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EXPONENTIAL CONVERGENCE FOR MULTIPOLE AND LOCAL
EXPANSIONS AND THEIR TRANSLATIONS FOR SOURCES IN
LAYERED MEDIA: TWO-DIMENSIONAL ACOUSTIC WAVE*

WENZHONG ZHANG', BO WANG#, AND WEI CAI$

Abstract. In this paper, we first derive the multipole expansion (ME) and local expansion (LE)
for far fields from wave sources in two-dimensional (2-D) layered media as well as the multipole-to-
local translation (M2L) operator, by using the generating function of Bessel functions and Sommerfeld
integral representations of Hankel functions. Then, we give a rigorous proof of the exponential
convergence of the ME, LE, and M2L. It is shown that the convergence of ME, LE, and M2L for the
reaction field components of the 2-D Helmholtz Green’s function in layered media depends on the
distance between the target charge and an equivalent polarization source. The polarization sources
can be used in the implementation of fast multipole methods for wave sources embedded in layered
media.
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1. Introduction. The multipole expansion (ME), local expansion (LE), and
multipole-to-local translation (M2L) form the mathematical structure of fast multi-
pole methods (FMMs) for evaluating integral operators associated with the Green’s
function of Helmholtz equations in wave scattering [11, 3]. The ME for the Green’s
functions in the free space was based on the Graf’s addition theorems for Bessel
functions. To extend the FMM for wave scattering in layered media, ME and M2L
formulas for Helmholtz equations in a two-dimensional (2-D) half-space domain were
proposed in [6]. The derivation in [6] for the ME and M2L made use of an image (point
and line images) representation of the Green’s function of the half-space domain with
an impedance boundary and the MEs, based on the Graf’s addition theorem, for the
image charges as well as the original source charges. And, it was shown that the ME
coefficients used to compress the far field of the source charges in the free space can
also be used to compress the far field of the images, thus producing a ME for the
Green’s functions of the 2-D half-space domain. For the case of the half space with
an impedance boundary condition, the image representation of the domain Green’s
function justifies the truncation order, and thus the exponential convergence, of ME
and M2L. Meanwhile, a 2-D heterogeneous FMM was proposed and implemented in
[5], [6], giving an O(N) complexity of evaluating the integral operator of low frequency
Helmbholtz operators for sources in the half space.
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As an image representation of general layered media Green’s function may not
exist, in this paper, we will present an alternative complete derivation for the ME,
LE, and M2L operators for the Green’s function in general 2-D layered media by
using the generating function of the Bessel functions of the first kind (referred as the
Bessel generating function in this paper). Moreover, we will give a rigorous proof
of the exponential convergence of the ME, LE, and M2L and local to local (L2L)
translation operators for acoustic wave sources in general 2-D layered media. The
convergence analysis reveals a very important and practical fact that the convergence
of ME, LE, L2L, and M2L for the reaction field component of the Green’s function
in fact depends on a polarization distance, which is measured between the target and
an equivalent polarization source, thus suggesting how the FMM framework should
be set for sources and targets in layered media.

The rest of the paper is organized as follows. In section 2, we first give some
technical tools crucial to the work in this paper, including the Bessel generating
function, which relates plane waves to cylindrical waves and the growth condition of
the Bessel functions. A brief discussion of the Green’s functions in layered media and
their integral representations is also given. Then, the Bessel generating function is
used to derive the analytical formula for the ME and LE expansions for sources in 2-D
layered media, the M2L and L2L translation operators. The exponential convergence
rates for these expansions are validated with some numerical tests. The proofs of
exponential convergence rates of the expansions are given in section 3. First, we will
give the proof of the exponential convergence of some integral expansions resulting
from using the Bessel generating function. The proof is given starting with a special
case corresponding to the situation when the far-field location is directly above or
below the center of the expansion. Then, the Cagniard—de Hoop transform [4] is
introduced so that we can deal with the general case by using complex domain contour
integrals. The proof for the error estimate of ME, M2L, etc., introduced in section 2
will follow. A conclusion is given in section 4, while appendices are included for some
technical lemmas and proofs of several lemmas from the main text.

2. Far-field expansions and their translations for the 2-D Helmholtz
equation in layered media. In this section, we begin with some properties of the
Bessel functions of the first kind, which inspires an alternative derivation of the ME of
the free space Green’s function. These properties will be key to deriving various far-
field expansions in layered media. The ME, LE, M2L, and L2L for the layered media
will then be derived with error estimates and numerical validations. Also, a feasible
FMM framework for sources in layered media is proposed based on the convergence
results of the far-field expansions.

2.1. An identity and some estimates on Bessel functions of the first
kind. Recalling the Bessel generating function [1, equation (9.1.41)], for any z,w € C
with w # 0,

(2.1) g(z,w) = exp (%(w - wil)) = i Ip(Z)wP.

p=—00

The identity (2.1) expresses a plane wave function in terms of cylindrical functions,
in contrast to the Sommerfeld integral representation of the Green’s function, which
expresses cylindrical functions in terms of plane waves (2.12). This duality facilitates
the derivation of the far-field expansions in this paper.
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The above series converges absolutely, which is a corollary of the following lemma.
For the rest of this paper, we use the notations & and & for the real and the imaginary
parts of a complex number, respectively.

LEMMA 2.1 (an estimate on Bessel functions of the first kind). Let p be an
integer and z > 0. With the convention 0° = 1, the following inequality holds:

2\ ol
el o (3)7

Proof. When p >0 > —%, the inequality is given by [1, equation (9.1.62)]. Then,
the identity J,(z) = (—1)PJ_,(z) covers the case p < 0. 0

2.2. The Green’s function for 2-D Helmholtz equation in layered media.
Consider a horizontally layered medium with L interfaces located at y = d;, 0 <[ <
L — 1, arranged from top to bottom as [ increases. Each interface y = d; separates
layer [ above layer [ + 1, and each layer [ is homogeneous with a wave number k; > 0,
0<I<L.

We assume s labels the layer where the source x’ = (a/,y’) locates, and t labels
the layer where the target x = (z,y) locates, 0 < s,t < L.

The layered Green’s function G(x,x’) for the Helmholtz equation is a piecewise
smooth function for a source x’ and a target x from possibly different layers. Within
each layer,

(2.2) AG(x,X) + E2G(x, %) = —5(x, %),

with two interface conditions at y = d; of the form

oG
2.3 Gl=0 bi— | =0
(2.3 @Gl =0, |nge| =0,

where the bracket [-] refers to the jump of the quantity inside at the interface, and
a; and b; are some complex numbers (depending on the layer number ¢). In typical
acoustic wave equations, the parameters can often be reduced such that a; = 1 and
b; are constants depending on each layer media, e.g., the density [13].

Note that the right-hand side of (2.2) is nontrivial only when x and x’ are in the
same layer, i.e., s = t. Defining

(2.4) u'(x,%x) = G(x,x') — 6 .G (x, %),

here §; s is the Kronecker delta function, and

(2.5) G, x') = THEY (kofx = X))

is the free-space Green’s function with wave number k;. wu' is called the reaction

field using the terminology of electrostatics [2] and satisfies a homogeneous Helmholtz
equation with a wave number k;.

A decomposition of the reaction field u" is given in terms of upward and downward
wave propagation components, indicated by the up and down arrow symbols [14].
Suppose the Helmholtz equation in layered media with the interface conditions is
well-posed. The reaction field u* can be written in the following summation:

ut(x,x') = u)] (X7XI; otTST) + u;l (X, x'; O‘Ij)
(2.6) ,
+ull (xx50ll) +ult (xx5ot) =D (xox i),
*k

where *, % € {1,]} refer to the vertical field propagation directions corresponding to
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*

the target and the source, respectively, and each uj; has an integral representation

(2.1 it (xiois) = [ € G Vit (A

— 0o

where the integrand has an exponential factor
(2.8) £ (%, %', \) = e~ VAR (y=d)) =\ WB=REr" (¢ —dD)Fid(@—a'),

and o;¥()) is a coefficient term which does not depend on the coordinates of x and
x'.

In (2.8), we adopt the convention le = d; for | # L and df = d;_1 for I # 0,
77 =1, and 74 = —1. In addition, d_; = oo and d;, = —oco. These conventions
together guarantee 7*(y — d}) > 0 and 7*(y’ — d¥) > 0. When d_; or dj, occurs in a
component in (2.8), it refers to an incoming wave from y = 400, which is prohibited
by the Sommerfeld radiation conditions, and the component itself should vanish. For
example, if both x and x’ are in the top layer, then (2.6) becomes u' = ugg only.

Appendix B.1 contains the derivation of the decomposition (2.6).

Remark 2.2. The specific form of the exponential term &£, (x,x’, A) is introduced
to ensure that each coefficient term o;*(A) has polynomial growth rate under certain
conditions, to be elaborated in Appendix B.3. The polynomial growth of o;*(\) will
be needed for the exponential convergence estimate of ME, LE, M2L, and L2L expan-
sions. This specific form also results in a dependence of the exponential convergence
on a special “polarization distance” between a source and a target in the layered
media, as defined in (2.26) and depicted in Figure 1.

The integrand of (2.7) may have real poles, whose integration should be treated
as the limiting case of the field in lossy physical media. To understand the real poles,
we first introduce the necessary branch cut for the square roots. For any z = rel € C
with r > 0, 6 € [—m, ), define

(2.9) Vz = /reit.

For each square root \/A? — k7, the corresponding branch cut in the A-plane is the
union of the imaginary axis and the real interval [—k;, k;]. In a realistic physical case
where the medium in layer [ is lossy with a perturbed wave number k; = k; + ¢,
0 < ¢ < 1, the perturbed branch cut is then shown in Figure 2. The branch cut of
A2 — kl2 is the limit of the perturbed one as ¢ — 0.

Let A, be areal pole of 077 () in the integrand of (2.7), which is known as a surface
wave pole [9, 12]. Integration across the surface wave pole is understood as the limit-
ing case of the perturbed system with lossy media as mentioned above. For simplicity,
suppose o5 (\) = o(X;k1,...,kr) is the limit of the perturbed field o(X; k1, ..., kL)
with pole A, and A, — X, € (a,b) as all the ¢, — 0T. Let 0, = limy_,», o(A\)(A=A,).
Given any smooth function h(A), the limiting integral f; h(X)o(A)dA is evaluated us-
ing the formula

b - - b h(\,)oy
h(N)o(A; k1, ..., kp)d\ — h(N)o(A) — ——— | dX
h

b
+p.v./a h)\()\_i"))\gy”d/\j:iw
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d*

sources sources
dl
T T
. other layers \ other layers
. .
target X target X
: ! _— }
+ —_ ph
Pe = Dlj(x,x(‘) - Pe = Dy (x, %)
. i
/polarization sources / polarization sources
b
dy
sources sources
dl
T T
. other layers . other layers
. .
\polarization sources . polarization sources
_ p¥t
pe = Dy (x, %) pe = Dﬁ(x, X)

: dr : dr
target X ! target X !

Fic. 1. The far-field distance pc of the ME in various field propagation directions.

Fia. 2. The perturbed branch cut starting from :I:l;l, where I~cl = k; + €.

The =+ sign is positive (or negative) when the perturbed pole A, — A, from the up-
per (or the lower) half of the complex plane, and the principal value part vanishes if
(a,b) = (=00, 4+00). .

In a well-posed problem, the poles will be at most of order one, and A\, should
remain in one side of the half planes as all the perturbation parameters ¢; are suffi-
ciently small; otherwise, the limit of the integral does not exist and the field is not
well-defined. Also, 0 cannot be a surface wave pole; otherwise the surface wave does
not propagate [9, 12].

Remark 2.3. Modes of the layered system are classified as the radiation modes,
the guided modes (the real poles), and the leaky modes (the other complex poles) [9].

2.3. The multipole expansions of the free space Green’s function re-
visited. Before introducing the far-field expansions of the layered Green’s function,
we present an alternative derivation for the well-known ME of the free-space Green’s
function. Consider N sources with strength ¢; placed at locations x; = (x;,v;),
j=1,2,..., N within a circle centered at x. = (x,y.) with a radius r in the free
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space R?, then, the field located at x due to all sources is given by

qu (x, %),

where Gf is the free space Green’s function Gf(x,x’) = & H ) (kJx — x'|), k is the wave

number, and H, (1) is the Hankel function of the first kmd. A target x is well-separated

from the sources if the distance between x and the source center x. is at least 2r.
By Graf’s addition theorem [1], the free space Green’s function for the well-

separated sources x; and the target x can be compressed with a multipole expansion

(2.11) u Z apH(l) (k|x —x¢|) e iple oy — Z apHél)(kpc)eipec,

P—*OO \p\<P
where a, = Zjvzl q;Jp(kp;)e % (p.,0.) are the polar coordinates of x —x., (p;,0;)
are the polar coordinates of x; — x., and the truncation index P is a constant inde-
pendent of the number of the sources N [11].

On the other hand, the multipole expansion can also be derived in the frequency
domain using (2.1) as follows. Consider one source x; and suppose y — y; > 0,
y — Yo > 0 for simplicity. The interaction between x and x; can be represented by a
Sommerfeld integral of plane waves [5],

i i —VA2—k2(y~y;)
¢ R ) il e J
(2.12) G'(x,x;) = ZHO (klx —x|) = —— v, vo-an

4im
while each term H,()l)(k:pc)eipec in (2.11) has a similar representation [5]
(2.13)

ei)\(x—xj)d)\’

1) ip. _ — iNz—zc)(_3\p

(kpc)e - i . \/W € ( 1)
These integral forms give an alternative derivation for the multipole expansion of
iHél)(lﬂx —x]) = iHél)(ld (x — x¢) + (xc — x;) |) with separable plane wave factors
in the integrands involving (x — x.) and (x. — x;),

| VR <)\—\//\2—k2>pd)\
I ———— T .

i
20 (kx =)

o~ VIR (y—
g —(yyj)eik(m—rj)d)\
4ir A2 — k2
o~ VIR (y—y.
_ i 1 -y )ei/\(zfxu) . e*\/)\27k2(ycfyj)+i)\(wufwj)d>\
4ir A2 — k2
il e VAR y=ye) . i
=i W@“ 9 g (kpy, —ie™ () X
il e~ VA =k (y—ve)
_ 1 (z—z¢) | —ipf; (s p
=1 —)\2—k2 p_z_:ooj (kpj)e (—iw(\))P dA
e~ VA =k (y—yc)
_ i —1p9 l iNaz—zc) [ P
= p_Z_OOJ (kpj)e . —)\ = ° (—iw(N))” dA

i —ipd; i
=1 Z Tp(kpy)e % - HM (kpe) e,

p=—00
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where

PV vy

(2.14) w()) = -

The interchangeability of the sum and the integration is verified by the validity of the
identity itself, i.e., the Graf’s addition theorem.

2.4. The far-field MEs and LEs, translations, and their exponential
convergence for the Green’s function in layered media. For the sake of conve-
nience, we focus on the interaction between one source and one target unit charge. We
will derive far-field expansions for each integral u}* (x,x’;07Y) in a natural general-
ization of the free-space case discussed in subsection 2.3, then show their exponential
convergence. The derivation makes use of the following two types of series expansions.

Suppose (po, o) are the polar coordinates of (xg,yo). Denote

A= /A2 — k7
(2.15) wy(N) kil 0<I<L.
l

By using the Bessel generating function (2.1), we have

ei\/m,r*yofi)\zo =g (ksp07 _ieir*eows()\))

(2.16) S ipr”
= > Jplkepo)e % - (—iwg (V)P
p=—00
o~/ REr yoHiAe _ g (ktpo,ie”*eowt(/\)fﬁ
(2.17)

S Tmlkepo)e™ 00 (i, (\) 7)™

m=—0oo

For the ME, we split the difference x —x’ = (x — x.) + (x. — x), namely, we shift
the source x’ to a common source center x. = (., y.), which is assumed to be on the
same side of the interface y = d7, i.e., y. — d¥ and y' — df have the same sign. Let
(pL,0.) be the polar coordinates of x’ — x.. Using (2.16) with (po,60) = (p.,0.) and
the separability of the plane wave factor £}*(x,x’) (2.7), we get an approximation

o
it Gexiars) = [ € G o (VA

— 00

ts

:/ 5:5*(X, XC7A)E_MT*(y/_yc)“'i)\(mc—z/)o_**()\)d)\

(2.18) N - o
- / Er (%, % N () S Ty (kapl)e™ O (=i, (V)P dA

p=—00

— 00
~ I (x, XC>M;(X/7XC),

[p|<P

where the expansion function

(2.19) I (%, %) = / e (3 %0 \)or (V) (s (V)P dA,

— 00
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and the ME cofficient

(2.20) M (x x.) = Jy(kspl)el?™ Oc.
For the LE, we split the difference x —x’ = ( — X ) + ( ) namely, we shift
the target x to a common target (local) center x\, = (x lc,yc) , which is assumed to

be on the same side of the interface y = d;. Let ( !, 6") be the polar coordinates of
x — x\. Using (2.17) with (po, o) = (o' 91) and the separability of the plane wave
factor &7 (x,x’) (2.7), we get an approximation,

uid (%, x507%)

oo

*k *k imr*6! . _1\m
(2 21) :/ gts (X x' )‘)Gts ()‘) Z Jm(ktpl)e . (lwt(/\) 1) dA
~ Y Lp(xhxX) K (x, %),

|m|<M
where the expansion function
(2.22) K7 (x, ch) = Jm(ktpl)eimT*al,
and the LE coefficient
(2.23) L (xL,x) = / EF(xL,x!, Nofr() (iwe(\) ™1™ d.

Now, the M2L can be derived directly by using the splitting x!, —x’ = (ch — xc) +
(xe. — x') in L¥F(xL, %), ie.,

Ly (x¢, ')

gy = E5 (ke N ) () p;OOJ g7 % (—is () A
~ Z A::p(XlC,XC)M;(X/,XC),
lpl<P

where the translation coefficients A;*,fp(xf:, X.) are given by

A (X, xe) = /OO £ (0 Xe, Aot (A) (—iws(A)? (iwe(N) )™ dA.

— 00

The L2L shifts the local center x. in each integral L**(x!,x’) to a new local
center X, = (&L, §L). Let (p,6) be the polar coordinates of X\ — x.. Using (2.17) with
(p0780) = (ﬁ7 0)7

L**(f(l X/)
:/ £ (k% Nt ) (0™ STy kip)e™ 7 - (g (3) 1) dA
p=—00
(2.25) \ ipr*d x ox . —1\m /. ~1\P
~ Z Jp(kip)e Ets (x5, x, N)ofr(A) (1w (A) ™)™ (fwe (V)17 A
|p+m|<P -
Z Ly( (x!,x) VK, (%),
[p|<P
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Remark 2.4. The use of plane waves for expressing the MEs and LEs was first
proposed in the new version of FMMs for the Laplace and Helmholtz equations in
free space [7], [8] to reduce the MEs to LEs translation cost.

Polarization distance. Before we present the main result of this paper on the
convergence of the series expansions above, we introduce the concept of “polarization
distance” unique to the interaction in layered media. Given layer indices s, t and
direction marks x,x € {1,]}, for a target x; = (x1,91) and a source x3 = (z2,¥y2),
the polarization distance is defined as

(2.26) Dis(xa,%2) = \/(wl —a2)? + (Tt (y1 — df) + 7 (g2 — i)

provided both 7*(y; — d;) > 0 and 7*(y2 — d%) > 0. (Note that the polarization
distance is not symmetric with respect to x; and x».) This distance is in fact the
distance between the target x; and an equivalent polarization source for the source
point x2. (See (2.35) for its definition and Figure 1 for an illustration of the locations
of the polarization sources for different reaction components.)

THEOREM 2.5 (exponential convergence of far-field expansions in layered media).
Suppose the integral ufy (x,x';07F) is derived from a well-posed Helmholtz problem in
layered media as in (2.6). Then, we have the truncation error of ME (2.18)

/ P
227 kK /., I** c c < ME P |X _XC‘
( ) U (X7X 7Uts | §|<P X X (X X ) e ( ) D;;(X,XC) )
p

the truncation error of LE (2.21)
M
*ok sk sk * |X - Xf2|
(228) |uik (x,x5072) — Y Li(x, X)) K, (x,xL) | < (M) <D**(1,) ;
|m|<M ts \ Xy X
the truncation error of M2L (2.24) for each LE coefficient

*x *x ‘XI — XCl r
220) L) = 3 Az ek x) M ()| < ) ()
lpl<P s ‘

and the truncation error of L2L (2.25) for each LE coefficient

Sl Gl P
(230) LX) = 3 Ly x) K, (&L x| < c2M(P) <|chc/))

c? C

lp|<P

for some functions c ,and ¢ having polynomial growth rates,
provided that for some given pu > 1, the far-field conditions measured with the polar-
ization distances,

ME(), B(.), GUL(.), and L.

1) D (x,%0) = plx = x|, Dif(xk,x') = plx — x|,
' Dz (xh %) = plx = x|, D (xhx) = plRh — %,

hold, respectively. If all the sources, targets, and centers involved above are bounded
by a given box, the distances from every center to its nearby interface have a given
nonzero lower bound, and there exist 0 < p,, < par such that

pm < DT (x,xc), Dyl (xg, '), Dy (¢, %e ), D (%, x') < po,
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then the functions cME(.), "B (.), M2L(.), and cL2Y(-) can be chosen to be determined
by these bounds, without dependence on the actual positions of the source locations.

The proof to be given in section 3 will be special cases of a general convergence
result of the Bessel-type expansions in Theorem 3.9.

5. Numerical validation of exponential convergence. Here we present
some numerical examples showing the exponential convergence rates of MEs and LEs.
Consider a 3-layer problem with a source x’ and a target x both in the middle layer.
We examine the reaction field component

(232) u\lL\lL(Xv X/) — /OO ei)\(m—z’)i« /)\27k%(do*y)*\/)\Z,k%(dO*y,)o-*lL*lL(A)dA.

Suppose the source center x. and the target center x\ are in the middle layer, and
the far-field conditions Di¥(x,x.) > [x’ —x.| and D}¥(xL,x') > |x —x.| are met. For
the reaction component uﬁ(x, x'), the relative error of the ME at source center x.,
and that of the LE at target center x. are defined for a given truncation index P

eMF = lutt(x,x) — D L (x,x) ME(x, %) / Jutt (x, %),
P
(2.33) Ipl<

eB = |utt(x, %) Z Lw (x!,x) Ki(x x\) /|uﬂ(x,x’)|.

lp|<P

For comparison, we define the reference exponential convergence ratio
! l
(234) T™E = 7‘11 XC| 5 TLE = 75 XC| .
Dy (x,%c) Diy (x, x')
Take do = 057 d1 = —0.5, ko = 2, kl = 3, k2 = 47, apgp = ay = a2 = ]., bo = 2,
by = 3, ba = 4.7, the source center x. = (0, 0) and the target center X = (0.6,0.2).
The closed form of o171 ()) is given in (B.13). o7()) has a pair of real poles at A = +k;.
If we consider the perturbed wave numbers in each layer kl =k +eqi,0<¢ <1,
then the perturbed real poles are £(k; + €1i) with positive and negative imaginary
part, respectively. Hence (2.10) will be used to evaluate the integrals.
We select three target-source pairs for numerical testing: case (1) x = (0.5,0.3),
= (0.3,0.4); case (2) x = (0.5,04), x' = (—0.1,-0.3); case (3) x = (0,0.2),
x' = (—0.1,0.2). For each pair we compute and plot the relative errors of ME and
LE of uﬁ()g x') for P = 3,4,...,12 in Figure 3. Then we compare the results with
the reference exponential convergence rates indicated by the corresponding colored
dashed lines with slopes log;, rme and log, 7LE, respectively. The comparison shows
that the relative errors decay at the expected exponential rates determined by the
polarization distance.

2.6. An FMM framework for sources in layered media. In the far-field
conditions (2.31) of the convergence results, the polarization distances D]} play the
role of the far-field distances as in the free-space cases for the FMM implementation.

Polarization sources. To make use of this fact for the setup of FMM, we define
a bijective linear mapping for each source point x5 by

(235) P;: L Xo = (SCQ,yQ) — 5(2 = (I’Q,d: — T (yg — d:))
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ME(1) LE()
en ep

LE(2)

L B 7 M
ME (3] 10 LE() NS
—0— ep.. —0— ep M
"
g (1) = 01581 rLE 1y = 0.283 N
N ol
W07 o ey = 0405 R rLE g & 0171
-=0-- gy 0.280 ==0== gy = 0631
3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12

Fi1G. 3. Relative errors of ME and LE for P = 3,4,...,12 for three cases, compared to the
reference exponential convergence rates indicated by ryig, (k) TLE, (k) CaSE (k) =1,2,3.

provided 7* (y2 — d¥) > 0. It is straightforward to see that

(2.36) Dy (1, x2) = s = Pi ()l
here || - || is the Euclidean norm. Figure 1 shows how P, maps the sources to their
equivalent polarization sources.

The FMM for layered media can be set up to evaluate each reaction component u;;
as follows: P, maps the source layer s to a neighboring layer (below or above) of the
target layer ¢, where all the far-field distances become Euclidean as in (2.36). Then,
to calculate the interaction due to any of the reaction component u;* (x,x’;07r), we
simply move the source charges to the locations of their corresponding “equivalent
polarization sources.” An implementation for the Helmholtz equation and the Laplace
equation in 3-D layered media based on this approach are given in [15], [16], respec-
tively.

3. The convergence estimate on Bessel-type expansions. In this section,
we will give convergence estimates on general Bessel-type expansions, of which The-
orem 2.5 will be a special case.

The Bessel-type expansions are defined as follows. Let & > 0, (p, ), (p’,0") be
the polar coordinates of x = (x,y) and x’ = (a/,y’), respectively. Suppose y > 0,
y+vy >0, and p > p’ > 0. For simplicity, define

(31) \II()\) = \I’(X)\) — e*\/Weri)\m’ \I//(A) = \I//(X/)\) _ 67,/)\2,]627/,1)@/.

Then, we claim the pointwise Bessel-type expansion for a given A, € C,

(82) e VETROROENGE) = N7 () W(xA,) (<iw ()

p=—00

and the integral Bessel-type expansion over A € (a,b), —oco < a < b < 400,

b 0
(33) / ef\/)\27k2(y+y )+HiX(z—z )f(/\)d/\ — Z Jp(kp/)elpe Fp($, y),

p=—00
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where f(\) is a complex function defined on (a,b) satisfying certain conditions to be
specified later, and F,(z,y) is the expansion function

Fylavy) = [ W6ed) (-iw(h)” FO)dA

3.1. Convergence of pointwise Bessel-type expansions. We first present
the convergence of (3.2).

LEMMA 3.1. Let p > 1, k > 0. Suppose (p',8) are the polar coordinates of
(«',y'). Suppose x € R, y € RT satisfying p = /2% +y% > up’ >0 and -3\, > 0.
Then, the Bessel-type expansion (3.2) holds with truncation error estimate

. 7 2 / P
(3.4) S Tk W) (—iw(A) | < <p>
| p=1X\p
pl=P
for any
(3.5) P> e(|A |+ E/2)p.
Proof. The equality of (3.2) is given by the Bessel generating function (2.1)
e VRN @2~ w(), ) (k=i w(\,))
(3.6) oo N )
= Z Jp(kp)elP? e VAV TRYFAT (_jy(\,))P.

p=—o00
With the given conditions, |exp(—+/A2 — k2y + i\, z)| < 1, [w(\)| < 2|\ ] + k) /k.

Hence for each p, using Lemma 2.1,
< L kfp’ [p| 2|>\u| +I€ Il
“plt\ 2 k '

For |p| > e(|A\,| + k/2)p, using Stirling’s formula [10],

= ()= (1 £)0)"

N Ipl
Jp(kpl)eipe e—\/)\ﬁ—]ﬂy-&-i)\yz (—1w()\y))p’ < <Z) ;

Jp(kpl)eipe/e—\/Az—k2y+iAua: (—IU}()\,,))p

we have

which will give the estimate of the truncation error after summing over |p| > P. 0O

3.2. Special cases of the integral Bessel-type expansion. First, we will
prove (3.3) for a more general setting when the integral is defined on a bounded
curve.

LEMMA 3.2. Let u > 1, k > 0. Let (p,0) and (p',0") be the polar coordinates of
x = (z,y) and x' = (2',y'), respectively. Suppose y >0, p > pup’ > 0. Let K C C be a
complex contour which is parameterized as

(3.7 ki A=) =a(s)+b(s)i, 0<s<1,
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where a(s) and b(s) are real differentiable functions. Suppose x - b(s) > 0 for any
s €[0,1]. Let f(\) be a complex function on k satisfying a convergence condition

(3.9) /01 POV + )R] ds = § < oo

Then, the series expansion

oo

(39) Eu= / YT N WA= S T (kp)e?” / T(N) (—iw(A))? F(A)dA

p=—00

holds with a truncation error estimate

I\ P
By | X A [ W) o)y s < 22 (”)

p|>P K p=1\p

for any P > e(Ay + k/2)p, where Apyr = maxye, |Al.
Proof. Using the results from the proof of Lemma 3.1, for A € &,

‘e—\/Wy—i-i)\w <1, jwN)[E < 2/\Mk+ k"

so for each p, using Lemma 2.1,

/0 ‘Jp(kp’)eipel\l’(k) (—iw ()" f(A) (a(s) + V' (s)i) | ds

“lplt\ 2 k

Hence, using the Bessel generating function (2.1) and Fubini’s theorem,
1
E, :/ (AT (N)f(N) (@' (s) + b (s)i) ds
0

= > /0 To(kp )& () (—iw(N)" f(N) (@' (s) + V' ()i) ds

= Y [ Btk W) (i) O

we obtain the equality of (3.9). When [p| > e(Ay + k/2)p, using Stirling’s formula
[10], |p|! > (|p|/e)|p|, we can show that each integral

/HJp(kp’)eipe/\IJ()\) (—iw(A))”f()\)dA’ < ﬁ (’“5 : 2AMk+k> ’ S§<8 (’:) "

By adding up the bounds for |p| > P we get a truncation error estimate with the
following bound:

N ipt” Y AT
e [acmorsomls & s () <5 (5)

p|>P P pol
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A similar result on a bounded real interval follows immediately.

LEMMA 3.3. Let u> 1, k' >k > 0. Let (p,0) and (p',8") be the polar coordinates
of x = (x,y) and x' = (2',y’), respectively. Suppose y > 0, p > up’ > 0, and

the function f(X\) on [—k', k'] satisfies ffk, [f(AN)]dN = S < +o0, then the integral
Bessel-type expansion (3.3) holds on [—k', k'] with truncation error estimate

P
1 ipf’ QMS KI
(3.11) > Tplkp)e?' By < "
lp|>P Bm2AP
for any P > ek’p.

Proof. The same proof of Lemma 3.2 can be applied by using the following esti-
mate instead:

+1
11 [ A= VAZ—k? 2K
w7 = || <~
k k
for any A € [k, k'], which gives the necessary lower bound of P. O

Next, we consider the special case (z,y) = (0,p) in the Bessel-type expansion
(3.3) over an infinite interval.

LEMMA 3.4. Let p > 1, k' > k >0, 2,y € R, p > up’ > 0. Suppose f(N)
is a continuous function on [k',00) such that |f(\)| < CAE for some given positive
constant C' and nonnegative integer K. For the integral

(3.12) Ef :/ e VIR (Liw(W)P F(N)dA, p € Z,
we have the estimate

o K1 vl
13 |5|< [T il <se bl x (2) (%)

for any |p| > (kp)?/4+1— K. In addition, the Bessel-type expansion (3.3) holds with
(x,y) = (0, p) on the interval (k',00) and the truncation error is given by

oo N P
(314) // e*\/)\szz(Per/)Jri)\(*x )f(/\)d/\ _ Z Jp(k,p/)eip@’E;» < C(P, p) <pp>
lpl<P

VP > (kp)?/4+1— K, where

K+1
(3.15) c(P,p) = 6C(K +1)! (p(i“l)> (P+ K)X.

Proof. We will first consider the estimate in (3.13). Notice that for A > k we have

VA2 —k2 < Xand 0 < A= VA2 —k2 <k < X< A+ VA2 —k2 |EF| < CKRTL,

where
N M+1
(3.16) I, = /OO (AR dA
‘ L AN vy g
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and M = |p| + K. With the substitution v = (A + VA2 — k2)/k,

Ip _ / e%(—v+v*1)deU
1

M—-1

</Ooe%(fu) Zl @v’l 1 kP o1 o WM gy
N — g1\ 2

7=0

M-—1 Fi 0o
<N~ L (ke /62<v>Mgdv+L kp /ﬁ’( 1) g,
=2 5\2) J, M\ 2 .

=0

M-1 (M — ) (kp 2j—M-—1 1 kp M-1
e j!(2) w()

where

(M=) k,o .
(3.17) ¢ = M1 5 ,j—O,...,M.

One can verify ¢ = 1, ¢; = (kp/2)? /M < (M —1)/M. For 1 < j < M — 2, we have
cjr1/c; = (kp)?/4(j+1)(M —3j) < 1/2. For cpy we have cpr/ep—1 = (kp)?/(4M) < 1
By summation, E;‘Vio cj <co+20 <1+2(M-—-1)/M <3, so

(3.18)

—M-1 K+1 ~lpl
2
|ES| < CKFH, < 30KK+ M1 (?) < 3C (|p] + K)! (p) (’“2”) :

To get the expansion (3.3) with (z,y) = (0,p) on [k’,00), by using Lemma 2.1 and
(3.18), we have

/:O [Ty () VAR (qw(A)P F()] dA

< ‘p% <k2pl)|p|-30(|p|+[()! <i>K+1 <k2p)|p|
:30(“”;!]{)! (Z)K“ (2/);7.

Now, as in (3.6), by using Fubini’s theorem, we have the expansion of (3.14),

/Oo e—\/w(p+y')+i>\(—w’)f()\)d)\

:/ TY ke eI ()P F(N)aA

p=—00

Z Jp (kpl)eipel E;_

p=—00
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branch cut slope T ¢

, '/cb( ) |
s ¢(D1)
" / \K/
/ 7 /poles .

F1G. 4. The mapping ¢ : D~ — DT. The shadowed regions D1 and ¢(D1) are for illustration.

with a P-term truncation error for P > (kp)?/4+ 1 — K,

= s 2w () () < (2]
0

|
pI=P p|=P plt p

Remark 3.5. The bound of |E;f| in Lemma 3.4 is shown as an analogue of the

asymptotic behavior of H,(Il)( )~ (n—1)1(z/2)"/(ir) for x > 0 as n — oo [1, equation
(9.3.1)].

3.3. Convergence of general integral Bessel-type expansions. In order
to obtain the convergence estimate of the integral Bessel-type expansion (3.3) on an
infinite interval, we will take two steps. First, the Cagniard—de Hoop transform [4] will
be used to convert the general (z,y) case to the (0, p) case as discussed in Lemma 3.4,
namely, the complex factor e~ VA —F?yHiAz iy (3.3) is converted to e~V N =k%p  Second,
we deform the new complex contour of integration as a result of the transform to the
real axis; see the illustration in Figure 4.

3.3.1. The Cagniard—de Hoop transform. Given positive real numbers z,
y, and T satisfying @ < Ty. Letting (p,8) be the polar coordinates of (z,y). Letting
B=%-0¢c(0,%), then y + zi = pelf.

Define an open set

(3.19) N={z€C:Rz>0,z¢ (0,k]}.
Then the holomorphic Cagniard-de Hoop mapping [4] ¢ : Q@ — C is given by

(3.20) ¢(z) = zcos B+ iV 22 — k2 sin B.

Consider the right branch of the hyperbola

a b2
3.21 I'= +bi:a,beER, —— = | —5— + k2
( ) {a 1:a COSﬁ SinQﬁ }
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with its vertex kcos 8 on the real axis, and the upper and lower parts of I' denoted
as v and v, respectively, i.e.,

(3.22) I'=~"U~y~ U{kcosp}.
We can easily verify that ¢ ((k, +o0)) =T, and ¢(y~) = (k, +00), namely,

(3.23) =0 ((k,+00)), 77 =97 ((k,+00)),

where
(3.24) ¢~ H(w) = wecos B — ivw? — k2sin .

Usually, I is known as the Cagniard—de Hoop contour. The two straight lines passing
the origin with slopes # tan 3 are the asymptotes of ¥&, respectively.

Define regions to the right of I' in the first and the fourth quadrant, respectively,
by

(3.25) D ={z+4+t:ze~% tc R}

D¥ are isomorphic as the following lemma shows.
LEMMA 3.6. ¢|p- is a bijection to DT with inverse ¢~ | p+ given by (3.24).
Proof. See Appendix A. ]

3.3.2. The general Bessel-type expansion. With the above preparation, we
can now prove the expansion (3.3) when f(\) has a polynomial bound in © and ||
is sufficiently large and SA/RA is bounded. To be specific, we make the following
assumptions.

Assumption 3.7. Given T > 0, ¢¢ > 0. Let f(\) be a complex function with
branch points +kg, ..., +kr, even, and meromorphic in C excluding the branch cuts
of /A2 —k#, 0 <1 < L, with poles of order up to one. Also, we assume the following:

e f()\) has a decomposition

N F N fe s
2 A) = A) and f(A) = A);
(326) [ ;A_Arﬂf( ) and f(X) ;A_Acﬂ‘( )
here A, # 0 are all the real poles of f(A) with residue f,, and A. are all the
(complex) poles of f(A) in the region

(3.27) Qf={a+bi:a>0,0<b<al}

with residue f., respectively. Further, we suppose the complex poles in Q;

have a given bound Az, i.e., Ay > maxi<e<n, |Acl-

f()\)‘ < C (14 [AF) for any A € QFf URT satisfying ming<;<z, [A — k| > €o;
here C' > 0 and K € NU {0} are given integer constants.

o For k' = dkns +2\n +260, kg = max{ky, ..., kp}, S = [F | FON)| dA < +oo.

LEMMA 3.8. Let p> 1, T >0, ¢g > 0 be some given constants, and the function
f(X) satisfy Assumption 3.7, and f()\) is so defined with the real poles removed from
Ff), (p,0) and (p',0") are the polar coordinates of (x,y) and (z',y'), respectively,
and p > pp' > 0. Suppose y > 0, y+y > 0, and |z| < Ty. Then, the integral
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Bessel-type expansion (3.3) holds on the interval (k',00) (by replacing the original
FN)) with f(X\), with a truncation error estimate for a finite P-term truncation

6’ 7 P' r
(3.28) Jy(kp)e® T(A) (—iw(\)P FNAA| < ey (P, p)
g;P 7) / e <p>

for any sufficiently large P > m (p). Here, my(p) is an (at most) quadratic function
of p, and c4 (P, p) is a function having polynomial growth rate in P.

Proof. If x =0, then y = \/22 + y2 = p, and

Ne
\fc|

c=1

(V)] < +C(1+|>\|K) < (1+NF)

for A € (k’,00); here C; > 0 is a constant only depending on f(\). By Lemma 3.4,
we can choose

(kp 2 ) - o K+1 p
m(p)—(Q) +1-K, c+(P’p)_6CI(K+1)!(p(,u—l)) (P+K)

If  # 0, without a loss of generality, we assume x > 0, since the case z < 0 will
follow by taking complex conjugates. Let f = § — 6, then tan3 € (0,7). Let x be
the segment from ¢(k’) to k' (see Figure 4); here ¢ is the Cagniard—de Hoop mapping
defined in (3.20). One can verify that the length of x is bounded by v/2k’ and that
A+ kar <A < V2K and |\ — k| > ¢ for A € Kk, 0 <1 < L. Defining

(320) E= YT N FO)A, G = / FA)AA,

rU(k',00)

we will discuss the expansions for £ and G, separately, then give the integral Bessel-
type expansion for E — G. On k we have the bound of f(\) given by

(330) [FN)] < C (14 |A%) +Z|A|f° |<0(1+ (V2K )

Thus by Lemma 3.2, the Bessel-type expansion for G is given by

oo

(3.31) G= > Jlkp)e™ Gy, GP:/\I/(A) (—iw(\)? F(N)dA

p=—00
with a truncation error

P
ip0’ r
(3.32) Z T (ke G| < ¢, (p) for P > m,(p);

[p|>P

here ¢, = 2uCy - V2K /(1 — 1), me(p) = e(Aar + k/2)p. For the contour & U (k', 00),
with the substitution A = ¢(\') = N cos 5 + iV N2 — k2 sin 8 we have

_ b1 / o/
gz AeosBm o (N dN)eosB= N AT s B 4 M sin B,

isin 8 isin 8
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\I/()\) — e—(\/X2—k2 cos B+iX" sin B)(p cos B)+i(\ cos B+ivAZ—kZ sin 8)(psin B) _ e—\/)\/2—k2p.
Similarly, /(\) = e~ VA? k20" sin(0=5)—ix"p" cos(0'=F) and w(\) = e~ Fw(N). Hence
(333) E = / e—\/)\/Q—k2(p+p’ sin(0’'—B))—iX p’ cos(G/—ﬁ)j'?(/\/)d)\/7

L)Wy

where v/ = ¢~ ((k’,00)) is the lower part of 7 starting from ¢~!(k’) located some-
where on v~ and

(3.34) F = FN D = o)
Since ¢(\') has a polynomial bound, roughly,
(3.35)  |o(N)| = [N cos B +iv/NZ — k2 sinﬂ‘ <+ VIVELRE<2V| 4+ k

when N € D~ and |X| is sufficiently large, f(\') also has a polynomial bound of |X'|.

Next, we proceed to change the contour of the integral E from ¢~1(k) U~ back
to (k’',o0). Let ¢ be the counterclockwise arc with radius r connecting ¢~ (x) U+’ and
the real axis, parameterized by ' = re!”, where the range of 7 is a subset of (-3, 0).
On the arc ¢ : N = re', as r — oo, the exponent of the integrand in E satisfies

—VX2— k2 (p+ p'sin(0' — B)) —iXp cos(6 — B) ~ —Nel’ (pe*iﬁ + ip’e’iel)

Nrﬁexp(i(n+§+,@+g)>,

where (p,0) are the polar coordinates of (x —z’,y + '), and the rest of the integrand
has a polynomial bound. Since y 4y’ > 0, p > p/, one can verify 6 € (0,7 — 3). Then

§R{7‘pexp< (n+0+,3+ ))} <r-max{—(y+y'),—p—p'sin(0 — B)}

for any n € (—f3,0), so the integrand on ¢ decays exponentially, and the corresponding
integral on ¢ vanishes as r — 400. Also notice that there are no poles of f(\) in D’ C
D~, where D’ is the region enveloped by (k’,+o0) and ¢~!(k) U+’. This is because
¢ is a holomorphic function on D’ which maps any possible pole in D’ to a pole of f
in ¢(D’); however, for any N € D’ and any pole A\, € Q- |¢(N)| > Aar + ks > Al
Hence, by deforming the integration contour in F to the real axis, we have

(3.36) E=E ;:/ ¢~ VNTR (o sin(®' =) =i'0’ cos(6' ) F(\) .
’,00)
Now, for ' € (K, 00), recalling that
~ A2 k:2 :

for each \. we have [p(\) — Ae| > |o(N)| — |Xe| > VN2 — k2sin® 3 — Aas > 3k, s0

using (3.35), there exists some constant C > 0 such that

z 2|\ | + 2k 3
|f(/\/)| < % (C (1 + (2|)\/| —|—k +Z |f ) < CQ|>\,|K+1,
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Hence by Lemma 3.4, E’ has a series expansion

oo oo
(3.37) B =" Jylkp)e? P / e VATTRE (Liw(X))P F(N)dN
p=—00 '

with a P-term truncation error estimate

(3.38)
0 N\ P
S e [T e i) Fax| < en (o) ()
1pI>P ’ P
for P> mp/(p) = (kp)?/4 — K. Here
(3.39) cg (P, p) = 6Co(K +2)! <2M)K+2 (P4 K 4+ 1)K+1
' BT P) =R \plp—1) '

In the series (3.37), the pth term is

e—ipﬁ/ e—\/k’2—k2p (_lw()\/))P f()\/)d)\/
(k,00)

(3.40) =e P / e VAR (—ian(X))P F(N)dN
o~ (m)Uy’
(3.41) = / T(A) (=iw(N)? F(N)dA = E,,.
kU(k’,00)

In the above equation, the first equality is obtained by changing the contour, and on
the path ¢ : A = re'” the integrand decays exponentially as r — oo as the real part
of the exponent

R(=/ e = k2p) ~ R(-rep) < —ry,
while the remaining parts have polynomial growth rate. The second equality is by

the substitution from A to A. In total we have proven the series expansion of E given
by E=32° Jp(kp')eP? E, with a P-term truncation error estimate

N
(3.42) E— Y Jy(kp)e? By| < cpi(Pp) <’/’)> for P> mp(p).
lp|<P
For each p,
Ep, =G, =/ T(N) (—iw(N))” F(A)dA — / T(A) (—iw(N)” F(A)dA
(343) rU(k’,00) K

_ / T W) (—iw(N) FO)A,

’

which is the desired expansion function in the Bessel-type expansion (3.3).
Finally, by combining the results (3.32) and (3.42), VP > max{mpg/(p), m«(p)},

/ U TN - S T (k) / T W) (V) F(A)dA

’ ’

lpl<P
s onl son! ,D, P
<|B= 3 Be B 4 (G- Y )Gy < (e P+ (2 )
p
lp|<P lpl<P
which suggests c1 (P, p) = cg/ (P, p) + ¢, and m(p) = max{mg (p), m.(p)}. |
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THEOREM 3.9 (the Bessel-type expansion). Suppose the conditions of Lemma 3.8
are satisfied. Further suppose 0 < p,, < pyr are given such that p € [pm, pm]. Then,
the integral Bessel-type expansion (3.3) holds with a truncation error estimate

o0 ’ P
(3.44) ‘/ ef\/A27k2(y+y')+i>\(a:7:v’)f(>\)d>\ _ Z Jp(kpl)eipele < ¢(P) <p)

P
[pl<P

for some function c(-) with polynomial growth rate when P is sufficiently large, i.e.,
P >m(prp), m(par) is an at most quadratic function.

Proof. Consider the decomposition of the integral

I = /OO ef\/)\kaz(y+y')+i/\(rfa:')f()\)d>\

Ny —K K’ )
Gas) =S mTEOT O, + ( [ [+ ) POV () FN)dA

uzs
=3 L+1_+1Io+ I

r=1

here each 7, = £1 are determined by the well-posed physical problem (see (2.10)).
Each term I; of the decomposition with index j has the corresponding Bessel-type
expansion, j = 0,1,...,n,,+,—. Namely, for each I, by Lemma 3.1, by choosing
er = 2mp|fr|/(pp — 1) and m..(p) = e(|\-|+k/2)p, the pointwise Bessel-type expansion
(3.2) holds,

L= > Jy(kp)e? Iy, I, =iz (N,) (—iw(A))

p=—o0
with the truncation error for a P-term truncation

/

P
(3.46) Z Jo(kp)e? I | < ¢y (p) for P > m,(p).
p
lp|=P

For Iy, by Lemma 3.3, by choosing ¢y = 2muS/(n — 1) and mq(p) = ek’p, the integral
Bessel-type expansion (3.3) holds,

o0 ]{3/
b= 30 Tk Top Top= [ W) (i) FN)A
p=—00 —k
with the truncation error for a P-term truncation
. 7 p/ P
(3.47) Z T (kp')e?? Iy | < co (p) for P > mq(p).
[p|>P

For I, and I_, by choosing the c4 (P, p) and my(p) provided by Lemma 3.8, and
c_(P,p) = cy(P,p) and m_(p) = my(p) due to the symmetry, the integral Bessel-
type expansion (3.3) holds as I = >.°0 _ J,(kp')eP? Iy ,,, where

p=—00

—K

Iy, = /koowuﬂ—iw(xnpf(x)dx I, = / T(N) (—iw(N)” FA)IN

! —00
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with the truncation error for a P-term truncation

N\ P
(3.48) S S ey < esPp) (2 for P2 sl
[p|>P

For each p, the expansion functions add up to F}, because
n,. —K K oo _
Fy= 3 min () (<iw(A) fr o+ ( [ o+ +f ) T(A) (—iw(X)” F(N)dx
r=1 —o© —k !

zs
=Y Lp+I_p+1op+1,

r=1
Hence by adding the series expansions up, for any P > m(p) := max; m;(p),

/

P
I- Z Jp(kp,)eipelFP S C(P7 p) <p> ’

1)
lpl<P

where c(P, p) := 3.7, crtco+cy (P, p)+c— (P, p). Since the only dependence of ¢(P, p)
on p appears in the terms cy (P, p) which reach their upper bounds at p = p;,,, and
each m;(-) is an increasing function, we conclude that by choosing ¢(P) = ¢(P, pm),
the truncation error estimate (3.44) holds for any P > m(pas). ad

3.4. Proof of Theorem 2.5. We first consider the proof of the ME (2.27) and
let Z=0—a.,g=7"y—d)+ 7@y —d?), & =2’ —x., ¢ =7 — y.), and

(3.49) F) = WA TRV =D g ()
so that the integral (2.7) can be written as
W (x,x 00 = /OO e~ VNI (y=d)) = /N =RIT (5 —dD) i@ =) xx () g\
oo
:/ e—\/@(z}-&-ﬂ/)ﬁ-i)\(i—i')]v(}\)d}\.
—o0

With the assumption that the sources, the targets, and the centers are bounded in a
given box and that |y. — d*| has a nonzero lower bound, there exists fixed T > 0 such
that |Z| < T'y. By Theorem B.1, o7 () has a polynomial bound in the region Qp =
{a+bi:a>0,—al <b<aT} when R\ is sufficiently large and has a finite number
of poles in Qr, which easily imply the same for f(\). With the decomposition (3.26),
when neighborhoods of each branch point k; with a sufficiently small radius ¢ > 0
are excluded from Qp, f(\) is finite and hence has polynomial bound. Replacing
z,y,x',y', k in Theorem 3.9 by &, 7,3, 7, ks finishes the proof of (2.27).

For the LE (2.28), similarly, , & = 2! —2', § = 7*(y. —d})+7*(y/ —d%), ¥’ = 2\ —x,
§' =75 — yb), k= ki, and f(3) = VNTHEVAEITO g (),

For the M2L (2.29), for each LE coefficient L**(x.,x), choose # = 2\, — ., § =
P = d) + 7 (o — d2), & =2 — 30, § =T (Y' — 9o), k = ks, and

FO) = el VPRV ) gk () (i () 7)™
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For the L2L (2.30), for each LE coefficient L**(x.,x), choose & = z!, — 2/, j =
T*(yé - d?) + T*(y/ - d:)a = xlc - ‘ilcv 7= T*(ﬂé - yé)v k = ki, and

FON) = eWRTRE=VR R W =) e (0 (i, (A) )™

Remark 3.10 (dependence of convergence estimate on the number of layer in-
terfaces L). As pointed out in Theorem B.2, if the interface conditions (2.3) satisfy
as, by € R0 <t < L, then each o} () is asymptotically sublinear as A — oo regard-
less of L (the number of the interfaces). When applying Theorem 3.9 and Lemma 3.8,
the bounds of o;¥()\) are assumed of the same polynomial order as A — oo. There-
fore, as L increases, the required terms for truncation, namely, the m(pas) in the proof
of Theorem 3.9 has linear dependence on the distribution of the poles as shown by
Lemma 3.1, while the leading term (kpas/2)? remains unchanged.

4. Conclusion. Far-field expansions of ME, LE as well as M2L and L2L trans-
lation operators are derived and the exponential convergence rates are proven. The
analysis shows that the convergence of ME and LE for the reaction field components
depends on the distance between the target and the equivalent polarization source.
This fact shows how the ME and LE for the layered media can be used in the tra-
ditional FMM framework, and such an approach has been implemented for the 3-D
Helmholtz equation in [15] and the 3-D Laplace’s equation in [16].

In a future work, we will extend the convergence analysis results to the 3-D
Helmholtz equation and the 3-D Laplace equation in layered media.

Appendix A. Proof of Lemma 3.6. We begin with the following two lemmas,
which are stated given the same conditions as in Lemma 3.6.

LEMMA A.l. Let a,b € R such that z = a+bi € D™, then Ro(z) > 0, Io(z) > 0.

Proof. Let u,v € R such that u + vi = v22 — k2, then uv = ab < 0. With the
convention of the branch cut (2.9), we have u > 0, so v < 0. Recalling that 3 € (0, ),
we have usin f — bcos 8 > 0 and R¢(z) = acos f —vsinf > 0. For S¢(z), let

(A1) Q= (a®—b0* =Kk +4a*b?, Q2 = (a* — b* — k?)sin? B — 2b? cos? 5.

By simple calculation, we have 2u?sin? 3 — 2b% cos? = /Q1 sin? 3 + Q», and
Q1 sin B — Q3 = b?sin?(2p) (a2 cos 2B —b*sin"2p3 — k;2) > 0,

50 v/Q1 sin? § = ‘\/@sinz B‘ > |Q2|, which implies

V@Qisin® B+ Q,
2(usin 8 — beos )

Sé(z) =bcosf+usinf =

LEMMA A.2. Ifw € ~7, then ¢(z) # w for any z € D™.

Proof. Suppose for contradiction that z € D™, ¢(z) = w. Since w € y*, Jzg > k
such that w = xq cos B+1iy/x3 — k? sin . Therefore, z¢ and z are distinct roots of the
quadratic equation A\? — 2 w cos  + w? = k%sin? 8 of X\. Hence z = 2wcos f — xg =
zgcos(26) +iv/xd — k?sin(28) ¢ D~ because Sz > 0, a contradiction. 0

Proof of Lemma 3.6. Define ¢/ : D¥ — C by ¢/(w) = wcos 8 — ivw? — k2 sin 3.
It suffices to show that ¢’ is the inverse of ¢ on DT, i.e., ¢71|p+ = ¢'. First, we
will show that ¢(D~) € D*. By Lemmas A.1 and A.2, ¢(D™) is a subset of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/03/20 to 129.119.67.75. Redistribution subject to STAM license or copyright; see http://www.siam.org/journals/ojsa.php

ME, LE, AND M2L FOR WAVE SOURCES IN LAYERED MEDIA 1463

first quadrant, and it has no intersection with the hyperbola I'. If w = ¢(z) for some
2z € D™ and w ¢ DT, when we move z horizontally to the left, eventually z touches T
and ¢(z) approaches the positive real axis, so the trajectory of ¢(z), which must be
continuous because ¢ is holomorphic, crosses I' in the first quadrant, but it contradicts
Lemma A.2 since the intersection must has its inverse in D~. Similarly (by taking
complex conjugates), ¢'(DT) C D~. Second, we will show that ¢ is bijective on D~
with inverse ¢’. Let a,b € RT such that z = a+bi € D™, then w = ¢(z) € DT is one
of the roots of the quadratic equation of A

(A.2) M —2\zcos B+ 2% = k?sin? B.

Let u,v € R such that v22 — k? = u + vi, then u > 0, and the pair of roots are given
by

(A.3) At = (acosfFusinf) +i(bcos B+ usinf).

By Lemma A.1, Sw = J¢(z) > 0, so w = A*. Conversely, z is the only root of the
quadratic equation \2 — 2 wcos 3 + w? = k2sin? 3 in D~ provided ¢(2) = w by a
similar reason, so ¢ is injective and z = ¢'(w). Repeating this step for any w’ € D+
and let 2/ = ¢'(w’), we have ¢ is surjective and w’ = ¢(¢'(w')). d

Appendix B. Properties of Green’s function in layered media. As pre-
liminaries for the proofs of the convergence estimates, some properties of Green’s
function in layered media are discussed, including the decomposition (2.6), the alge-
braic structure of the reflection/transmission coefficients o} (), and their polynomial
bound in frequency A.

B.1. Green’s functions in layered media. Suppose a source X’ is in layer s
and a target x is in layer ¢. Consider the 1-D Fourier transform x — 2’ +— X,

(B.1) G(x,x') = / =Ty, yf N)dA.

In the frequency A domain, we have the decomposition G = 0, ség + a*, and from
(2.12) the free-space part in the frequency domain can be shown as

(B.2) G = eﬂ/@\y—y/\7
471\/@
and the reaction field 4" satisfies a homogeneous Helmholtz equation
(B.3) (=22 + 9y, )" + KZa" = 0.
The solution to this ordinary differential equation has a general form

B4) @ = ALY Ne VYR gk () h)em VIR,

where AtTS and Atis do not depend on y within each layer, only on the target and
source layer indices t, s. Here, we have assumed

(B.5) d_1 =00, d=—00,

and the corresponding term vanishes as the Sommerfeld radiation condition requires.
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The interface condition at y = d; given by (2.3) is equivalent to

X R ou* oG"
(BG) [atur] = — |:(5tvsatG£:| 5 |:bt ay:| = [5t78btay‘| at Yy = dl,

where the brackets describe the jump between layer ¢ = [ and layer t =1 + 1. When
treated as linear equations for A], and A}, using (B.2), the right-hand side of the

tsy
equation is always a linear combination of e~ VA =k ~ds) apq o= VA —kE(dem1—y)
with coefficients not depending on ¥’. The separation of variable 3 implies

(B.7) Ay N) = oyl (\em VAR 4 gib (\)em VAR e 1,1,

which proves (2.6) with (B.4).

B.2. The algebraic structure of the reflection/transmission coefficients.
Now we make some further observation on the interface conditions to characterize the
coefficients o7 (A) in more detail.

With the separation of variables y and y’, the interface condition (B.6) can be
further expanded as linear equations of o} () and o7, ((A):

T

Ix * Ix
,alals — alelals + al+161+10;+1’s + al+10’l+17s =V s

(B.8)
bzhlle: - blhzezdf: - bl+1hl+161+1012178 + bl+1hl+10'li_:17s = wy 4

where x € {1, {}, UZS = 0y sar/(4mhy), Uli,s = —0141,sa141/(4mhit1), ’LU;T,S = 0;,5b/(4m),
wis = 0i11,sb1+1/(47), and the coefficients

(B.9) hy = \JA2 — k2 ey = e heldiimdd) yp— 141,

As eg and ey, vanish in (B.8), these terms will be ignored from the equations.
If we expand all the 2L interface conditions into the form (B.8), two linear system
for unknowns o, consisting of components aﬂ , and o}, consisting of components o}, j ;

are then obtained in the form
(B.10) AN)al(\) =bl(N), ANal()) =Dbl());

here A does not depend on the source layer s or the source-related direction x. The
functions o} () can be solved from linear systems (B.10) using the Cramer’s rule, so
the complex roots of det A(\) are the poles of each o7 ().

Consider the field F of functions of A defined by field extension from C

F=C(ht,em;0<t<L,1<m<L-1)

B.11
( ) =C < A2 — k2 e VAR (dma—dn) 0 <t < L1<m<L— 1) ,

where hy, e, are defined in (B.9). Since coefficients of the linear systems (B.10) are
all in F as shown in (B.8), it follows that each

(B.12) o (\) € F.
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For example, if the Helmholtz equation is equipped with interface conditions (2.3)

with each a; = 1, then the linear system for 0'% is

-1 el 1 0 og% ﬁ
0 -1 -1 ||elt| |70
bOhO _blhlel blhl 0 a.iLiL - % )
0 brhy —bihier  baho aﬁ 0
and the coefficient Jﬁ()\) € TF has closed form
H 1 (boho — b1h1)(b2ha + bihy)

B.13 A) = .
( ) 0'11( ) 4mhy (boho + blhl)(bghg + blhl) — ef(boho — b1h1)(b2h2 — blhl)

B.3. Polynomial bounds of the reflection/transmission coefficients. An
alternative point of view on the linear systems (B.10) will reveal a polynomial bound
of the functions o} (\) in a certain domain in the complex plane. This estimate will
be crucial to the error estimates on the far-field expansions.

Take any kys > maxo<;<r k; and 7' > 0, and define the open set

(B.14) Qr={a+bi:a>0,—-al <b<al}\(0,kp]

in the complex plane. Since for the branch cut {\ — k < X < Kk} for \/A\? — k7
is excluded from Qp, o/ (X) is a meromorphic function in Qp. We claim there is a
polynomial bound of o;7(\) for A € Qr having a sufficiently large real part.

THEOREM B.1. Suppose the function o(\) € F. Suppose Ve > 0, o(\) < exp(e)
as A — +oo. Then, 3k, > 0, C > 0, and nonnegative integer K such that |o(\)] <
CINE when X € Qr and R\ > k. In addition, o(\) has finitely many poles in Q.

Proof. Since o(X) € F, there exist polynomials P; and P, such that
L P (V=R et VAR i)

B.15 o\ = = = :
(B.15) W=7 Py (\/)\2—k127...7e+\/)‘27kzn(d’"*17d’"),...)

here P, and P, are complex polynomials of the terms in the parentheses, including
terms with indices 0 <! < L and 1 < m < L — 1. To show the asymptotic behavior
of I and I, we characterize them as elements of a ring S defined below. Let Qrp 5 =
{a+bi € Qr:a,b €R,a > kp} be an open subset of Qp. Define

G = {g(/\) = Z en AT im € Zy ¢, € Cy g # 0, g(A) is holomorphic in QT,M} ,

n=0

which is the collection of holomorphic functions in Q7 s such that the number of
nonzero terms with positive exponent is finite in the Laurent series of g()) at oo.

It follows that each /A2 — k:lQ € G, because it has neither a pole nor a branch
point in Qr ps, where X > kps > ki, and

00 T 7k2 n
(B.16) \/m = z:% 21“(n\{1()F(l—)n + %)A

1-2n
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Letting S be the collection of all holomorphic functions ~(A) in Qr s in the form

Q
(B.17) S= {h()\) = ZeAq’\gq()\) tQ>0,A;>...> A0 >0, each g, € g} ;
q=1

we claim that Vd > 0, e N—kid ¢ S To show this, notice that the exponential has

neither a pole nor a branch point in Q7 s and that eV M=kid = Ade(VAZ—k{=N)d
For the second factor, setting = A™!, we have

eyl > —k2)ntla
B18 ( A 7kl 7>\)d — ﬁ( l 2n+1
(B.18) ¢ | D AM(n+20(—n+ )" ’

n=0

which is regular in a neighborhood of y = 0. Therefore, the Laurent series at 0 in the

p-plane has zero principle part, which implies WA=k =Nd ¢ G and eVN~kid ¢ S,
It is obvious that G C S, and S is a ring with function addition and multiplication.

For any function h(\) = Zé e/targ,(\) € S which is not identical to 0, if the leading

qg=1
term of g1 (\) is BA™, then

(B.19) h(\) ~ e BA™

as RA — oo. This is because in Qp pr, RA < |A] < 1+ T2RA, the limit as [A| = oo
and the limit as A — oo happen together. As |A\| — oo, each g,(\) € G approaches
its leading term, in addition, as A — oo, |6A1’\B)\m| dominates.

Now we look at o(X). Since Iy, I are polynomials of elements of the ring S, we
have I, I, € §. Suppose the numerator and the denominator

’ ’
I ~ eAABA™, I, ~ eMABIA™

as RA — oo, then it immediately follows that

(B.20) o(A) ~ e<A1—A’1>A§Am—m’

and that 4; < A} because o(\) < exp(e\) for any € > 0. As a result, o(\) =
(9(|)\|m*m/) for A € Qr s as X — o0, so the polynomial bound can be found for
sufficiently large R\ > k), and can be given in terms of C|\|¥. This immediately
implies that poles of ¢(A) in Q7 can only be found for sufficiently small RA, i.e., in a
bounded region. Hence the number of poles must be finite in Q. 0

The proof above also implies the asymptotic property of o;F(\) as A — oo.
Indeed, given any two nonzero asymptotic orders e**A\™, where A,m € R, we can
always compare their orders, i.e., the limit of the ratio is either infinity or a real num-
ber. The following theorem provides an improved estimate for some usual interface
conditions.

THEOREM B.2. With the conditions in Theorem B.1, if the interface conditions
of the Helmholtz equation (2.3) satisfy a;,by € RT, 0 <t < L, then as RA — oo, all
coefficient a;X(\) = O(J]A|71).

Proof. Without a loss of generality, suppose among all the reflection/transmission
coefficients, all*()\) has the highest asymptotic order as ®RA — oco. Suppose
(B.21) lim A"'/olr = 0.

RA—00
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n (B.8), dividing the first equation by o,, we have

I T I *
o 1 g v
l +1,s I+1,s l,s
(B22) —a; — ape; 4;* —+ al-‘rlel"rliﬁ* —+ al+1 T = Fng
ls ls O Ul,s

Since as R\ — 00, ¢, = exp(—h(di—1 — d;)) — 0 and e;11 — 0, and hy = /A2 — k7
and hyp1p = /A2 — kl2+1 are on the order of A, by taking the limit of (B.22), we get

O'i*
a
(B.23) lim —tLs = L5,
RA— 00 UZT* aj+1

S

Dividing the second equation of (B.8) by hlall* and taking the limit, similarly we get

Ix
o b
(B.24) lim =L <,
RA— 00 o] bl+1

S

which is a contradiction, implying that (B.21) cannot be true, and thus we reach the
conclusion of the theorem. |
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