
Lagrange Coded Computing with Sparsity
Constraints

Mohammad Fahim and Viveck R. Cadambe

Department of Electrical Engineering, Pennsylvania State University.
Email: fahim@psu.edu, viveck@engr.psu.edu.

Abstract—In this paper, we propose a distributed coding
scheme that allows for lower computation cost per computing
node than the standard Lagrange Coded Computing scheme. The
proposed coding scheme is useful for cases where the elements
of the input data set are of large dimensions and the computing
nodes have limited computation power. This coding scheme
provides a trade-off between the computation cost per worker
and the recovery threshold in a distributed coded computing
framework. The proposed scheme is also extended to provide
data privacy against at most t colluding worker nodes in the
system.

I. INTRODUCTION

With the substantial increase in the size of today’s
data sets and the huge computations required to be per-
formed on them in different machine learning applications,
distributing such data on separate machines/computing
nodes and processing them in parallel has been a necessity.
However, once a computation is split on different comput-
ing nodes, the whole computation time is now controlled
by the slowest computing nodes “stragglers”. [1] reports
measurements from a Google service that distributes a
request to a large number of servers, measurements shows
that the time spent waiting for the last 5% of servers to
respond is the same as the time spent waiting for the
first 95% servers to respond. That is, ignoring the last 5%
servers’ response doubles the speed of the whole operation.
Such experiments on the effect of slow/failed computing
nodes on the overall delay of the distributed systems
have inspired the work on mitigating straggler nodes in
order to speed up distributed computations. One way to
reduce the effect of stragglers in distributed computing
frameworks is through coding techniques where redundant
computations are issued in a specific manner so that the
desired computation can be recovered upon the completion
of any subset of the computing nodes, of a specific size; and
hence the stragglers can be ignored leading to speeding
up the distributed computation. Recently, various codes
have been introduced for different distributed computa-
tions related to machine learning applications, e.g., for
matrix multiplication [2]–[10], linear solvers [11], [12], and
gradient methods [13]–[15].
In addition to stragglers, another challenge that arises

due to performing large scale computations on separate
machines is privacy. Since performing distributed compu-
tation on large scale data may require a data owner to
outsource such data to external machines to perform this

This work is supported by NSF grant No. CCF 1763657.

job, the data owner may wish to keep this data private, i.e.,
unknown to the external machines, while the computation
is done. This problem has been known as secure multi-
party computation (MPC). One of the first secure MPC
protocols is BGW [16] which provides privacy guarantees
for any arithmetic computation that involves any number
of parties n ≥ 2. However, a drawback of BGW is that
it requires multiple rounds of communication between the
parties which may lead to undesired overall delay in the
computation; an issue that has been resolved by Lagrange
Coded Computing (LCC) [17].

While most of the coding techniques in the literature of
coded distributed computing have been application spe-
cific (e.g., a coding strategy that is developed for gradient
methods may not be applicable for matrix multiplication),
as a generalization to Systematic MatDot codes [6], a cod-
ing strategy based on Lagrange polynomials, denoted by
Lagrange Coded Computing (LCC), has been introduced
in [17] which provides computation redundancy for a wide
set of functions. However, for mitigating stragglers, LCC
provides computation redundancy only for polynomial
functions and its recovery threshold is relatively high and
proportional to the total degree of the polynomial function
of interest. It has been shown in [17] that not only LCC
can be used to speed up distributed computation but
it also provides privacy guarantees in secure multi-party
computations.

The goal of LCC is to compute a function of interest
f acting on a specific data set X := {X1, · · · , Xm},
i.e., to compute f(X) := {f(Xi) : i ∈ [m]}. The key
idea in adding computation redundancy using LCC lies
in encoding the data set into a polynomial g such that
g(βi) = Xi, ∀i ∈ [m], for some scalars β1, · · · , βm, and
sending evaluations of this polynomial g to the computing
nodes where the function of interest is evaluated at the
received polynomially encoded data point. That is, for
a distributed system with P computing nodes, distinct
scalars α1, · · · , αP are defined and for every i ∈ [P] node
i receives g(αi) and computes f(g(αi)). Once any subset
of the nodes with a size of the degree of the polynomial
f(g(·)) plus one are done, f(g(·)) can be interpolated and
evaluating f(g(βi)), ∀i ∈ [m], reveals f(X).

Although LCC distributes the computation of f(X)
equally over the computing nodes where, for every i ∈ [P],
node i computes a single evaluation of f at the point
g(αi), the system design in LCC assumes that each of the
distributed system’s computing nodes are always capable

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

978-1-7281-3151-1/19/$31.00 ©2019 IEEE 284

Authorized licensed use limited to: Penn State University. Downloaded on August 03,2020 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.

We claim that the encoding in (2) satisfies both conditions
(a) and (b). Indeed, recalling (i) and (ii), we conclude that,
for any i ∈ [6], either g1(αi) = 0 or g2(αi) = 0; hence, the
first condition (sparsity condition) is satisfied. Moreover,
for any i ∈ [6], let {f(X̃j)}j∈[6]−{i} = {f(g(αj))}j∈[6]−{i}

be the first five outputs received by the fusion node. Since
f is of degree one in g, and g is of degree four in α, f is of
degree four in α; hence, f(g(α)) can be interpolated using
the five outputs {f(g(αj))}j∈[6]−{i}. Recalling (iii) and
(iv), once f(g(α)) is obtained, the fusion nodes evaluates

f(g(βi)) = f

((

g1(βi)
g2(βi)

))

= f

((

ai
bi

))

= f(Xi), i = 1, 2.

Thus, the second condition (decodability condition) is
satisfied as well.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a computation system that consists of three
different types of nodes: (i) a master node; (ii) worker

nodes; and (iii) a fusion node as depicted in Fig. 1.
Definition 3.1 (An (f, s, k, P,m) Computation System):

An (f, s, k, P,m) computation system consists of the follow-

ing:

(i) A master node that follows the following procedure:

1) receives m input vectors, i.e., the set of vectors

X = {X1, · · · , Xm}, where, for each i ∈ [m], Xi ∈ V,

where V is a vector space with dimension d in F and

F is some field and d is a positive integer, 2) computes

X̃1, · · · , X̃P ∈ V, where X̃i = Enci(X1, · · · , Xm) such

that each X̃i has at most s non-zero entries in F, i.e.,

sparsity of each X̃i is at most s, and Enci is defined as

a linear mapping Enci : V× · · · ×V → V, and 3) sends

X̃i to worker node i, for every i ∈ [P].
(ii) P worker nodes each of them owns the same polynomial

function of interest f : V → U, where U is a vector

space, and performs the following procedure: 1) receives

X̃i from the master node, 2) computes f(X̃i), and 3)

sends the result f(X̃i) to the fusion node.

(iii) A fusion node that receives outputs from the successful

worker nodes. If the number of successful workers is at

least k, the fusion node performs decoding and produces

the output f(X) = {f(X1), · · · , f(Xm)}. That is, let

S = {s1, · · · , sk} be any set of k successful worker

nodes, the fusion node computes (f(X1), · · · , f(Xm)) =
DecS(X̃s1 , · · · , X̃sk), where DecS : V × · · · × V → U

is a decoding function. Otherwise, i.e., if the number of

successful workers is less than k, the fusion node declares

a “computation failure.”

An (f, s, k, P,m) computation system is one that consists

of a master node, P worker nodes, and a fusion node that

follow their above specified procedures, such that, when it

receives X = {X1, · · · , Xm} as an input, it outputs f(X) =
{f(X1), · · · , f(Xm)} if the number of successful workers is

at least k.

We consider (f, s, k, P,m) computation systems where
the computational complexities of the master node, each

worker node, and the fusion node, when evaluated in
terms of the parameters deg(f), d, s, P,m, where deg(f)
is the degree of f , are all less than the complexity of any
sequential algorithm that takes X1, · · · , Xm as input and
computes f(X1), · · · , f(Xm) as the output. Our goal in
this paper is to characterize a class of (f, s, k, P,m) compu-
tation systems given f, s, P,m. That is, given f, s, P,m, we
construct encoding and decoding functions {Enci}i∈[P],
and {DecS}S⊂[P],|S|=k, respectively, and specify the com-
putation system’s k(f, s, P,m) < P as a function of
f, s, P,m.

IV. GENERAL CODE CONSTRUCTION

In this section, we provide a general code construction
solving the problem described in Section III. Our result
can be formulated in the following theorem.

Theorem 4.1: For the coded computing problem under spar-

sity constraint described in Section III, a recovery threshold

of

k =

(

⌈P

d

⌉

(d− s) +m− 1

)

deg(f) + 1

is achievable.

Before proving the theorem, we first provide some useful
definitions and then present the general code construction
that achieves the recovery threshold in Theorem 4.1.
Let any data point Xi, i ∈ [m] defined in Section III

be written as Xi = (xi1, xi2, · · · , xid). Similarly, let any
encoded vector X̃i, i ∈ [P] defined in Section III be written
as X̃i = (x̃i1, x̃i2, · · · , x̃id). Now, we define the zero sets

Z1, · · · ,ZP ⊂ [d]. For, i ∈ [P], the zero set Zi is the set
of indices of the encoded vector X̃i whose value is forced
to zero by the encoding scheme to satisfy the sparsity
constraint. Notice that, for any i ∈ [P], j ∈ Zi implies
x̃ij = 0; however, the converse is not necessarily true.
In this paper, we obtain the zero sets Zi, i ∈ [P], in a

similar way as introduced in ShortDot codes [3], i.e, based
on the “circularly sliding train of zeros” of length d − s.
Specifically, we let the zero set of X̃1 be its first d− s in-
dices, i.e., Z1 = {1, 2, · · · , d−s}, and then for the following
zero sets of X̃2, · · · , X̃P , we keep moving the zero set to
right with step one and allowing circular shift. That is, for
i ∈ [P], Zi = {imod d, i+1mod d, · · · , i+d−s−1mod d}.
In addition to the zero sets, we also define the sets of

zero-locators R1, · · · ,Rd ⊂ [P]. For j ∈ [d], the zero-

locator of index j set (i.e., set Rj) is the set of worker
nodes such that the value of the j-th entry of the encoded
vector received by any of these worker nodes is forced
to zero due to the sparsity constraint, i.e., j belongs
to the zero sets of all worker nodes in Rj . Specifically,
Rj = {i : j ∈ Zi, i ∈ [P]}. Notice that if Z1, · · · ,ZP

are formed using the sliding train of zeros of length d− s,
then we can conclude that |Rj | ≤ ⌈P

d
⌉(d − s) ∀j ∈ [d].

Define unique β1, · · · , βm, α1, · · · , αP ∈ F, and let g(α) =
(g1(α), · · · , gd(α))

T
, where

gj(α) =

m
∑

k=1

xkj





∏

r∈Rj

α− αr

βk − αr

∏

l∈[m]−k

α− βl

βk − βl



 , (3)

286

Authorized licensed use limited to: Penn State University. Downloaded on August 03,2020 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.

j ∈ [d]. In the following, we describe the general coding
procedure.

Construction 1 (Sparse LCC):

Master node (encoding): For all i ∈ [P], the master node

sends X̃i = (x̃i1, · · · , x̃id) to worker node i, where

x̃ij = gj(αi), j ∈ [d]. (4)

Worker nodes: For i ∈ [P], worker node i computes f(X̃i)
and sends the output to the fusion node.

Fusion node (decoding):

1) Waits till it collects the output of
(

⌈P
d
⌉(d− s) +m− 1

)

deg(f) + 1 worker nodes.

2) Interpolates f(g(α)).
3) Evaluates f(Xi) = f(g(βi)) ∀i ∈ [m].

Now, we prove Theorem 4.1.

Proof of Theorem 4.1 In order to prove the theorem,
it suffices to show that Construction 1 is valid. That is,
it suffices to show that Construction 1 satisfies both the
sparsity and decodability conditions.
First, the sparsity condition is satisfied by recalling

that x̃ij = gj(αi), where gj(αi) is as defined in (3), and
observing that {αi − αr}r∈Rj

is a subset of the factors of
gj(αi) (i.e., x̃ij). Therefore, x̃ij evaluates to zero whenever
i ∈ Rj .
For the decodability, notice that f(g(α)) is of degree

deg(f) in g and g is of degree at most ⌈P
d
⌉(d− s) +m− 1

in α; hence, f(g(α)) is of degree at most (⌈P
d
⌉(d − s) +

m − 1) deg(f) in α. Since the output of the worker nodes
can be seen as evaluations of the polynomial f(g(α)) at
α = α1, · · · , αP . Once the fusion node receives the output
of (⌈P

d
⌉(d−s)+m−1) deg(f)+1 different worker nodes, it

can interpolate the polynomial f(g(α)). Moreover, notice
from (3) that gj(βi) = xij ∀i ∈ [m], j ∈ [d]. That is,
g(βi) = Xi ∀i ∈ [m] which directly implies that f(Xi) =
f(g(βi)) ∀i ∈ [m]. �

A. Encoding and Decoding Complexities of Construction 1

1) Encoding Complexity: For each i ∈ [P], computing X̃i

requires computing a number of d evaluations x̃i1, · · · , x̃id,
where each of such evaluations is of complexity O(⌈P

d
⌉(d−

s) +m − 1). Therefore, for any i ∈ [P], the evaluation of
each of X̃i has a computational complexity of O(d(⌈P

d
⌉(d−

s) + m − 1)). Therefore, the overall encoding complexity
for P workers is O(Pd(⌈P

d
⌉(d− s) +m− 1)).

2) Decoding Complexity: Noting that the co-domain of
the polynomial f(g(α)) is the vector space U, let the di-
mension of U be dim(U). In the following, we compute the
decoding complexity. First, the interpolation requires the
inversion of a k× k Vandermonde matrix (considering the
naive inverse approach for interpolation) with a complexity
of O(k3). Then, the evaluation of each f(g(βi)) requires a
complexity of O(k dim(U)). Therefore, the evaluation of all
f(g(βi)), i ∈ [m] requires O(mk dim(U)) operations. Thus,
the whole decoding complexity is O(k3 +mk dim(U)).

V. PRIVATE LAGRANGE CODED COMPUTING UNDER

SPARSITY CONSTRAINTS

In this section, we aim to provide fault-tolerant codes
for function computations in distributed systems under a
sparsity constraint, and, in addition, we aim to also provide
privacy against colluding computing nodes. Specifically, we
consider a semi-honest model for the colluding comput-
ing nodes, where they correctly perform their designated
computations; however, they may cooperate in order to
gain some knowledge on the private input data. Before
we formally state the problem tackled in this section, we
provide the following definition borrowed from [16].

Definition 5.1 (t−private Coding Schemes): A coding

scheme is t−private if any set of at most t computing

nodes cannot eventually compute more than they could jointly

compute solely from their set of inputs and outputs.

A. Problem Formulation

We consider the same problem stated in Section III with
the restriction that, here, we assume that the field F is a
finite field. In addition, we impose a privacy constraint that
requires a t−private coding scheme solution. Specifically,
we require that at most any t worker nodes cannot jointly
compute the data set {X1, · · · , Xm} given only their set
of inputs and outputs.

B. A t−private Code Construction

We state our result in the following theorem.
Theorem 5.1: For the private coded computing problem

under sparsity constraint described in Section V-A, a recovery

threshold of

k =

(

⌈P

d

⌉

(d− s) +m+ t− 1

)

deg(f) + 1

is achievable.

Before we provide a proof sketch to Theorem 5.1, in
the following, we provide a t-private code construction
denoted by t-private Sparse LCC that achieves the re-
covery threshold in Theorem 5.1. Let any data point
Xi, i ∈ [m] be written as Xi = (xi1, xi2, · · · , xid).
Similarly, we let any encoded vector X̃i, i ∈ [P]
be written as X̃i = (x̃i1, x̃i2, · · · , x̃id), and define
unique β1, · · · , βm+t, α1, · · · , αP ∈ F, and let g̃(α) =
(g̃1(α), · · · , g̃d(α)), where

g̃j(α) =
m
∑

k=1

xkj





∏

r∈Rj

α− αr

βk − αr

∏

l∈[m+t]−k

α− βl

βk − βl





+

m+t
∑

k′=m+1

z(k′−m)j





∏

r∈Rj

α− αr

βk′ − αr

∏

l∈[m+t]−k′

α− βl

βk′ − βl



 ,

(5)

j ∈ [d], where zij for i ∈ [t] and j ∈ [d] are independently
and randomly selected from the finite field F, and for j ∈
[d], Rj is defined as in Construction 1, i.e., Rj = {i : j ∈
Zi, i ∈ [P]} where Zi = {imod d, i + 1mod d, · · · , i + d −
s − 1mod d}. In the following, we describe the t−private
Sparse LCC scheme.

287

Authorized licensed use limited to: Penn State University. Downloaded on August 03,2020 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.

Construction 2 (t−private Sparse LCC):

Master node (encoding): For all i ∈ [P], the master node

sends X̃i = (x̃i1, · · · , x̃id) to worker node i, where

x̃ij = g̃j(αi), j ∈ [d].

Worker nodes: For i ∈ [P], worker node i computes f(X̃i)
and sends the output to the fusion node.

Fusion node (decoding):

1) Waits till it collects the output of
(

⌈P
d
⌉(d− s) +m+ t− 1

)

deg(f) + 1 worker nodes.

2) Interpolates f(g̃(α)).
3) Evaluates f(Xi) = f(g̃(βi)) ∀i ∈ [m].

Proof Sketch of Theorem 5.1 In order to prove the
theorem, it suffices to show that Construction 2 is valid.
That is, it suffices to show that it satisfies the sparsity,
decodability, and privacy conditions.
First, the sparsity condition is satisfied by recalling that,

in Construction 2, x̃ij = g̃j(αi), where g̃j(αi) is as defined
in (5), and observing that {αi−αr}r∈Rj

is a subset of the
factors of g̃j(αi) (i.e., x̃ij). Therefore, x̃ij evaluates to zero
whenever i ∈ Rj .
For the decodability, notice that f(g̃(α)) is of degree

deg(f) in g̃ and g̃ is of degree at most ⌈P
d
⌉(d−s)+m+t−1

in α; hence, f(g̃(α)) is of degree at most (⌈P
d
⌉(d − s) +

m + t − 1) deg(f) in α. Since the output of the worker
nodes can be seen as evaluations of the polynomial f(g̃(α))
at distinct α1, · · · , αP . Once the fusion node receives the
output of any (⌈P

d
⌉(d− s)+m+ t− 1) deg(f)+1 different

worker nodes, it can interpolate the polynomial f(g̃(α)).
Moreover, notice from (5) that g̃j(βi) = xij ∀i ∈ [m], j ∈
[d]. That is, g̃(βi) = Xi ∀i ∈ [m] which directly implies
that f(Xi) = f(g̃(βi)) ∀i ∈ [m].
Lastly, the privacy condition in Construction 2 is im-

plied by the fact that each of the worker nodes receives
an evaluation of g̃(α) in which the linearly combined
private inputs are mixed with a linear combination of t

independent and randomly selected values from F such
that no t evaluations of g̃(α) can recover the linearly
combined encoded inputs. �

VI. DISCUSSION: THE t-PRIVATE SPARSE LCC AS A

UNIFYING CODING SCHEME

The t-private Sparse LCC scheme introduced in this
paper can be considered as a unifying coding scheme that
includes LCC codes [17] and ShortDot codes [3] as special
cases. Specifically, the Sparse LCC scheme reduces to the
LCC scheme if s = d, and reduces to ShortDot codes if
the function of interest f is defined as f : FN×1 → F such
that f(X) = CTX, for some constant C ∈ F

N×1, and the
data set on which f to be evaluated is X = {X1, · · · , XM},
where N ≫ M .
In addition, it is worth mentioning how t−private Sparse

LCC differs from the work in [18]. In [18], a sharing scheme
denoted by Polynomial Sharing is proposed to privately
compute an arbitrary polynomial function of interest un-
der a communication constraint from the source nodes
to the worker nodes. The main difference between the
Polynomial Sharing scheme and the t-private Sparse LCC

is that the Polynomial Sharing is constructed based on
defining private schemes over basic matrix operations (e.g.,
addition and multiplication of two matrices), and then
extending to general polynomial functions (with arbitrary
degree) by recursively applying the private scheme for the
multiplication (or addition) of two matrices. This requires
applying multiple communication round to privately com-
pute the polynomial function of interest. However, in the
t-private Sparse LCC, only one communication round is
needed to compute any polynomial function of interest.
However, the t-private Sparse LCC scheme requires more
number of worker nodes P compared to the Polynomial
Sharing scheme for the same t privacy guarantee.

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran, “Speeding up distributed machine learning using
codes,” IEEE Transactions on Information Theory, vol. 64,
no. 3, pp. 1514–1529, 2018.

[3] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing
Large Linear Transforms Distributedly Using Coded Short
Dot Products,” in Advances In Neural Information Processing
Systems (NIPS), 2016, pp. 2092–2100.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial
Codes: an Optimal Design for High-Dimensional Coded Matrix
Multiplication,” in Advances In Neural Information Processing
Systems (NIPS), 2017, pp. 4403–4413.

[5] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe,
and P. Grover, “On the optimal recovery threshold of coded
matrix multiplication,” in Communication, Control, and Com-
puting (Allerton), Oct 2017, pp. 1264–1270, extended version
at http://arxiv.org/abs/1801.10292.

[6] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe,
and P. Grover, “On the optimal recovery threshold of coded
matrix multiplication,” IEEE Transactions on Information
Theory, pp. 1–1, 2019.

[7] M. Fahim and V. R. Cadambe, “Numerically stable polynomi-
ally coded computing,” in 2019 IEEE International Symposium
on Information Theory (ISIT), July 2019, pp. 3017–3021,
extended version at https://arxiv.org/abs/1903.08326.

[8] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded
matrix multiplication,” in IEEE International Symposium on
Information Theory (ISIT), 2017, pp. 2418–2422.

[9] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler
mitigation in distributed matrix multiplication: Fundamental
limits and optimal coding,” arXiv preprint arXiv:1801.07487,
2018.

[10] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A
unified coded deep neural network training strategy based
on generalized polydot codes,” in 2018 IEEE International
Symposium on Information Theory (ISIT), June 2018, pp.
1585–1589, http://arxiv.org/abs/1811.10 751.

[11] F. Haddadpour, Y. Yang, M. Chaudhari, V. R. Cadambe,
and P. Grover, “Straggler-resilient and communication-efficient
distributed iterative linear solver,” CoRR, vol. abs/1806.06140,
2018. [Online]. Available: http://arxiv.org/abs/1806.06140

[12] S. Li, S. M. M. Kalan, Q. Yu, M. Soltanolkotabi, and A. S.
Avestimehr, “Polynomially coded regression: Optimal strag-
gler mitigation via data encoding,” preprint arXiv:1805.09934,
2018.

[13] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatzi-
akis, “Gradient Coding: Avoiding Stragglers in Distributed
Learning,” in International Conference on Machine Learning
(ICML), 2017, pp. 3368–3376.

[14] M. Ye and E. Abbe, “Communication-computation efficient
gradient coding,” in Proceedings of the 35th International
Conference on Machine Learning, ICML, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, 2018, pp. 5606–5615.
[Online]. Available: http://proceedings.mlr.press/v80/ye18a.
html

288

Authorized licensed use limited to: Penn State University. Downloaded on August 03,2020 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.

[15] L. Chen, H. Wang, Z. Charles, and D. Papailiopoulos, “Draco:
Byzantine-resilient distributed training via redundant gradi-
ents,” in International Conference on Machine Learning, 2018,
pp. 903–912.

[16] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation,” in Proceedings of the twentieth annual ACM
symposium on Theory of computing. ACM, 1988, pp. 1–10.

[17] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,”
arXiv preprint arXiv:1806.00939, 2018.

[18] H. A. Nodehi and M. A. Maddah-Ali, “Secure coded multi-party
computation for massive matrix operations,” arXiv preprint
arXiv:1908.04255, 2019.

289

Authorized licensed use limited to: Penn State University. Downloaded on August 03,2020 at 17:24:43 UTC from IEEE Xplore. Restrictions apply.

