Understanding and Automatically Detecting Conflicting
Interactions between Smart Home loT Applications

Rahmadi Trimananda
University of California, Irvine
USA
rtrimana@uci.edu

Seyed Amir Hossein Aqajari

University of California, Irvine

amiraj.95@uci.edu

Jason Chuang
University of California, Irvine
USA
chuangj6@uci.edu@uci.edu

Brian Demsky Guoqing Harry Xu Shan Lu
University of California, Irvine UCLA University of Chicago
USA USA
bdemsky@uci.edu harryxu@cs.ucla.edu shanlu@uchicago.edu
ABSTRACT 1 INTRODUCTION

Smart home platforms allow developers to write apps to make
smart home devices work together to accomplish tasks, e.g., home
security and energy conservation. A smart home app typically im-
plements narrow functionality and thus to fully implement desired
functionality homeowners may need to install multiple apps. These
different apps can conflict with each other and these conflicts can
result in undesired actions such as locking the door during a fire.

In this paper, we study conflicts between apps on Samsung Smart-
Things, the most popular platform for developing and deploying
smart home IoT devices. By collecting and studying 198 official
and 69 third-party apps, we found significant app conflicts in 3
categories: (1) close to 60% of app pairs that access the same device,
(2) more than 90% of app pairs with physical interactions, and (3)
around 11% of app pairs that access the same global variable. Our
results suggest that the problem of conflicts between smart home
apps is serious and can create potential safety risks. We then devel-
oped an automatic conflict detection tool that uses model checking
to automatically detect up to 96% of the conflicts.

CCS CONCEPTS

» General and reference — Empirical studies; « Software and
its engineering — Empirical software validation.

KEYWORDS
smart home apps, concurrency, program analysis, model checking

ACM Reference Format:

Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian
Demsky, Guoging Harry Xu, and Shan Lu. 2020. Understanding and Au-
tomatically Detecting Conflicting Interactions between Smart Home IoT
Applications. In Proceedings of the 28th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 20), November 8—13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3368089.3409682

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7043-1/20/11.

https://doi.org/10.1145/3368089.3409682

Smart home devices are widely available commercially. Modern
smart home platforms support developers writing apps that im-
plement useful functionality on smart devices. Significant efforts
have been made to create integration platforms such as Android
Things from Google [43], SmartThings from Samsung [68], and the
open-source openHAB platform [61]. All of these platforms allow
users to create smart home apps that integrate multiple devices
and perform more complex routines, such as implementing a home
security system.

In this work, we focus on Samsung’s SmartThings platform
because it is the de-facto smart home development environment
and has the most extensive collection of smart home apps, including
those officially created by SmartThings [67] and those developed
by third-party companies and hobbyists. Homeowners that use
SmartThings can install any of these SmartApps and run them
simultaneously in their home deployment. Many of these apps each
implement a specific functionality, e.g., turn off lights in the absence
of motion. Thus, homeowners will likely need to install multiple
apps that collectively achieve the desired functionality.

1.1 The Problem

Interactions and Conflicts of Apps. The presence of multiple
apps that can control the same device creates interactions that can
potentially be undesirable (i.e., conflicts). For example a homeowner
may install the FireC02Alarm [63] app which, upon the detection
of smoke, sounds alarms and door-unlocks'. The same homeowner
may also install the Lock-It-When-I-Leave [14] app to door-lock
automatically when the homeowner leaves the house.

While it may appear that these apps can be safely installed to-
gether, closer examination reveals that they can interact in surpris-
ing ways. Consider the following scenario. If smoke is detected,
FireC02Alarm will door-unlock the door. If someone leaves home
with the presence tag, this will make the presence sensor change
its state from "present" to "not present", causing the Lock-It-
When-I-Leave app to door-lock the door. This defeats the intended
purpose of the FireCO02Alarm app. Thus, the two apps conflict.
Data Races, Atomicity Violations. Interactions of smart home
apps may initially appear similar to those of concurrent programs,
including data races [37, 38, 54] and atomicity violations [41, 55, 81].

'We use door-lock and door-unlock to refer to actions on a physical door, and lock and
unlock to refer to synchronizations in concurrent programming.

https://doi.org/10.1145/3368089.3409682
https://doi.org/10.1145/3368089.3409682

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Data races can be resolved by acquiring locks appropriately, while
atomicity violations can be resolved by ensuring that locks are held
long enough to guarantee that a thread can finish all operations in
a batch without interference from other threads.

Unfortunately, these techniques cannot resolve the above-
mentioned conflict. Suppose that we use a lock to guarantee the
atomicity of the critical region of the code—the FireC02Alarm app
needs to acquire the lock before triggering the alarm and holds
the lock while the alarm is sounding. Similar actions need to be
taken to door-lock and door-unlock for the Lock-It-When-I-Leave
app. However, this approach could disable the desirable function-
ality of the apps. To illustrate, consider a scenario in which the
Lock-It-When-I-Leave app detects that someone leaves the house.
It then acquires the lock before it enters the critical region in which
door-lock is performed. It holds the lock to keep the door locked
until the person returns. In this period, if the FireC02Alarm app
detects smoke/fire and attempts to door-unlock, it will fail because
the Lock-It-When-I-Leave app holds the lock. We end up in the
same situation: the door is locked during a fire!

Feature Interaction. Feature interaction considers the problem
in which different software features can have negative interac-
tions [26-28, 33, 48, 62]. Our setting differs from most of the pre-
vious work in this area in that smart home apps are developed
independently and composed by end users. For example, Smart-
Things apps are distributed through many different channels (in-
cluding pay for source). Thus, there does not exist a means to detec-
t/resolve/avoid conflicts during development. Feature interactions
have also been studied in research prototypes for home automa-
tion [50, 64, 77]. These early systems were prototype systems, and
presumed much coarser apps (e.g., a single app for lighting) than
current smart home apps implement. HCI researchers have shown
that feature interactions in IoT systems make it difficult for users to
understand the systems’ behavior [80]. In rule-based smart home
systems, researchers have developed tools for repairing incorrect
rules [58].

Interactions of Mobile Apps. Researchers have also studied inter-
actions between Android apps [29, 32, 34, 44, 49, 51, 73]. However,
these techniques focus primarily on cross-app information flow/-
taint analysis via ICC/IAC mechanisms in Android (e.g., Intents)
and thus cannot be used in our setting. In particular, our prob-
lem requires checking execution trace and its properties that such
analyses cannot handle (see Section 3.1).

The Smart Home App Interaction Problem. The problem we fo-
cus on in this work is conflict of expectations. The expected result
of the Lock-It-When-I-Leave app is that the door should be locked
when the homeowner leaves, while the expected result for the
FireCO2Alarm app is that the door should be unlocked during a fire.
These expectations conflict in certain scenarios. Hence, the funda-
mental question here is what should be the expected state of the door
when these apps interact: locked or unlocked? The potential conflict
between the FireCO2Alarm and Lock-It-When-I-Leave apps is not
correctable using standard mechanisms for concurrent accesses to
program variables or entities—using locks to restore atomicity still
violates the integrity of the expected result.

State-of-the-art and Our Work. The research community has
been actively looking into smart home apps. There is a body of work
that aims to find bugs and issues that could lead to serious security

Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

problems [25, 30, 35, 36, 39, 40, 69, 82]. However, none of these
techniques focuses on interactions and conflicts between multiple
apps. In the cyber-physical systems community, work has been
done to identify and resolve conflicts between smart home apps
at the system level, viewing apps as black boxes [57, 74, 75, 78, 79].
While such techniques are useful in certain simple scenarios, they
are still semantics-agnostic and do not work even for the above-
mentioned conflicts. Understanding the semantics of the apps (e.g.,
scheduling of events) is key to build a tool that can automatically
detect the conflicts—these conflicts can typically be exposed only
when a specific set of events occur in a certain order.

IA-Graph [52, 53] studies smart-home app conflicts and proposes
a lightweight approach to check for conflicts. This work extracts an
SMT formula that describes the legal transitions for an app and then
uses an SMT solver to detect whether a set of apps has conflicting
transitions. As acknowledged in the IA-Graphs paper, IA-Graphs
"ignores complicated computations in the app code"—they are, in
fact, used either (1) in condition statements, or (2) to update the
device state—and hence the patterns it finds are limited. In addition,
not all transitions in an app can be expressed in SMT, further limit-
ing the kinds of conflicts IA-Graphs can detect. Another important
drawback is IA-Graphs do not check whether a conflicting tran-
sition is reachable in an execution and hence can produce many
false positives—it may incorrectly label non-conflicting apps as con-
flicting. Understanding the impact of these issues is quite difficult
without accessing their implementation. Since the authors did not
release any software, an empirical evaluation is not possible. Fur-
thermore, they did not perform any wide-scale study. Instead, they
devised and evaluated their approach only on a relatively small
corpus: 22 apps.

On the contrary, our study covers a broader range of interaction
patterns in a much larger corpus of apps. Our conflict detection
tool, IoTCheck, works for arbitrarily complicated application logic
since it model-checks all app pairs directly using the app code.

1.2 Our Contributions

The goal of this paper is to understand the nature of the interactions
between smart home apps. We have identified the following five
research questions to guide our study.

RQ1: What kinds of interactions are there? We have collected
and studied 198 official SmartThings apps and 69 third-party apps.
Compared with recent studies of smart home apps [35, 36, 69, 82],
we have among the largest app suite. To understand interactions
and possible conflicts, we analyzed these apps in pairs (see Sec-
tion 3) and examined all pairs of apps that can potentially interact.
We discovered three main categories of interactions: (1) interactions
between apps that access the same device (see Section 4), (2) inter-
actions between apps such that the output from one app interferes
with the input of the other app (e.g., via sensors, see Section 5),
and (3) interactions between apps accessing global variables, e.g.,
whether the home is in the Home or Away mode (see Section 6).
RQ2: What types of conflicts arise between smart home
apps? For an app pair, we first inspected their source code and
documentation to understand the intended behavior of each indi-
vidual app and then reason about possible interactions between
them. If there exists an interaction that can compromise the desired
functionality of either app, we say that this pair has a conflict, e.g.,

Understanding and Automatically Detecting Conflicting Interactions ...

<«—» Network/physical
connection
< - » Communication

SmartThings Cloud

ep] [ee | . [

Global Variables

A
Y

Third-party
Systems
eg, IFTTT

Device
Handler

Device
Handler

Device
Handler

Example of 2 SmartApps

SmartApp #1 SmartApp #2
FireCO2Alarm Lock-It-When-I

Smart Home
Zighee Devices

door lock =
Fi

Zigbee/
_ Z-Wave

Devices

Device Handler
capability.lock
lock.lock()
lock.unlock ()

T

Figure 1: SmartThings platform with an example of two
apps running in parallel.

the functionality of the FireCO2Alarm app to door-lock is compro-
mised by the Lock-It-When-I-Leave app. Our goal is to carefully
inspect apps that interact, and understand whether they conflict
and if they do, why.

RQ3: How prevalent are these conflicts? We summarized the
results of our study to understand how prevalent the conflicts are.
We found that almost 60% of pairs in the first category, more than
90% of pairs in the second category, and around 11% of pairs in the
third category have conflicts (see Sections 4.3, 5.2, and 6.3).

RQ4: Are there common coding patterns that are unsafe in
the presence of app interactions? During our study, we observed
several common programming idioms that often result in problem-
atic interactions between apps. Discovering and classifying these
idioms can help developers mitigate potential conflicts by avoiding
these idioms.

RQ5: How can we automatically detect conflicts? Based on our
findings, we develop a tool that can automatically detect conflicts
(see Section 7). Our tool and dataset are available under an open
source license at http://plrg.ics.uci.edu/iotcheck/ [70-72].
Implications. The implications of this work are two-fold. First,
our study opens a new research direction in the area of testing
and verification of concurrent programs where the development of
different apps are done completely independently. The inability of
existing concurrency control mechanisms to resolve smart home
apps dictates the need of new techniques (such as IoTCheck) to
detect and/or repair these conflicts. Second, for platform vendors
such as Google and Samsung, new APIs should be designed and
applied to these platforms so that app developers can be directed
to make more informed decisions during development even if they
are not aware of potential runtime conflicts.

2 BACKGROUND

This section provides an overview of SmartThings [68], the de-facto
smart home IoT development platform.

Components. Figure 1 shows an overview of the SmartThings
platform. There are three main components, as discussed shortly.
The network/physical connections between these components are

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

shown in Figure 1 as solid lines, while dashed lines represent com-
munication paths.

(1) Smart Home Devices: SmartThings supports both Smart-
Things-branded and third-party devices as well as a variety of
communication protocols, including Wi-Fi, Zigbee, and Z-Wave.
While Wi-Fi devices are connected directly to the home router,
Zigbee/Z-Wave devices are connected to a SmartThings smart hub
through dedicated radios. The smart hub is connected to the home
router and relays the communication between the Zigbee/Z-Wave
devices and the SmartThings cloud via the router. Classes of de-
vices that are supported by the SmartThings platform include both
actuators (e.g., switches, locks, thermostats, lights, or alarms) and
sensors (e.g., illuminance, motion, water, or sound sensors).

(2) SmartThings Cloud: The SmartThings cloud hosts smart
home apps (i.e., SmartApps) and device handlers (i.e., drivers that
directly control devices) developed using an event-based program-
ming model in Groovy [42], a managed language running on top
of the Java Virtual Machine (JVM). SmartApps implement de-
sired functionalities on smart home devices by accessing global
variables and device features through capabilities exposed by de-
vice handlers. For instance, a door lock can be accessed by Smar-
tApps through its device handler that declares lock-related capa-
bilities using capability.lock. These capabilities provide access
to features such as door-lock and door-unlock via APIs such as
lock() and unlock(). Third-party systems, e.g., IFTTT (If-This-
Then-That) [21], can also connect to the SmartThings cloud and
control smart home devices through SmartApps that expose HTTP
endpoints as a control interface.

(3) SmartThings Smartphone App: Homeowners can use the
SmartThings smartphone app to install devices and SmartApps. To
communicate with home devices, the smartphone first connects and
sends control information to the SmartThing cloud either over the
Internet or via the home router, illustrated by arrows (1) and (2) in
Figure 1, and then the SmartThings cloud forwards the information
to smart home devices via the home router and the smart hub.
Execution Model. SmartThings uses an event-driven execution
model and allows multiple SmartApps to run concurrently. Con-
sider for example the FireCO2Alarm app [63], which attempts to
door-unlock if it detects smoke/fire through a smoke sensor. The
app subscribes to the events generated by the sensor’s device han-
dler: when the sensor detects smoke/fire, it sends a message to the
smart home hub. The smart home hub relays the message to the
SmartThings cloud, which in turn runs the sensor’s device handler
to process the message. The device handler will generate an event
and send it to the app’s event handler method, which in turn calls
another method takeActions() to door-unlock. Since multiple
apps run concurrently, the two apps FireCO2Alarm and Lock-It-
When-I-Leave share the device handler for the door lock, and thus
can both execute lock() and unlock() at any time on the same
device handler. The device handler on the cloud translates each
action into device specific commands. The cloud then sends these
commands to the local smart hub, which forwards the commands
to the door lock.

3 METHODOLOGY
This section describes our research methodology. We first define
several terms. Next, we discuss our database of smart home apps and

http://plrg.ics.uci.edu/iotcheck/

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

X € Execution = (Action | Event | Update)*

A € Action = read(a,d, t,r) | write(e,d, 7,7, 0) |
moderead(ar) | modewrite(a, p) |
schedule(a, t, m)

V e Event = devEv(e,d, 7, r,v) | modeEv(a, y) |
schedEv(a, m)
U € Update = devUp(a,d, 7,7, v) | modeUp(a, p)
a € App d € DeviceID 7 € DeviceType r € Feature
v € Value ¢ eTime p € Mode m € Method

Figure 2: SmartThings Execution Traces.

the way we structure them for the study. Our study focuses on pair-
wise interactions. The rationale is that pair-wise interactions are
fundamental for understanding multi-app interactions since multi-
app interactions can be decomposed to pair-wise interactions for
reasoning about. Upon carefully observing how these apps interact
in bigger groups, we did not see any new interaction patterns that
manifest only when three or more apps are involved.

3.1 Definitions

Execution Traces. We first formalize our notion of execution traces
for SmartThings in Figure 2. The traces can be generated by one
or more apps that run concurrently. An execution X € Execution
from a set of apps is a sequence of the following:

(1) Action: App & performs an action A € Action by executing any
of the following set of operations:

e read(a, d, 7, r) and write(a, d, 7, r, v), which read from and write
a value v to a feature r of a device with ID d and device type T,
respectively;

o moderead(e) and modewrite(et, p), which read from and write a
new mode p to the location.mode variable, respectively; and

e schedule(a, t, m), which schedules a method m to run at time ¢.

(2) Event: An event V € Event is either:

e devEv(a, d, 7, r, v), a device event is delivered to app a from
device d to notify the app of device status update;

e modeEv(a, y1), a mode event is delivered to app « to notify it of a
mode change; or

e schedEv(a, m), a schedule event denotes when the framework
processes a schedule action and executes the method m in app a.

(3) Update: An update U € Update is an external input to the smart
home. It is either:

e devUp(a, d, 7, r, v), an update with a new value v generated from
a device with ID d and type 7 for feature r and value v, i.e., a
sensor reading a temperature change; or

e modeUp(a, i); an update with a new mode y e.g., the homeowner
manually setting a new mode.

Interacts-with Relation. We next define a relation interacts-with
over the domain of Apps X Apps where Apps is the set of all smart
home apps. A pair of apps (a1, a2) € interacts-with (i.e., a1 interacts-
with ay) if they interact with each other in one of the three ways:
(1) Access the same device capability: Apps a; and a3 can access
a shared device using the same capability; a; updates the device

Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

state (i.e., feature r and value v) and ay accesses (i.e., updates or
reads) the device state. We refer to this relationship as a device
interaction. For example, 1 may turn on a switch based on the
input of a light/illuminance sensor and a2 may turn off the same
switch based on a motion sensor, both calling methods on the same
device handler object.

(2) Physical interaction: We say that two apps have a physical-
medium interaction if the output of a1 physically becomes an input
for ap and affects the execution of a;. For example, a; activates
a robot vacuum cleaner at a certain time during the day, and the
robot’s movement becomes the input to a motion sensor that is
used by ay.

(3) Access the same global variable: Apps a7 and a can interact
via the same global variable, whose value is stored on the cloud,
e.g., a1 updates the variable and a; accesses it. This is referred to
as a global-variable interaction. In this study, we focused on the
location.mode variable because it is the only global variable in the
SmartThings platform that allows for both write and read accesses.
location.mode has three preconfigured values: Home, Away, and
Night. An example scenario is that one app updates location.mode
based on the input of the presence sensor while the second app
reads it to determine whether a door should be locked/unlocked.
Conflict Relation. Apps a1 and ay conflict if they interact (in one
of the ways discussed above) and the interaction may compromise
the correctness of the apps or produce an unintended outcome. Al-
though the notion of a conflict is somewhat vague, we found that
Definitions 3.1 and 3.2 worked well most of the time in practice.

Definition 3.1. Device/Global-Variable Conflict. Two apps a;
and ay conflict iff there exists an execution X of a1 and az and two
actions Ay and Ay that update the same feature r or mode u in X
such that: (1) Ay and Ay are performed by different apps (a1 and
az), (2) Ay and Ay write different values (v1 and vy, or py and piz),
(3) there is no such A3 that updates the same r or yu and that the
update is ordered between Ay and Ay, and (4) Az was not initiated
by a direct user action.

Definition 3.2. Physical-Medium Conflict. Two apps a1 and o
conflict iff one app performs an action that affects a physical medium
(e.g., motion) and the other app reads from a sensor that can sense
that physical medium (e.g., a motion sensor).

3.2 Smart Home App Pairs

Choice of Apps. We studied 198 official and 69 third-party smart
home apps that we have collected from the SmartThings official
Github [67] and other third-party repositories. While the statistics
of app usages and installations are proprietary, all the apps that we
used in this study can be obtained easily from the aforementioned
repositories. Today, the SmartThings official Github [67] has an ac-
tive user community—it has been forked into personal repositories
more than 70,000 times. Any user can get and upload any app’s
source code to the SmartThings Marketplace via the SmartThings
Groovy IDE [24]. Thus, users can install and use any app.

App Pairing. These apps were initially developed to perform their
specific functionality. There are no standardized guidelines either
from SmartThings or from the community as to how to develop an
app in a way so that it can safely interact with other apps.

Understanding and Automatically Detecting Conflicting Interactions ...

Table 1: Groups of apps for device-type pairing.

Group Capability Subgroup App
Apps | # Pairs
Switches switch General 24 276
Lights 32 496
AC/fan/heat 3 3
Vent 3 3
Camera 2 1
Locks lock 21 210
Thermostats thermostat 19 171
Lights colorControl Hue 13 78
Non-Hue 11 55
Dimmers switchLevel 11 55
Alarms alarm 10 45
Valves valve 7 21
Music Players | musicPlayer 5 10
Relay relaySwitch 5 10
Speech speechSynthesis 3 3

Synthesizers

Cameras imageCapture 2 1
Total 171 1,438

Our process for manual examination was to independently exam-
ine the source code of each app pair by at least two of the authors.
In the event that the two examiners disagreed about whether an
app pair conflicted, they discussed their disagreement on the app-
pair’s classification and reached a consensus. There are 35,511 app
pairs given the 267 apps we collected above. From this huge set of
pairs, we identify 2,844 pairs of apps that potentially interact with
each other. We next explain how we use the three interact-with
conditions to identify these 2,844 pairs. We will then study how
many of these 2,844 pairs contain conflicts in Sections 4-6.
Device-Type Pairing. To identify apps that have device interac-
tions, we first divide the 267 apps into groups based on what type
of device an app aims to manage, as shown in Table 1. Clearly, if
two apps do not access a common device, it is impossible for them
to have device interaction.

Out of the 267 apps, we excluded 132 apps for three reasons. First,
we excluded apps that take inputs from outside of the SmartThings
platform. For instance, the IFTTT (If-This-Then-That) [21] app
functions as a bridge between the SmartThings platform and IFTTT,
a third-party platform. These apps typically wait for a third-party
application built on a third-party platform (e.g., IFTTT and other
similar platforms) to send commands and generate events through
HTTP endpoints. We do not have access to the source code of such
third-party applications; thus, it is not possible to accurately reason
about potential interactions. Second, we excluded apps that only
send messages to a smartphone about the state of sensors because
these apps do not interact with other apps. Third, we also excluded
apps that use third-party specific device handlers since these apps
cannot share a device with other apps. Therefore, we included 135
apps for device interaction. Some of them access multiple devices
and, thus, are included in multiple groups of devices—hence, a total
of 171 apps. At the end, we identified a total of 1,438 pairs from the
171 apps classified in various device-type-based groups.

For some groups, we identify all pairs of apps from the group as
device-interaction pairs. For example, the Locks group contains 21
apps, we inspected all the (221) = 210 pairs and confirmed them all
to be device-interaction pairs.

For some groups that provide generic functionality, such as
Switches and Lights, we further create sub-groups and only identify

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Table 2: Groups of apps for physical-medium pairing,.

Output # Apps | Sensor | # Apps | # Pairs
Lights 42 Tlum. 5 205
Moving Dev. 2 | Motion 39 78
Water Valves 2 Water 11 21
Sound Dev. 21 Sound 1 21

Total 325

apps that belong to the same sub-group as having a device inter-
action. For example, for the Switches group, out of a total of 64
apps, 24 access general switches (276 pairs), 32 access light switches
(496 pairs), 3 access AC/fan/heater (3 pairs), 3 access the ventila-
tion system (3 pairs), and 2 access cameras (1 pair). We also found
8 apps (not included in Table 1) that control specific devices (e.g.,
curling-iron) that are not shared by other apps; hence, no pairs were
constructed for these apps. The Lights group consists of apps that
use the light device handler (i.e., capability.colorControl) to
turn the lights on or off, set their illuminance level [18], or change
their colors. Each group was divided into a subgroup of apps that
controls Philips Hue lights and another subgroup that controls non-
Hue lights. In the Lights group, there are 13 apps for Hue leading
to 78 pairs and 11 apps for non-Hue leading to 55 pairs.
Physical-Medium Pairing. Two apps can interact via a physical
medium; e.g., one app generates an output that could be a physical
input to the other app. To illustrate, consider an app that changes
the state (i.e., toggle on/off) of light bulbs. These changes also affect
the illuminance produced by the light bulbs, which can become an
input to apps that read from illuminance sensors.

Table 2 reports results for apps that interact physically. We
grouped them based on the output-input relationships, such as
lights (output) and illuminance sensors (input), moving devices
(output) and motion sensors (input), water valves (output) and wa-
ter sensors (input), or sound-generating devices (output) and sound
sensors (input). For the light-illuminance-sensor relationship, for
example, we constructed a total of 205 pairs for the 42 apps that
control lights and the 5 apps that read from illuminance sensors.
Global-Variable Pairing. Apps can also interact if they access the
same global variable. Currently, there is only one global variable
in the SmartThings platform that multiple apps can read from and
write into: location.mode. We grouped together all the 47 apps
that access it for a total of 1,081 pairs.

3.3 Threats to Validity

External Validity. This study focused on Samsung’s SmartThings
platform and thus may miss interaction patterns specific to other
platforms. However, we believe that most of the findings and in-
sights revealed in this study are universal for smart home appli-
cations and frameworks. For instance, our results also apply to
rule-based systems, e.g., IFTTT—two rules: (1) “if the humidity
is high, turn off the AC” and (2) “if the temperature is low, turn
on the AC”, have a conflict by our definition if the humidity is
high and the temperature is low. Even for interactions that are
specific to the SmartThings platform (e.g., concurrent accesses to
the location.mode variable), the patterns discovered under such
interactions are general. For example, other platforms would also
have global variables that serve similar purposes and hence our
results can be generalized to these other platforms as well.
Internal Validity. This study covers all of the 198 official apps that
we could find in the SmartThings official Github repository and the

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

example set for SmartThings tutorials as of July 2018. We added 69
third-party apps that we gathered from various other sources.

While we studied the complete set of the official apps, the third-
party apps used in the study may not be exhaustive. Nevertheless,
our experience shows that the patterns that exist in the official apps
are similar to those in the third-party apps. We believe adding new
third-party apps would not change the main findings and insights.

In this study, we limited the scope of app interactions to pairs, and
hence, there could be new types of interactions that manifest only
when three or more apps are involved. However, we have already
manually inspected a large number of triplets and not found any
new interaction patterns that do not exhibit in pairs.

We manually inspected app pairs to determine whether the two
apps in each pair can conflict. The manual determination is sub-
jective in some cases—it reflects the authors’ beliefs of whether
the interactions between a pair of apps represent an unintended
outcome. For example, if one app turns a light on and a second
app based on the absence of motion from a sensor turns the light
off, we classify this as a conflict. However, users may compose
apps with the intention of this app interaction. As another example,
certain interactions are made over physical mediums; for instance,
the sound generated by a speaker app could become the input of
a sound sensor used by a different app. In this case, whether the
sensor can pick up the sound depends on whether it is physically
close to the speaker generating the sound. In the study, we assume
that this interaction can actually happen although the speaker and
the sensor may be far away in a real-life deployment.

Conflicts that have safety or security aspects are certainly critical
and could be harmful. However, it is somewhat difficult to determine
the potential safety hazards or implications of a conflict as they can
depend on the specific deployment. For example, if a conflict causes
a smart outlet to remain on, whether it is a safety hazard depends
on what is plugged into the smart outlet, e.g., toaster versus LED
light. Nevertheless, even benign conflicts can render apps useless—
they make a smart home system unpredictable and difficult to rely
on with any confidence, ultimately causing users to get rid of the
system.

Our ultimate goal is to identify all avoidable conflicts and their
possible sources so that actions can be taken in future development
and/or deployment to mitigate potential conflicts. Some conflicts
can be potentially handled by the development of API with support
for common app interaction patterns. On the contrary, if physical
proximity is a concern, we could develop an analysis that warns
the user during installation. This explains why we treated these
two scenarios differently.

4 DEVICE INTERACTION

This section presents our findings for apps that form pairs with
device interactions. When we first studied this category, we found
that some apps monitor status changes but do not initiate any
changes on devices. When such an app is paired with another device
monitor app, both apps concurrently read the device status and
neither of them makes any changes to the device status. We refer
to such a pair of apps as having a read-read relationship. 128 (8.9%)
pairs have this relationship and thus do not interact. We classified
device interactions into non-conflicting and conflicting interactions;
the statistics of the classification are reported in Table 3.

Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

Table 3: Statistics for device interaction.

Relationship [#Pairs | Percentage
Read-read [128 | 8.9%
Non-conflicting Interactions
Direct-direct 20 1.4%
Composable 319 22.2%
Different-feature 52 3.6%
Same-feature 90 6.3%
481 33.5%
Conlflicting Interactions
Feature conflicts 632 43.9%
Invalid-local-state 76 5.3%
Dropped-update 121 8.4%
829 57.6%
Total 1,438

4.1 RQ1: Types of Non-Conflicting Interactions
We observed three types of non-conflicting interactions. First, al-
though two apps can access the same device, their accesses can
only be triggered manually by users. Consequently, whether they
conflict with each other depends on how users operate them. For
example, Big-Turn-ON is such an app: it turns on switches when
the user touches the app’s user interface [8]. Two users may con-
currently initiate conflicting commands to a switch through two
apps like Big-Turn-ON. We consider this type of conflicts out of the
control of apps. We refer to this type of interaction as a direct-direct
relationship. We found that this relationship holds for 20 (1.4%) app
pairs in the device category (see Table 3).

Second, certain apps can work together to realize desired func-
tionality, and hence are intended to interact with each other. We
refer to this type of interaction as a composable relationship and cor-
responding apps as composable apps. We found that this composable
relationship holds for 319 (22.2%) pairs in the device category.

Note that many of these composable apps were developed inde-
pendently. For example, the FireCO2Alarm app sets off the alarm
and triggers door-unlocks when smoke/fire is detected [63], while
the Initial-State-Event-Streamer app [17] monitors and for-
wards events from many devices including the alarm device handler
to a website [22] that allows users to remotely monitor device activ-
ities. These two apps were independently developed, but they could
interact to fulfill a desired functionality at run time—notifying a
user through the specific website that an alarm is set off.

Third, some apps simultaneously access different features of the
same device or the same feature of the same device in a consistent
way, and hence do not conflict with each other.

An example of the former (i.e., accesses to different features)
is the Keep-Me-Cozy and Thermostats [12, 20] pair of apps from
the Thermostats group. One app calls methods on the thermostat
to set heating or cooling points (e.g., setHeatingSetpoint() and
setCoolingSetpoint()), while the other app sets the mode of
the thermostat (e.g., via setThermostatMode()). Although these
two apps control the same shared device, they operate on different
features of the device. Hence, although the first app interacts-with
the second app, there is no conflict between them. We refer to
this interaction as a different-feature relationship and found this
relationship holds for 52 (3.6%) pairs in the device category.

An example of the latter (i.e., consistent accesses to the same fea-
ture) is the following pair of apps from the Locks group: the Lock-
It-at-a-Specific-Time and Auto-Lock-Door apps [5, 66]. Both
apps call lock.lock() to door-lock. We consider this interaction

Understanding and Automatically Detecting Conflicting Interactions ...

non-conflicting, since these apps’ actions would lead the shared
device to the same state and hence the expected outcome is not com-
promised. We refer to this interaction as a same-feature relationship
and found it to hold for 90 (6.3%) pairs in the device category.

4.2 RQ2: Types of Conflicting Interactions

Of the 1,438 app pairs in the device category, 829 pairs exhibit
conflicting behaviors. We classified these conflicting behaviors as
either feature conflicts and saved-state conflicts.

Feature Conflicts. There are many pairs where the two apps at-
tempt to update the same device state with incompatible values.
An example is the FireCO2Alarm and Lock-It-When-I-Leave pair
discussed in Section 1. Recall that the FireCO2Alarm app attempts
to door-unlock during a fire while the Lock-It-When-I-Leave app
could potentially door-lock. We refer to these conflicts as feature
conflicts. A majority of the app pairs: 632 (43.9%) pairs in the device
category have feature conflicts.

Saved-State Conflicts. Many apps use their local variables to keep
track of device states and guide their own device updates. These
apps easily become broken when paired with other apps that can
update the same devices—a concurrent update from the other app
would make this app’s variable inconsistent with the device state.

Consider Auto-Humidity-Vent that turns on/off a fan based on
the humidity level [2]. This app conflicts with the Big-Turn-OFF app
that allows a user to manually turn off the fan [7] for the following
reason. When Auto-Humidity-Vent detects that the room humidity
is above a threshold, it turns on the fan and simultaneously updates
its local state variable state.fansOn to true. A user may then
use the Big-Turn-OFF app to turn off the fan, causing the room
humidity to increase above the threshold. Unfortunately, since the
local variable state.fansOn remains true in the Auto-Humidity-
Vent app, unaware of the fan being turned off by Big-Turn-OFF,
Auto-Humidity-Vent would stop functioning, incorrectly assuming
that the fan is already on. We refer to this scenario as invalid-local-
state conflicts, and found that 76 (5.3%) pairs in the device category
exhibit this pattern.

A common pattern we observed is an app that stores and restores
the state of a device. For example, the Thermostat-Auto-Off app
restores the state of the thermostat to a previously stored state.
Consider an execution in which after the Thermostat-Auto-Off
app saves the current state (e.g., of f) of the thermostat into a local
variable, a second app changes the actual device state to a different
value (e.g., "cool"), which does not propagate to Thermostat-Auto-
0ff’s internal state. The next time Thermostat-Auto-Off tries to
restore the thermostat state, the restoration will be based on the
stale and wrong value saved in the local variable. Thus the update
performed by the second app is dropped. We refer to this scenario
as dropped-update conflicts, and found 121 (8.4%) pairs in the device
category exhibit this pattern.

4.3 RQ3: Prevalence of Conflicts

As reported in Table 3, 91.1% of the pairs in device category have
actual interactions (i.e., at least one device updates the device state),
while 8.9% of the pairs have read-read relationships and hence do
not actually interact. Of the pairs that have actual interactions, the
majority (57.6%) have conflicts.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Table 4: Statistics for physical-medium interaction.

Medium [#Pairs | Percentage
Non-Conflicting Interactions
Water 10 3.1%
Sound 21 6.4%
31 9.5%
Conflicting Interactions
Water 11 3.4%
Motion 78 24.0%
Light state 151 46.5%
Light color 20 6.2%
Light brightness 5 1.5%
Light combination 29 8.9%
294 90.5%
Total 325

4.4 RQ4: Unsafe Coding Patterns

We found there are at least two unsafe coding patterns for device
interactions: (1) blind-update and (2) saved-state. The blind-update
pattern occurs in apps that blindly update the same state of the
same device without checking the current state of the device. The
saved-state pattern occurs when an app that saves the state of a
device feature into a local variable and later uses the saved value.
This may cause updates from other apps to be discarded. In some
cases, a check of the current state before doing the update could
help the app verify that its local state is consistent with the device
state. However, with the existing APIs, there is no way to do the
check-and-update in an atomic way—an app could only retrieve
the device state by invoking a method m; and then update the state
by invoking another method mg; the state could be changed by
another app after m; returns but before my is completed.

5 PHYSICAL-MEDIUM INTERACTION

This section presents our findings for apps that interact via the
physical world. In this category, two apps are paired when the
output from the first app can physically become the input of the
second app and affect its operation. Table 4 reports our findings.

5.1 RQ1&2: Types of (Non-)Conflicting
Interactions

Motion. The first set of physical interactions are due to motion.
An example pair is Neato-(Connect) and Forgiving-Security [1,
23]. Neato-(Connect) is a third-party app that controls a Neato
vacuum-cleaning robot. When the app activates the robot, the robot
starts cleaning the house. While it is moving around the house, its
movement could trigger a motion sensor used by the Forgiving-
Security app and thus set off a security alarm—a false alarm. Of
the 325 app pairs in the physical-medium category, 78 pairs (24.0%)
interact via motion and all exhibit conflicts.

Light. A similar set of app pairs are based on interactions via light.
The Turn-On-at-Sunset and Light-Up-the-Night apps [13, 16] are
an example. Consider a deployment in which each app controls
a different light bulb. At sunset, the Turn-On-at-Sunset app may
turn on a light bulb whose light may affect the illuminance sensor
of the Light-Up-the-Night app. The Light-Up-the-Night app is
supposed to turn on a light bulb when its illuminance sensor detects
that the surrounding is dark. If the light bulb controlled by the Turn-
On-at-Sunset app is sufficiently close to the illuminance sensor
used by the Light-Up-the-Night app, the sensor may pick up some
light from the light bulb. This could cause the Light-Up-the-Night

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

app to determine that there is no need to turn on the light bulb, and
hence, the two apps conflict.

Some apps can control a light bulb by changing its on/off state,
colors, or brightness levels. Any of these changes can potentially
be detected by an illuminance sensor [18].

Table 4 summarizes our findings: 151 pairs (46.5%) have a conflict

through the change of light’s on/off state; 20 pairs (6.2%) conflict
through the change of light’s color; 5 pairs (1.5%) conflict through
the change of light’s brightness; and 29 pairs (8.9%) conflict through
a combination of the three.
Water. Physical interactions can also occur via water. An example
pair that interacts via water consists of the Sprayer-Controller-2
and Close-The-Valve apps [3, 6]. The former schedules irrigation
for a certain amount of time periodically, while the latter closes
a water valve when the water sensor detects moisture. When the
water coming from a water sprayer controlled by the Sprayer-
Controller-2 app reaches the water sensor used by the Close-
The-Valve app, the two apps interact. This interaction potentially
results in a conflict because a bad moisture sensor placement could
cause the Close-The-Valve app to prevent the irrigation that has
been scheduled by the Sprayer-Controller-2 app.

Our results show that 21 pairs interact through water: 11 of them

have conflict and 10 do not. In each of these 10 pairs, the app that
controls the water valve actually closes it when it detects moisture.
Therefore, no water can be produced and detected by the water
sensor of the other app.
Sound. Apps can also interact via sound. For example, an interest-
ing app pair is Bose-SoundTouch-Control and InfluxDB-Logger,
which reads from a sound sensor [19]. In fact, the latter can be
paired with any other sound-producing apps, such as those that
control speakers, alarms, or music players.

Our findings show that there are 21 pairs (6.4%) that interact via
sound but we could not find any conflicts among them. Typically, a
pair consists of a sound-producing app and the InfluxDB-Logger
app. Since the InfluxDB-Logger app only logs the status of the
sound sensor, the two apps are actually composable—similar to the
composable relationship in the device interaction (see Section 4.1).
Physical Factors. The physical-medium interaction depends on
certain physical factors. The position of the first app’s actuator rela-
tive to the second app’s sensor determines whether the output from
the actuator could reach the sensor. If their proximity is sufficiently
close for the actuator’s output to affect the sensor, the two apps
interact; otherwise, they do not. When we performed this study,
we assumed that their locations are sufficiently close. Although it
is a conservative approximation, this is the best we could do and
our findings can help developers and users to avoid such conflicts.

5.2 RQ3&4: Prevalence of Conflicts/Unsafe
Coding

Table 4 summarizes the statistics for the physical-medium interac-
tion pairs. Our findings suggest that typically, when a pair of apps
interact through a physical medium, they will most likely conflict.
In most cases, the second app does not expect to receive any input
from the first app. It normally expects sensor inputs from its sur-
roundings. Out of the 325 pairs with physical-medium interaction,
90.5% (294 pairs) of them have a conflict. We did not observe any

Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

Table 5: Statistics for global-variable interaction.

Relationship [#Pairs | Percentage
Read-read | 405 | 37.5%
Non-Conflicting Interactions
Direct-direct write-write 28 2.6%
App write-read 302 27.9%
Direct write-read 221 20.4%
App-app write-write 1 0.1%
552 51.0%
Conlflicting Interactions
App-app write-write 44 4.1%
App-direct write-write 80 7.4%
124 11.5%
Total 1,081

coding patterns that cause conflicts in this category. Hence, we con-
cluded that the conflict in pairs with physical-medium interaction
is caused mainly by the physical proximity between the actuators
and sensors of the conflicting apps.

6 GLOBAL-VARIABLE INTERACTION

This section presents our findings for app pairs that have global-
variable interactions. As discussed in Section 3.1, since SmartThings
only has one global variable location.mode that allows both reads
and writes, we consider two apps to have global-variable interac-
tion if they both access location.mode. Our statistics are reported
in Table 5. 405 (37.5%) of the pairs (reported as pairs with read-
read relationships in Table 5) contain apps that only read from
location.mode. These apps do not actually interact.

6.1 RQ1: Types of Non-Conflicting Interactions
The first type contains apps that only write location.mode and
they are controlled manually by the user. We refer to this as a direct-
direct write-write relationship. As discussed earlier in Section 4.1,
we did not consider these apps as conflicting since the user controls
them. This group contains 28 pairs (2.6%), reported as pairs with
direct-direct write-write relationships in Table 5.

A second type, consisting of 302 app pairs (27.9%), exhibits app
write-read relationships, exemplified by the Greetings-Earthling
and Hello,-Home-Phrase-Director apps [4, 11]. The Greetings-
Earthling app changes the value of location.mode when the
presence sensor detects that the homeowner arrives home. On
the other hand, the Hello,-Home-Phrase-Director app sends a
greeting message to the homeowner depending on the value of
location.mode. In this case, the two apps have a composable rela-
tionship: one app reads the variable updated by the other.

A third type, consisting of 221 app pairs (20.4%), exhibits direct
write-read relationships: one app requires the user to manually
control the app to write into location.mode, while the other reads
from it. This is the intended usage scenario of location.mode,
namely to facilitate interactions between apps through mode
changes. Hence, these write-read interactions are not conflicts.

Finally, we found one pair in which both apps write into
location.mode and yet do not conflict. This pair consists of
the Greetings-Earthling and Bon-Voyage apps [9, 11]. The
Greetings-Earthling app writes into location.mode when the
user arrives at home, while the Bon-Voyage app writes into the
same location when the user leaves. Hence, they do not conflict as
they have disjoint intents and never write at the same time. This is
an exception to our current formal definition that can be improved.

Understanding and Automatically Detecting Conflicting Interactions ...

6.2 RQ2: Types of Conflicting Interactions

When two apps both write into location.mode, in most cases,
conflicts would result. There are two types of write-write con-
flicts: app-app write-write and app-direct write-write. For example,
there exists an app-app write-write conflict between the Smart-
Security and Good-Night apps [10, 15], which both attempt to
write into location.mode. While the Smart-Security app up-
dates location.mode with Home, the Good-Night app changes
location.mode to Night or Away. In Smart-Security, the update
to location.mode occurs when intrusion is detected. This is rather
an important update and the user certainly does not want the result
of the Smart-Security app to be compromised. There are 44 pairs
(4.1%) of such conflicts.

An app-direct write-write conflict occurs when in one app the
update of the global variable is triggered by a non-user input, e.g., a
sensor, while in the other app the user performs an operation that
triggers the update. For example, the first app uses the motion sen-
sor to detect if there is anyone home and updates location.mode
based on the sensor input. The second app lets the user control the
light—when the user turns on the light, location.mode is automat-
ically updated. This category has 80 (7.4%) conflicting pairs.

6.3 RQ3&4: Prevalence of Conflicts and Unsafe
Coding

There are a total of 124 (11.5%) conflicting app pairs. Thus, conflicts

are not prevalent for this type of interaction.

We found that concurrent-writes to location.mode is an unsafe
pattern, which is due to the SmartThings APIs that allow apps to
directly change the value of location.mode. For instance, in the
case of the Smart-Security app, a good practice would be to not
allow other apps to write into location.mode when the alarm is
sounding; otherwise, the alarm may be stopped abruptly before it
is noticed. In the case of modes, the combination of (1) changing
the API to specify a duration for the mode change and (2) allowing
the user to specify priorities would resolve many of the conflicts.

7 DETECTING CONFLICTS

In this section we address RQ5: How can we automatically detect
conflicts?

Traditional Concurrency Detection. Traditional concurrency de-
tects data races by checking whether the accesses to a certain
location are ordered by a happens-before relation, which depends
on the usage of locks and atomic instructions in the code. With a
pair of smart home apps, however, the situation is different. For
example, with the pair FireCO2Alarm and Lock-It-When-I-Leave
apps in Section 1, the FireC02Alarm app has an equal chance to
door-unlock anytime before or after the Lock-It-When-I-Leave
app door-locks. Thus, the notion of happens-before relation, which
existing concurrency testing and verification tools would rely on, is
absent in the interaction between these apps. As a result, we cannot
use these existing tools to detect conflicts between the apps.
TIoTCheck. We developed IoTCheck, a tool that automatically iden-
tifies conflicts by model-checking pairs of apps. A model checker
checks, exhaustively and automatically, if a system meets a spec-
ification. Model checking is particularly useful in detecting app
conflicts due to its ability to exhaustively check all potential inter-
actions between apps.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

We begin by summarizing the key insights from our manual
study that we used for designing IoTCheck. Our study shows that
most device conflicts occur when two apps issue conflicting updates
to the same device. We found that when one app writes to a device
feature and another app reads from the same device feature, it typi-
cally does not represent a conflict; this scenario commonly occurs
when apps compose. We also found that it is important to consider
the reason why two apps perform conflicting updates. If both up-
dates are performed in response to user requests, there is typically
no conflict since the actions are triggered by the user. Finally, we
found that conflicts on global variables occur only when two apps
both write to the global variable; read-write interactions typically
represent normal cooperation between apps, not conflicts. IoTCheck
model-checks pairs of apps and monitors for conflicting updates to
the same device or global variables from different apps. IoTCheck
directly executes the original app code, eliminating the need to
build models of the apps. IoTCheck extends the Java Pathfinder
(JPF), an explicit state-based model checking infrastructure [76].

Instrumented Groovy
Code

App

loTCheck
Code Preprocessor
loTCheck § A Groov
Configuration — PP vy
Tool Configuration Compiler

loTCheck Simulation
Framework

Conflict Analysis
Report

loTCheck Monitor Bytecode
File

JPF with Groovy
&

loTCheck Extensions

Figure 3: IoTCheck Architecture.

Architecture. Figure 3 presents IoTCheck’s architecture. The ar-
rows represent the workflow of IoTCheck that starts from app code
as an input to the IoTCheck configuration tool and IoTCheck prepro-
cessor. Each SmartThings app has a configuration method that asks
users for configuration information—this configuration is automat-
ically generated by IoTCheck without human help. The IoTCheck
configuration tool then outputs app configuration files, which, to-
gether with the original app, are processed by the IoTCheck prepro-
cessor. The IoTCheck preprocessor generates model checker hooks
to enable JPF to generate device events, combines multiple apps
into the same program, and sets up the necessary configuration to
run the program. It then outputs instrumented Groovy code which
is compiled into bytecode by the Groovy compiler.

We developed a SmartThings simulation framework for
IoTCheck. This framework contains virtualized devices (i.e., de-
vice handlers) for all of the devices used by our benchmark apps.
While an actual SmartThings device handler controls an actual
device, a virtualized device handler changes the value of a state
variable that represents the value of a device feature. Thus, a virtual
device handler for a door lock changes the value of the door lock
state variable instead of controlling an actual Zigbee door lock (see
Figure 1). These device handlers are under the control of the JPF
model checker—]JPF triggers device events such as a motion detected
by a motion sensor, or a temperature value change detected by a
temperature sensor. For devices such as temperature sensors, there

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

is a large range of potential temperatures that would make model
checking infeasible without using symbolic techniques. IoTCheck
thus supports a set of potential temperature readings (e.g., a hot
reading and a cold reading), which is practical given the nature
of many smart home apps. IoTCheck does not currently model
physical interactions between devices (other than to flag that they
could potentially interact); this remains future work.

Finally, IoTCheck model-checks the generated bytecode using
the JPF model checker. We developed IoTCheck monitor as a JPF
listener that performs conflict analysis while JPF is executing the
bytecode. When a conflict is detected, the listener halts JPF and im-
mediately reports the conflict. Otherwise, JPF finishes its execution
and the listener reports that there is no conflict.

Challenges. There are 3 challenges in extending JPF for IoTCheck:
(1) JPF does not provide out-of-the-box support for checking
Groovy code. One challenge is that the Groovy runtime system
keeps its own internal state that thwarts JPF’s state matching algo-
rithm; this often prevents even very simple Groovy programs from
model-checking. IoTCheck extends JPF to consider only the state
of the virtual smart home devices and the apps when matching
states. This creates a second issue—JPF generates state matching
points at many execution points. After eliminating Groovy runtime
state from state matching, there can be spurious state matches ter-
minating JPF before the state space is fully explored. To solve this
problem, IoTCheck extends JPF to only match states right before
generating a new event.

(2) Groovy is a dynamic language. Thus, method calls are re-
solved at runtime. The same call stack from the perspective of the
program can be implemented by many different bytecode-level call
stacks due to Groovy’s method lookup and caching mechanisms.
Since the call stack is considered by JPF’s state matching algorithm,
this can cause the algorithm to fail to match conceptually identical
states and increase the state space to be explored. IoTCheck extends
JPF’s state matching algorithm to match conceptually identical call
stacks with different bytecode-level stacks.

(3) Scalability is a challenge for JPF as an explicit-state
model checker. IoTCheck initially exhaustively model-checks a
app pair for up to 30 minutes. If it either a detects a conflict or
completes, IoTCheck outputs the result and finishes. Otherwise,
IoTCheck falls back on JPF’s heuristic search and performs it for
an extended 30-minute period. If no conflict is detected during this
period or the tool runs out memory (usually caused by bigger apps
that have tens of events), IoTCheck reports that the result is incon-
clusive. Future work can employ techniques such as partial order
reduction to further improve IoTCheck’s performance.

Detection. Conflicts cannot be directly checked on the executions
JPF explores because state-based model checking is only guaranteed
to explore all program states and transitions and not all possible
paths through the state machine. Consider apps a1 and az where a1
only turns the light on and a3 can turn the light on and off. A conflict
only occurs when «; turns the light on followed by a turning the
light off. However, all states and transitions can be reached without
exploring this execution path. Thus, we must analyze the state
machine to determine whether it contains a conflicting path.

IoTCheck’s conflict analysis is an online analysis of the state
machine that JPF explores. Our analysis is similar to a standard
dataflow compiler analysis with the exception that in our context

Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

Table 6: Comparison between manual study and IoTCheck.

Interaction IoTCheck Manual Study
Conflict | No conflict
Device Conflict 679 38
No conflict 33 101
Not terminated 16 396
Excluded 100 75
Global-Variable | Conflict 98 16
No conflict 0 318
Not terminated 0 388
Excluded 26 235

nodes represent states and edges represent transitions. IoTCheck
updates its analysis results as JPF explores new states and halts
the exploration process when a conflict is detected. We abstract
state machine as a set of nodes n € N that represent the JPF states,
and edges e € & that represent transitions between JPF states.
We denote sequences of actions using A. Each transition e has a
corresponding sequence of actions A.. The relevant actions are
write(a, d, 7, r, v) and modewrite(a, u). We define in(n) to be the
set of incoming edges to n and src(e) to be the source node of
the edge e. The analysis computes the set S(n) of the most recent
updates to each device feature and mode at node n. We define
app(S,d, r) to be the set of apps that have most recently updated
r on d and value(S, d, r) to be the value of that update. We define
modeapp(S) to return the set of apps that have most recently up-
dated the mode and modevalue(S) to return the values of the most
recent update to the mode set.

Figure 4 presents equations that formalize our analysis. These

equations are evaluated using a standard fixed point algorithm
whenever JPF explores a new transition to either an existing state
or a new state. Function ¢ applies the sequence of actions in transi-
tion to the set S for the previous node to compute the transition’s
contributions to set S for the destination node. The function update
applies an action to set S.
Results. We repeated the same set of evaluations, but using
IoTCheck to check for conflicts instead of manual inspection. Ta-
ble 6 compares IoTCheck’s results with those from the manual study.
We did not use IoTCheck to detect conflicts in physical-medium
interactions since these conflicts depend on physical factors.

For the device interaction, we initially found 829 conflicting pairs
through manual study: 632 pairs with feature conflict, 76 pairs with
invalid-local-state conflicts, and 121 pairs with dropped-update con-
flicts (see Table 3). From the 829 pairs, we had to exclude 100 conflict-
ing pairs because of the 8 apps that we could not run on IoTCheck:
5 apps use third-party features and 3 apps have serious bugs. Be-
cause of these 8 apps, we also had to exclude 75 non-conflicting
pairs. Overall, [oTCheck was able to find conflicts in 679 pairs but
failed to detect conflicts in 33 pairs—a thorough manual inspection
confirmed that 8 pairs are indeed non-conflicting (i.e., mistakes in
our manual study), while other conflicts were not detected due to
IoTCheck’s limitations (e.g., in our modeling of time). It also did not
terminate for 16 pairs labeled as conflicting in the manual study,
but 4 of them are indeed non-conflicting. Surprisingly, IoTCheck
found 38 new conflicting pairs that were overlooked in our manual
study and labeled as non-conflicting. Thus, in total IocTCheck found
717 conflicting pairs. For the 497 pairs labeled as non-conflicting
in the manual study, IoTCheck confirms that 101 pairs are indeed
non-conflicting, whereas it did not terminate for 396 of them.

Understanding and Automatically Detecting Conflicting Interactions ...

S(n) = Uecin(n) ¢ (Ae, ismanual(e), S(in(e))
conflict,

¢ (A;write(ar, d, 7,1, 0), A, S) =
update(¢ (A, A, S), write(a,d, 7,r,v))

conflict,
update(¢ (A, A, S), modewrite(a, y))

update(S, A) = {A' €S| -A 2 A }U{A}
(write(a, d, 7, r, 0) = write(a”, d’, T, r’, 0")) = (d =d') A (r=r")

¢ (A;modewrite(a, p), A, S) = {

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

#(0,1,8) =S
if(Ja € app(S,d,r).a # a Avalue(S,d,r) # v A -A)
otherwise

if(Ja € modeapp(S).a # a A modevalue(S) # u A =A)

otherwise

(modewrite(ar, p) = write(et, d, 7, r, v)) = false
(modewrite(a, i) = modewrite(a’, 1)) := true

Figure 4: Conflict Analysis

For the global-variable interaction, our manual study found 124
pairs of conflicting apps: 44 pairs with app-app write-write conflicts
and 80 pairs with app-direct write-write conflicts (see Table 5). With
IoTCheck, we were able to find conflicts in 98 of the 124 pairs. We
had to exclude 26 of the pairs with conflicts because of 6 apps that
we could not run on IoTCheck: 5 apps use third-party features and 1
app has serious bugs. Additionally, IoTCheck found 16 pairs with a
conflict that was initially labeled as a non-conflicting pair. Because
we excluded 6 apps, we had to exclude 235 non-conflicting pairs ini-
tially observed in the manual study. Among the 706 non-conflicting
pairs labeled in the manual study, IoTCheck was able to complete
its check and found no conflicts in 318 of them. IoTCheck did not
terminate for 388 of them. For the physical-medium interaction,
IoTCheck generates a warning if one app uses a device that could
be the physical input of a device used by the other app.
Statistics. The average runtime for IoTCheck to find conflicts is 27
seconds for the device interaction, and 11 seconds for the global-
variable interaction. These suggest that conflicts are found quickly:
the 30-minute time limit is enough to perform an exhaustive model
checking in general. Thus, classifying non-terminating runs as non-
conflict gives IoTCheck a precision of 100% and a specificity of 100%.
The recall is 95.1% for the device interaction pairs and 100% for the
global-variable interaction pairs—overall recall is 95.7%.
Soundness. IoTCheck is sound in the sense that if it declares that
two apps have a conflict, there is indeed an execution that has
the conflict. Whether this conflict represents a problem in the real
world is a very complicated question and can depend on (1) the
intended use of the homeowner and (2) the home environment. The
false positives/negatives in our manual study were typically due to
subtle issues involving complex logic that had several conditions
for generating commands or subtle concurrent executions—please
see our tool and dataset releases for a full accounting [70-72].

8 RELATED WORK

The research community has recently looked into smart home
apps [25, 30, 35, 36, 39, 40, 60, 69, 82]. Fernandes et al. present a thor-
ough study on the SmartThings environment [39]. They pointed
out underlying security issues and a simple program analysis to
detect the overprivilege issue in the app source code. In [40], Fernan-
des et al. present a solution to prevent applications from leaking
confidential information.

Researchers have presented new techniques to model-check and
analyze confidential information leakage in smart home applica-
tions. The techniques presented in [59, 60] require translating the
apps to perform the model checking using SPIN [45]. The limi-
tation is that the expressiveness of app features could be lost in
translation: with just 3 apps the authors found 1 feature that their

system could not express concisely [59]. Other work [30, 35, 36]
ignores internal application state, and thus admits executions that
cannot happen. Several of our apps depend on internal state to
decide whether to perform an action, and thus they would not be
accurately modeled by their techniques. While conflicts between
apps are discussed in [36], they considered a much smaller cor-
pus of apps and a number of of them are self-crafted to generate
the intended conflicts. Unfortunately, their system is not publicly
available for comparison.

The interactions of smart home apps also appear similar to event-
based races in mobile apps [31, 46, 47, 56, 65]. Related work on mo-
bile apps deals with events only in one app by introducing various
new synchronization mechanisms. However, our work focuses on
the interactions between multiple apps. The event handlers in these
apps are developed by different programmers with absolutely no
coordination. In addition, a number of apps also allow the user to
generate arbitrary events, e.g., using a touch screen. Hence, even if
the ordering between events in one app can be clearly defined, the
ordering between events across multiple apps combined with user-
generated events is complicated and arbitrary—synchronizations
in individual apps would not be useful in this context.

There have also been efforts to resolve the conflicts between
smart home apps from the perspective of dependencies between ap-
plication components at the system level [57, 74, 75, 78, 79]. Several
systems [74, 75, 78] provide frameworks for programming networks
of sensors and actuators. DepSys [57] provides infrastructure with
comprehensive strategies to specify, detect, and resolve conflicts
through the use of user-specified metadata. Kripke [79] performs
conflict detection through the use of model checking. Our work is
orthogonal to this body of work that attempts to deal with conflicts
between apps at the system level, by viewing apps as black boxes.
Our work, on the contrary, studies how apps interact and what can
be done at the source code level to mitigate conflicts.

9 CONCLUSION

This paper presents a comprehensive study of interactions and
conflicts between smart home apps, as well as an automated tool
for finding conflicts.

ACKNOWLEDGMENTS

We thank our anonymous ESEC/FSE reviewers for their invalu-
able feedback. This project was partly supported by the National
Science Foundation under grants CNS-1613023, CNS-1703598, CNS-
1763172, CNS-2006437, CNS-2007737, CCF-1837120, CCF-2006948,
OAC-1740210 and by the Office of Naval Research under grants
N00014-16-1-2913 and N00014-18-1-2037.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

REFERENCES

(1]
(2]

(3]

(4]

[10]

[11]

[12]

[13]

[16]

[17

(18]

[19

[20]

[27]

[28

2013. Forgiving Security. https://github.com/imbrianj/forgiving_security/blob/
master/forgiving_security.groovy.

2014. Auto Humidity Vent. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/jonathan-a/auto- humidity-vent.src/auto-humidity-vent.groovy.
2014. Close The Valve. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/close-the-valve.src/close-the-valve.groovy.

2014. Hello, Home Phrase Director. https://github.
com/SmartThingsCommunity/SmartThingsPublic/blob/
61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/
hello-home-phrase-director.src/hello-home- phrase-director.groovy.

2014. Lock it at a specific time. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.
groovy.

2014. Sprayer Controller 2. https://github.com/erocm123/SmartThingsPublic-1/
blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/
sprayer-controller-2.groovy.

2015. Big Turn OFF. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/big-turn-off.src/big-turn-off.groovy.

2015. Big Turn ON. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/big-turn-on.src/big-turn-on.groovy.

2015. Bon Voyage. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/bon-voyage.src/bon-voyage.groovy.

2015. Good Night. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/good-night.src/good-night.groovy.

2015. Greetings Earthling. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy.
2015. Keep Me Cozy. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy.

2015. Light Up the Night. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy.

2015. Lock It When I Leave. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy.
2015. Smart Security. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.
src/smart-security.groovy.

2015. Turn On at Sunset. https://github.com/SmartThingsCommunity/Code/
blob/master/smartapps/sunrise- sunset/turn-on-at- sunset.groovy.

2016. Initial State Event Streamer. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/master/smartapps/initialstate-events/

initial-state- event-streamer.src/initial- state- event-streamer.groovy.

2016. Understanding Illuminance: What’s in a Lux? https://www.allaboutcircuits.
com/technical-articles/understanding-illuminance-whats-in-a-lux/.

2017. InfluxDB Logger. https://github.com/codersaur/SmartThings/blob/master/
smartapps/influxdb-logger/influxdb-logger.groovy.

2017. Thermostats. https://github.com/SmartThingsCommunity/
SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/
smartapps/smartthings/thermostats.src/thermostats.groovy.

2018. IFTTT. https://www.ifttt.com/.

2018. Initial State. https://www.initialstate.com/.

2018. Neato (Connect). https://github.com/alyc100/SmartThingsPublic/blob/
master/smartapps/alyc100/neato-connect.src/neato-connect.groovy.

2019. SmartThings Groovy IDE. https://graph.api.smartthings.com/.

Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok:
Security evaluation of home-based iot deployments. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1362-1380.

Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Késtner, and Brady
Garvin. 2013. Exploring Feature Interactions in the Wild: The New Feature-
interaction Challenge. In Proceedings of the 5th International Workshop on Feature-
Oriented Software Development (FOSD). 1-8.

Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kastner. 2010.
Detecting Dependences and Interactions in Feature-Oriented Design. In IEEE 21st
International Symposium on Software Reliability Engineering (ISSRE). 161-170.
Sven Apel, Alexander Von Rhein, Thomas ThiitM, and Christian KéStner. 2013.
Feature-interaction Detection Based on Feature-based Specifications. Computer

[29]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

(48]

[49]

Trimananda, Aqajari, Chuang, Demsky, Xu, and Lu

Networks: The International Journal of Computer and Telecommunications Net-
working 57, 12 (August 2013), 2399-2409.

Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand, and Sam Malek. 2016.
Practical, formal synthesis and automatic enforcement of security policies for
android. In 2016 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 514-525.

Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick McDaniel.
2018. Program Analysis of Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. arXiv preprint arXiv:1809.06962 (2018).

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race Detection
for Android Applications. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(Pittsburgh, PA, USA) (OOPSLA 2015). ACM, New York, NY, USA, 332-348. https:
//doi.org/10.1145/2814270.2814303

Amiangshu Bosu, Fang Liu, Danfeng Daphne Yao, and Gang Wang. 2017. Collu-
sive data leak and more: Large-scale threat analysis of inter-app communications.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communica-
tions Security. ACM, 71-85.

Muffy Calder, Mario Kolberg, Evan H Magill, and Stephan Reiff-Marganiec. 2003.
Feature interaction: a critical review and considered forecast. Computer Networks
41,1 (2003), 115-141.

Nguyen Tan Cam, Pham Van Hau, and Tuan Nguyen. 2016. Android security
analysis based on inter-application relationships. In Information Science and
Applications (ICISA) 2016. Springer, 689-700.

Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A Selcuk Uluagac. [n.d.]. Sensitive Information Tracking
in Commodity IoT. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association.

Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
IoT Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association.

Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and
Andrew F. Stark. 1998. Detecting Data Races in Cilk Programs That Use Locks.
In Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures (Puerto Vallarta, Mexico) (SPAA '98). ACM, New York, NY, USA,
298-309. https://doi.org/10.1145/277651.277696

Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP "03). ACM, New
York, NY, USA, 237-252. https://doi.org/10.1145/945445.945468

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 636-654.

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 531-548. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
Cormac Flanagan and Stephen N Freund. 2004. Atomizer: A Dynamic Atomicity
Checker for Multithreaded Programs. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL
’04). ACM, New York, NY, USA, 256-267. https://doi.org/10.1145/964001.964023
The Apache Software Foundation. 2003-2018. The Apache Groovy programming
language. http://groovy-lang.org/.

Google. 2018. Android Things website. https://developer.android.com/things/.
Yi He, Qi Li, and Kun Sun. 2017. LinkFlow: Efficient Large-Scale Inter-app
Privacy Leakage Detection. In International Conference on Security and Privacy in
Communication Systems. Springer, 291-311.

Gerard J Holzmann. [n.d.]. The SPIN model checker: Primer and reference manual.
Vol. 1003.

Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano L. Pereira,
Gilles A. Pokam, Peter M. Chen, and Jason Flinn. 2014. Race Detection for
Event-driven Mobile Applications. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Edinburgh,
United Kingdom) (PLDI '14). ACM, New York, NY, USA, 326-336. https://doi.
org/10.1145/2594291.2594330

Yongjian Hu and Iulian Neamtiu. 2018. Static Detection of Event-based Races
in Android Apps. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems
(Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA, 257-270.
https://doi.org/10.1145/3173162.3173173

Michael Jackson and Pamela Zave. 1998. Distributed Feature Composition: A
Virtual Architecture for Telecommunications Services. IEEE Transactions on
Software Engineering 24, 10 (October 1998), 831-847.

Youn Kyu Lee, Jae Young Bang, Gholamreza Safi, Arman Shahbazian, Yixue Zhao,
and Nenad Medvidovic. 2017. A sealant for inter-app security holes in android.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE, 312-323.

https://github.com/imbrianj/forgiving_security/blob/master/forgiving_security.groovy
https://github.com/imbrianj/forgiving_security/blob/master/forgiving_security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/jonathan-a/auto-humidity-vent.src/auto-humidity-vent.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/close-the-valve.src/close-the-valve.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/tslagle13/hello-home-phrase-director.src/hello-home-phrase-director.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/user8798/lock-it-at-a-specific-time.src/lock-it-at-a-specific-time.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/erocm123/SmartThingsPublic-1/blob/master/smartapps/sprayercontroller/sprayer-controller-2.src/sprayer-controller-2.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-off.src/big-turn-off.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/big-turn-on.src/big-turn-on.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/bon-voyage.src/bon-voyage.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/good-night.src/good-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/greetings-earthling.src/greetings-earthling.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/keep-me-cozy.src/keep-me-cozy.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/light-up-the-night.src/light-up-the-night.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/lock-it-when-i-leave.src/lock-it-when-i-leave.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/smartthings/smart-security.src/smart-security.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/Code/blob/master/smartapps/sunrise-sunset/turn-on-at-sunset.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/master/smartapps/initialstate-events/initial-state-event-streamer.src/initial-state-event-streamer.groovy
https://www.allaboutcircuits.com/technical-articles/understanding-illuminance-whats-in-a-lux/
https://www.allaboutcircuits.com/technical-articles/understanding-illuminance-whats-in-a-lux/
https://github.com/codersaur/SmartThings/blob/master/smartapps/influxdb-logger/influxdb-logger.groovy
https://github.com/codersaur/SmartThings/blob/master/smartapps/influxdb-logger/influxdb-logger.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic/blob/61b864535321a6f61cf5a77216f1e779bde68bd5/smartapps/smartthings/thermostats.src/thermostats.groovy
https://www.ifttt.com/
https://www.initialstate.com/
https://github.com/alyc100/SmartThingsPublic/blob/master/smartapps/alyc100/neato-connect.src/neato-connect.groovy
https://github.com/alyc100/SmartThingsPublic/blob/master/smartapps/alyc100/neato-connect.src/neato-connect.groovy
https://graph.api.smartthings.com/
https://doi.org/10.1145/2814270.2814303
https://doi.org/10.1145/2814270.2814303
https://doi.org/10.1145/277651.277696
https://doi.org/10.1145/945445.945468
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/fernandes
https://doi.org/10.1145/964001.964023
http://groovy-lang.org/
https://developer.android.com/things/
https://doi.org/10.1145/2594291.2594330
https://doi.org/10.1145/2594291.2594330
https://doi.org/10.1145/3173162.3173173

Understanding and Automatically Detecting Conflicting Interactions ...

[50]

[51]

[52]

[54]

[55]

[56

[57]

[58]

Pattara Leelaprute, Takafumi Matsuo, Tatsuhiro Tsuchiya, and Tohru Kikuno.
2008. Detecting Feature Interactions in Home Appliance Networks. In Proceedings
of the 2008 Ninth ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD). 895-903.
LiLi, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
2015. Apkcombiner: Combining multiple android apps to support inter-app anal-
ysis. In IFIP International Information Security and Privacy Conference. Springer,
513-527.

Xinyi Li, Lei Zhang, and Xipeng Shen. 2019. IA-graph Based Inter-app Conflicts
Detection in Open IoT Systems. In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded Systems.
135-147.

Xinyi Li, Lei Zhang, Xipeng Shen, and Yong Qi. 2017. A Systematic Examination
of Inter-App Conflicts Detections in Open IoT Systems. Technical Report TR-2017-1.
North Carolina State University, Dept. of Computer Science.

Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic Race Detection
for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA,
443-457. https://doi.org/10.1145/3009837.3009857

Shan Lu, Soyeon Park, and Yuanyuan Zhou. 2012. Finding atomicity-violation
bugs through unserializable interleaving testing. IEEE Transactions on Software
Engineering 38, 4 (2012), 844-860.

Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race Detection
for Android Applications. SIGPLAN Not. 49, 6 (June 2014), 316-325. https:
//doi.org/10.1145/2666356.2594311

Sirajum Munir and John A. Stankovic. 2014. DepSys: Dependency Aware Inte-
gration of Cyber-Physical Systems for Smart Homes. In ICCPS '14: ACM/IEEE 5th
International Conference on Cyber-Physical Systems (with CPS Week 2014) (Berlin,
Germany) (ICCPS ’14). IEEE Computer Society, Washington, DC, USA, 127-138.
https://doi.org/10.1109/ICCPS.2014.6843717

Chandrakana Nandi and Michael D. Ernst. 2016. Automatic Trigger Genera-
tion for Rule-based Smart Homes. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security (PLAS). 97-102.

[59] Julie L Newcomb, Satish Chandra, Jean-Baptiste Jeannin, Cole Schlesinger, and

[60]

[63]

[64]

[65]

[66]

[67

[68]

[69]

[70

[71]

Manu Sridharan. 2017. IOTA: a calculus for internet of things automation. In
Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. 119-133.

Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V. Krishnamurthy, Ed-
ward J. M. Colbert, and Patrick McDaniel. 2018. IotSan: Fortifying the Safety of
Systems. In Proceedings of the 14th International Conference on Emerging Network-
ing EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18). ACM, New
York, NY, USA, 191-203. https://doi.org/10.1145/3281411.3281440

openHAB. 2018. openHAB website. https://www.openhab.org/.

Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik. 2011. Pairwise
Feature-interaction Testing for SPLs: Potentials and Limitations. In Proceedings
of the 15th International Software Product Line Conference (SPLC). Article 6, 6:1-
6:8 pages.

Yves Racine. 2014. FireCO2Alarm SmartApp. https://github.com/
yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/
FireCO2Alarm.groovy.

Ajitha Rajan, Lydie du Bousquet, Yves Ledru, German Vega, and Jean-Luc Richier.
2010. Assertion-based Test Oracles for Home Automation Systems. In Proceedings
of the 7th International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software (MOMPRES). 45-52.

Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective Race
Detection for Event-driven Programs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York,
NY, USA, 151-166. https://doi.org/10.1145/2509136.2509538

Chris Sader. 2013. Auto Lock Door SmartApp. https://github.com/
smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.
smartapp.groovy.

SmartThings. 2018. SmartThings Public GitHub Repo. https://github.com/
SmartThingsCommunity/SmartThingsPublic.

Samsung SmartThings. 2018. Samsung SmartThings website. http://www.
smartthings.com.

Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng
Guo, and Patrick Tague. 2017. Smartauth: User-centered Authorization for the
Internet of Things. In Proceedings of the 26th USENIX Conference on Security
Symposium (Vancouver, BC, Canada) (SEC’17). USENIX Association, Berkeley,
CA, USA, 361-378. http://dl.acm.org/citation.cfm?id=3241189.3241219
Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Demsky,
and Guoqing Harry Xu. 2020. IoTCheck. http://plrg.ics.uci.edu/iotcheck/. https:
//doi.org/10.5281/zenodo.3866497

Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Demsky,
and Guoqing Harry Xu. 2020. IoTCheck and manual study supporting materials.
http://plrg.ics.uci.edu/iotcheck/. https://doi.org/10.5281/zenodo.3866499

[72]

[73

[74

=
2

(76

[77

[78

[79

(80

[81

[82

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Demsky,
and Guogqing Harry Xu. 2020. IoTCheck Vagrant package. http://plrg.ics.uci.edu/
iotcheck/. https://doi.org/10.5281/zenodo.3866491

Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-An, Gregg Rothermel, and Jack-
son Dinh. 2017. An efficient, robust, and scalable approach for analyzing inter-
acting android apps. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 324-334.

Pascal A Vicaire, Enamul Hoque, Zhiheng Xie, and John A Stankovic. 2012.
Bundle: A group-based programming abstraction for cyber-physical systems.
IEEE Transactions on Industrial Informatics 8, 2 (2012), 379-392.

Pascal A Vicaire, Zhiheng Xie, Enamul Hoque, and John A Stankovic. 2010. Phys-
icalnet: A generic framework for managing and programming across pervasive
computing networks. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010 16th IEEE. IEEE, 269-278.

William Visser, Klaus Havelund, Guillaume Brat, SeungJuun Park, and Flavio
Lerda. 2003. Model checking programs. 10 (April 2003), 203-232. Issue 2.
Michael Wilson, Mario Kolberg, and Evan H. Magill. 2008. Considering side
effects in service interactions in home automation-an online approach. Feature
Interactions in Software and Communication Systems IX (2008), 172-187.
Anthony D Wood, John A Stankovic, Gilles Virone, Leo Selavo, Zhimin He,
Qiuhua Cao, Thao Doan, Yafeng Wu, Lei Fang, and Radu Stoleru. 2008. Context-
aware wireless sensor networks for assisted living and residential monitoring.
IEEE network 22, 4 (2008).

Miki Yagita, Fuyuki Ishikawa, and Shinichi Honiden. 2015. An Application
Conflict Detection and Resolution System for Smart Homes. In Proceedings of the
First International Workshop on Software Engineering for Smart Cyber-Physical
Systems (Florence, Italy) (SEsCPS ’15). IEEE Press, Piscataway, NJ, USA, 33-39.
http://dl.acm.org/citation.cfm?id=2821404.2821413

Svetlana Yarosh and Pamela Zave. 2017. Locked or Not?: Mental Models of IoT
Feature Interaction. In Proceedings of the 2017 Conference on Human Factors in
Computing Systems (CHI). 2993-2997.

Adarsh Yoga and Santosh Nagarakatte. 2016. Atomicity Violation Checker for
Task Parallel Programs. In Proceedings of the 2016 International Symposium on
Code Generation and Optimization (Barcelona, Spain) (CGO ’16). ACM, New York,
NY, USA, 239-249. https://doi.org/10.1145/2854038.2854063

Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. HoMonit: Monitoring Smart Home Apps from Encrypted Traffic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1074-1088.
https://doi.org/10.1145/3243734.3243820

https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/2666356.2594311
https://doi.org/10.1145/2666356.2594311
https://doi.org/10.1109/ICCPS.2014.6843717
https://doi.org/10.1145/3281411.3281440
https://www.openhab.org/
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://github.com/yracine/device-type.myecobee/blob/master/smartapps/FireCO2Alarm.src/FireCO2Alarm.groovy
https://doi.org/10.1145/2509136.2509538
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://github.com/smartthings-users/smartapp.auto-lock-door/blob/master/auto-lock-door.smartapp.groovy
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
http://www.smartthings.com
http://www.smartthings.com
http://dl.acm.org/citation.cfm?id=3241189.3241219
http://plrg.ics.uci.edu/iotcheck/
https://doi.org/10.5281/zenodo.3866497
https://doi.org/10.5281/zenodo.3866497
http://plrg.ics.uci.edu/iotcheck/
https://doi.org/10.5281/zenodo.3866499
http://plrg.ics.uci.edu/iotcheck/
http://plrg.ics.uci.edu/iotcheck/
https://doi.org/10.5281/zenodo.3866491
http://dl.acm.org/citation.cfm?id=2821404.2821413
https://doi.org/10.1145/2854038.2854063
https://doi.org/10.1145/3243734.3243820

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Our Contributions

	2 Background
	3 Methodology
	3.1 Definitions
	3.2 Smart Home App Pairs
	3.3 Threats to Validity

	4 Device Interaction
	4.1 RQ1: Types of Non-Conflicting Interactions
	4.2 RQ2: Types of Conflicting Interactions
	4.3 RQ3: Prevalence of Conflicts
	4.4 RQ4: Unsafe Coding Patterns

	5 Physical-Medium Interaction
	5.1 RQ1&2: Types of (Non-)Conflicting Interactions
	5.2 RQ3&4: Prevalence of Conflicts/Unsafe Coding

	6 Global-Variable Interaction
	6.1 RQ1: Types of Non-Conflicting Interactions
	6.2 RQ2: Types of Conflicting Interactions
	6.3 RQ3&4: Prevalence of Conflicts and Unsafe Coding

	7 Detecting Conflicts
	8 Related Work
	9 Conclusion
	References

