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ABSTRACT

Despite the importance of phase-transforming, multicomponent fluids in medical diagnostics, atmospheric flows, or supercavitating vehicles,
our understanding of their flow and mixing dynamics is very limited. Here, we investigate two-component flows, where one of the compo-
nents is an incondensable gas and the other one is a fluid that undergoes liquid-vapor phase transformations accompanied by changes in its
miscibility with the gas. We derived a continuum model from a Gibbs free energy that includes gradients of the fluid density and gas concen-
tration, leading to a generalization of the classical equations of multiphase flow hydrodynamics. High-fidelity numerical simulations of the
model show a very complex interplay between flow, mixing, and phase transformations. The model predicts quantitatively the saturation
vapor pressure of water for a given mixture of air and water vapor at different temperatures. When applied to the problem of collapse of cavi-
tation bubbles, the model allows us to study the role of gas dissolved in the liquid phase in the dynamics of the collapsing bubble. Our find-
ings on the collapse of multicomponent bubbles have a strong bearing on the multiple applications of cavitation bubbles. The proposed

model opens entirely different ways to study phase-transforming multicomponent fluids.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109889

Many problems of interest in fluid dynamics involve several
phases (i.e., states of matter) of the same fluid, several components
(i.e., materials with different chemical compositions) in the same
phase, or multiple phases and components simultaneously. Prime
examples occur in atmospheric chemistry, industrial liquid sprays,”
and microfluidics.” Compared to single-phase, single-component
flows, multiphase and multicomponent flows introduce two major ele-
ments of complexity—phase transformations and miscibility. These
two elements are not necessarily independent because when a fluid
changes its phase, it can also change its miscibility properties.
Although a lot of progress has been made in understanding some par-
ticular types of multiphase flows, such as single-phase, two-component
flows (e.g., oil and water in the liquid phase’) and single-component,
two-phase flows (e.g., boiling and cavitation™), there is no general the-
ory of multiphase flow dynamics. Recent work has also studied two-
phase, two-component flows using extensions of the van der Waals
model.” '’ These models have been utilized for the study of droplet
motion in a shear flow,” subcooled boiling on biphilic surfaces,'' and
adiabatically induced spinodal decomposition.” Here, we focus on
flows involving one component that can undergo liquid-vapor trans-
formations and another component that is an incondensable gas.
The incondensable gas is miscible with the vapor phase of the first

component, but practically immiscible with its liquid phase. One of
the simplest examples of such flows is that of air-water mixtures in
which water undergoes a liquid-vapor phase transformation. These
flows control fundamental processes in supercavitating vehicles, ”'”
rain formation,"* and ocean sprays,'” among other examples of high
scientific and technological relevance. Despite their importance, these
flows have remained elusive to continuum modeling. One of the rea-
sons is the miscibility change that accompanies the water phase trans-
formation and the radically different mathematical models that are
used for miscible and immiscible flows. While miscible flows (e.g., air
and water vapor) can be modeled using extensions of the Navier-
Stokes equations accounting for mixing of the components and aver-
age fluid properties, ° the classical approach for immiscible flows (e.g.,
air and liquid water) requires at least tracking an interface and consid-
ering interfacial forces, which leads to a much more complicated prob-
lem."” Therefore, combining the models used for mixtures of liquid
water and air with the models for water vapor and air is not a viable
path to derive a model for the general problem.

Here, we propose a first-principles model for air-water flows in
which water can undergo liquid-vapor phase transformations. Our
model builds upon the Navier-Stokes-Korteweg equations’ and
Wilson’s mixing energy.'* The density and the gas concentration fields

Appl. Phys. Lett. 115, 104101 (2019); doi: 10.1063/1.5109889
Published under license by AIP Publishing

115, 104101-1


https://doi.org/10.1063/1.5109889
https://doi.org/10.1063/1.5109889
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5109889
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5109889&domain=pdf&date_stamp=2019-09-03
https://orcid.org/0000-0002-4662-7242
mailto:mukher32@purdue.edu
https://doi.org/10.1063/1.5109889
https://scitation.org/journal/apl

Applied Physics Letters ARTICLE

are regularized through gradient terms in the free energy.'””’ We
show that this enables a natural formulation of the miscibility change
that accompanies phase transformations. The model accurately pre-
dicted the formation of water droplets in a mixture of air and water
vapor at different temperatures. We have also used the model to solve
a classical, but hitherto open problem in cavitation—how the presence
of dissolved gas affects the collapse of cavitation nanobubbles.”’ The
proposed model may also find application in other problems that
involve multiple phases and components simultaneously, like diesel
engines,”” methane venting,””** and focused ultrasound therapy.”’

We developed our model postulating a Gibbs free energy, using
standard balance laws for the mass of each component and linear
momentum of the mixture, and applying the Coleman-Noll approach.”®
For isothermal conditions, our free-energy can be written as

2

Ina(9.€) = Wy o) + 210 + - B(p,0) + £ Ve, (1)
where p and ¢ denote the density of the fluid and the concentration
(mass fraction) of incondensable gas (air in what follows), respectively.
The function /y represents the free energy density per unit volume
of a van der Waals fluid and can be expressed as ¥ (p)
= Rpflog[p/(b — p)] — ap?, where 6 is the fluid temperature
(assumed constant here), R is the gas constant, and a and b are parame-
ters of the van der Waals equation. The gradient terms in the free energy
represent the interfacial surface energy density at the liquid-vapor inter-
face and the air-water interface. They are grounded on classical work on
phase transformations by van der Waals'’ and the groundbreaking
research on mixing energies by Cahn and Hilliard.”’ The parameters
and ¢ can be obtained from the surface tension at the liquid-vapor inter-
face (0,) and at the liquid-gas interface (o), respectively, as
o= J" A(Vp- ny,)dny,® and o = |7 €p(Vc- ny)*dnyg, where
n represents a spatial coordinate perpendicular to the relevant inter-
face. The proof for the expression of liquid-gas surface tension is
included in the supplementary material. The function B(p, c) is a mea-
sure of the energy of miscibility of gas in the fluid, which will be
defined later. M represents a time scale for the mixing of the inconden-
sable gas in the phase-transforming fluid. We now resort to standard
balance laws for the mass of the mixture, linear momentum, and mass
of incondensable gas,

p+pV-v=0 pv=V-T, pc+V-j=0. 2)

Here, a dot denotes the material derivative and v is the fluid velocity.
The Coleman-Noll procedure” allows us to determine the Cauchy
stress tensor T and the mass flux j from the condition that the Gibbs
free energy must decrease in time along solutions to the balance equa-
tions. This leads to

T=—pl+t+{+¢, (©)
& (ch)>, @)

where p = py/, — , is the van der Waals equation of state and
7= u(Vo+ Vo) +nV -l is the classical viscous stress tensor.
Here, 1 and # are the viscosity coefficients that will be assumed to sat-
isfy the Stokes hypothesis, ie., 7=—2u/3. The tensor { o= —Vp
QVp+ A3 [Vp|” + pV2p)I is the Korteweg stress which accounts
for the stresses developed at the liquid-vapor interface, {, = —p&?Ve
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@Ve+H(B—p g—ﬁ)l is the contribution to stress emanating from the
multicomponent nature of the mixture, and x is a positive constant
which represents a time scale for diffusion of the incondensable gas.
The details of the derivation may be found in the supplementary
material.

The mixing energy is defined as B(p,c) = g(p)fi(c)
+[1 — g(p)lf(c). It can be decomposed into two parts: gas miscibility
in the liquid phase and in the vapor phase. Miscibility in the liquid
phase is governed by Henry’s law which states that for a given temper-
ature, solubility of a gas into a liquid is proportional to its partial pres-
sure. Solubility of gas into the liquid is modeled with the term
g(p)fic) in B(p, c). Here, fi(c) = cln(c) + (1 —¢)In(1 —¢) — cIn|c
+oy(1 —¢)] — (1 = ¢)In[1 — ¢ + Pyc] is a mixing energy proposed by
Wilson,'® where the parameters f3; and o; determine the equilibrium
concentration of gas in the liquid at vapor pressure (¢). The term
glp) = % accounts for the increase in gas solubility in the liquid

phase when pressure is increased; see data showing the compliance of
the model with Henry’s law in the supplementary material. Here,
prand p, represent the Maxwell states of the liquid and vapor phase,
respectively, and are determined using common tangent constructions
on the van der Waals energy density i/y."” The Maxwell states corre-
spond to conditions of equal pressure and chemical potential (/) in
the liquid and vapor phases. The miscibility of gas in the vapor phase
is governed by the laws of gas mixing and is modeled in our approach
by the function fo(c) =cIn(c)+ (1 —¢)In(1 —c¢)—clnfc+ ag(1
—0)] = (1 = ¢)In[1 — c + B,cl; see Ref. 18. The parameters i, and o,
establish the equilibrium concentration of gas in the vapor phase (c,).
The concentration dependence of the equilibrium densities (p, and p)) is
taken into account by the function g(p) in B(p, ¢). Depending on the
nature of gas miscibility in the phase-transforming fluid, this relationship
may change. For a linear relationship between g(p) and p, the Maxwell
states are independent of the gas concentration; proof is included in the
supplementary material. A comparison between our model and the van
der Waals theory for binary mixtures’ under the assumption of low gas
density is presented in the supplementary material.

To study the model, we scale the length by Lo, mass by bL3, time
by tp = Lo/+/ab, and temperature by the critical temperature of a van
der Waals fluid 0, = 8ab/(27R). From this scaling, it follows that the
solution depends only on the Wilson mixing energy parameters (o, 5,
0 and fi,) and the following dimensionless groups: Reynolds number
R, = b\/abLy /1, Weber number of the liquid-vapor interface W
= al?/}, Weber number of the liquid-gas interface wk = abL3 /e,
Peclet number P, = Lov/ab/(ax), and S, = Mab?. The dimensionless
number S, represents a balance of the mixing velocity to the liquid-
vapor interface velocity, whereas P, is the ratio of the strength of
advection relative to the strength of diffusion. Because surface tension
and the length scale L, are not independent in the model, we took
Ly =75nm, such that g;, = gl = 0.075 N/m, which are accurate val-
ues for the corresponding surface tensions. Unless otherwise stated,
for the calculations, in this paper, we used the parameters R, = 1024,
WY = 262144, WE = 262144, P, = 5120, and S, = 1000. The param-
eters of the Wilson mixing energy are also dimensionless and were
taken as oy = ff, = land o, = f§; = 10°. Using these parameters, the
common tangent construction on the mixing energy B leads to
¢=0.0975and ¢, =1 — ¢
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Figure 1 shows the evolution of a system containing a large vapor
bubble with a small concentration of gas dissolved (p = p,, c=¢)
and a smaller bubble saturated with gas (p = p,, c=¢,) side by side
in a pool of liquid (p = p; c=¢)) at temperature 0/0.= 0.85. Right
after the simulation starts, gas is drawn from the liquid into the large
vapor bubble (not shown). After this initial phase, we observe the
gradual movement of gas from the smaller bubble into the larger bub-
ble and the corresponding movement of liquid from the vicinity of the
smaller bubble to occupy that space, as the equilibrium value for the
density remains equal to p,; see the streamlines in Fig. 1(c) (t/tp=1
and t/tp=2). The smaller bubble keeps shrinking with time, and at
equilibrium, one large bubble is formed (p = p, and c=¢,).

The ability of the model to predict water phase transformations
in the presence of air was quantitatively evaluated by determining the
saturation vapor pressure of water (p,,) for a given mixture of air and
water vapor at different temperatures. We identified our pressure and
temperature scales equating the critical pressure and temperature of a
van der Waals fluid (p, = ab?/27 and 0, = 8abR ! /27) to the critical
pressure and temperature of water-steam mixtures (p.=220.64 bar
and 0, = 647.2 K); see Ref. 27. We considered air-water mixtures with
uniform density such that the total pressure of the fluid according to
the van der Waals equation was p = 100 bar. However, the concentra-
tion field was not uniform, and we consider a small water vapor bub-
ble in a pool of uniform water vapor-air mixtures. We ran multiple
simulations, where the mole fraction of water x, was gradually
increased, by increasing the radius of the spherical vapor bubble, in
order to simulate the addition of water vapor into a partially saturated
air-steam mixture. This mixture was used as an initial condition for
our simulations, which evolved toward a stationary state. For very
small values of x,,, we observed complete miscibility with a uniform
concentration and density throughout (representative simulations are
marked with triangles in Fig. 2). With the addition of more water, we
obtained a general increase in density. Further addition of water leads
to the formation of liquid water droplets (squares in Fig. 2). We
defined the saturation pressure p, as the partial pressure of water

(4 7&\ \ ¢

W) ///‘/f/ll [N\ //// [ \\\2\\
o -

FIG. 1. Time evolution of the gas concentration (a), density (b), and streamlines (c)
for two bubbles side by side in a pool of liquid at temperature 0/0,=0.85. The
Maxwell states (p,/b=0.106 and p/b=0.602), which define equilibrium condi-
tions, are not altered by the distribution of incondensable gas. For clarity, we only
show the central part of the computational domain. The plot shows a very complex
interplay between phase transformations and miscibility.
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FIG. 2. Saturation vapor pressure for air-water mixtures. The model results (solid
line) accurately match the experiments®” (dashed ling). The model results were
obtained by running dynamic simulations (each one marked with a symbol) with differ-
ent temperatures and water mole fractions. The magnified snapshots showcase
steady state density distributions for 0=49842K (p,/b=0.0668 and p/b
=0.66669) and p= 100 bar, corresponding to x,, values of 0.3420 and 0.3490 which
are representative of density distribution for unsaturated and saturated conditions,
respectively.

corresponding to the smallest value of x,, for which liquid droplets are
observed, that is, py = prv‘i". Several such families of simulations
were run for different values of 0 in order to determine the saturation
vapor pressure curve. Figure 2 shows that the values calculated using
the model are very close to those obtained experimentally.”’

Another important application of our model is the dynamics of
cavitation nanobubbles.”” ** The field has been traditionally divided
into pure vapor bubbles’ and pure gas bubbles.” However, the study
of the general problem in which vapor and an incondensable gas inter-
act chemically and mechanically has remained qualitative”" due to the
absence of a firm theoretical framework. To study this problem, we
initially ran simulations with a uniform gas concentration of ¢=¢
throughout. A vapor bubble with a radius R, initially in equilibrium
was subjected to a far field overpressure Ap = po, — pp. The pressures
Poo and p, were set using their corresponding densities p., and p,
according to the van der Waals equation of state. We took
0/0. = 0.85, R,y /Ly = 0.05, p.. /b= 0.7028, and p;, /b = 0.0800. We
show snapshots of the time evolution of the density [Fig. 3(a)] and
concentration of incondensable gas [Fig. 3(b)]. Figures 3(c) and 3(d)
show the time evolution of the pressure and gas concentration (insets)
in the radial (r) direction. Before bubble collapse (¢/tp =~ 0.180), we can
observe a shrinking bubble with large density and pressure gradients at
the liquid-vapor interface and a large amount of incondensable gas in its
interior, which was quickly drawn from the liquid phase due to the
higher miscibility of gas in the vapor phase (compare the snapshots of
the gas concentration at times #/tp =0 and #/tp=0.14). During the pre-
collapse phase, the model predicts a strong compression wave and an
increase in the pressure at the bubble interface that reaches its maxi-
mum at the collapse time; see Fig. 3(c). The postcollapse phase is
marked by the propagation of a rarefaction wave away from the bubble
[Fig. 3(d)]. The speed of this rarefaction wave is much higher than that
of the incoming compression wave which was responsible for the bubble
collapse. The pressure peaks in the postcollapse phase follow a power
law relationship similar to that proposed by Hickling-Plesset.”
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FIG. 3. Time evolution of density (a) and gas concentration (b) for a collapsing bub-
ble. Time evolution of the pressure and gas concentration (insets) along the radial
direction (r) in the precollapse (c) and postcollapse (d) stages.

To compare the results reported in Fig. 3 with those of an identi-
cal situation but without incondensable gas, we repeated our simula-
tion taking ¢ = 0 throughout. We focused on two quantities of interest:
the time evolution of the bubble radius (R;) and the interface Mach
number. To define the radius, we identified the bubble boundary as
the curve along which the pressure gradient was maximum. The Mach

number was defined as M, = |'v|/\/y0Rb2(p —b)"* — 2ap, where y

=14 is the adiabatic constant. The data in Fig. 4 show three major
differences produced by the presence of incondensable gas: (i) bubble
collapse is slower (#/tp = 0.180 vs t/tp ~ 0.162), (ii) the Mach number
at the interface is lower (M, &~ 0.593 vs M, ~ 0.633), and (iii) the min-
imum bubble radius is greater than zero. The results show that the
presence of incondensable gas inhibits bubble collapse, which is con-
sistent with Ref. 21. This is expected because vapor converts into liquid
with the application of sufficient pressure, but gas miscibility in the lig-
uid at a particular temperature and pressure is limited by Henry’s law.
From Fig. 4, it is also clear that the final phase of bubble collapse is
characterized by rapid compression. This can be explained by the
sharp increase in the pressure at the interface right before bubble col-
lapse; see Fig. 3(c). The high pressure promotes conversion from the

1.00
A = = Without gas B — = Without gas
— With gas 0.6/ — With gas PN
0.75
& s
> 0.50 I+
« £
S5 0.4
=
0.25
0.00 v v — 0.2 v T
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t/ty t/ty

FIG. 4. (a) Time evolution of vapor bubble radii Ry/R.q with and without inconden-
sable gas. (b) Time evolution of the interface Mach number with and without incon-
densable gas.
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vapor phase to the liquid phase. Although the rate of decrease in the
bubble radius is slower when incondensable gas is present, it still accel-
erates in the later stages owing to enhanced gas miscibility in the liquid
with an increase in pressure.

Because the gas is practically immiscible with the liquid phase
and highly miscible in vapor, even small amounts of gas dissolved in
the liquid can produce changes in the dynamics of bubble collapse. To
study this, we carried out additional simulations varying the initial
degree of saturation of the fluid (¢) and the dimensionless parameter
Sa which controls the time scale of the mixing process because differ-
ent gases have different characteristic time scales of mixing in a vapor
bubble.” As we do not have (at the scales studied here) experimental
data to estimate the value of S,, we show simulations for a wide range
of values. A vapor bubble with some gas (p/b=0.0800 and ¢ = ¢;) was
placed in a bath of liquid with varying concentrations of dissolved gas
(p/b=0.7028 and ¢ = ¢c;)). We applied an excess far field pressure
identical to that used in the previous simulation and studied the time
evolution of the average concentration of gas inside the bubble (c;).
For the parameters used in the simulation corresponding to the thick-
est (black) curve in Fig. 5, we can partition the process into four stages
marked in the figure with different colors. In the first stage, ¢, increases
quickly because gas is being drawn from the liquid into the bubble.
Also, the low miscibility of gas into the liquid maintains the gas practi-
cally confined into the shrinking bubble, leading to an increase in c;,.
In the second stage, ¢, increases more slowly. Because the bubble is still
shrinking at a fast rate, this can only be explained by the dissolution of
gas into the liquid. This is a consequence of the large pressure in the
liquid phase [cf. with Fig. 3(c)], which according to Henry’s law
increases the solubility of gas into the liquid. The data show that this
behavior is naturally captured by the model. The plateau in ¢, is
reached faster for larger ¢ and smaller S, because in this parameter
range, the gas can move more easily into the bubble. In the third stage,
¢p grows again because the size of the bubble is decreasing very quickly
right before the collapse and the pressure is not high enough to allow
for dissolution of all the excess gas into the liquid. In the fourth stage,
due to the dramatic increase in the pressure right before bubble col-
lapse, the liquid phase becomes much more soluble and ¢, decreases
quickly. In all, the simulations show a very complex interplay between
mass conservation, linear momentum balance, and solubility which
cannot be quantitatively understood without a computational model.

In conclusion, we have presented a model of two-component
flows, where one of the components is an incondensable gas and the
other one is a fluid that undergoes liquid-vapor transformations. The

5=1000

<

I . ) . i
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
t/tp t/tp

FIG. 5. Time evolution of the average concentration of gas in the bubble (c). (a)
Results for S, = 1000 and ¢ = 0.23, 0.43, 0.64, and 1.21. (b) Results for ¢ =0.23
and S, =400 000, 5000, 1000, 500, and 200.
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model is derived from a higher-order Gibbs free energy that includes
gradients of the density and gas concentration, constituting a generali-
zation of classical equations of multiphase hydrodynamics, which is
consistent with recent effort in porous media flows.”””> The model
predicts quantitatively the saturation vapor pressure of water for a
given mixture of air and water vapor at different temperatures. The
model highlights the importance of dissolved gas in the collapse of
cavitation bubbles. In this context, the extension of the proposed
model to nonisothermal conditions is particularly promising for the
study of the postcollapse phase. This extension can be done by factor-
ing the temperature dependence of the equilibrium concentrations
into the model, by suitably varying the parameters o, f3¢, o and f§; with
the temperature and adding an equation for conservation of energy.
After the collapse, the concentration and density at the interface
become very diffuse, making it difficult to define a sharp bubble
boundary. This suggests that classical models based on ordinary differ-
ential equations for the bubble radius may be inadequate in the multi-
component, multiphase problem even if the solution remains
axisymmetric. We believe that our model can also have a significant
impact on other problems that involve simultaneous several phases
and several components, for example, diesel engines,22 methane
venting,””* and focused ultrasound therapy.””

See the supplementary material for the details of the derivation of
our model starting from the free energy formulation proposed in (1),
applying the Coleman-Nole procedure,* a derivation for 7, details of
the comparison of the presented model with the van der Waals theory
for binary mixtures under the assumption of low gas density, the
details regarding nondimensionalization, numerical procedure fol-
lowed for solving the family of equations (2), and a derivation for
speed of sound in van der Waals fluids.

We gratefully acknowledge funding for this research provided
by the National Science Foundation under contract CBET 1805817.
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