is either a semistable
bundle or a torsion sheaf. By semistable objects in D?(coh(C)) we mean objects
of the form F'[n], where F' is a semistable coherent sheaf. Such an object is called
stable if its degree and rank are coprime (for bundles this is equivalent to the
usual stability).

Lemma 5.4. Let A and B be a pair of stable objects in D®(coh(C)) of distinct
slopes, such that Hom(A, B) # 0. Then for a generic morphism f : A — B the
cone Cone(f) is semistable.

Proof. The set of f € Hom(A, B) such that Cone(f) is semistable is open, so it
is enough to find one such f. Applying an autoequivalence of D®(coh(C)), we
can assume that B = O, for some point p € C. Since Hom(A4, O,) # 0, this
implies that A is a stable vector bundle. Thus, we can find an isogeny of elliptic
curves f : C' — C and a line bundle L on C’ such that A ~ f,L. Let ¢ € C’ be
a point such that f(q) = p. Then the push-forward of the exact sequence

0—L(—q) > L—Llg—0
gives an exact sequence
0— fu(L(—q)) 2 A—=B—0

It remains to use the fact that f.(L(—q)) is semistable (see Proposition 3.5). O

Proof of Theorem 5.1. It suffices to check that our isomorphism is compatible
with the Poisson structures over some dense open subsets. So we will only
consider the open subset

U C ]PHOIII(EQ, El)

corresponding to injective ¢ : Eg — F7, such that coker(¢) is a semistable sheaf
(in the case rk(Ep) = rk(E1) the cokernel is a torsion sheaf, so the semistability
is automatic). Lemma 5.4 easily implies that the set U is nonempty. Indeed,
we have

Cone(¢) ~ ker(¢)[1] & coker(g),

so the semistability of Cone(¢) implies that ¢ is either injective or surjective.
However, since rk(Eg) < rk(E1), if ¢ is surjective, it would be an isomorphism,
which contradicts the assumption u(Ey) < u(E1).

Let us also consider the open subset

V C PExt!(Fy, F1)

consisting of extension classes such that the corresponding extended bundle F'
is semistable. We claim that the map given by @ restricts to an isomorphism
U — V. Indeed, in the case when ¢ is injective, applying ® to the exact triangle

By —2+ By — coker(¢) — Eo[l]
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we should get the exact triangle
Fy— Fl[l] — F[l] — Fo[l],

so F[1] ~ ®(coker(¢)), which shows that F' is semistable when coker(¢) is.
Conversely, assume F is semistable. Then ®~!(F[1]) is semistable, so ¢ is
injective and coker(¢) is semistable.

Now let us fix an element (¢g) in U, let E = coker(¢y), so that we have an
exact sequence

0= By 2% B, - E—0 (5.1)

and let F' = ®(E)[—1] be the corresponding semistable extension of Fy by Fj.
Let us consider two auxiliary spaces depending on ¢q. First, let U’ be the open
subset in PHom(E}, E) consisting of surjective ¢ : E; — E such that ker(¢) is
stable (and hence, isomorphic to Ep). The other space V' is defined as the open
subset in PHom(F}, F') corresponding to f : F; — F such that coker(f) is a
stable bundle (and hence, isomorphic to Fy). Note that we have a commutative
diagram, where the vertical arrows are induced by ®:

L
> >
vi— T vy

Here the map p : U’ — U associates to ¢ : F; — E the corresponding morphism
Ey ~ ker(y)) — F7, and the map 7: V' — V associates to f : F; — F the class
of the extension of coker(f) ~ Fy by Fy. Let ¢ : E1 — E be the canonical
projection, and let fo : Fi — F be the image of ¥y under ®[—1]. Then the
above diagram is compatible with distinguished points in all spaces: (1) € U’,
(fo) € V', {¢o) € U, and the class eg of the extension F in V.

Now we claim that there are natural isomorphisms

TgoU - TwOU/’ Te*oV 2 Tfovlv
fitting into the commutative diagram

. o , dp
Ty U —— Ty U ——— Ty, U

d%* 4o 4o (5.2)

d
0 T,V ——

.V T.,V

in which the compositions given by the two rows are the Poisson tensors ITY
and ITV, computed at ¢y and eg, respectively.
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To define «, we note that by Serre duality, we have an identification
T; U ~ ker(Ext' (Ey, Eg) — Ext' (Ey, Ey)).

Now the long exact sequence of the functors Ext*(FE7,?) applied to the exact
sequence (5.1) gives an isomorphism of the latter kernel with

coker(Hom(E1, E1) — Hom(E4, E)) ~ Ty, U’.
Similarly, to define 3, we use Serre duality to get an identification
TV =~ ker(Hom(F, Fy) — Ext' (Fy, F1)),
and use the isomorphism of the latter kernel with
coker(Hom(F, Fy) — Hom(Fy, F)) ~ Ty, V'.

Note that the commutativity of the left square in diagram (5.2) follows from
the fact that ® is compatible with Serre duality (see Lemma 5.3).
On the other hand, the Poisson tensor IV is induced by the map

Ext'(E1, Ey) ~ H (A om(E1, Ey)) — HY(&End(E1)®End(Ey) — s om(Ey, Er)),
coming from the chain map

%om(El N Eo)

(¢00, 0¢o)

@@nd(El) ©® @@nd(Eo) —a> %Om(Eo, El)

Now our claim that IIY o a=! = dp follows from Lemma 5.5 below, together
with commutativity of the diagram

T U - Ty, U’

Ext'(E1, Ey) — HY(End(Ey) — #om(Ey, E))

where the bottom arrow is induced by the quasiisomorphism #Zom(E;, Ey) —
[End(E1) — s om(Ey, E)], and the right vertical arrow is induced by the em-
bedding of U’ into the space of triples E1 — F with fixed E.

Next, we need to check that IIY = dr o 8. Recall (see the discussion
after Lemma 3.1 in [15]) that the tangent space to the moduli stack M’ of

triples (ﬁl S F ), where f is an embedding of a subbundle, at a given triple
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(Fy —1°+ F), can be identified with H'(&nd(F, F})), where &nd(F, F1) is the
bundle of endomorphisms of F' preserving the subbundle F}. Furthermore, the
Poisson tensor IIV is given by the composition

HY(End(F, Fy)) > HY(End(F, Fy)Y) —= H(AHom(Fy, Fy)) —— H(End(F, Fy)),

where the first isomorphism is given by the Serre duality; v comes the natu-
ral morphism &nd(F, F1)¥Y — S om(F1, Fy) (which is dual to the embedding
Hom(Fy, F1) — &nd(F, F1)); and 0 is the boundary homomorphism coming
from the exact sequence

0— &nd(F, Fy) = &nd(F) — A om(Fy1, Fy) = 0
Note that the tangent map to the natural embedding
PExt! (Fy, Fi) —— M’

is the map
di : HY (A om(Fy, 1)) /{eo) — H'(End(F, Fy))

induced by the embedding of bundles sZom(Fy, Fy1) — &nd(F, Fy). By Serre
duality, the dual projection is the map

di* : H(End(F, F1)Y) — ker(H(#om(Fy, Fy)) — Ext! (Fy, Fy)) =~ TV

Thus, it is enough to check the commutativity of the following diagram

5
HY(&nd(F, F1)Y) 2> Hom(F, Fy) —> HY(&nd(F, F1))

di* di

Vv Ty V' T.,V

where the middle vertical arrow is induced by the projection F' — Fy. The
commutativity of the left square follows easily from the definitions of the relevant
maps. To prove the commutativity of the right square we observe that di o dr
is just the tangent map to the natural embedding V' < M’. Thus, it remains
to check that the tangent map to this embedding is given by the composition

Hom(Fy, F)/Hom(Fy, Fy) — Hom(Fy, Fy) —— H'(&nd(F, Fy)).

Indeed, under the identification of the tangent space to M’ with H'(&nd(F) ®
End(Fy) 2, A om(Fy, F)) this tangent map is induced by the natural map

HY(A#om(Fy, F)) — H (&nd(F) @ End(Fy) — Hom(Fy, F)).
Similarly, ¢ is induced by the natural map

HC (A om(Fy, Fy)) — HY(&End(F) — #Hom(Fy, Fy)) ~ H (End(F, FY)).
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Now our statement follows from the commutativity of the square

End(F) @ &nd(Fy) _8» Hom(Fy, F)

End(F)

%om(Fl, FQ)
O

Lemma 5.5. Assume that we have an exact sequence of coherent sheaves on a
scheme X,
O%AO&BOL OQ—>O,

where Ay and By are vector bundles. Let P denote the moduli stack of pairs
(B,b: B — Cy) where B is a vector bundle and b is surjective (and Cy is fized),
and let Trp be the moduli stack of triples (A,B,a : A — B), where A and B
are vector bundles. Let p : P — Trp be the natural morphism sending (B, b)
to (A = ker(b), B,a : ker(b) — B), where a is the natural embedding. Then the
tangent map to p at the point (Bo,bg) is the map on H' induced by the chain
map of complexes

%om(Bo, AQ)
oap, apo

End(Ao) ® &nd(By) —a> Hom(Ag, Bo)
where we use the quasiisomorphism
Hom(By, Ag) = [End(By) — Hom(By, Co)] (5.3)
to identify the tangent space to P with H' (3 om(By, Ap)).

Proof. Let M be the moduli stack of exact complexes of the form 0 - A —
B — Cy — 0 where A and B are vector bundles and Cj is fixed. Then we
have obvious projections pap : M — Trp and ppc, : M — P, such that
PBC, is an isomorphism and p o ppc, = pap. The tangent space to M at
(Ag -2+ By P, Cp) is given by H'(£®) with

E® = [éand(Ao)EBé”nd(Bo) — ji”om(Ao, BQ)@%Om(BQ, Co) — ji”om(Ao, CQ)],

so that the tangent maps dpap and dppc, are induced by the natural projec-
tions of complexes. Now we observe that there is a natural quasiisomorphism
Hom(By, Ag) — E° lifting the quasiisomorphism (5.3). Thus, the required
tangent map is induced by the composition

%Om(Bo,Ao) —E&° — [@@nd(Ao) (&) gnd(Bo) — %Om(Ao, Bo)]
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Remark 5.6. One can construct the autoequivalence ® from the proof of Corol-
lary 5.2 explicitly. First, let us consider the special case when d = 1. Then we
have n =1 and m = 0. We adopt the notation of Feigin and Odesskii to denote
a stable vector bundle of rank r, degree d and determinant o by &4.,(a). The
standard Fourier-Mukai transform F on D?(coh(C')) (which is a composition of
spherical twists) satisfies

o F(€ar(a)) =€ ra(at)ifd> 0and F(€q,(a)) = & —ala~V)[~1] if d < 0.

Applying this to F, we get that F(E) = L, is a line bundle of degree —r. Define
® to be the composition of functors

[1o(—® Lr_l) oFo(—®0O(-D)).

Clearly, ®(E(D)) = Oc¢ll]. Since E(—D) has rank r and degree 1 — rk,

F(E(—D)) is a stable bundle of rank rk — 1 and degree r shifted by [—1].

So ®(E) is a stable vector bundle of rank rk — 1 and degree 72k, as required.
In the general case we decompose d/r into a continuous fraction

d 1
= 1 22, 1< < p.
r Tl_r27...L

p

There exists line bundles L,, of degree —r;, for i = 1,...,p, so that the autoe-
quivalence @, g defined by

D, q:=[1]0 (®L;p1) oFo... (®L;21) oFo (®L;11) o (®0O(-D)).

satisfies @, 4(E(D)) = O¢[1]. It is easy to check that @, 4(E) is a vector bundle
with
rk(®,4(E)) = r’k, deg(®,q(E)) =rkn — 1.

Remark 5.7. It is expected that ¢,2j ;1 (§) is quantized by the Feigin-Odesskii
elliptic algebra Q.2 ,,—1(n) with n € C' (see definition in [5]). This is stated
in [6] without proof. A proof for a special case is given in Section 5 of [11]
when ¢ is assumed to be a line bundle. An important application of Corollary
5.2 is that it can be used to construct a comultiplication morphism between
different families of Feigin-Odesskii elliptic algebras. The existence of such a
comultiplication morphism was first predicted by Feigin and Odesskii in their
seminal paper [5]. However, Feigin and Odesskii did not give the formula of
the comultiplication. Elsewhere we plan to provide an explicit formula for the
comultiplication map

Qr2(k1+k2),r(k1+k2)—1(77) - Qr%l,rkl—l(ﬁl) ® Qr2k2,rk2—1(772)'
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