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Abstract— We consider the problem of computing a matrix-
vector product Ax using a set of P parallel or distributed
processing nodes prone to “straggling,” i.e., unpredictable delays.
Every processing node can access only a fraction (s/N) of the
N-length vector x, and all processing nodes compute an equal
number of dot products. We propose a novel error correct-
ing code-that we call “Short-Dot”’-that introduces redundant,
shorter dot products such that only a subset of the nodes’
outputs are sufficient to compute Ax. To address the problem of
straggling in computing matrix-vector products, prior work uses
replication or erasure coding to encode parts of the matrix A,
but the length of the dot products computed at each processing
node is still N. The key novelty in our work is that instead
of computing the long dot products as required in the original
matrix-vector product, we construct a larger number of redun-
dant and short dot products that only require a fraction of x to
be accessed during the computation. Short-Dot is thus useful in a
communication-constrained scenario as it allows for only a
fraction of x to be accessed by each processing node. Further,
we show that in the particular regime where the number of
available processing nodes is greater than the total number of dot
products, Short-Dot has lower expected computation time under
straggling under an exponential model compared to existing
strategies, e.g. replication, in a scaling sense. We also derive
fundamental limits on the trade-off between the length of the dot
products and the recovery threshold, i.e., the required number
of processing nodes, showing that Short-Dot is near-optimal.

Index Terms— Algorithm-based fault coded
computing, matrix sparsification, stragglers.

tolerance,

I. INTRODUCTION
HIS work proposes a novel coding-theory-inspired tech-
nique for speeding up computing linear transforms
of high-dimensional data by distributing it across multiple
processing nodes that compute shorter dot products. Our
main focus is on addressing the “straggler effect,” i.e., the
problem of delays caused by a few slow processing nodes
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that bottleneck the entire computation. We provide a tech-
nique (building on [2]—[5]) that introduces redundancy in the
computation by designing a new error correction mechanism
that allows the size of the individual dot products computed
at each processing node to be shorter than the length of the
input. Shorter dot products offer advantages in computation,
storage and communication in distributed linear transforms.
In addition to straggler tolerance, our coding scheme can also
be used to detect or correct erroneous computations, and is
therefore potentially applicable to computing systems with
erroneous hardware as well [6]-[8].

The problem of computing linear transforms of high-
dimensional vectors is the critical step [9] in several machine
learning and signal processing applications. Dimensionality
reduction techniques such as Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), taking random
projections require the computation of short and fat linear
transforms on high-dimensional data. Linear transforms are
the building blocks of various machine learning algorithms,
e.g. regression and classification etc., and are also used in
acquiring and preprocessing data through Fourier transforms,
wavelet transforms, filtering, etc. Fast and reliable compu-
tation of linear transforms are thus a necessity for low-
latency inference [9]. Due to the saturation of Moore’s law,
increasing the speed of computing in a single node is becoming
difficult, forcing practitioners to adopt distributed processing
to speed up computing for ever-increasing data dimensions
and sizes.

A common problem in distributed systems is “strag-
gling” [10] where a few slow or faulty processing nodes
(stragglers) can delay the entire computation. Straggling is
attributed to network latency, shared resources, maintenance
activities, and power limitations [2], among other factors.
Specific to computing matrix vector products, classical dis-
tributed techniques, e.g., Block-Striped Decomposition [11],
Fox’s method [11], [12], and Cannon’s method [11], rely on
dividing the computational task equally among all available
processing nodes! without any redundant computation. The
fusion node collects the outputs from each processing node
to complete the computation and thus has to wait for all the
processing nodes to finish. Popular techniques for straggler
mitigation include different forms of checkpointing [15] on
top of straggler detection (e.g. that used in Hadoop [16]), that
periodically save the current state of the system, and return to

IStrassen’s algorithm [13] and its generalizations offer a recursive approach
to faster matrix multiplications over multiple processing nodes, but they are
often not preferred because of their high communication cost [14].
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the saved state in case of faults. However, roll-backward-error-
correction mechanisms are expensive because they require
rescheduling and repeating computations, and rebuilding states
already reached.

An alternate approach is to use roll-forward error correction
techniques. These techniques address straggling by introduc-
ing redundancy in the computational tasks across different
processing nodes. The fusion node now requires outputs from
only a subset of all the processing nodes to successfully
finish the entire computation. The use of erasure coding for
fault tolerant computing dates back to Algorithm-Based-Fault-
Tolerance (ABFT) [15], [17]. Erasure codes are often found
to offer advantages over replication (the latter is analyzed
in [3]-[5]). Maximum Distance Separable (MDS) [18] codes
were used in [2] to code matrices in one dimension for
speeding up matrix operations. In [19], coding was used to
speed up MapReduce [20], a commonly used framework for
distributing and shuffling data while executing data-intensive
tasks on distributed clusters. “Coded Computing” is now
an emerging area of research ( [1], [2], [19], [21]-[54])
which advances on coding approaches in classical works on
Algorithm-Based Fault Tolerance (ABFT), and also provides
novel analyses of required computation time ( [2], [23],
[44], [47]), including that in our preliminary version of this
work in [1]. Following the conference publication [1], there
have been several interesting works in the coded computing
community (see [21] for survey) on coded linear algebra
[22]-[37], coded convolutions [47], [48], gradient coding
[38]-[42], coded Fast Fourier Transforms [55], [56], perfor-
mance analysis [45], [46], coded neural networks [30], [57],
coded iterative computing [58]-[61] etc.

A. Problem Formulation

We consider the problem of computing a matrix-vector
product (Ay xNXnNx1) using a set of P parallel or distributed
processing nodes, under two constraints:

(i) The outputs from any K out of P nodes are sufficient to
compute the original matrix-vector product.

(ii) Every processing node can only access a fraction 3 of
the long vector x during computation due to limitations
of communication.

We also assume that each of these nodes computes an equal
number of dot products, i.e., the task allocated to each node
is equal. Our goal is to minimize the fraction 5 for a
given K. Here K is the straggler recovery threshold, i.e. the
worst-case number of processing nodes that need to finish to
compute successfully. Thus, any (P — K) stragglers can be
tolerated.

As is the case in [2], A is encoded into a matrix F, and
parts of F are stored beforehand at the individual processing
nodes. When M < P,? our problem reduces to the following:
Find a matrix F for a given A such that:

2We do not allow for any encoding on x as it requires access to all the
values of x.

3For the regime where M > P, the matrix A could be split horizontally into
% smaller sub-matrices of size m x N such that m < P, and the problem
can be considered for each of those matrices separately, as we discuss in
Section I-C.
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(i) Any K rows of F can linearly span the row space of A.
(i1)) The number of non-zero entries in each row of F is
constrained to be at most s, which we need to minimize.

When M < P, if there are no stragglers, we can choose
K = P, ie., wait for all the nodes to finish. One example
is the uncoded strategy (see Section II and Fig. 2a) that
simply distributes the task equally among the P nodes, and
hence s = @. However, this technique is bottlenecked by
stragglers. The MDS-coding-based strategy in [2] has K = M.
There, the M rows of A are encoded using a (P, M) MDS
code into P rows such that any M rows can linearly span the
row space of A (elaborated in Section II and Fig. 2c). This,
however, requires s = N, i.e., the entire x is accessed by each
node.

In this paper, we aim to derive fundamental limits on the
trade-off between K and s, given the matrix dimensions M and
N as well as the total number of nodes P. The key difference
between our work and [2] is that we constrain that every
processing node receive only a fraction 5 of the long vector
x during computation. We thus allow the size of individual
dot products computed at each processing node to be smaller
than N (the full length of the input) as each processing node
only accesses a fraction of the vector x.

B. Why Go for Shorter Dot Products?

Communication Cost Savings: In several applications,
e.g., in machine learning inference for time-critical applica-
tions, the trained model matrix A is fixed and different test
data vectors x keep arriving in real-time [9]. In systems where
multicasting x is not possible or is costly, it may be faster
to communicate a subset of the coordinates of x to each
processing node.

Machine Learning Training and Gradient Coding: One
typical scenario that arises in machine learning training, as also
pointed out in [38], is when A is fixed and known in advance
and is required to be multiplied with another vector or matrix
that is generated in real-time. In fact, the problem of gradient
coding [38]-[41] is deeply connected with our problem when
M =1, P =N, and A is simply the vector [1, 1,..., 1]ixn.
The dataset is divided into N partitions. At each iteration of
training, the master node requires the vector [1,1,..., 1]1xn
to be multiplied with a matrix whose every row consists of
gradients from a different partition of the dataset, i.e.,

o]

gy
The goal is to generate a set of P(= N) sparse vectors
(essentially rows of F) from [1,1,..., 1]jxny such that any
subset of them of size K can linearly span [1, 1, ..., I]Tixn-

Because these generated P(= N) vectors are sparse, the
i-th processor only stores and computes gradients on the data
partitions indexed in the support set of the i-th row of F, and
sends the product of the i-th row of F with G to the master
node. The master node only waits for any K nodes to finish.
Thus, Short-Dot codes apply to the gradient coding problem.
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In this work, we consider a more general version of the
gradient coding problem where M > 1. For M > 1,
a straightforward extension of the gradient coding strategy
proposed in [38], [39] would encode each row of A sepa-
rately and require M dot products, each of length w,
at each processing node. Instead, Short-Dot uses a novel
“joint” encoding across rows that only requires a single dot
product of length w at each processing node, while
still requiring the same number of processing nodes (any K
out of P) to finish. In terms of computational complexity at
each node, note that w is less than M x w.
Further, we also provide a tighter converse for M > 1 that
proves that Short-Dot is near-optimal. It is worth noting
that [38], [39] also introduce the notion of partial stragglers,
which is outside the scope of our paper.

Computation and Memory Limited Architectures:
Another reason for shorter dot products is that the com-
putation time depends on the length of the dot products
being computed. Processing nodes are also inherently memory
limited, which limits the size of dot products that can be
computed. In Section V we show that even in the absence
of sparsity/communication constraints, Short-Dot can reduce
the expected computation time (under model assumptions
inspired from [2]) over existing strategies in a straggler-prone
environment due to computation time savings.

Distributed Sensing and Inference: Sparsity constraints
on the encoded matrix F pyy could also arise from practical
constraints, e.g., when sensing using sensors with a limited
field of view [62]. This problem could arise in Cognitive
IoT systems, that typically perform some inference task on
the observations, e.g. pattern recognition, classification etc.
using a distributed network of cognitive sensors with a limited
field of view. The goal of the IoT sensors is to compute
a dimension-reducing projection on the sensed data, which
is a critical first step in many machine-learning algorithms.
Under such scenarios, it might be required to impose a pre-
specified sparsity pattern on the final encoded matrix F to
obtain a sparse sensing matrix for the IoT devices. This could
be used to architect systems using fault-prone IoT sensing
and communication networks that nevertheless provide reliable
inference.

Error Correction for Emerging Hardware: Another
interesting example comes from recent work on designing
computational devices that exclusively compute dot products
using analog processing units [6], [7], also referred to as “dot
product nanofunctions.” These devices are prone to increased
errors when designed for longer dot products. Short-Dot is
directly applicable in this scenario, as it allows the size of
each individual dot product to be shorter than the size of the
input. A related work in this direction, that also proposes error
correcting codes for fault-prone “dot product engines,” is [63].

C. Our Contributions

We propose a new error correcting code — Short-Dot — for
computing parallel or distributed matrix-vector products
(i.e., AyxNXnx1) under stragglers when each processing

node only has access to a fraction 3 of the input vector x.
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The key novelty is that we allow for shorter dot products to

be computed at each individual node, thus requiring only a

fraction of x as compared to existing techniques in [2], [24]

that require the full vector x to be communicated to each node.

When the number of dot products is less than the
number of nodes, i.e., M < P:

o For this case, Short-Dot encodes the given matrix Apxn
into Fpxy such that each N-length row of F has at
most § = w non-zero elements. Each of the
P processing nodes store a different row of Fpyy and
compute its dot product with x. Because the locations
of the s non-zero entries in a row of F are known by
design, every processing node only requires those particular
s entries of x, and not the whole vector x, and also has a
reduced computational complexity of ® (s) instead of @ (N)
at each node. Here K = k(s) parameterizes the worst-case
recovery threshold under stragglers as a function of s. The
dot products of any K out of the P rows of F with x are
sufficient to recover Ax. In other words, any K rows of F
can be linearly combined to generate all the rows of A.

« We show that the uncoded parallelization strategy and MDS
coding strategy [2] are actually two special cases of Short-
Dot with K = K(@) = P and K = ¥k(N) = M
respectively. Short-Dot allows for K to vary over the range
M to P, and accordingly allows the length of the dot product
s to reduce over the range N to %.

o We provide fundamental limits (converse results) on the
trade-off between the length of the dot products (s) and
the recovery threshold (number of nodes to wait for,
ie., K = «(s)) for any such strategy in Section IV.
Our converse shows that Short-Dot is near-optimal in the
regime (M < P). This is an improvement over our previous
result [1].

o Even in the absence of any sparsity/communication con-
straints on the processing nodes, we show that Short-Dot
can still be useful in speeding up linear computations for
M < P. Assuming exponentially distributed computation
times (used in [2]), Short-Dot outperforms competing strate-
gies, namely, uncoded parallelization, replication strategy
and MDS coding strategy (see Section II) not only in
communication, but also in computation time under strag-
gling. We derive the expected computation time required
by our strategy and compare it to uncoded parallelization,
replication and MDS coding (see Fig. 2) demonstrating
that Short-Dot is universally faster over the entire range of
M < P. We also explicitly show a regime (M = %)
where Short-Dot outperforms all competing strategies in
expected computation time by a factor of %, that can
even diverge to infinity.

We note that in a follow-up work [23], a new converse
has been obtained for this problem that improves upon the
converses in this work and more importantly, proves the exact
optimality of Short-Dot codes.

When the number of dot products is greater than the
number of nodes, i.e., M > P:

For the regime where M > P, the same encoding technique
can be applied by first dividing the matrix A into smaller
sub-matrices of size m x N such that m < P, and applying
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short dot product of length N/P. The fusion node has to
wait for all the nodes to finish.

Fig. 1.

Short-Dot on each of these sub-matrices separately. Short-Dot
(with s < N) still has gains over MDS coding strategy (Short-
Dot with s = N) for communication-constrained regimes
because MDS coding strategy requires the entire vector x
to be accessed by each node. However, in the absence of
communication constraints, MDS coding strategy may be
preferred because it has lower computational complexity per-
node (see Section VIII-A for a detailed discussion).

We also show that if we move from an erasure model to
an error model where some processing nodes are faulty and
we do not know which of those are faulty, Short-Dot with
straggler recovery threshold of K can correct L#Jerrors.

D. Some Notations and Definitions

Sets of indices are denoted by calligraphic fonts, e.g., S,
U, vV, W, X etc. Note that, for integers ¢ and b where
b > a, we also use the notation a : b to denote the set of
all the integers from a to b including them, i.e., {a,a + 1,
a+2,...,b}.

We denote matrices and vectors in bold. A vector x € RV
refers to a column vector of dimensions N x 1. For two
column vectors a and x of the same dimensions, the dot
product (a,x) is defined as the product a”x. For ease of
explanation, a matrix Ay y) may be partitioned column-wise
as A(yxn) = [A1Az ... Ay] where A; is the j-th column of
A(Mmxn) or partitioned row-wise as

af
Amxvy =| + |»
aj
where aiT the i-th row vector of Arxny.
xS (or AS) denotes a sub-vector (or sub-matrix) consisting
of the rows of the vector x (or matrix A) indexed by the set S.
Similarly, we use the notation A.,; s to denote a sub-matrix
of A consisting of only the columns of A indexed by set S.
We define the sparsity of a vector x € RY as the number of
non-zero elements in the vector, i.e., ||x]o = Zj-v:l I(x; #0)
where I(-) denotes the indicator function. Let f(n) and g(n)
be two functions of n. The function f(n) = O(g(n)) if there
exists an ng and a constant ¢ such that for all n > ng, f(n) <
cg(n). Similarly, f(n) = o(g(n)) if for any chosen ¢ > 0, one
can find an ng such that for all n > ng, f(n) < eg(n). Lastly,

f(n) =0(gm) if f(n) = O(m) and g(n) = O(f ().

vectors, one for each node. Each node computes a dot product of length N/L.
The fusion node waits for one replica of each part to finish.

Comparison between uncoded parallelization and replication with block partitioning: A dot product ((a,x) = aTx) of length N = 12 is being
computed using the same of processing nodes (P = 6) for both the strategies.

E. Paper Organization

The rest of the paper is organized as follows. Section II
provides an overview of existing strategies for computing dot
products, followed by Section III which formally introduces
our proposed strategy and the main achievability results.
Section IV provides our converse results. Section V analyzes
the expected computation time of Short-Dot and compares it
with existing strategies. Section VII discusses the extension of
Short-Dot codes from correcting erasures to correcting errors,
followed by a concluding discussion in Section VIII.

II. OVERVIEW OF EXISTING STRATEGIES FOR
COMPUTING DOT PRODUCTS

In this section, we provide an overview of several existing
strategies for computing dot products in a parallel or distrib-
uted scenario. To begin with, let us first consider the problem
of computing a single dot product of an input vector x € RV
with a pre-specified vector @ € RY. By an “uncoded” paral-
lelization strategy (which includes Block Striped Decomposi-
tion [11]), we mean a strategy that does not use redundancy to
overcome delays caused by stragglers. One uncoded strategy is
to partition the dot product into P smaller dot products, where
P is the number of available processing nodes. E.g. a can be
divided into P parts, constructing P short vectors of sparsity
%, with each vector stored in a different processing node as
shown in Fig. la. Only the non-zero values of the vector need
to be stored since the locations of the non-zero values is known
apriori at every node. One might expect the computation time
for each processing node to reduce by a factor of P. However,
now the fusion node has to wait for all the P processing
nodes to finish their computation, and the stragglers can now
delay the entire computation. Can we construct P vectors such
that dot products of a subset of them with x are sufficient to
compute (@, x)? A simple strategy of introducing redundancy
is using replication with block partitioning i.e., constructing L
vectors of sparsity N/L by partitioning the vector of length
N into L parts (L < P), and replicating the L vectors P/L
times so as to obtain P vectors of sparsity N/L as shown
in Fig. 1b. For each of the L parts of the vector, the fusion
node only needs the output of one processing node among all
its replicas.

Instead of a single dot product, if one requires the dot
product of x with M vectors {ai,...,ap}, one can simply
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‘ P parallel dot-products ‘
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(d) Short-Dot coding strategy

Fig. 2. Comparison between different strategies of parallelization: Here
M = 3 dot products of length N = 12 are being computed using P = 6
processing nodes.

repeat the aforementioned uncoded strategy M times as shown
in Fig. 2a. For multiple dot products, an alternative replication-
based strategy is to compute M dot products P/M times in
parallel at different processing nodes. Now we only have to
wait for at least one processing node corresponding to each
of the M vectors to finish (see Fig. 2b). Improving upon
replication, it is shown in [2] that a (P, M)-MDS code allows
constructing P coded vectors such that any M of P dot
products can be used to reconstruct all the M original vectors
(see Fig. 2c).

Can We Go Beyond MDS Codes?

The MDS coding strategy [2] requires N-length dot prod-
ucts to be computed on each processing node. Short-Dot
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instead constructs P vectors of sparsity s (< N), such that
the dot product of x with any K (> M) out of these P short
vectors is sufficient to compute the dot product of x with all
the M given vectors (see Fig. 2d). Compared to a straightfor-
ward application of MDS codes for this problem, Short-Dot
codes are more flexible as they allow each processing node
to compute a shorter dot product at the cost of waiting for
some more processing nodes (since K > M), thus resulting in
a trade-off. Short-Dot also potentially reduces the communi-
cation cost since only a shorter portion of the input vector is
required to be communicated to each processing node. We also
propose Short-MDS, an extension of the MDS coding strategy
in [2], to create short dot products of length s, through block
partitioning the matrix A and subsequent encoding of each
block separately. We show that Short-MDS is a special case of
Short-Dot in Theorem 2 (Section III-D) in the sense that Short-
Dot codes with the same final sparsity pattern as Short-MDS
codes also have the same recoverability properties that we
elaborate on further in Section III-D. Furthermore, when %
is not an integer, one can also design Short-Dot codes with
other sparsity patterns that require the decoder to wait for
fewer processing nodes in worst case than Short-MDS codes
as discussed in Section III-D.

III. OUR CODED PARALLELIZATION
STRATEGY: SHORT-DOT

In this section, we introduce our strategy of computing
the matrix-vector product Ax where x € RV is the input
column vector and Ayxn) = lai,az, ... caylf is a given
matrix. First we informally introduce our coding technique
in Section III-A. The main achievability result is provided
in Section III-B, followed by the algorithm in Section III-C.
We also propose an alternate coding strategy called Short-
MDS codes in Section III-D.

A. Basic Construction Strategy

Short-Dot constructs a P x N matrix F = [f, fo,...,
£ P17 such that the following two conditions are satisfied:

(i) Given any K (where M < K < P) rows of F, there
always exists M predetermined linear combinations of
these rows that can generate each of the M row vectors
{alT, . a;I}. This essentially means any K rows of F
should linearly span the row space of A.

(i) Any row of F has sparsity (number of non-zeros) at most
s=8P—-K+M).

Once such a matrix F is constructed, each sparse row of F
(say fl-T) is sent to the i-th processingnode (i = 1, ..., P) and
dot products of x with all sparse rows are computed in parallel.
Let S; denote the support (set of non-zero indices) of f;.
Thus, for any unknown vector x, short dot products of length
ISi| <s = %(P — K + M) are computed on each processing
node. Since the linear combination of any K rows of F can
generate the rows of A4, i.e., {alT, ag, e, “;1}’ the dot product
from the earliest K out of P processing nodes can be linearly
combined to obtain the linear transform Ax. The strategy is
pictorially illustrated in Fig. 3.
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Input vector: x
Every node only accesses

s values of x, i.e., x5

sp| Short dot products (x5i, £51)
P computed at each node

Fusion Node: @
Decodes the final dot products from
the outputs of the first K nodes

Fig. 3. Task flow for Short-Dot coding strategy: Each of the P nodes can

only access any s values of the vector x. Using Short-Dot codes, node i only
accesses xSi , and computes short dot products (xSi, f :.S" ), such that outputs

from any K out of P processing nodes are sufficient to compute successfully.

AgxNE 7
(K—M)xN
(a) Create A by appending (K — M) extra rows below A. The
choice of these extra rows will be discussed later in enforcing
sparsity but for now assume that Z can be any matrix.

Bpix 7 2  Fpxn
(K—M)xN

(b) Perform the following encoding: ' = BA. Here B is a
chosen P x K matrix such that all K x K square sub-matrices
are invertible. This ensures that any K rows of F' can span the
rows of A.

X
BKXK

el T

Zig_MyxN

(c) Observation: Pick any K rows of F, i.e. a sub-matrix F'X as
shown here. All the rows of A can be generated from the rows
of FX as BX is invertible.

Fig. 4. Illustration of encoding scheme to satisfy the condition that any K
rows of F can span the rows of A

Before formally stating our algorithm and main results,
we first provide an insight into why such a matrix F exists
and develop an intuition into the construction strategy. Recall
that the first condition that needs to be satisfied by F is as
follows: any K rows of F should linearly span the row space
of A. We satisfy this condition using the encoding strategy,
as shown in Fig. 4.

Now that the first condition is satisfied, we will discuss how
to choose Z so as to satisfy the second condition: An Py row of
F has sparsity (number of non-zeros) at most s = K NP-K+M)
Let us choose one such sparsity pattern for F that has at most

w (also shown in Fig. 5).
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e LU P x P unit block
QIO Each row and column
” Qe 8o has (K-M) zeros at
= OIQIO! J8_ pre-specified locations.
E (@) 08 08 Sparsity of each row
220 QQl and column is at most
o]0 0)0] Ol s,=P-K +M.

(a) A P x P unit block with row sparsity P — K + M.

N columns
seeeel The P x P unit block
» O is concatenated N/P
g o000 | times horizontally to
Q 3~§g sece obtain row sparsity
ool 000 0cH g (N/P) s,

(b) The unit block is concatenated % times to form an N x P

matrix F' with row sparsity s = X (P — K + M).

Fig. 5. Example of a sparsity pattern of F achievable by the Short-Dot
coding strategy.

K-M { =8
zero =Bpxr T
7
indices
U
K-M ‘[F-j = K-M{ B!
zero rows
indices
= _ [mpU
- [Bcul 1:M
RrRU ‘ . _RpU .
Ego.l_\ M+1:KZJ - E@Ql_ 1ar Ay
Fig. 6. A pictorial illustration showing that choosing Z; =
[BL ol M41: K]* B 0[ I: MA for every column j ensures the des1red

sparsity pattern on F.

Observe that in this pattern, every column of F has at least
(K — M) zeros. For any column F, let U denote the set of
indices that are zero. Having fixed B, the column F; is an
affine linear combination of the entries of Z ;. Thus choosing
Z; = —[Bzc’f)l M+l:_K]_ Bzc/f;l_l:MAj for every column j
ensures that the entries of F; indexed by U/ are set to zero
(see Fig. 6) as long as the matrix BY col M+1:x 18 invertible.

Now we formally state our main technical result.

B. Achievability Result

Theorem 1 (Short-Dot Achievability). Given an M x N matrix
A =[ay,az,...,ay])7, there always exists a P x N matrix
F such that the following two conditions hold:
(i) Any K (M < K < P) rows of the matrix F
can be linearly combined to generate the row vectors
T T T
{aj.a;,...,ay}.
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. : - _ N(P=K+M)
(ii) Each row of F has sparsity at most s = ———p5——,

provided P divides N.
To prove this theorem, we first prove the following lemma.

Lemma 1. Let F = BA where A is a K x N matrix and B
is any (P x K) matrix such that every square sub-matrix is
invertible.* Then, any K rows of F can be linearly combined
to generate any row of A.

Proof of Lemma 1. Choose an arbitrary index set X C
{1,2,..., P} such that |[X| = K. Let F? be the sub-matrix
formed by the K rows of F indexed by X. Then, F* = BY A.
Now, BY is a K x K sub-matrix of B, and is thus invertible.
Thus, A = (BY)~'F¥. The i-th row of A is generated as
[i-th Row of (BY)""FY fori = 1,2,..., K. Thus, each
row of A is generated by the chosen K rows of F. m|

Proof of Theorem 1. We may append (K — M) rows below
A = [ai,az,...,ay)T, to form a K x N matrix given by:

A= ;J where Z is of dimension (K —M)x N. The precise

choice of these additional row vectors will be made explicit
later. Next, we choose B, a P x K matrix such that any square
sub-matrix of B is invertible. Using Lemma 1, we thus show
that any K rows of the matrix BA are sufficient to linearly
generate any row of A, which happens to include the rows of
A, ie., {alT, azT, o, a{,[}.

Now, we show how the row sparsity of F can be constrained
to be at most w by appropriately choosing the
appended matrix Z. We select a sparsity pattern that we want
to enforce on F and then show that there exists a choice of
the appended matrix Z such that the pattern can be enforced.

Example of a sparsity pattern enforced on F: This is
illustrated in Fig. 5. First, we construct a P x P “unit block”
with a cyclic structure of non-zero entries, where (K — M)
zeros in each row and column are arranged as shown in Fig. 5.
Each row and column have K — M pre-specified zeros, and
hence s = P — K + M non-zero entries. This unit block is
replicated along the column dimension % times to form an
P x N matrix with s, non-zero entries in each column, and
and s = Ns;/P non-zero entries in each row. We now show
how choice of Z can enforce this pattern on F.

From F = BA, the j-th column of F can be written as,
F; = BA;. (1)
Each column of F has K — M pre-specified zeros at locations
indexedby U C {1,2, ..., P}. Let BY denote a ((K—M)xK)
sub-matrix of B consisting of the rows of B indexed by U.
Thus,

BYAj = [0)k—mx1- )
Divide A j into two portions of lengths M and K — M as

follows: Zj = [;j:| . Thus,
J

U _ [nlU u Aj
B AJ - [Bcol M Bcol M+1:K] I:Zj:l
u u
=Bl 1.mMAj + Blot my1:x Zj
= [0)(k—ayx1. 3

4This condition is relaxed in Remark 1.
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This implies,
U u
B, M+1:K Zj =—-By I:M[Aj] “4)

u —1 pU
=Zj=—Bly my1:x)" By 1.m[Aj]  (5)

where the last step uses the fact that [B%l M1:x] 1s invertible
because it is a (K — M) x (K — M) square sub-matrix of B
and all square sub-matrices of B are invertible. This explicitly
provides the vector Z; which completes the j-th column of A
and ensures the sparsity of the j-th column of F. The other
columns of A can be completed similarly. |

Corollary 1 (Achievable Sparsity Patterns). Given an M x N
matrix A = [a1, a, . ..,ay])", Short-Dot codes with recovery
threshold K can be used to generate a P x N matrix F with
any pre-specified sparsity pattern where every column of F
has K — M zeros.

Proof of Corollary 1. The proof follows trivially from
Theorem 1, as it is shown that any arbitrary (K — M) indices
of each column can be set as O irrespective of the other
columns. |

Remark 1 (Relaxed conditions on matrix B). It has been
stated in Lemma 1 that all square sub-matrices of B need
to be invertible. A matrix with i.i.d. Gaussian entries can be
shown to satisfy this property with probability 1. In fact the
condition on B in Lemma 1 can be relaxed, as evident from
the proof. For matrix Bpyx we only need two conditions.

e All K x K square sub-matrices are invertible.

o All (K — M) x (K — M) square sub-matrices in the last

K — M columns of B are invertible.

A Vandermonde Matrix satisfies both these properties and thus
can be used for encoding in Short-Dot.

With this insight in mind, we now formally state our
algorithm.

C. Algorithm

Algorithm 1 Short-Dot (for a Specific Sparsity Pattern)

[A] Pre-Processing Step: Encode F (Performed Offline)
Given: Recovery threshold K, Encoding matrix Bpxk,
and Ayxn = [ai, .. .,aM]T =[A1,As, ..., AN].
I: For j=1t0o N do:
22 Set U —({(Gj—-1),....,+K—M—1)} mod P)+1
> The indices that are O for the j-th column of F.

3. Set BY <« Rows of B indexed by U
4 Set Zj=—(BY yix) " BYy lA)]
> Zjis a (K — M) x 1 column vector.
A.
s: Set F,=B|’
J Zj

> Fjisa P x 1 column vector (j-th col of F)
Encoded Output: Fpuy =[ff2... fpl"

6: > Row representation of matrix F.
7: For i =1to P do:

8: Store S; < Support(f;)

9: > Indices of non-zero entries in the i-th row of F
1. Send f ;S" to i-th processing node
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[B] Online computations
External Input : x
Resources: P parallel processing nodes (P > M)
[B1] Parallelization Strategy: Divide task among parallel
processing nodes:
I: For i =1t0 P do:
2: Access x° at the i-th processing node
3: Compute at i-th processing node: (f ;9" , xSi)
Output: (f ;9,- ,x51) from K nodes that finish first.
[B2] Fusion Node: Decode the dot products from the
processing node outputs:
1: Set X <« Indices of the K nodes that finished first
: Set BY <« Rows of B indexed by X
:Set vix < F¥x
> K x 1 column vector of outputs (f;s",xsi) Vi e X
4 Set Ax = [(a1,x), ..., (ay,x)]T < [(BY)"111:My
5: Output: (ay, x),...,{(ay,x)

wWON

Remark 2 (Best-case recovery). Note that, the recovery
threshold (K) is formally defined as the number of nodes
that the decoder has to wait for in the worst-case, i.e., the
minimum K for which all subsets of K nodes become sufficient
to reconstruct the results, analogous to standard coding theory.
In the best-case, there maybe (see Theorem 2 in Section III-D)
some specific subsets of less than K nodes that are sufficient
to reconstruct the entire result if those nodes finish first, even
though not all subsets of that size are sufficient.> Interestingly
though, the recovery threshold® of Short-Dot codes, i.e., K =
P— % + M can be shown to be near-optimal when compared
with the fundamental limits for this problem (see Theorem 3,
Theorem 4 and also follow up work in [23]).

D. Short-MDS: A Special Case of Short-Dot

Here, we first propose an alternative coding strategy, that
we call Short-MDS codes, to achieve a pre-specified row-
sparsity of at most s. For this code construction, the number
of nodes required to finish in the best-case, average-case and
worst-case are different. Next, we demonstrate (in Theorem 2)
that, while the construction of Short-MDS codes might appear
different from Short-Dot codes, interestingly the recoverability
properties of Short-MDS codes can also be obtained as a
special case of the Short-Dot code construction with a chosen
pre-specified sparsity pattern on F p,y. In other words, there
exists a Short-Dot code construction that requires the same
number of nodes to finish in the best-case, average-case and
worst-case as Short-MDS codes while imposing the same
sparsity pattern on F py n and allowing for a single dot product
computation of length at most s at each node. Furthermore,
Short-Dot codes being a more general scheme, also allow for
other sparsity patterns on Fpyy that can result in a lower
recovery threshold than Short-MDS codes (or Short-Dot with

5There are other coded computing strategies like Product Codes [22] where
the number of nodes to wait for in the best-case, average-case and worst-case
differ.

OThis is derived assuming Ps/N is an integer. Otherwise, the expression
becomes K = P — L%J + M as also mentioned in Table I.
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the same sparsity pattern) when s does not divide N. Now we
move on to the description of the Short-MDS coding strategy.

Strategy Description: Our proposed Short-MDS codes are
an extension of the MDS coding strategy proposed in [2].
First we block-partition the matrix of N columns vertically
into f%} sub-matrices of size M x s (except possibly the last
block which is of size M x s” where s’ < s when s does not
exactly divide N). We also divide the total processing nodes P
equally into |_¥-| parts. Now, each sub-matrix can be encoded
using a (%,M) MDS code, assuming P is large enough

to be divisible by [X]. We refer the reader to Fig. 7 for a
pictorial illustration of this strategy.

Essentially, the Short-MDS code construction divides the
P nodes into [%1 subsets of size —b— each, and requires

any M out of % nodes in each subset to finish to be able
to reconstruct the entire result. Therefore, in the best case,
Short-MDS codes would only require M [%1 nodes to finish.
However, in the worst case including the integer effect, this
strategy requires K = P — —£— 4+ M processing nodes to

N
finish, which is its recovery th’—res-‘hold.7
While the encoding techniques of Short-Dot and Short-MDS
codes apparently seem to be different, the proposed Short-
MDS code construction can also be obtained as a special case
of the Short-Dot code construction with K = P — % +M

K

when imposing the same sparsity pattern on F as shown
in Fig. 7c or Fig. 7f. In other words, we will show in Theo-
rem 2 that the particular Short-Dot code construction with final
sparsity pattern same as Short-MDS also has similar coding-
theoretic recoverability properties as Short-MDS codes, in that,
it also divides the P nodes into (%1 subsets of size Fg ] each
and requires any M out of the Fﬁ ] nodes in every s&bset to
finish.

More importantly, our proposed Short-Dot codes provide a
generalized framework achieving a wider variety of sparsity
patterns, that can achieve a recovery threshold of K = P —

P 4 M (same final sparsity pattern as Short-MDS) or a

[¥]

recovery threshold of K = P — % + M, which is lower when
s does not divide N, while imposing other sparsity patterns
on F, e.g., the pattern of Fig. 5. Next, we discuss Theorem 2.

s

Theorem 2. For the distributed coded matrix-vector product
ApMxNXNx1, there exists a Short-Dot code construction with
worst-case recovery threshold K = P — —5— + M, that divides

all the P nodes into [%1 subsets of size % each and can

reconstruct all the dot products while requisring one to wait
for only M nodes out of the f§1 nodes in every subset.
5

Proof Sketch: The proof is provided in Appendix A.
From the Short-Dot code construction, for any column of F

"More rigorously, the recovery threshold is K = P — {LJ + M when

H

[%—‘ also does not divide P as mentioned in Table L.
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N/s sub-matrices

N

[ <] sub-matrices, each of width s. MDS code.

Ayxn

s s s’ <s MI

g

[N/s] sub-matrices

N

[ <] sub-matrices, each of width s. MDS code.

Fig. 7.

(d), (e) and (f) correspond to the case where s does not exactly divide N.

(say column j) observe that:

o[z]- e

Let U denote the indices of the (K — M) indices that are pre-
specified to be 0 in F; and U¢ denote the remaining P — K +
M = indices. Observe that,

78 78
B [Aj] — |:B£;)l 1:M Bzc})l M+1:K] |:Ajj|
Zj Bcol 1:M Bcol M+1:K Zj

(6)

P
¥

F“c FY*
J 3 7
This leads to,
U« c
Bcol 1:mAj+ By M+1;[(Zj = F4Y , and (8)
BY, A+ BYy vk Z = 0. 9)

The most important observation here is that the non-zero
entries of Fj, ie., szf{c is not just an affine transform as
one would think but in fact a linear transform of A ;. More
specifically,

U
B, 1:M)Aj
= FY°
J

¢ uc U —1
(Bcol M — Bcol M+1:K[Bcol M+1:K]

P
S

Next, we show that thi

Z/{C
(Bcol M

Bzgfl MH:K[BZC/’M vatkl B(c{)l IM) also satisfies the MDS

property that any M rows are linearly independent. Thus,
the P — K + M = £ elements of F ;j that are not pre-

specified to be 0 are in fact coded elements of A j» encoded

using a ([ﬁ] , M) MDS code.

“SHORT-DOT”: COMPUTING LARGE LINEAR TRANSFORMS DISTRIBUTEDLY USING CODED SHORT DOT PRODUCTS

(Ps/N, M)

s I s I s i MDS Code
» | - P/{-
e

(a) Divide matrix Aprxn vertically into (b) Encode each sub-matrix using ([ﬂ

‘S—’Qw u)

MDS Code
—

v 1 =l
i —

(d) Divide matrix Ay vertically into (€) Encode each sub-matrix using ( FET , M)
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P ——

P

, M) (c) Arrange the coded matrices in a block-
diagonal manner for Fpx n.

—

(f) Arrange the coded matrices in a block-
diagonal manner for Fpx n.

s

Tllustration of our proposed Short-MDS coding strategy: (a), (b) and (c) correspond to the case where when s exactly divides N, while

Remark 3 (Flexibility of Generator Matrices). Theorem 2
essentially demonstrates that Short-Dot codes when applied
to achieve the sparsity pattern of Short-MDS codes is
equivalent to encoding the M rows of each block of
A (after initial block-partitioning) with a (r nEp , M) MDS

code whose transpose of the generator matrix is given by
U Uu —1pU

(Bcal 1:m ~ Beor mar:k Bl w1k 1™ Beol 1:M) where U

denotes the index of the nodes that will store this coded

block. This is similar to the encoding of Short-MDS codes.

Short-MDS codes might however allow for arbitrary (~5- Tk M)

MDS generator matrices for each block, while the generator
matrices of Short-Dot codes are derived from the matrix B.
However, they have the same coding-theoretic recoverability
properties in that they both divide the total nodes P into [X]
subsets such that one needs to wait for any M out of

i
nodes in every subset.

Remark 4 (Trade-offs between different sparsity patterns of
Short-Dot). Theorem 2 also demonstrates that while the recov-
ery threshold (worst-case) of Short-Dot is K = P— % +M (or
K=P-— % + M for Short-MDS type sparsity pattern under

integer eﬁescts), under special scenarios fewer nodes might
suffice as discussed in Remark 2 depending on the choice of the
final sparsity pattern. This is suggestive of a trade-off between
the different sparsity patterns in terms of worst-case recovery
threshold (under integer effects), best-case and average-case
recovery, expected computation time, deadline exponents [47],
adversarial error-tolerance or other parameters depending on
the application from where the sparsity constraint is arising
from. In Section V-A, we discuss the differences in expected
computation time due to the differences in the best-case and
average-case recovery, although interestingly, the deadline
exponent, i.e., the rate of decay of the probability of failure
to finish within a deadline t (for large t) is determined by
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the worst-case recovery threshold (see Section V-B). Similarly,
the adversarial error tolerance (standard in coding theory) is
also determined by the worst-case recovery threshold. It will
be an interesting future work to explore and compare the
trade-offs between these different achievable sparsity patterns
further.

Remark 5 (An interesting perspective on Short-Dot codes).
Delving deeper into the proof of Theorem 2 provides an inter-
esting perspective on the general Short-Dot code construction
that is not specific to any sparsity pattern. Consider the j-th
column of A, i.e., Aj which consists of M elements. Short-Dot
essentially encodes these M elements using a (P— K+ M, M)
MDS code whose transpose of the generator matrix is given
by (Bg;l tar = Bl sk By k] BY, l:M) where
U denotes the (K — M) indices of the desired zero-indices
of the column F ;. These encoded P — K + M elements are
essentially the elements in the non-zero indices (U€) of the
column F ;.

Discussion on Short-MDS and Short-Dot codes.
We highlight some major points here:

o Short-Dot codes are a generalized framework that can
achieve a wider variety of pre-specified sparsity patterns
depending on the application as compared to Short-MDS.
Essentially, any sparsity pattern on F pxy which has K — M
zeros in each column is achievable using Short-Dot codes
(see Theorem 1 and Corollary 1), including the sparsity pat-
tern imposed by Short-MDS codes on F p, y. Interestingly,
even though the two encoding techniques might appear to
be somewhat different, Short-Dot codes imposing the same
sparsity pattern on Fpyy also ends up dividing the set

of P nodes into % subsets of size g each such that any

5
M out of £ nodes in every subset is sufficient as proved

in Theorem 2. Therefore, Short-Dot codes also have the
same best-case and average-case recoverability properties as
Short-MDS codes, when the final sparsity pattern imposed
on F is chosen as in Fig. 7c or Fig. 7f.

o In the regime where s does not exactly divide N, this
Short-MDS code construction (special case of Short-Dot
with a particular final sparsity pattern on F) requires more
processing nodes to finish in the worst case than Short-
Dot codes with a different sparsity pattern on F, e.g.,
the pattern of Fig. 5. As an example, suppose s = %
Then, Short-MDS codes would require g + M nodes to
finish in the worst case while Short-Dot codes with a
different sparsity pattern, similar to Fig. 5, would require
only %P + M nodes to finish in the worst case, when

both the strategies are allowed to compute only one dot

product per node of length at most s. We also illustrate this

in Fig. 8.

In Table I, we compare the lengths of the dot products (s)
and the recovery threshold (K), i.e., the number of processing
nodes to wait for in the worst case, for different strategies,
accounting for all the integer effects.
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(a) Sparsity pattern of Fpyn achievable using Short-MDS (a

. . P
special case of Short-Dot with K = P — al + M).
s
ORI [0]0)(0)(6) [e]0](0](6] e]0](0](6) ORI
0OIQI0I QO] QIQIQI0! e)(e)(0](0) [e)(0)[0)(0)
QI QI Ql QQIQIO]
IQIQIQID)] QIO IQIQIQIO) QIQIQIO] QIQIQIO
QQIQ0 QIO QIQIQI0: IQIQIQ0! OIQION
QIQIOIC QIQIQI) QIQIQIO QIQIQIO] IQIQIOIC!
[O[QIC QQIO) OQIQ] (@) 0)(0) QIQION
Q] OIQQI0] OIQQIO] QIQIQ0] 0IQQI0 (e)(0)0]
QI [0]0)0)0) QIQIQIN)] QIQIQI0)] QIQIQI) Q0
(e]0]0] [)0]0] [e]0]0]6] Q000 e]0]0] 0

(b) Different sparsity pattern of Fpx n also achievable using Short-
Dot with K = P — 22 + M.

Fig. 8.  Sparsity pattern of Fpyy: Here P is the number of processing
nodes, N = 5P and allowed length of dot products at each node is s = 3P.
The sparsity pattern on the left is achievable using Short-MDS and Short-Dot
codes using K = g + M. The pattern on the right is also achievable using

Short-Dot codes, but using a lower K = ZTP + M.

TABLE 1

TRADE-OFF BETWEEN THE LENGTH OF THE DOT PRODUCTS AND
RECOVERY THRESHOLD K FOR DIFFERENT STRATEGIES

Strategy Length of the dot Recovery Threshold K
products at each node

Replication N P — {%J +1

MDS N M

Short-Dot s P-|&]+M

Replication with s P — WJ +1

block partition B

Short-MDS s P— || + M

IV. LiMITS ON TRADE-OFF BETWEEN THE LENGTH OF
DoT PRODUCTS (s) AND RECOVERY THRESHOLD (K)

In this section, we derive fundamental trade-offs between
the length of the dot products computed at each individual
processing node and the number of processing nodes to wait
for, i.e., K, which parametrizes the recovery threshold under
straggling. First we derive an information-theoretic limit in
Theorem 3 that holds for any matrix A, such that each column
has at least one non-zero entlry.8 In Theorem 4, we show how
this bound can be tightened further (improving our previous
result in [1] ), so that in the limit of large number of columns
of matrix A, Short-Dot is near-optimal.

A. Fundamental Limits on Sparsity

Theorem 3. Let Ay xn be any matrix such that each column
has at least one non-zero element. For any matrix Fpyn
satisfying the property that the span of its any K rows contains

8Note that choice of such a class of matrix A is reasonable, since if say
the j-th column of A consists entirely of zeros, then the j-th column and
its corresponding entry in unknown vector x can simply be omitted from the
problem.
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the span of the M rows of Ay xn, the average sparsity s over
the rows of F pxn must satisfy s > %(P — K+ 1).

Proof of Theorem 3. We claim that K is strictly greater than
the maximum number of zeros that can occur in any column
of the matrix F. If not, suppose the j-th column of F has
more than K zeros. Then there exists a choice of K rows of
F such that any linear combination of these rows will always
be 0 at the j-th column index. However, since the j-th column
of A has at least one non-zero entry, say at row i, it is not
possible to generate the i-th row of A by linearly combining
these chosen K rows of F. Thus,

K > 1 + Maximum No. of Os in any column of ¥  (10)

(11)

Here the last line follows since maximum value is always
greater than average. Note that if § is the average sparsity
over the rows of Fp,y, then the average number of zeros
over the columns of F py,y can be written as W. Thus,
from (11),

> 1 4 Average No. of Os per column of F.

K >1+ M (12)

- N
A slight re-arrangement establishes the lower bound in Theo-
rem 3. |

Recall that, Short-Dot achieves a column sparsity of at most
(P — K + M) while a hard lower bound is (P — K +1) from this
proof. The bound is tight for M = 1. The bound on average
row-sparsity § > & (P — K + 1) is also tight only for M = 1
(implicitly assuming P divides N, since P <« N). Now we
tighten this bound further for M > 1.

Remark 6 (Converse to the gradient coding problem). As
discussed before, the concurrent problem of gradient cod-
ing [38]-[41] shares similarities with the Short-Dot problem
formulation for the case of M = 1, N = P, and the
matrix A being equal to a single vector [1,1,..., 1]1xN.
Thus, Theorem 3 also serves as an alternate and independently
proposed converse to the gradient coding problem.

B. Tighter Fundamental Bounds

Theorem 4. Let M > 1. Then there exists a matrix Apxn,
such that any F pn satisfying the property that any K rows
of Fpxn can span all the rows of Ayxn, must also satisfy
the following property:

The average sparsity over the rows of Fpxn is lower
bounded as

§>E@—K+M%Jﬁ( P ). (13)
P P\K-M+1
Moreover, if N is sufficiently large, such that M? (KJ;,IH) =
o(N), then the average sparsity over the rows of Fpxn is
lower bounded as
__ N N

Note that the second term in the lower bound in (13)

does not depend on N. Thus, if N is sufficiently larger than

(14)
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P and M, the second term in the lower bound becomes
negligible compared to the first term, and the first term is
precisely what Short-Dot can achieve. Thus, from this lower
bound, we can conclude that when N is large, Short-Dot is
near optimal.

Before proceeding with the proof, we give a basic intuition
on the proof technique. We essentially divide the columns of
F p, y into two groups, one with at most (K — M) zeros, and
other with more than (K — M) zeros. Then we show that there
exist matrices Ay such that the number of columns in the
latter group, i.e., with more than (K — M) zeros is bounded,
and this in turn bounds the average sparsity. Now we formally
prove the theorem.

Proof of Theorem 4. Let us denote the number of columns of
F p, y with more than (K — M) zeros as 4. We will show later
in Lemma 2 that 2 < M (,,_" +1)- Now, compute the average
number of zeros over the columns of F. The columns of F
can be divided into two groups : A columns with greater than
(K — M) zeros and (N — A) columns with at-most (K — M)
zeros. Recall from (10), that if A is chosen such that every
column has at-least one non-zero entry, then the maximum
number of zeros in any column of F is upper bounded by
(K — 1). Thus, the group of A columns can have at most
K — 1 zeros each. Thus,

Average No.of Os per column
- (K—1DA+ (K —-M)(N—-21)

N
—k-m4 2D
B N
2 P
2 M= (_
Lemma K—M+ (K M+1). (15)

N

If 5 is the average sparsity of each row of F, then the average
zeros of each column of F is given by (N_TS)P. Thus,

< (K M)+M2 i
N\K-M+1)

M (16)

After slight re-arrangement, the average sparsity of each row
of F can be bounded as:

§ N(P K+ M) M P a7
§>—(P— - — .
P P \K-M+1
Thus, the first part of the theorem, i.e., (13) is proved. Using
the condition that M?2 (KJ;IH) = o(N) in (13), we can also
obtain (14). Thus,

so N P—K+M N 18

Thus, the theorem is proved. m|

Now it only remains to prove Lemma 2.

Lemma 2. Let M > 1. Then there exists a matrix Ayxn,

such that any F pyn satisfying the property that any K rows

of Fpxn can span all the rows of Ayxn, must also satisfy

the following property: The number of columns (A) with more
; P

than K — M zeros is upper bounded as A < M(K—M+l)'
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Proof of Lemma 2. Assume, 1 > M ( Kﬁf,[ +1)' Now, a column

with more than (K — M) zeros will have at least (K — M + 1)
zeros. There can be at most (K_f,[ +1) different patterns in
which (K — M + 1) zeros can occur in a column of length
P. Every column with more than (K — M + 1) zeros also
has one of these (K_f,[ +l) column sparsity pattern, just with
more zeros. From a pigeon-hole argument, at least one of these
sparsity patterns of (K — M + 1) zeros will surely occur in
columns or more. Let us consider the sub-matrix of

(khrs1)

F, of size P x %, consisting of only the columns of F

. K—M+1 . . . .
having (K — M + 1) zeros in the same locations, i.e., with
similar sparsity pattern. Any K rows of this sub-matrix of F

should generate all the rows of a corresponding M x —% )
. . .. K—M+1
sub-matrix of the given A, consisting of the same columns of

A as picked in this sub-matrix of F.

There always exists a fully dense matrix A such any M x
( f; ) sub-matrix of A is full-rank, since A can be arbitrary.

K-M+1

This sub-matrix of A is of rank min{M, +} = M(from
assumption). Any K rows of the sub-matrix of F , should
generate M linearly independent rows of this sub-matrix of A.
But since the sub-matrix of F has (K —M+1) rows consisting
of all zeros, there is a choice of K rows, such that all these zero
rows are chosen, and we are only left with at most M — 1 non-
zero rows to generate M linearly independent rows of A. This
is a contradiction. Thus, we must have 4 > M(K7§4+1). ]

Remark 7 (Optimality of Short-Dot codes). Following the
initial publication of this work [1], an improved converse has
been obtained in [23] which prove that Short-Dot codes are
optimal.

V. PROBABILISTIC ANALYSIS OF COMPUTATION
TIME FOR EXPONENTIAL TAIL MODELS

A. Expected Computation Time

In this section, we provide a probabilistic analysis of
the computation time required by Short-Dot and compare it
with uncoded parallelization, replication and the MDS coding
strategy [2] as shown in Fig. 9. We follow the shifted-
exponential computation time model as described in [2].
Although the shifted exponential distribution may only be a
crude approximation of the delay of real systems, we use the
shifted exponential model since it is analytically tractable and
allows for a fair comparison with the strategy proposed in [2].
We assume that the time required by a processing node to
compute a single dot product of length N has a cumulative
distribution as follows:

l—e(_“ (lﬁ—l)), Vt>N

Pr(T™ < 1) = [ (19)

R otherwise.

Here, (> 0) is the “straggling parameter” that determines
the unpredictable latency in computation time. Intuitively,
the shifted exponential model states that for a task of size N,
there is a minimum time offset proportional to N such that
the probability of completion of the task before that time
is 0. The probability of task completion is maximum at the
time offset and then decays with an exponential tail after that.
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This nature of the model might be attributed to the fact that
while a processing node is most likely to finish its task of size
N at a time proportional to NV, but an unpredictable latency due
to queuing and various other factors causes an exponential tail.
For an s length dot product, we simply replace N by s in (19),
as suggested in [2]. The analysis of expected computation time
requires closed form expressions of the K-th statistic which
is simplistic for exponential tails. However a more thorough
empirical study is necessary to establish any chosen model for
straggling in a particular environment.

Short-Dot (Worst Case): In the worst case, Short-Dot
codes require the decoder to wait for any K out of P nodes to
finish, each computing a dot product of length s. The expected
computation time for Short-Dot is therefore the expected value
of the K-th order statistic of these P iid shifted-exponential
random variables, which is given by:

P P
1 1 log(p=x)
E[TSD]=s(1+— > T)%s(l—l—#
Hoiepk41 ! H

_ N(P—K+M)(1+10g(ﬁ))

P u (20)

Here, (20) uses the fact that the expected value of the K-th
statistic of P iid exponential random variables with parameter

Lis 7, 4 = 355 4 ~ log(P) — log(P — K) [2]. The
expected computation time in the RHS of (20) is minimized

when P — K = O(M). This minimal expected time is
O(@) for M linear in P and is O(%(WM)) for M
sub-linear in P.

A detailed analysis of the expected computation time for
the competing strategies, i.e., uncoded strategy, replication and
MDS coding strategy is provided in Appendix B. Table II
shows the order-sense expected computation time in the
regimes where M is linear and sub-linear in P.

Note that in the regime where M is linear in P, Short-Dot
outperforms Uncoded Strategy by a factor diverging to infinity
for large P. Similarly, in the regime where M is sub-linear
in P, Short-Dot outperforms MDS coding strategy by a factor
that diverges to infinity for large P. Thus Short-Dot universally
outperforms all its competing strategies over the entire range
of M (also see Fig. 9).

Short-Dot (Specific Sparsity Patterns): Recall that, while
the worst-case recovery threshold of Short-Dot codes is K,
the decoder requires fewer nodes to finish in the best case
for certain specific sparsity patterns (e.g. the pattern obtained
using Short-MDS codes). For this sparsity pattern, Short-Dot
and Short-MDS codes both divide the set of P nodes into
[(N/s)] subsets, and wait for any M out of ﬁ nodes
in each subset to finish. The expected computation time is
therefore the expected value of the maximum of [(N/s)]
iid random variables, each of which is distributed as the
M-th order statistic out of RN—};S)] iid® shifted-exponentials.

9Strictly speaking, when s does not exactly divide N, the statistic of the last
group may not be identically distributed as the length of the dot product is
s’ < s. However, for a simplified analysis, we assume they are also identically
distributed as if the nodes were also computing dot products of length s. This
assumption is in fact a conservative assumption for us because s’ < s.
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TABLE IT
PROBABILISTIC COMPUTATION TIMES

Strategy Expected Time

M linear in P M sub-linear in P

Only one processing node MN (1+ i) O (MN) O (MN)
.. log(P
Uncoded (M divides P)! MY (1 4 L&(®) 0 (MM 10g(P)) © (@ log(P)>
Replication (M divides P)! N (1 + Mlos) e (MN1og(P))  ©(N)
o (pL5
MDS N(14+ 25T a(N) o(N)
P

5 N(P—K+M) log(ﬁ) MN MN P

Short-Dot A (14 ZEEEEL) o(MA) 0 (M¥10g (1))

! Refer to Appendix B for more accurate analysis taking integer effects into account.
2 The expected computation time is lower for specific sparsity patterns of Short-Dot codes, e.g., the pattern of Short-MDS

codes.

UNCORED
MDS CODING

25

15 REPLICATI

u=>5
P=1000

SHORT-DOT

0.5

Expected Time

1 200 400 600 800
No. of Dot Products (M)

1000

Fig. 9. Expected computation time: Short-Dot (using the worst-case recovery
threshold K) is faster than MDS when M « P and Uncoded when M ~ P,
and is universally faster over the entire range of M. For the choice of
straggling parameter, replication is slowest. When M does not exactly divide
P, the distribution of computation time for replication and uncoded strategies
is the maximum of non-identical but independent random variables, which
produce the ripples in these curves (see Appendix B for details). The expected
computation time of Short-Dot codes can be improved further using specific
sparsity patterns, e.g., the pattern of Short-MDS codes.

The computation time at each node is given by: s + T’
where T’ is an exponential random variable with mean s/ .
Let us denote the M-th order statistic out of W such iid
random variables as T(/ sy~ The cumulative distribution of T(/ M)
is obtained as:

W P . P _

Z (F(N/m) (1 _ e—%’)’ (e—%') [V/5)]
i= !

The expected computation time of Short-Dot and Short-MDS

codes (Tsp/smps) is given by: s + T¢h /SMDS where T, /SMDS

is the maximum of [(N/s)] iid random variables distributed

as T(/M). Thus,

21

[V /5)1
) @)

Finally, the expected computation time is obtained as:

E[Tsp/smpsl = s + E[Tgp svps]

o0
=s +/ Pr(Tspsmps > 1)dt
0

o0 [(N/$)1
s +/ (1 - (Pr(T(/M) < t)) ' )dt
0

Asymptotic Analysis: In the asymptotic regime, when M,
P, s and N are all very large, we can analyze the expected
computation time of this strategy using techniques from [22].
Please see Appendix C for a background.

For simplicity, we let the pdf f(t) = pwe ™! and the cdf
F(t) = 1—e™#! for an exponential distribution with parameter
4. Then, the distribution of T(/ M) converges in probability to

szr(l—r))
nf3(t)
where r is the ratio of M and [TP] which is assumed to be

a Gaussian random variable distributed as: A (sz,,

fixed between 0 and 1, and 7, = F~!(r) = %llog (#m).

Now, TS/D /SMDS is the maximum of [%1 iid random variables
distributed as T(/ M- In this asymptotic regime, the maximum
of [%1 iid Gaussian random variables, each distributed as

N (st,, Szr(lfr)), can be approximated as follows:

nf2 ()
s2r(1 —
E[TS/D/SMDS] ~ sty + %\/ 21og [(N/s)]
(1 o T | TV/9)1Y2M o TN/
" us/(PYP = MT(N/s))

Now we explicitly provide a regime, where the speed-ups
from Short-Dot (even in the worst-case) diverges to infinity
for large P, in comparison to all three competing strategies -
MDS Coding, Replication or Uncoded strategies. Interestingly,
as we discuss in Remark 8, in this regime a further reduction
in computation time by a factor of log(log P) is obtained when
we use Short-Dot codes with specific sparsity patterns (e.g. the
pattern obtained using Short-MDS codes) as compared to
waiting for the worst-case K every time.

Theorem 5. Suppose M scales as ® (%). Then, Short-Dot

with K = P — % has an expected computation time (scaled

by N) as E[ZSD] = 0(1°glgg%f)) that decays to 0 as P — oo.
In contrast, the expected computation time (scaled by N) for
MDS coding, replication and uncoded strategies scale as Q(1)

and thus do not decay to 0 as P — o0.

Proof of Theorem 5. For the proof of this theorem, we sim-
ply substitute the values of M and K in the expres-
sions of expected computation time as follows. We assume



6184

1.5 REPLICATION
1 ——
0.5 UNCODEH

MDé CODING

Log,(E[TD/N
o

-1.51  SHORT-DOT

) . ;
0 20 40 60 80 100
Log,(P)
REPLICATION
Z 0
E - MDS CODING
) /'
32 UNCODED|u=5
M=P/log P
-3} SHORT-DOT
-4

0 20 40 60 80 100
Log,(P)

Fig. 10. Scaling sense comparison of expected time of Short-Dot with other
strategies: Plot of the Log of Expected Computation Time (scaled down by N)
with log(P) where P is the number of processing nodes, for the regime
M = P/logP. We observe that Short-Dot offers significant speed-ups
compared to uncoded, replication and MDS coding that diverge for large
values of P.

P .
ChogP = M < Clog p for constants ¢ and C respectively. For

uncoded strategy, we thus obtain,

E[Tyc] M (1 N log(P)) . ¢ (1 L log(P))
JZ log P JZ

N P
> ‘- Q (1) where ¢ is a constant. 23)
U
For replication, we obtain,
E[T; M log(M
el _ (1+ ﬂ) >1=0Q(). (4
N Pu
For the MDS Coding strategy, we obtain,
lo
E[T; g (P M)
%= +—"" > 1=0(). (25)

Now, we consider the Short-Dot strategy with K = P — %
Note that the inequality K > M only requires that P > %M
which is easily satisfied for log P > %C. Now let us calculate
the expected computation time for Short-Dot.

ElTspl _ (P — 1<+M)(1 | loe (7% ))

N P 7
- 3C (1 N log(2log P)) (log(log P))
~ 2log P U logP 7

Thus, the speed-up offered by Short-Dot in this regime is

logk()lgw,o and thus diverges to infinity for large P, as illustrated
Fig ]

Remark 8 (Improvement using Short-Dot with specific spar-
sity patterns). Recall from Equation (23) that Short-Dot codes
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with specific sparsity pattern (and Short-MDS codes), in the
asymptotic regime, have an expected computation time of

P
i l_i_logiprr(N/m [(N/s)1v/2M log [(N/s)]
# 1~/ (PY(P — M[(N/s)1)
Ignoring integer effects, for the case where M scales as

® (é and K = P — % the expected computation time

scales as follows:

E[7sp/smps] _ O( 1 )
N logP)’

Thus, it offers a speed up of log P over competing strategies
and log (log P) over Short-Dot codes with a worst case K.

B. Deadline Exponents

Here we include a brief discussion on deadline exponents
(that were originally introduced in [47] for coded convolu-
tions) for Short-Dot codes under different sparsity patterns.
The deadline exponent is defined as:

—Pi(t
im —F7®)

—>00 t

(26)

where Py(t) is the probability of failure at time ¢, ie.,
the probability that an insufficient number of nodes have
finished their computation within the deadline ¢ in the limit
of large t. Interestingly, this deadline exponent is determined
by the worst-case recovery threshold, even though the best
case and average case recovery threshold may be lower. What
this implies is that a sparsity pattern with lower worst-case
recovery threshold has a better deadline exponent, i.e., the rate
of decay of the probability of failure to finish within a deadline
t when the deadline is large, even though it may differ in
the number of nodes required to finish in the best-case and
average-case and hence, also in the expected computation
time.

We now derive the deadline exponent for Short-Dot codes
(with the sparsity pattern of Short-MDS codes). As a first
step, we compute the probability that the M-th statistic among
W does not finish by time 7.

Pr (T > 1 =)

M-1 , p i T
-3 (W) (1- e )) (7)™ [
“ i

i=0

ui—s)P

~ 0O (e STN/S)]

plt=s) M-1 .
(e s — 1) )When t is large. (27)

Now, Py(t) is obtained by computing the probability that
at least one out of the [(N/s)] subsets did not have M nodes
finish. Thus,

Py(1)
(/91

- >

i=1

(r(Ni/sﬂ)(Pr (Tlypy > 1 —9))'
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/ [V/9)1
=1— (1=Pr (T}, > 1 —9))

_ ult—s)P uli—s) M—1
~ @ ([(N/s)]e T (eis —1)

when ¢ is large. (28)

( P _uy 1)
[(N/$)]
(P — Ksp/smps + 1),

Finally,

e
fim —EEO _

t—00 t

v R v R

(29)

_ P
where Ksp/smps = P — r7m7 + M.

In comparison, we also derive an upper bound on the dead-
line exponent for Short-Dot codes with other sparsity patterns
with the worst-case recovery threshold K = P — % + M as
follows:

Py (1)
< Pr (K -th statistic among P does not finish by time r)

K (P) —u(t=s)\ i _ ut=s) P—i
=2 () (=) ()
i=0 !

u(t—s (1—s K—1
~ 0 (e_/ S (eﬂ w2 1) )when t is large.  (30)

Therefore,
—Pe(t
1im¢55(P—K+1), 31)
t—>00 t S
where K = — % + M. Thus, the deadline exponent is

determined by the worst-case recovery threshold even though
the expected computation time depends on the number of
nodes required in the best case and average case. The sparsity
pattern with the lowest worst-case recovery threshold also has
the best deadline exponent, i.e., steeper rate of decay of the
failure probability when the deadline is large.

VI. ENCODING AND DECODING COMPLEXITY

In this section, we analyze the encoding and decoding
overhead of our proposed Short-Dot codes.

A. Encoding Complexity

Even though encoding is a pre-processing step (since A is
assumed to be given in advance), we include a complexity
analysis for the sake of completeness. Recall from Section II1
that we first choose an appropriate matrix B of dimension
P x K, such that every K x K square sub-matrix is invertible
and all (K — M) x (K — M) sub-matrices in the last (K — M)
columns are invertible. Now, for each of the N columns of the
given matrix A, we perform the following.

Set U —~{(G—-1),....,0+K—-—M—-1)} mod P)+1

Set BY < Rows of B indexed by U

Solve for Z; : (BY, st Zj 1=~
Aj
Z;

For each of the N columns, the encoding requires a matrix
inversion of size (K — M) x (K — M) to solve a linear system

U
Bcol l:M[Af]

Set F;=B
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of aligns, a matrix-vector product of size (K — M) x M and
another matrix vector product of size P x K.

The naive encoding complexity is therefore O(N((K —
M)? + (K — M)M + PK)). Note that effectively there are
only % different column sparsity patterns for this particular
design discussed in this paper. Thus, there are effectively %
unique BYs, and thus % unique matrix inversions can suffice
for all the N columns, as sparsity pattern is repeated. Thus,
the complexity can be reduced to O(%(K — M) + (K — M)
MN + PKN) = O(%(K — M)* + 2PKN).

This is higher than the MDS coding strategy [2] that has an
encoding complexity of O(M N P)), but it is only a one-time
cost that provides savings in online steps (as discussed earlier
in this section).

Reduced Complexity using Vandermonde matrices: The
encoding complexity can be reduced further for special choices
of the matrix B. Let us choose B to be a Vandermonde matrix
as given by:

Y TR |
hy ! hy 1

B = : (32)
S S TR |

Here, h1, ha,...,hg € R, and are all distinct. This matrix B
satisfies all the requirements of the encoding matrix. All K x K
sub-matrices of B are invertible, and all (K — M) x (K — M)
sub-matrices in the last (K — M) columns are also invertible.
Thus, this matrix can be used to encode the matrix F. For
each of the N columns of F, the encoding requires solving a
linear system of aligns for Z;, as given by:

(B mrx)Zi = — Bl 1.ulA)1. (33)
Here U denotes a set of (K — M) indices € {1,2,..., P}.

The matrix-vector product BZ)[ 1.m[A ;] is equivalent to the
evaluation of a polynomial of degree (K — 1) with the K
coefficients as [AJT.O(K_M)Xl] at (K — M) arbitrary points
given by {h;|l € U}. Once this product is obtained, the linear
system of aligns reduces to the interpolation of the (K — M)
unknown co-efficients of a polynomial of degree (K — M — 1)
(which is Z;), from its value at (K — M) arbitrary points as
given by {h;|l € U}. Once Z; is obtained, we perform the

following operation:
Aj
F;=B |: Zj] .

This step is equivalent to the evaluation of a polynomial of
degree (K — 1) at P points given by {i;|l = 1,2, ... P}. Thus
we decompose our encoding problem for each column of A
into a bunch of polynomial evaluation and interpolation prob-
lems, all of degree less than P. Now, from [64], [65], we know
that both the interpolation and the evaluation of a polynomial
of degree less than P, at P arbitrary points is O(P log?(P)).
Thus, the complexity of encoding is O(N P log?(P)).

(34)
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B. Decoding Complexity

During decoding, we get K dot products from the first K
processing nodes out of P. We then perform the following
operations.

Set X <« Indices of the nodes that finished first

Set BY < Rows of B indexed by X

Set vgy| < F Xy

Set Ax = [(a1,x), ..., {am, x)17 < [(BY) 1My

Output: (aq,x),...,{ay,x)

We solve a system of K linear aligns in K variables and
use only M values of the obtained solution vector. Thus,
effectively we do a single matrix inversion of size K x K
followed by a matrix-vector product of size K x M. The
decoding complexity of Short-Dot is thus O(K 3+ K M) which
does not depend on N when M, K <« N. This is nearly the
same as O(M> + M?) which is the complexity of the MDS
coding strategy [2].

Reduced Complexity using Vandermonde matrices:
Similar to encoding, using Vandermonde matrices can reduce
the decoding complexity further. As already discussed,
we choose the encoding matrix B as a Vandermonde matrix as
described in (32). The decoding problem consists of solving
a system of K linear aligns in K variables.

[B¥ 1w =v (35)

Here X is a set of K indices C {1, 2, ..., P}. The problem of
finding w is equivalent to the interpolation of the coefficients
of a polynomial of degree (K — 1), from its values at K
arbitrary points given by {h;| [ € X}. Again, from [64], [65],
the interpolation of a polynomial of degree (K — 1), at K
arbitrary points can be done in O(K log?(K)), which thus
becomes the decoding complexity.

VII. SHORT-DOT WITH ERRORS INSTEAD OF ERASURES

While we focus on the problem of erasures in this paper,
Short-Dot can also be used to correct errors. Consider the
scenario when instead of straggling or failures, some process-
ing nodes return entirely faulty or garbage outputs, in a
distributed system and we do not know which of the out-
puts are erroneous. Observe that the encoding matrix B of
Short-Dot is actually the transposed generator matrix of a
(P,K) MDS code as it requires all K x K square sub-
matrices to be invertible.'® From coding theoretic arguments,
Short-Dot codes designed to tolerate (P — K) erasures, can
also correct L(P—EKZJ errors. First observe that if the code
can tolerate (P — K) erasures, then the Hamming Distance
between any two code-words should at least be (P — K + 1).
Hence, the number of errors that can be corrected is
L(Hammmg ? Istance 'I)J which is L@J. However observe that
Short-Dot is a real-number error correcting code, and thus
requires a decoding algorithm that satisfies the following:

o The decoding works for real numbers and is not limited
to finite fields alone.

10However all generator matrices of MDS code might not be an encoding
matrix for Short-Dot as it requires an additional condition that all (P — K) x
(P — K) square sub-matrices in the last (P — K) columns of B are invertible.
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o The decoding algorithm works for various choices of the
encoding matrix B such as Gaussian random matrices'
and is not limited to Vandermonde matrices, i.e. poly-
nomial based MDS constructions such as Reed Solomon
codes [18].

We observe that the real number decoding problem can be
recast as a sparse reconstruction problem borrowing ideas from
standard compressive sensing literature [66] which also yields
concrete, decoding algorithms. We show that the problem
reduces to an /p minimization problem, which can be relaxed
into an /1 minimization, or solved using alternate sparse recon-
struction techniques, under certain constraints on the encoding
matrix B as derived in [66]. Clearly these decoding algorithms
which are effectively solving a sparse reconstruction problem,
work for real numbers and are not limited to finite fields alone.
They also works for different choices of the encoding matrix
B such as Gaussian random matrices.

For the sake of completeness, we include a derivation of
how the decoding problem reduces to a sparse reconstruction
problem here. Algorithms to solve such sparse reconstruction
problems have been widely studied in compressive sensing
literature [66].

Recall that, we proposed a strategy to compute Ax for
a given matrix Ayxy = [ai,as,...,ayl", by first con-
structing a matrix Fpyxpy with (P > M) such that each
N-length row of F, i.e., fl-T has at most N(P_#l non-zero
elements and then computing f iTx in P parallel processing
nodes. In this section, we show that using this strategy, we can
successfully compute Ax, if the number of errors is at most
L(P—;KZJ out of P parallel dot products, as stated in the
following theorem.

Theorem 6. Suppose that a matrix Apyxn =
lai,az,...,ay]" is encoded using Short-Dot code into
a matrix Fpyy with (P > M) such that each N-length row
of F, ie., f IT has at most w non-zero elements.
Now, for any vector x, the matrix-vector product Ax can
be recovered from Fx, provided there are at most L@J
errors in Fx.

The proof is provided in Appendix D.

VIII. DISCUSSION
A. More Dot Products Than Processing Nodes

For the regime where M > P, the same encoding technique
can be applied by first dividing the matrix A into % smaller
sub-matrices of size m x N such that m < P, and applying
Short-Dot on each of these sub-matrices. Each processing node
now computes % dot products each of length s = w
instead of a single dot product, and the fusion node only
waits for the first K out of P nodes to finish. If the rows
with same sparsity pattern are grouped together and stored
in the same processing node, then the communication cost is

significantly reduced during the online computations, since the

UFor certain applications, Gaussian random matrices might sometimes be
more preferable over polynomial based code constructions over the field
of real numbers. One reason is that the condition number of Vandermonde
matrices are particularly high, causing more numerical errors.
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same s elements of the unknown vector x are accessed by a
particular node.

However, in this regime, the number of dot products per-
node, i.e., % can also be varied across different strategies,
varying the per-node computation complexity. Thus K =
x(s, m) depends on both s and m. In fact, K = x(s,m) =
% — P 4+ m. The MDS coding strategy is a special case of
Short-Dot with s = N and K = (N, m) = m. If the full
vector x can be communicated during computation, i.e., s can
be as high as N, then the MDS coding strategy (Short-Dot
with s = N) may be used because its computation complexity
per-node can be lowered by varying m for the same straggler
tolerance as compared to Short-Dot with s < N. To see this,
let us take an MDS coding strategy with K = m and choose
another Short-Dot strategy with s < N such that x (s, m’) = m.
The computational complexity of MDS coding (Short-Dot
with s = N) is actually smaller than that of Short-Dot with
s < N (since % < %s = %). However, using
s < N is beneficial in communication constrained scenarios
where communicating the entire x is much more expensive
than computation. For a communication limited regime, one
might therefore prefer to use Short-Dot with s < N and
K =x(s,m') = % — P + m’ over the MDS coding strategy
which sets s = N.

B. Communication and Computation Benefits
of Shorter Dot Products

The major advantage of using Short-Dot codes over the
MDS coding strategy in [2] is that the length of the commu-
nicated input (portions of x) as well as the pre-stored vectors
(rows of F) is shorter than N. It is thus applicable in systems
where the principle bottlenecks in computation time is in com-
municating the input x to all the processing nodes, and it may
not be feasible to broad-cast (multi-cast) x to all processing
nodes at the same time. Thus, it is also useful in applications
where communication costs are predominant over computation
costs. For the case where M < P, i.e. the number of dot
products is less than the number of available nodes, Short-Dot
also has additional advantages over [2] in computation time
under stragglers under an exponential time model.

C. Computation Time Model

Following [2], we assume that the computation time at each
processing node has an independent and identical exponen-
tial distribution with parameter u where pu scales with the
task size. Exponential distributions and independence across
nodes admit simplified expected time analysis while being a
crude approximation of experimental observations. In several
cases, even though the distribution is not exactly exponential,
but the tail might be exponential. Analysis of the expected
computation time under non-exponential computation time
distributions (say Pareto or Weibull to start with) would be
an interesting direction of future work.

D. What if the Input x Can be Encoded in Addition to
Encoding of the Matrix A?

Our recent work [30] (that builds on [27]-[29]) as well as
concurrent work of Yu ez al. [31] allows encoding of x as well.
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This improves the recovery threshold, but requires encoding
of x on the fly, which in turn requires an encoding overhead
of ®(PN) at a centralized master node or requires each of
the worker nodes to access to all the entries of x which might
be too expensive for certain applications, such as, in fully
distributed and/or time-critical scenarios.

APPENDIX A
PROOF OF THEOREM 2

Proof of Theorem 2. Recall from the Short-Dot code con-
struction that,

AMXN

BpkA=Bpyx [Z(K AN
—M)x

:| = Fpxn, (36)

where F is our final encoded matrix of desired sparsity. Here
we choose B to be a matrix whose all K x K sub-matrices
are invertible. We impose the block-diagonal sparsity pattern,
as shown in Fig. 11, on matrix F and then use a Short-Dot
code construction with K = P — ﬁ + M as discussed
before. Note that, this sparsity pattern is achievable by Short-
Dot as each column of F has P — ﬁ = K — M zeros.
Each node stores a different row of F and computes its dot
product with the relevant portion of x.

Let us now divide all the nodes into [N/s] equal subsets,
such that, the first subset consists of the nodes that store the
first % rows of F, the second subset stores the next ﬁ
rows and so on. It is sufficient to show that any M nodes
from every subset suffices to reconstruct all the required dot
products.

We rewrite Equation (36) using the following matrix parti-
tioning notations as follows.

|:A:| Aol W1|Acol W2|~-~|Acol W N
B| |=B s
Z Zo W1|Zcol W3|--~|Zcol W[ﬂ]

:[Fcol Wlchol W2|~--|Fcol WTMT]’ 37

Here A, Z and F are all partitioned vertically into [%1 blocks,
each of width s, except possibly the last block which may be
of width s’ < s when s does not exactly divide N. The index
sets are as follows:

Wi =1:s,
Wr =s5+1:2s,

N
Wrﬂ1 =(—=1- 1)s+1:Na
s s

or more generally Wi = (i — 1)s + 1 : min{is, N}. Thus,
Acol Wi» Zeot W, and F )y, are sub-matrices of dimensions
M x s, (K— M) xs and P x s respectively (s may be
replaced by s’ for i = [%1), consisting of the columns
of the respective matrices indexed by W;. Also observe
that,

¥y

Wi
Ax = ZACOI w;x .
i=1
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ety

P 0| 0| o] of o] o] o] o] o] of o] o] o] o] o[ o] o] o] o] o] &
ﬁﬁ@j 0| of of o] o] of o[ o[ o] o[ o] o] o] o] o] o] o] o] 0] o] 0
0| o] o] of o] o o] o] o] o] of of o] o] of o] o] o] o] o] &
0/ 0| 0| 0 0] 0] 0| o[ o[ 0/ o of o] o] 0] o] of of of o 0
0/ 0| 0| 0| 0] 0] 0| 0| 0| 0| of o] o[ o] o] 0| 0] 0] 0] 0] 0
0/ 0| 0| 0] 0] 0] 0| 0| o[ 0] of o] of 0] 0] of o of o] o] 0
0| o] o] o] o] o] o] o] of o] 0] 0] of 0] 0| 0| 0| 0] 0| o] 0
0| of o] o] o] o] of of of o] of 0] of o o[ 0| 0/ 0] 0| 0] 0
0/ 0| 0| 0| 0] 0] 0] 0| 0f of 0] 0] of 0] 0| 0| 0| 0| 0| o] 0

0/ 0| 0| 0] 0] 0] 0| 0| 0| of 0] 0] 0f 0] 0] 0 0f 0] 0] 0f 0f

0/ 0| 0| 0| 0 0] 0| 0| 0f 0of 0] o] of 0] 0] o of 0] 0] of of

0] 0| 0] o] 0] o] 0] o] o] o] o] o] o] o] o] o] o] 0] 0] 0] o]

Fig. 11.

Short-Dot code with K = P — ﬁ + M as every column has P —

Now,

Acol W
B COI i
|:Zcol Wi

:| = [F col W,-]

Acol W; Wi _ W;
Zcol Wi * a [FCOI Wi]x .

For the chosen sparsity pattern, only (— P—K+ M)
rows of Fyy, are non-zero and all the rest are all 0. And
interestingly, these non-zero rows of F, yy, turn out

— B [ (38)

N
il
to be the rows that are essentially stored in the i-th subset
of nodes, one at each node (see Fig. 11). If we are able to
show that any M rows out of these P_ non-zero rows of

N
F oy, can linearly span all the rows ‘of Acol W, then we
can conclude that any M dot products from the i-th subset of
nodes can suffice to reconstruct the product A, W,.fo , and
the theorem would be proved.
Without loss of generality, we show this for i = 1. The top
L (=P-K + M) rows of F., yy, are non-zero. Let U =
{ P

T8 +2
rows that are 0 in Fey; ,. Clearly U has P —

r

., P} denote the indices of the remaining

——K M
4

N =P—-—K+M)
indices of rows that are non-zero in F w, W1 Observe that,

indices. We also let /¢ denote the top

78
B |:Acol W1:| — |:B1le 1:M Bzc/;zl M+1:K] |:Acol W1:|
Zeol Wy Blo 1 Blot mrr:xd [ Zcol W
uc U
— Flo Wi | — Fiy Wi 39
FU 0 (39)
col Wi

This leads to,

uc Uc _ U
Bcol leACt’/ Wi + Bcol M+1:KZCU[ Wy = Fcol Wi» and

(40)

BY, A wy + BY, M+1:k Zeol Wy = 0. (41)

From Equation (41), Z.y vy, = —[BZC{,I M+1:K]_IBZC{7[ M

Aol w, (recall that [B%, M41:x] 18 invertible). Substituting

this value in Equation (40),

Bzc/{ol 1:m) Acol W
(42)

uc u -
(Bcol M — Bcol M+1:K[Bcol M+1:K]

Fcol W

Next, we will show that any M rows of F%L[ Wy, can be
linearly combined to generate all the M rows of A., w,.

Sparsity pattern of matrix F py n: (Left) When s divides N (Right) When s does not divide N. Note that,
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Ky §'<s
— >
P 0] 0| o] o o] o o o] o] o] o] o] o] o] of o] o] o]
TN/s| 0| 0| of o[ o] o] of o] o[ o] o] of o] of o] o] o] of o}
0 o[ of of o] o] o[ o] o] o] o] o] of o] of o] o] o]
o[ o] o[ o] o[ o] of 0| o[ o] o[ o o] o] o o[ o] o] o
0o o] o[ o] o[ o] of 0| o[ o[ o[ o] o] o] of o[ 0] 0] o
0| 0| o[ o o[ o] of 0| o[ o] o] o] of of o] o] o] o] of
0| o of of of of of of o] of 0] 0| 0] 0 0| 0| 0f of 0
o[ o[ o] o] o[ o[ o] o] o of 0] 0] 0] 0] o[ 0/ of of o
o[ o[ o] o] o[ o[ o] o] o] of o] o] 0] o] 0/ o[ o o] of
0] | 0| 0| 0f 0] 0| 0 0] of of o] of of o] o] o] o] o] of o
0| 0| 0| o o[ 0] 0] o] of o] o] o] o] o] 0| 0] o[ 0] o] 0] o]
o[ o[ o] o] o[ o] o] o] o[ o] 0] o] o] o] o[ 0] 0] 0] 0] 0] 0]

both these patterns can be achieved by

U‘/Pﬁ = K — M zeros.

. . . . . Z/{C
This will be possible if the X M matrix (Bcol M=

BZC{:I M+1:K[B%l M+1:K]_IBZC{;1 le) is such that any M rows
are linearly independent.
Consider a sub-matrix formed by picking any M rows of

BY,

vol 1:M . Observe

uc U —1 pU
- Bcol M+1:K[Bcol M+1:K] Bcol 1:M

that, this sub-matrix can be represented as:

<Bcol v — B vk UBUy vk ) B le)
where & C U€ such that |S| M. Note that, the sub-
(Bfol 1~ B mrk 1By wrk )T Bl 1) of
dimension M x M is the Schur complement of BZC{,I m+1:x Of
dimension (K — M) x (K — M) in the bigger K x K matrix:

matrix

S S
I:BZC/;JZ 1:M BZC/?I M+1:K] .
Bcol 1:M Bcol M+1:K
Therefore,
S S
Det Bcol M Bcol M+1:K —
BY BY -
col 1:M col M+1:K
174
Det(Bco[ M+1-K)X
Ll
Det (Bcol 1:M Bcol M+1: K[Bcol M+1: K] col l:M) >
(43)
wh%re Det(+) genotes the determinant of a matrix. Because
B . B ) . . .
[ gol :M - eol MALK | is again a K x K sub-matrix of B
Bcol 1:M Bcol M+1:K

and the matrix B was chosen such that all K x K sub-matrices
are invertible, we have

BS, .
Det (|:BZL;;)1 M
col 1:M

implying

BS
Bi?[ M+1:K:|) 7& 0,

col M+1:K

col lM)#O

using Equation (43). Therefore, any M rows of the matrix
u u ~1gU
(B - Bco[ M+1: K[Bcol M+1: [(] Bcol l:M) are always

col 1:M
linearly independent. In fact, the matrix (B%’OL', M

Det (Bcol 1 — By a1k [BYy vk 1™

c — .
BY k[ BY kT BY l:M) is the transpose of the

generator matrix of a (FTP], M) MDS code. |
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APPENDIX B
ANALYSIS OF EXPONENTIAL DISTRIBUTIONS

We assume that the time required by a processing node to
compute a single dot product follows an exponential distribu-
tion and is independent of other parallel processing nodes.

Let us assume, the time required to compute a single dot
product of length N, follow the distribution:

Pr(T™ < 1) = {(1) —exp(—u (y—1)) YizN

. (44)
otherwise.

Here, (> 0) is a straggling parameter, that determines the
“unpredictable latency” in computation time. We also assume,
that if the length of the dot product is s where s is the sparsity
of the vector, the probability distribution of the computational
time varies as:

p(E-1) Vizs

) (45)
otherwise.

Now we derive the expected computation time using our
proposed strategy and compare it with existing strategies in
the regimes where the number of dot products M is linear
and sub-linear in P.

Table II shows the order-sense expected computation time
in the regimes where M is linear and sub-linear in P.

A. Short-Dot Coding Strategy

The computation time over each of the P processing nodes
behaves as iid exponential random variables following the
distribution:

Pr(T(5)§I)=1—eXP(—/l (g—l)) Vi>s. (46)

Now, the expected computation time is the expected value of
the K-th order statistic of these P iid exponential random
variables, which is given by:

log(=L—
E[Tsp] & s(l + 70‘%(”"{))
Y2
_ N(P—K+ M) log(2%)
- - (1 + p ) (47)

Here we use the result (from [2]) that the K- th order statistic
of P iid exponential random variables with parameter 1, is
given by:

P—-K

1
i

~] —

1

i

For large P and K <
iz -
=i

Note that the expected computation time is minimized when
K =P — O(M), and is given by:

MN log(P/M

, we can approximate the following:

;“wEM“

=Ky

l— ~ log(P) — log(P — K). (48)

||'M

(49)
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If M = O(P), the expected time is O(@). If M =

o(P), the expected time is O (%WM)). Note that s =

w is actually an upper bound on the length of each

dot product achieved using Short-Dot. Thus the expression
obtained in (49) is an upper bound for the actual expected
computation time. Thus we use O(-) instead of O(-).

B. Existing Strategies

1) One Single Processing Node: For one single processing
node to compute all M dot products of length N, the compu-
tation time is distributed as

t
Pr(TMM <) =1— —u | — 1)) vi> MmN
r( < exp | —u (4w >

Thus, the expected computation

derived to be
1
N (1 + _) |
u

2) Uncoded Parallelization Strategy: Now, consider an
uncoded strategy where the computation is simply divided
into P dot products and allocated to P processing nodes.
We assume that each processing node is computing only one
dot product at a time. We wait for all the processing nodes
to finish computation. Note that integer effects arise when M
does not exactly divide P. Some rows can be divided among
(%1 processing nodes, while the remaining are divided among

time can be easily

E[Tip] = (50)

| £| processing nodes. Let m; and my denote the number
of rows that get (%1 processing nodes and L%J processing
nodes respectively. Clearly the values can be obtained by

solving:-
] = 5]

Now, we have two groups of exponential variables: one
group consisting of m [%1 iid exponential random variables

N L P
of task size W, and another group consisting of ms | 47 |

(5D

M

iid exponential random variables of task size % The two

groups are independent of each other. Note that we assume that
N is large compared to P and is divisible by P, | £ |, | £,
so that the integer effects with respect to N do not appear
and the plots can be scaled with respect to N for ease of
understanding.

The expected computation time is thus given by the expec-
tation of the maximum of all these P = m f%} + my L%J
exponential random variables.

Pr(Tyc <t) =

(e ()
(ol ()
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The expectation is thus obtained as

E[Tycl = /OO (I = Pr(Tyc <t))dt. (52)
0

This expression is numerically computed using MATLAB
and plotted in the plot of theoretical computation time in
Fig. 9. When M divides P exactly, the expressions are
simpler. The computation time for each processing node is

distributed as
Pt
e (o (5 =)
MN

Vi>—.
P

Pr(Tyc <t) =

The expected computation time is the maximum of P such
independent and identically distributed random variables,
as given by:

MN log(P
ElTyc] = (1 4 Lo )) | (53)
P U
The expected time for this uncoded strategy is ® %ﬁp))

regardless of whether M is linear or sub-linear in P. Our strat-
egy Short-Dot thus offers a speed-up of Q(log(P)) in expected
computation time when M is linear in P, as mentioned in (49),
and thus outperforms by a factor that diverges to infinity for
large P.

3) Replication Strategy: When a (P, M) replication strategy
is used, we separate the matrix into M rows and repeat each
row P/M times, so as to obtain a total of P tasks. Note that
integer effects arise when M does not exactly divide P. Some
rows are repeated f§-| times, while the remaining are repeated
L%J times. Let m; and m, denote the number of rows that
are repeated |—§-| times and L%J times respectively. Clearly
the values can be obtained by solving:-

e ] =7]

Now, the minimum of f%-| (or similarly L%J ) iid expo-
nential random variables is also exponential with parameter
scaled by [£] (or similarly | £ | ). The expected computation
time is thus given by the expectation of the maximum of m
independent exponential variables with parameter scaled by
f%] and m> independent exponential variables with parameter
scaled by L%J

(54)

Pr(Trp <1t) =
P t m
1-— —ul=1l=-1
(oo (el G5 -1))) -
P t "
1 — —u|l=|{=-1 Vit>N.
(r-oe (el 5-1))) v
The expectation is thus obtained as:
o
E[Trp] =/ (1 —Pr(Trp < 1)) dt. (55)
0

This expression is computed using MATLAB in the plot
of theoretical expected computation time (Fig. 9). When M
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exactly divides P, the analysis is simpler, and the two types of
exponential distributions are identical. Following an analysis
similar to [2], it simplifies to the expectation of the maximum
of M iid exponential random variables, each of which is the
minimum of P/M iid exponential random variables.

M log(M)

Py ) '
When M is linear in P, the expected computation time is
@(@ log(P)) while our strategy achieves O(N) in this
regime. When M is sub-linear in P, the expected computation
time is ® (N) while Short-Dot achieves O (%(HM)) that

offers speed-up by a factor diverging to infinity.

4) MDS Coding Strategy: The matrix is separated into M
rows and coded into P rows using a (P, M) MDS code. Thus,
each processing node effectively computes a dot product of
length N. We have to wait for any M processing nodes to
finish. Assuming the computation of each processing node is
independent, following an analysis similar to [2], we obtain
that,

E[Trpl = N (l + (56)

(57
Y7

When M is linear in P, the expected computation time is
@(N) as compared to our strategy that achieves O (4.
However, in the regime where M is sub-linear in P,
the expected computation time is also @ (N) while our strategy

achieves O (%(HM)) , and thus outperforms MDS codes

by a factor that diverges to infinity for large P.

E[Typs] = N (1 4 log(P) B log(P — M)) .

APPENDIX C
ORDER STATISTICS

In this appendix, we include two important results on order
statistics from [22] that are used in the derivation of expected
computation time for Short-Dot and Short-MDS codes. Let us
denote the pdf and cdf of an exponential random variable with
parameter x4 be f(t) = ue #' and F(t) = 1 —e #!. Then the
following results hold.

Lemma 3 (Central Order Statistics). For a fixed r lying in
0, 1), let T('m) denote the (rn)-th order statistic out of n iid
random variables. Then,

r(l—r)
T, 5N (6, ——2),
o " onf)
where 5 denotes convergence in probability and t, = F~(r).

Lemma 4 (Maximum of normal random variables). The
expectation of the maximum of n iid random variables, each
with distribution N (u, 02), is approximately equal to u +

o+/2logn for large n.

APPENDIX D
SHORT-DOT FOR ERRORS INSTEAD OF ERASURES

Proof of Theorem 6. Recall the construction of F py .

Fpuy = BpugAgxn. (58)
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Fig. 12. Theoretical plot of expected computation time of replication taking

P = 1000 and number of dot products M is varied from 1 to P.

Here Ag,y is the matrix formed by appending (K — M)
rows after Apsxn, so as to enforce desired sparsity on F p, .
And Bpyg is a matrix such that every square sub-matrix is
invertible. Now assume we obtain erroneous dot products in
the form

Ypx1 = FpxmMXnx1 +epxi, (59)

where ep .1 denotes the error vector that corrupts some of the
values of FpupXnxi-

Ypxi = FpxmXnxi +epxi
= Bpxk AkxNX¥Nx1 t+epxi
= Bpxkqkx1 +eprxi- (60)
Here we define g, = ZxxNxle as a K x 1 vector such
that its first M values correspond to the M dot products we
originally wanted to compute. Thus, reconstructing ¢ in the
presence of errors is sufficient to reconstruct our M original
dot products. We first claim that there exists a unique ¢ such
that y = Bq + e as long as |le||p < @ and B is a matrix
such that every square sub-matrix is invertible. Since B is
full rank, there exists a full-rank annihilating matrix H of
dimension (P — K) x P such that HB = 0. Thus,
y=Hy=H(Bq+e)= He. (61)
Now, if we can uniquely find e, then g can also be uniquely
found since Bqg = y — e and B is full-rank. Thus we are
only required to prove the uniqueness of e. We will use the
following lemmas.

Lemma 5. There exists a unique vector e such that’y = He
if and only if

Spark(H)

ellp <
[lel] >

Proof of Lemma 5. Recall Spark(H) is the minimum number
of columns of H that are linearly dependent. For contradiction,
assume there exists two vectors ey and e such that ||e1||p <
w and ||e2]lo < w. We also assume that, y =
He; = Hey;.

1,000

integer effects into account: straggling parameter u = 5, total processing nodes

Thus, H(e; — e2) = 0. Or, (e; — e3) is a non-zero vector,
that lies in the null space of H. Now

ller — e2]lo < [Support(e;) U Support(e)]
< [Support(e1)| + |Support(ez)]

< Spark(H). (62)

Thus there exists a non-zero vector in the null space of H
such that its number of non-zero entries is less than Spark (H).
Contradiction! Thus, e; = e;. This means that if there is a
vector e such that ||e]|p < w, then it is always unique.
Now we prove it the other way round.

Assume that there exists a unique e such that y = He. For
contradiction, assume that Spark(H) < 2||e||o. Then, there
exists a non-zero vector § of sparsity at most 2||e||o such that
H§ =0.Leteg = e+ 6. Then, y = He = H(eg — §) =
Heg. Thus e is not the unique solution. Contradiction! Thus,
Spark(H) > 2||e||o only if e is unique. |

Lemma 6. Let B be a matrix of dimension P x K, such that
every square sub-matrix of B is invertible. If H is chosen as a
full-rank annihilating matrix of B of dimension (P — K) x P,
then Spark(H) = (P — K + 1).

Proof of Lemma 6. Note that, the rank of H is (P —K) as H
is full rank. (From rank-nullity theorem, there always exists
(P — K) linearly independent row-vectors such that each row
multiplied with B gives 0. From the condition of the theorem,
H is chosen as the matrix of all those (P — K) linearly
independent rows.) Thus, any (P — K + 1) columns of H
is always linearly dependent. Or, Spark(H) < (P — K + 1).
Now, to prove the equality, let us assume for contradiction
that, Spark(H) < (P — K + 1), i.e., Spark(H) is strictly less
than (P — K + 1). Thus, there exists a non-zero vector v such
that ||v|l]o < (P — K + 1) and Hv = 0.

Now, note that dimension of null-space of H is K as the
K linearly independent columns of the matrix B lie in the
null-space of H. Thus, the K columns of B form a basis for
the null space of H. Thus, the columns of B can be linearly
combined to generate v, a vector in null-space of H with
llvllo < (P — K +1). Let

Ba = v. (63)
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The vector v has strictly more than (P — (P — K + 1))
zeros, i.e., K — 1 zeros. Or, v has at least K zeros. Let
{li,1>,...,lg} denote any K indices of v that are zero.
Consider the (K x K) sub-matrix consisting of the rows of
B indexed in {I{,ls,...,Ix} as B. Clearly Ba = 0, which
contradicts that every square sub-matrix of B is invertible.
Contradiction! Thus, Spark(H) = (P — K + 1). |

From Lemmas 5 and 6 above, we can thus say that if
2)lello < (P — K + 1) or, 2|le]lp < (P — K), then there
exists a unique vector e that satisfies y = He, and thus, there
exists a unique ¢q such that y = Bg+e. As ||e||o is an integer,

the bound becomes ||e||p < LPE—KJ. ]
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