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EXPONENTIAL CONVERGENCE FOR MULTIPOLE AND LOCAL
EXPANSIONS AND THEIR TRANSLATIONS FOR SOURCES IN
LAYERED MEDIA: TWO-DIMENSIONAL ACOUSTIC WAVE\ast 

WENZHONG ZHANG\dagger , BO WANG\ddagger , AND WEI CAI\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we first derive the multipole expansion (ME) and local expansion (LE)
for far fields from wave sources in two-dimensional (2-D) layered media as well as the multipole-to-
local translation (M2L) operator, by using the generating function of Bessel functions and Sommerfeld
integral representations of Hankel functions. Then, we give a rigorous proof of the exponential
convergence of the ME, LE, and M2L. It is shown that the convergence of ME, LE, and M2L for the
reaction field components of the 2-D Helmholtz Green's function in layered media depends on the
distance between the target charge and an equivalent polarization source. The polarization sources
can be used in the implementation of fast multipole methods for wave sources embedded in layered
media.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . fast multipole method, multipole expansions, local expansions, Helmholtz equation,
layered media, Cagniard--de Hoop transform, equivalent polarization sources

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 15A15, 15A09, 15A23

\bfD \bfO \bfI . 10.1137/19M1268033

1. Introduction. The multipole expansion (ME), local expansion (LE), and
multipole-to-local translation (M2L) form the mathematical structure of fast multi-
pole methods (FMMs) for evaluating integral operators associated with the Green's
function of Helmholtz equations in wave scattering [11, 3]. The ME for the Green's
functions in the free space was based on the Graf's addition theorems for Bessel
functions. To extend the FMM for wave scattering in layered media, ME and M2L
formulas for Helmholtz equations in a two-dimensional (2-D) half-space domain were
proposed in [6]. The derivation in [6] for the ME and M2L made use of an image (point
and line images) representation of the Green's function of the half-space domain with
an impedance boundary and the MEs, based on the Graf's addition theorem, for the
image charges as well as the original source charges. And, it was shown that the ME
coefficients used to compress the far field of the source charges in the free space can
also be used to compress the far field of the images, thus producing a ME for the
Green's functions of the 2-D half-space domain. For the case of the half space with
an impedance boundary condition, the image representation of the domain Green's
function justifies the truncation order, and thus the exponential convergence, of ME
and M2L. Meanwhile, a 2-D heterogeneous FMM was proposed and implemented in
[5], [6], giving an O(N) complexity of evaluating the integral operator of low frequency
Helmholtz operators for sources in the half space.
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As an image representation of general layered media Green's function may not
exist, in this paper, we will present an alternative complete derivation for the ME,
LE, and M2L operators for the Green's function in general 2-D layered media by
using the generating function of the Bessel functions of the first kind (referred as the
Bessel generating function in this paper). Moreover, we will give a rigorous proof
of the exponential convergence of the ME, LE, and M2L and local to local (L2L)
translation operators for acoustic wave sources in general 2-D layered media. The
convergence analysis reveals a very important and practical fact that the convergence
of ME, LE, L2L, and M2L for the reaction field component of the Green's function
in fact depends on a polarization distance, which is measured between the target and
an equivalent polarization source, thus suggesting how the FMM framework should
be set for sources and targets in layered media.

The rest of the paper is organized as follows. In section 2, we first give some
technical tools crucial to the work in this paper, including the Bessel generating
function, which relates plane waves to cylindrical waves and the growth condition of
the Bessel functions. A brief discussion of the Green's functions in layered media and
their integral representations is also given. Then, the Bessel generating function is
used to derive the analytical formula for the ME and LE expansions for sources in 2-D
layered media, the M2L and L2L translation operators. The exponential convergence
rates for these expansions are validated with some numerical tests. The proofs of
exponential convergence rates of the expansions are given in section 3. First, we will
give the proof of the exponential convergence of some integral expansions resulting
from using the Bessel generating function. The proof is given starting with a special
case corresponding to the situation when the far-field location is directly above or
below the center of the expansion. Then, the Cagniard--de Hoop transform [4] is
introduced so that we can deal with the general case by using complex domain contour
integrals. The proof for the error estimate of ME, M2L, etc., introduced in section 2
will follow. A conclusion is given in section 4, while appendices are included for some
technical lemmas and proofs of several lemmas from the main text.

2. Far-field expansions and their translations for the 2-D Helmholtz
equation in layered media. In this section, we begin with some properties of the
Bessel functions of the first kind, which inspires an alternative derivation of the ME of
the free space Green's function. These properties will be key to deriving various far-
field expansions in layered media. The ME, LE, M2L, and L2L for the layered media
will then be derived with error estimates and numerical validations. Also, a feasible
FMM framework for sources in layered media is proposed based on the convergence
results of the far-field expansions.

2.1. An identity and some estimates on Bessel functions of the first
kind. Recalling the Bessel generating function [1, equation (9.1.41)], for any z, \omega \in \BbbC 
with \omega \not = 0,

(2.1) g(z, \omega ) = exp
\Bigl( z
2
(\omega  - \omega  - 1)

\Bigr) 
=

\infty \sum 
p= - \infty 

Jp(z)\omega 
p.

The identity (2.1) expresses a plane wave function in terms of cylindrical functions,
in contrast to the Sommerfeld integral representation of the Green's function, which
expresses cylindrical functions in terms of plane waves (2.12). This duality facilitates
the derivation of the far-field expansions in this paper.
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1442 WENZHONG ZHANG, BO WANG, AND WEI CAI

The above series converges absolutely, which is a corollary of the following lemma.
For the rest of this paper, we use the notations \Re and \Im for the real and the imaginary
parts of a complex number, respectively.

Lemma 2.1 (an estimate on Bessel functions of the first kind). Let p be an
integer and z \geq 0. With the convention 00 = 1, the following inequality holds:

| Jp(z)| \leq 
1

| p| !

\Bigl( z
2

\Bigr) | p| 
.

Proof. When p \geq 0 >  - 1
2 , the inequality is given by [1, equation (9.1.62)]. Then,

the identity Jp(z) = ( - 1)pJ - p(z) covers the case p < 0.

2.2. The Green's function for 2-D Helmholtz equation in layered media.
Consider a horizontally layered medium with L interfaces located at y = dl, 0 \leq l \leq 
L  - 1, arranged from top to bottom as l increases. Each interface y = dl separates
layer l above layer l+1, and each layer l is homogeneous with a wave number kl > 0,
0 \leq l \leq L.

We assume s labels the layer where the source x\prime = (x\prime , y\prime ) locates, and t labels
the layer where the target x = (x, y) locates, 0 \leq s, t \leq L.

The layered Green's function G(x,x\prime ) for the Helmholtz equation is a piecewise
smooth function for a source x\prime and a target x from possibly different layers. Within
each layer,

(2.2) \Delta G(x,x\prime ) + k2tG(x,x\prime ) =  - \delta (x,x\prime ),

with two interface conditions at y = dl of the form

(2.3) [atG] = 0,

\biggl[ 
bt
\partial G

\partial n

\biggr] 
= 0,

where the bracket [\cdot ] refers to the jump of the quantity inside at the interface, and
at and bt are some complex numbers (depending on the layer number t). In typical
acoustic wave equations, the parameters can often be reduced such that at = 1 and
bt are constants depending on each layer media, e.g., the density [13].

Note that the right-hand side of (2.2) is nontrivial only when x and x\prime are in the
same layer, i.e., s = t. Defining

(2.4) ur(x,x\prime ) = G(x,x\prime ) - \delta t,sG
f
s(x,x

\prime ),

here \delta t,s is the Kronecker delta function, and

(2.5) Gf
s(x,x

\prime ) =
i

4
H

(1)
0 (ks| x - x\prime | )

is the free-space Green's function with wave number ks. ur is called the reaction
field using the terminology of electrostatics [2] and satisfies a homogeneous Helmholtz
equation with a wave number kt.

A decomposition of the reaction field ur is given in terms of upward and downward
wave propagation components, indicated by the up and down arrow symbols [14].
Suppose the Helmholtz equation in layered media with the interface conditions is
well-posed. The reaction field ur can be written in the following summation:

(2.6)

ur(x,x\prime ) = u\uparrow \uparrow 
ts

\Bigl( 
x,x\prime ;\sigma \uparrow \uparrow 

ts

\Bigr) 
+ u\uparrow \downarrow 

ts

\Bigl( 
x,x\prime ;\sigma \uparrow \downarrow 

ts

\Bigr) 
+ u\downarrow \uparrow 

ts

\Bigl( 
x,x\prime ;\sigma \downarrow \uparrow 

ts

\Bigr) 
+ u\downarrow \downarrow 

ts

\Bigl( 
x,x\prime ;\sigma \downarrow \downarrow 

ts

\Bigr) 
=
\sum 
\ast  \star 

u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts ) ,

where \ast ,  \star \in \{ \uparrow , \downarrow \} refer to the vertical field propagation directions corresponding to
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the target and the source, respectively, and each u\ast  \star 
ts has an integral representation

(2.7) u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts ) =

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x,x

\prime , \lambda )\sigma \ast  \star 
ts (\lambda )d\lambda ,

where the integrand has an exponential factor

(2.8) \scrE \ast  \star 
ts (x,x

\prime , \lambda ) = e - 
\surd 

\lambda 2 - k2
t \tau 

\ast (y - d\ast 
t ) - 

\surd 
\lambda 2 - k2

s\tau 
 \star (y\prime  - d \star 

s)+i\lambda (x - x\prime ),

and \sigma \ast  \star 
ts (\lambda ) is a coefficient term which does not depend on the coordinates of x and

x\prime .
In (2.8), we adopt the convention d\uparrow l = dl for l \not = L and d\downarrow l = dl - 1 for l \not = 0,

\tau \uparrow = 1, and \tau \downarrow =  - 1. In addition, d - 1 = \infty and dL =  - \infty . These conventions
together guarantee \tau \ast (y  - d\ast t ) > 0 and \tau  \star (y\prime  - d \star s) > 0. When d - 1 or dL occurs in a
component in (2.8), it refers to an incoming wave from y = \pm \infty , which is prohibited
by the Sommerfeld radiation conditions, and the component itself should vanish. For
example, if both x and x\prime are in the top layer, then (2.6) becomes ur = u\uparrow \uparrow 

00 only.
Appendix B.1 contains the derivation of the decomposition (2.6).

Remark 2.2. The specific form of the exponential term \scrE \ast  \star 
ts (x,x

\prime , \lambda ) is introduced
to ensure that each coefficient term \sigma \ast  \star 

ts (\lambda ) has polynomial growth rate under certain
conditions, to be elaborated in Appendix B.3. The polynomial growth of \sigma \ast  \star 

ts (\lambda ) will
be needed for the exponential convergence estimate of ME, LE, M2L, and L2L expan-
sions. This specific form also results in a dependence of the exponential convergence
on a special ``polarization distance"" between a source and a target in the layered
media, as defined in (2.26) and depicted in Figure 1.

The integrand of (2.7) may have real poles, whose integration should be treated
as the limiting case of the field in lossy physical media. To understand the real poles,
we first introduce the necessary branch cut for the square roots. For any z = rei\theta \in \BbbC 
with r \geq 0, \theta \in [ - \pi , \pi ), define

(2.9)
\surd 
z =

\surd 
rei

\theta 
2 .

For each square root
\sqrt{} 
\lambda 2  - k2l , the corresponding branch cut in the \lambda -plane is the

union of the imaginary axis and the real interval [ - kl, kl]. In a realistic physical case
where the medium in layer l is lossy with a perturbed wave number \~kl = kl + \epsilon li,
0 < \epsilon l \ll 1, the perturbed branch cut is then shown in Figure 2. The branch cut of\sqrt{} 
\lambda 2  - k2l is the limit of the perturbed one as \epsilon l \rightarrow 0+.
Let \lambda \nu be a real pole of \sigma \ast  \star 

ts (\lambda ) in the integrand of (2.7), which is known as a surface
wave pole [9, 12]. Integration across the surface wave pole is understood as the limit-
ing case of the perturbed system with lossy media as mentioned above. For simplicity,
suppose \sigma \ast  \star 

ts (\lambda ) = \sigma (\lambda ; k1, . . . , kL) is the limit of the perturbed field \sigma (\lambda ; \~k1, . . . , \~kL)
with pole \~\lambda \nu , and \~\lambda \nu \rightarrow \lambda \nu \in (a, b) as all the \epsilon l \rightarrow 0+. Let \sigma \nu = lim\lambda \rightarrow \lambda \nu 

\sigma (\lambda )(\lambda  - \lambda \nu ).

Given any smooth function h(\lambda ), the limiting integral
\int b

a
h(\lambda )\sigma (\lambda )d\lambda is evaluated us-

ing the formula

(2.10)

\int b

a

h(\lambda )\sigma (\lambda ; \~k1, . . . , \~kL)d\lambda \rightarrow 
\int b

a

\biggl( 
h(\lambda )\sigma (\lambda ) - h(\lambda \nu )\sigma \nu 

\lambda  - \lambda \nu 

\biggr) 
d\lambda 

+ p.v.

\int b

a

h(\lambda \nu )\sigma \nu 

\lambda  - \lambda \nu 
d\lambda \pm i\pi h(\lambda \nu )\sigma \nu .
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Fig. 1. The far-field distance ρc of the ME in various field propagation directions.

Fig. 2. The perturbed branch cut starting from ±k̃l, where k̃l = kl + εli.

The ± sign is positive (or negative) when the perturbed pole λ̃ν → λν from the up-
per (or the lower) half of the complex plane, and the principal value part vanishes if
(a, b) = (−∞,+∞).

In a well-posed problem, the poles will be at most of order one, and λ̃ν should
remain in one side of the half planes as all the perturbation parameters εl are suffi-
ciently small; otherwise, the limit of the integral does not exist and the field is not
well-defined. Also, 0 cannot be a surface wave pole; otherwise the surface wave does
not propagate [9, 12].

Remark 2.3. Modes of the layered system are classified as the radiation modes,
the guided modes (the real poles), and the leaky modes (the other complex poles) [9].

2.3. The multipole expansions of the free space Green’s function re-
visited. Before introducing the far-field expansions of the layered Green’s function,
we present an alternative derivation for the well-known ME of the free-space Green’s
function. Consider N sources with strength qj placed at locations xj = (xj , yj),
j = 1, 2, . . . , N within a circle centered at xc = (xc, yc) with a radius r in the free
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space \BbbR 2, then, the field located at x due to all sources is given by

uf(x) =
N\sum 
j=1

qjG
f(x,xj),

where Gf is the free space Green's function Gf(x,x\prime ) = i
4H

(1)
0 (k| x - x\prime | ), k is the wave

number, and H
(1)
0 is the Hankel function of the first kind. A target x is well-separated

from the sources if the distance between x and the source center xc is at least 2r.
By Graf's addition theorem [1], the free space Green's function for the well-

separated sources xj and the target x can be compressed with a multipole expansion

(2.11) uf(x) =
i

4

\infty \sum 
p= - \infty 

\alpha pH
(1)
p (k| x - xc| ) eip\theta c \approx i

4

\sum 
| p| <P

\alpha pH
(1)
p (k\rho c)e

ip\theta c ,

where \alpha p =
\sum N

j=1 qjJp(k\rho j)e
 - ip\theta j , (\rho c, \theta c) are the polar coordinates of x - xc, (\rho j , \theta j)

are the polar coordinates of xj  - xc, and the truncation index P is a constant inde-
pendent of the number of the sources N [11].

On the other hand, the multipole expansion can also be derived in the frequency
domain using (2.1) as follows. Consider one source xj and suppose y  - yj > 0,
y  - yc > 0 for simplicity. The interaction between x and xj can be represented by a
Sommerfeld integral of plane waves [5],

(2.12) Gf(x,xj) =
i

4
H

(1)
0 (k| x - xj | ) =

i

4

1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yj)

\surd 
\lambda 2  - k2

ei\lambda (x - xj)d\lambda ,

while each term H
(1)
p (k\rho c)e

ip\theta c in (2.11) has a similar representation [5]

(2.13)

H(1)
p (k\rho c)e

ip\theta c =
1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yc)

\surd 
\lambda 2  - k2

ei\lambda (x - xc)( - i)p

\Biggl( 
\lambda  - 

\surd 
\lambda 2  - k2

k

\Biggr) p

d\lambda .

These integral forms give an alternative derivation for the multipole expansion of
i
4H

(1)
0 (k| x - xj | ) = i

4H
(1)
0 (k| (x - xc)+ (xc  - xj) | ) with separable plane wave factors

in the integrands involving (x - xc) and (xc  - xj),

i

4
H

(1)
0 (k| x - xj | )

=
i

4

1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yj)

\surd 
\lambda 2  - k2

ei\lambda (x - xj)d\lambda 

=
i

4

1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yc)

\surd 
\lambda 2  - k2

ei\lambda (x - xc) \cdot e - 
\surd 
\lambda 2 - k2(yc - yj)+i\lambda (xc - xj)d\lambda 

=
i

4

1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yc)

\surd 
\lambda 2  - k2

ei\lambda (x - xc) \cdot g
\bigl( 
k\rho j , - ie - i\theta jw(\lambda )

\bigr) 
d\lambda 

=
i

4

1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yc)

\surd 
\lambda 2  - k2

ei\lambda (x - xc) \cdot 
\infty \sum 

p= - \infty 
Jp(k\rho j)e

 - ip\theta j ( - iw(\lambda ))
p
d\lambda 

=
i

4

\infty \sum 
p= - \infty 

Jp(k\rho j)e
 - ip\theta j \cdot 1

i\pi 

\int \infty 

 - \infty 

e - 
\surd 
\lambda 2 - k2(y - yc)

\surd 
\lambda 2  - k2

ei\lambda (x - xc) ( - iw(\lambda ))
p
d\lambda 

=
i

4

\infty \sum 
p= - \infty 

Jp(k\rho j)e
 - ip\theta j \cdot H(1)

p (k\rho c)e
ip\theta c ,
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where

(2.14) w(\lambda ) =
\lambda  - 

\surd 
\lambda 2  - k2

k
.

The interchangeability of the sum and the integration is verified by the validity of the
identity itself, i.e., the Graf's addition theorem.

2.4. The far-field MEs and LEs, translations, and their exponential
convergence for the Green's function in layered media. For the sake of conve-
nience, we focus on the interaction between one source and one target unit charge. We
will derive far-field expansions for each integral u\ast  \star 

ts (x,x\prime ;\sigma \ast  \star 
ts ) in a natural general-

ization of the free-space case discussed in subsection 2.3, then show their exponential
convergence. The derivation makes use of the following two types of series expansions.

Suppose (\rho 0, \theta 0) are the polar coordinates of (x0, y0). Denote

(2.15) wl(\lambda ) =
\lambda  - 

\sqrt{} 
\lambda 2  - k2l
kl

, 0 \leq l \leq L.

By using the Bessel generating function (2.1), we have

e - 
\surd 

\lambda 2 - k2
s\tau 

 \star y0 - i\lambda x0 = g
\Bigl( 
ks\rho 0, - iei\tau 

 \star \theta 0ws(\lambda )
\Bigr) 

=

\infty \sum 
p= - \infty 

Jp(ks\rho 0)e
ip\tau  \star \theta 0 \cdot ( - iws(\lambda ))

p
,

(2.16)

e - 
\surd 

\lambda 2 - k2
t \tau 

\ast y0+i\lambda x0 = g
\Bigl( 
kt\rho 0, ie

i\tau \ast \theta 0wt(\lambda )
 - 1
\Bigr) 

=
\infty \sum 

m= - \infty 
Jm(kt\rho 0)e

im\tau \ast \theta 0 \cdot 
\bigl( 
iwt(\lambda )

 - 1
\bigr) m

.
(2.17)

For the ME, we split the difference x - x\prime = (x - xc)+(xc  - x\prime ), namely, we shift
the source x\prime to a common source center xc = (xc, yc), which is assumed to be on the
same side of the interface y = d \star s, i.e., yc  - d \star s and y\prime  - d \star s have the same sign. Let
(\rho \prime c, \theta 

\prime 
c) be the polar coordinates of x\prime  - xc. Using (2.16) with (\rho 0, \theta 0) = (\rho \prime c, \theta 

\prime 
c) and

the separability of the plane wave factor \scrE  \star  \star 
ts (x,x

\prime ) (2.7), we get an approximation

(2.18)

u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts ) =

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x,x

\prime , \lambda )\sigma \ast  \star 
ts (\lambda )d\lambda 

=

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x,xc, \lambda )e

 - 
\surd 

\lambda 2 - k2
s\tau 

 \star (y\prime  - yc)+i\lambda (xc - x\prime )\sigma \ast  \star 
ts (\lambda )d\lambda 

=

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x,xc, \lambda )\sigma 

\ast  \star 
ts (\lambda )

\infty \sum 
p= - \infty 

Jp(ks\rho 
\prime 
c)e

ip\tau  \star \theta \prime 
c ( - iws(\lambda ))

p
d\lambda 

\approx 
\sum 
| p| <P

I\ast  \star p (x,xc)M
 \star 
p (x

\prime ,xc),

where the expansion function

(2.19) I\ast  \star p (x,xc) =

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x,xc, \lambda )\sigma 

\ast  \star 
ts (\lambda ) ( - iws(\lambda ))

p
d\lambda ,
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and the ME cofficient

(2.20) M \star 
p (x

\prime ,xc) = Jp(ks\rho 
\prime 
c)e

ip\tau  \star \theta \prime 
c .

For the LE, we split the difference x - x\prime =
\bigl( 
x - xl

c

\bigr) 
+
\bigl( 
xl
c  - x\prime \bigr) , namely, we shift

the target x to a common target (local) center xl
c = (xl

c, y
l
c) , which is assumed to

be on the same side of the interface y = d\ast t . Let (\rho l, \theta l) be the polar coordinates of
x  - xl

c. Using (2.17) with (\rho 0, \theta 0) = (\rho l, \theta l) and the separability of the plane wave
factor \scrE  \star  \star 

ts (x,x
\prime ) (2.7), we get an approximation,

(2.21)

u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts )

=

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x

l
c,x

\prime , \lambda )\sigma \ast  \star 
ts (\lambda )

\infty \sum 
m= - \infty 

Jm(kt\rho 
l)eim\tau \ast \theta l

\cdot 
\bigl( 
iwt(\lambda )

 - 1
\bigr) m

d\lambda 

\approx 
\sum 

| m| <M

L\ast  \star 
m (xl

c,x
\prime )K\ast 

m(x,xl
c),

where the expansion function

(2.22) K\ast 
m(x,xl

c) = Jm(kt\rho 
l)eim\tau \ast \theta l

,

and the LE coefficient

(2.23) L\ast  \star 
m (xl

c,x
\prime ) =

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x

l
c,x

\prime , \lambda )\sigma \ast  \star 
ts (\lambda )

\bigl( 
iwt(\lambda )

 - 1
\bigr) m

d\lambda .

Now, the M2L can be derived directly by using the splitting xl
c - x\prime =

\bigl( 
xl
c  - xc

\bigr) 
+

(xc  - x\prime ) in L\ast  \star 
m (xl

c,x
\prime ), i.e.,

(2.24)

L\ast  \star 
m (xl

c,x
\prime )

=

\int \infty 

 - \infty 
\scrE \ast  \star 
st (x

l
c,xc, \lambda )\sigma 

\ast  \star 
st (\lambda )

\bigl( 
iwt(\lambda )

 - 1
\bigr) m \infty \sum 

p= - \infty 
Jp(ks\rho 

\prime 
c)e

ip\tau  \star \theta \prime 
c \cdot ( - iws(\lambda ))

p
d\lambda 

\approx 
\sum 
| p| <P

A\ast  \star 
mp(x

l
c,xc)M

 \star 
p (x

\prime ,xc),

where the translation coefficients A\ast  \star 
mp(x

l
c,xc) are given by

A\ast  \star 
mp(x

l
c,xc) =

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x

l
c,xc, \lambda )\sigma 

\ast  \star 
ts (\lambda ) ( - iws(\lambda ))

p \bigl( 
iwt(\lambda )

 - 1
\bigr) m

d\lambda .

The L2L shifts the local center xl
c in each integral L\ast  \star 

m (xl
c,x

\prime ) to a new local
center \~xl

c = (\~xl
c, \~y

l
c). Let (\~\rho ,

\~\theta ) be the polar coordinates of \~xl
c  - xl

c. Using (2.17) with
(\rho 0, \theta 0) = (\~\rho , \~\theta ),

(2.25)

L\ast  \star 
m (\~xl

c,x
\prime )

=

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x

l
c,x

\prime , \lambda )\sigma \ast  \star 
ts (\lambda )

\bigl( 
iwt(\lambda )

 - 1
\bigr) m \infty \sum 

p= - \infty 
Jp(kt\~\rho )e

ip\tau \ast \~\theta \cdot 
\bigl( 
iwt(\lambda )

 - 1
\bigr) p

d\lambda 

\approx 
\sum 

| p+m| <P

Jp(kt\~\rho )e
ip\tau \ast \~\theta 

\int \infty 

 - \infty 
\scrE \ast  \star 
ts (x

l
c,x

\prime , \lambda )\sigma \ast  \star 
ts (\lambda )

\bigl( 
iwt(\lambda )

 - 1
\bigr) m \bigl( 

iwt(\lambda )
 - 1
\bigr) p

d\lambda 

=
\sum 
| p| <P

L\ast  \star 
p (xl

c,x
\prime )K\ast 

p - m(\~xl
c,x

l
c).
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Remark 2.4. The use of plane waves for expressing the MEs and LEs was first
proposed in the new version of FMMs for the Laplace and Helmholtz equations in
free space [7], [8] to reduce the MEs to LEs translation cost.

Polarization distance. Before we present the main result of this paper on the
convergence of the series expansions above, we introduce the concept of ``polarization
distance"" unique to the interaction in layered media. Given layer indices s, t and
direction marks \ast ,  \star \in \{ \uparrow , \downarrow \} , for a target x1 = (x1, y1) and a source x2 = (x2, y2),
the polarization distance is defined as

(2.26) D\ast  \star 
ts (x1,x2) =

\sqrt{} 
(x1  - x2)2 + (\tau \ast (y1  - d\ast t ) + \tau  \star (y2  - d \star s))

2
,

provided both \tau \ast (y1  - d\ast t ) > 0 and \tau  \star (y2  - d \star s) > 0. (Note that the polarization
distance is not symmetric with respect to x1 and x2.) This distance is in fact the
distance between the target x1 and an equivalent polarization source for the source
point x2. (See (2.35) for its definition and Figure 1 for an illustration of the locations
of the polarization sources for different reaction components.)

Theorem 2.5 (exponential convergence of far-field expansions in layered media).
Suppose the integral u\ast  \star 

ts (x,x\prime ;\sigma \ast  \star 
ts ) is derived from a well-posed Helmholtz problem in

layered media as in (2.6). Then, we have the truncation error of ME (2.18)

(2.27)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts ) - 
\sum 
| p| <P

I\ast  \star p (x,xc)M
 \star 
p (x

\prime ,xc)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq cME(P )

\biggl( 
| x\prime  - xc| 
D\ast  \star 

ts (x,xc)

\biggr) P

,

the truncation error of LE (2.21)

(2.28)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts ) - 
\sum 

| m| <M

L\ast  \star 
m (xl

c,x
\prime )K\ast 

m(x,xl
c)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq cLE(M)

\biggl( 
| x - xl

c| 
D\ast  \star 

ts (x
l
c,x

\prime )

\biggr) M

,

the truncation error of M2L (2.24) for each LE coefficient

(2.29)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| L\ast  \star 
m (xl

c,x
\prime ) - 

\sum 
| p| <P

A\ast  \star 
mp(x

l
c,xc)M

 \star 
p (x

\prime ,xc)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq cM2L
m (P )

\biggl( 
| x\prime  - xc| 

D\ast  \star 
ts (x

l
c,xc)

\biggr) P

,

and the truncation error of L2L (2.25) for each LE coefficient

(2.30)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| L\ast  \star 
m (\~xl

c,x
\prime ) - 

\sum 
| p| <P

L\ast  \star 
p (xl

c,x
\prime )K\ast 

p - m(\~xl
c,x

l
c)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq cL2Lm (P )

\biggl( 
| \~xl

c  - xl
c| 

D\ast  \star 
ts (x

l
c,x

\prime )

\biggr) P

for some functions cME(\cdot ), cLE(\cdot ), cM2L
m (\cdot ), and cL2Lm (\cdot ) having polynomial growth rates,

provided that for some given \mu > 1, the far-field conditions measured with the polar-
ization distances,

D\ast  \star 
ts (x,xc) \geq \mu | x\prime  - xc| , D\ast  \star 

ts (x
l
c,x

\prime ) \geq \mu | x - xl
c| ,

D\ast  \star 
ts (x

l
c,xc) \geq \mu | x\prime  - xc| , D\ast  \star 

ts (x
l
c,x

\prime ) \geq \mu | \~xl
c  - xl

c| ,
(2.31)

hold, respectively. If all the sources, targets, and centers involved above are bounded
by a given box, the distances from every center to its nearby interface have a given
nonzero lower bound, and there exist 0 < \rho m \leq \rho M such that

\rho m \leq D\ast  \star 
ts (x,xc), D

\ast  \star 
ts (x

l
c,x

\prime ), D\ast  \star 
ts (x

l
c,xc), D

\ast  \star 
ts (x

l
c,x

\prime ) \leq \rho M ,
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then the functions cME(\cdot ), cLE(\cdot ), cM2L
m (\cdot ), and cL2Lm (\cdot ) can be chosen to be determined

by these bounds, without dependence on the actual positions of the source locations.

The proof to be given in section 3 will be special cases of a general convergence
result of the Bessel-type expansions in Theorem 3.9.

2.5. Numerical validation of exponential convergence. Here we present
some numerical examples showing the exponential convergence rates of MEs and LEs.
Consider a 3-layer problem with a source x\prime and a target x both in the middle layer.
We examine the reaction field component

(2.32) u\downarrow \downarrow 
11(x,x

\prime ) =

\int \infty 

 - \infty 
ei\lambda (x - x\prime ) - 

\surd 
\lambda 2 - k2

1(d0 - y) - 
\surd 

\lambda 2 - k2
1(d0 - y\prime )\sigma \downarrow \downarrow 

11(\lambda )d\lambda .

Suppose the source center xc and the target center xl
c are in the middle layer, and

the far-field conditions D\downarrow \downarrow 
11(x,xc) > | x\prime  - xc| and D\downarrow \downarrow 

11(x
l
c,x

\prime ) > | x - xl
c| are met. For

the reaction component u\downarrow \downarrow 
11(x,x

\prime ), the relative error of the ME at source center xc,
and that of the LE at target center xl

c are defined for a given truncation index P

eME
P =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u\downarrow \downarrow 
11(x,x

\prime ) - 
\sum 
| p| <P

I\downarrow \downarrow p (x,xc)M
\downarrow 
p (x

\prime ,xc)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigg/ 

| u\downarrow \downarrow 
11(x,x

\prime )| ,

eLEP =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| u\downarrow \downarrow 
11(x,x

\prime ) - 
\sum 
| p| <P

L\downarrow \downarrow 
p (xl

c,x
\prime )K\downarrow 

p (x,x
l
c)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigg/ 

| u\downarrow \downarrow 
11(x,x

\prime )| .

(2.33)

For comparison, we define the reference exponential convergence ratio

rME =
| x\prime  - xc| 
D\downarrow \downarrow 

11(x,xc)
, rLE =

| x - xl
c| 

D\downarrow \downarrow 
11(x

l
c,x

\prime )
.(2.34)

Take d0 = 0.5, d1 =  - 0.5, k0 = 2, k1 = 3, k2 = 4.7, a0 = a1 = a2 = 1, b0 = 2,
b1 = 3, b2 = 4.7, the source center xc = (0, 0), and the target center xl

c = (0.6, 0.2).

The closed form of \sigma \downarrow \downarrow 
11(\lambda ) is given in (B.13). \sigma \downarrow \downarrow 

11(\lambda ) has a pair of real poles at \lambda = \pm k1.
If we consider the perturbed wave numbers in each layer \~kl = kl + \epsilon li, 0 < \epsilon l \ll 1,
then the perturbed real poles are \pm (k1 + \epsilon 1i) with positive and negative imaginary
part, respectively. Hence (2.10) will be used to evaluate the integrals.

We select three target-source pairs for numerical testing: case (1) x = (0.5, 0.3),
x\prime = (0.3, 0.4); case (2) x = (0.5, 0.4), x\prime = ( - 0.1, - 0.3); case (3) x = (0, 0.2),
x\prime = ( - 0.1, 0.2). For each pair we compute and plot the relative errors of ME and

LE of u\downarrow \downarrow 
11(x,x

\prime ) for P = 3, 4, . . . , 12 in Figure 3. Then we compare the results with
the reference exponential convergence rates indicated by the corresponding colored
dashed lines with slopes log10 rME and log10 rLE, respectively. The comparison shows
that the relative errors decay at the expected exponential rates determined by the
polarization distance.

2.6. An FMM framework for sources in layered media. In the far-field
conditions (2.31) of the convergence results, the polarization distances D\ast  \star 

ts play the
role of the far-field distances as in the free-space cases for the FMM implementation.

Polarization sources. To make use of this fact for the setup of FMM, we define
a bijective linear mapping for each source point x2 by

(2.35) \scrP \ast  \star 
ts : x2 = (x2, y2) \mapsto \rightarrow \~x2 = (x2, d

\ast 
t  - \tau \ast \tau  \star (y2  - d \star s))
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1450 WENZHONG ZHANG, BO WANG, AND WEI CAI

Fig. 3. Relative errors of ME and LE for P = 3, 4, . . . , 12 for three cases, compared to the
reference exponential convergence rates indicated by rME,(k), rLE,(k), case (k) = 1, 2, 3.

provided \tau  \star (y2  - d \star s) > 0. It is straightforward to see that

(2.36) D\ast  \star 
ts (x1,x2) = \| x1  - \scrP \ast  \star 

ts (x2)\| ;

here \| \cdot \| is the Euclidean norm. Figure 1 shows how \scrP \ast  \star 
ts maps the sources to their

equivalent polarization sources.
The FMM for layered media can be set up to evaluate each reaction component u\ast  \star 

ts

as follows: \scrP \ast  \star 
ts maps the source layer s to a neighboring layer (below or above) of the

target layer t, where all the far-field distances become Euclidean as in (2.36). Then,
to calculate the interaction due to any of the reaction component u\ast  \star 

ts (x,x\prime ;\sigma \ast  \star 
ts ), we

simply move the source charges to the locations of their corresponding ``equivalent
polarization sources.""An implementation for the Helmholtz equation and the Laplace
equation in 3-D layered media based on this approach are given in [15], [16], respec-
tively.

3. The convergence estimate on Bessel-type expansions. In this section,
we will give convergence estimates on general Bessel-type expansions, of which The-
orem 2.5 will be a special case.

The Bessel-type expansions are defined as follows. Let k > 0, (\rho , \theta ), (\rho \prime , \theta \prime ) be
the polar coordinates of x = (x, y) and x\prime = (x\prime , y\prime ), respectively. Suppose y > 0,
y + y\prime > 0, and \rho > \rho \prime \geq 0. For simplicity, define

(3.1) \Psi (\lambda ) \equiv \Psi (x,\lambda ) = e - 
\surd 
\lambda 2 - k2y+i\lambda x, \Psi \prime (\lambda ) \equiv \Psi \prime (x\prime ,\lambda ) = e - 

\surd 
\lambda 2 - k2y\prime  - i\lambda x\prime 

.

Then, we claim the pointwise Bessel-type expansion for a given \lambda \nu \in \BbbC ,

(3.2) e - 
\surd 

\lambda 2
\nu  - k2(y+y\prime )+i\lambda \nu (x - x\prime ) =

\infty \sum 
p= - \infty 

Jp(k\rho 
\prime )eip\theta 

\prime 
\Psi (x,\lambda \nu ) ( - iw(\lambda \nu ))

p

and the integral Bessel-type expansion over \lambda \in (a, b), - \infty \leq a < b \leq +\infty ,

(3.3)

\int b

a

e - 
\surd 
\lambda 2 - k2(y+y\prime )+i\lambda (x - x\prime )f(\lambda )d\lambda =

\infty \sum 
p= - \infty 

Jp(k\rho 
\prime )eip\theta 

\prime 
Fp(x, y),
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where f(\lambda ) is a complex function defined on (a, b) satisfying certain conditions to be
specified later, and Fp(x, y) is the expansion function

Fp(x, y) =

\int b

a

\Psi (x,\lambda ) ( - iw(\lambda ))
p
f(\lambda )d\lambda .

3.1. Convergence of pointwise Bessel-type expansions. We first present
the convergence of (3.2).

Lemma 3.1. Let \mu > 1, k > 0. Suppose (\rho \prime , \theta \prime ) are the polar coordinates of

(x\prime , y\prime ). Suppose x \in \BbbR , y \in \BbbR + satisfying \rho =
\sqrt{} 
x2 + y2 > \mu \rho \prime \geq 0 and x \cdot \Im \lambda \nu \geq 0.

Then, the Bessel-type expansion (3.2) holds with truncation error estimate

(3.4)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
\Psi (x,\lambda \nu ) ( - iw(\lambda \nu ))

p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\mu 

\mu  - 1

\biggl( 
\rho \prime 

\rho 

\biggr) P

for any

(3.5) P \geq e(| \lambda \nu | + k/2)\rho .

Proof. The equality of (3.2) is given by the Bessel generating function (2.1)

e - 
\surd 

\lambda 2
\nu  - k2(y+y\prime )+i\lambda \nu (x - x\prime ) = \Psi (\lambda \nu )g

\Bigl( 
k\rho \prime , - iei\theta 

\prime 
w(\lambda \nu )

\Bigr) 
=

\infty \sum 
p= - \infty 

Jp(k\rho 
\prime )eip\theta 

\prime 
e - 

\surd 
\lambda 2
\nu  - k2y+i\lambda x ( - iw(\lambda \nu ))

p
.

(3.6)

With the given conditions, | exp( - 
\sqrt{} 
\lambda 2
\nu  - k2y + i\lambda \nu x)| \leq 1, | w(\lambda \nu )| \leq (2| \lambda \nu | + k)/k.

Hence for each p, using Lemma 2.1,

\bigm| \bigm| \bigm| Jp(k\rho \prime )eip\theta \prime 
e - 

\surd 
\lambda 2
\nu  - k2y+i\lambda \nu x ( - iw(\lambda \nu ))

p
\bigm| \bigm| \bigm| \leq 1

| p| !

\biggl( 
k\rho \prime 

2

\biggr) | p| \biggl( 
2| \lambda \nu | + k

k

\biggr) | p| 

.

For | p| \geq e(| \lambda \nu | + k/2)\rho , using Stirling's formula [10],

| p| ! \geq 
\biggl( 
| p| 
e

\biggr) | p| 

\geq 
\biggl( \biggl( 

| \lambda \nu | +
k

2

\biggr) 
\rho 

\biggr) | p| 

,

we have

\bigm| \bigm| \bigm| Jp(k\rho \prime )eip\theta \prime 
e - 

\surd 
\lambda 2
\nu  - k2y+i\lambda \nu x ( - iw(\lambda \nu ))

p
\bigm| \bigm| \bigm| \leq \biggl( \rho \prime 

\rho 

\biggr) | p| 

,

which will give the estimate of the truncation error after summing over | p| \geq P .

3.2. Special cases of the integral Bessel-type expansion. First, we will
prove (3.3) for a more general setting when the integral is defined on a bounded
curve.

Lemma 3.2. Let \mu > 1, k > 0. Let (\rho , \theta ) and (\rho \prime , \theta \prime ) be the polar coordinates of
x = (x, y) and x\prime = (x\prime , y\prime ), respectively. Suppose y > 0, \rho > \mu \rho \prime \geq 0. Let \kappa \subset \BbbC be a
complex contour which is parameterized as

(3.7) \kappa : \lambda = \lambda (s) = a(s) + b(s)i, 0 \leq s \leq 1,
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where a(s) and b(s) are real differentiable functions. Suppose x \cdot b(s) \geq 0 for any
s \in [0, 1]. Let f(\lambda ) be a complex function on \kappa satisfying a convergence condition

(3.8)

\int 1

0

\bigm| \bigm| \bigm| f(\lambda (s))\sqrt{} a\prime (s)2 + b\prime (s)2
\bigm| \bigm| \bigm| ds = S < \infty .

Then, the series expansion

(3.9) E\kappa =

\int 
\kappa 

\Psi (\lambda )\Psi \prime (\lambda )f(\lambda )d\lambda =
\infty \sum 

p= - \infty 
Jp(k\rho 

\prime )eip\theta 
\prime 
\int 
\kappa 

\Psi (\lambda ) ( - iw(\lambda ))
p
f(\lambda )d\lambda 

holds with a truncation error estimate

(3.10)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
\int 
\kappa 

\Psi (\lambda ) ( - iw(\lambda ))
p
f(\lambda )d\lambda 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\mu S

\mu  - 1

\biggl( 
\rho \prime 

\rho 

\biggr) P

for any P \geq e(\lambda M + k/2)\rho , where \lambda M = max\lambda \in \kappa | \lambda | .
Proof. Using the results from the proof of Lemma 3.1, for \lambda \in \kappa ,\bigm| \bigm| \bigm| e - \surd 

\lambda 2 - k2y+i\lambda x
\bigm| \bigm| \bigm| \leq 1, | w(\lambda )| \pm 1 \leq 2\lambda M + k

k
,

so for each p, using Lemma 2.1,\int 1

0

\bigm| \bigm| \bigm| Jp(k\rho \prime )eip\theta \prime 
\Psi (\lambda ) ( - iw(\lambda ))

p
f(\lambda ) (a\prime (s) + b\prime (s)i)

\bigm| \bigm| \bigm| ds
\leq 1

| p| !

\biggl( 
k\rho \prime 

2

\biggr) | p| 

\cdot 1 \cdot 
\biggl( 
2\lambda M + k

k

\biggr) | p| 

\cdot S.

Hence, using the Bessel generating function (2.1) and Fubini's theorem,

E\kappa =

\int 1

0

\Psi (\lambda )\Psi \prime (\lambda )f(\lambda ) (a\prime (s) + b\prime (s)i) ds

=
\infty \sum 

p= - \infty 

\int 1

0

Jp(k\rho 
\prime )eip\theta 

\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p
f(\lambda ) (a\prime (s) + b\prime (s)i) ds

=
\infty \sum 

p= - \infty 

\int 
\kappa 

Jp(k\rho 
\prime )eip\theta 

\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p
f(\lambda )d\lambda ,

we obtain the equality of (3.9). When | p| \geq e(\lambda M + k/2)\rho , using Stirling's formula

[10], | p| ! \geq (| p| /e)| p| , we can show that each integral\bigm| \bigm| \bigm| \bigm| \int 
\kappa 

Jp(k\rho 
\prime )eip\theta 

\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p
f(\lambda )d\lambda 

\bigm| \bigm| \bigm| \bigm| \leq 1

| p| !

\biggl( 
k\rho \prime 

2
\cdot 2\lambda M + k

k

\biggr) | p| 

S \leq S

\biggl( 
\rho \prime 

\rho 

\biggr) | p| 

.

By adding up the bounds for | p| \geq P we get a truncation error estimate with the
following bound:\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
\int 
\kappa 

\Psi (\lambda ) ( - iw(\lambda ))
p
f(\lambda )d\lambda 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 
| p| \geq P

S

\biggl( 
\rho \prime 

\rho 

\biggr) | p| 

\leq 2\mu S

\mu  - 1

\biggl( 
\rho \prime 

\rho 

\biggr) P

.
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A similar result on a bounded real interval follows immediately.

Lemma 3.3. Let \mu > 1, k\prime \geq k > 0. Let (\rho , \theta ) and (\rho \prime , \theta \prime ) be the polar coordinates
of x = (x, y) and x\prime = (x\prime , y\prime ), respectively. Suppose y > 0, \rho > \mu \rho \prime \geq 0, and

the function f(\lambda ) on [ - k\prime , k\prime ] satisfies
\int k\prime 

 - k\prime | f(\lambda )| d\lambda = S < +\infty , then the integral
Bessel-type expansion (3.3) holds on [ - k\prime , k\prime ] with truncation error estimate

(3.11)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
Fp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\mu S

\mu  - 1

\biggl( 
\rho \prime 

\rho 

\biggr) P

for any P \geq ek\prime \rho .

Proof. The same proof of Lemma 3.2 can be applied by using the following esti-
mate instead:

| w(\lambda )| \pm 1
=

\bigm| \bigm| \bigm| \bigm| \bigm| \lambda  - 
\surd 
\lambda 2  - k2

k

\bigm| \bigm| \bigm| \bigm| \bigm| 
\pm 1

\leq 2k\prime 

k

for any \lambda \in [ - k\prime , k\prime ], which gives the necessary lower bound of P .

Next, we consider the special case (x, y) = (0, \rho ) in the Bessel-type expansion
(3.3) over an infinite interval.

Lemma 3.4. Let \mu > 1, k\prime \geq k > 0, x\prime , y\prime \in \BbbR , \rho > \mu \rho \prime \geq 0. Suppose f(\lambda )
is a continuous function on [k\prime ,\infty ) such that | f(\lambda )| \leq C\lambda K for some given positive
constant C and nonnegative integer K. For the integral

E+
p =

\int \infty 

k\prime 
e - 

\surd 
\lambda 2 - k2\rho ( - iw(\lambda ))

p
f(\lambda )d\lambda , p \in \BbbZ ,(3.12)

we have the estimate

(3.13)
\bigm| \bigm| E+

p

\bigm| \bigm| \leq \int \infty 

k\prime 
e - 

\surd 
\lambda 2 - k2\rho w(\lambda )p| f(\lambda )| d\lambda \leq 3C (| p| +K)!

\biggl( 
2

\rho 

\biggr) K+1\biggl( 
k\rho 

2

\biggr)  - | p| 

for any | p| \geq (k\rho )2/4+1 - K. In addition, the Bessel-type expansion (3.3) holds with
(x, y) = (0, \rho ) on the interval (k\prime ,\infty ) and the truncation error is given by

(3.14)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int \infty 

k\prime 
e - 

\surd 
\lambda 2 - k2(\rho +y\prime )+i\lambda ( - x\prime )f(\lambda )d\lambda  - 

\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
E+

p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c(P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

\forall P \geq (k\rho )2/4 + 1 - K, where

(3.15) c(P, \rho ) = 6C(K + 1)!

\biggl( 
2\mu 

\rho (\mu  - 1)

\biggr) K+1

(P +K)K .

Proof. We will first consider the estimate in (3.13). Notice that for \lambda \geq k we have\surd 
\lambda 2  - k2 \leq \lambda and 0 \leq \lambda  - 

\surd 
\lambda 2  - k2 \leq k \leq \lambda \leq \lambda +

\surd 
\lambda 2  - k2, | E+

p | \leq CkK+1Ip,
where

(3.16) Ip =

\int \infty 

k

e - 
\surd 
\lambda 2 - k2\rho 

\surd 
\lambda 2  - k2

\Biggl( 
\lambda +

\surd 
\lambda 2  - k2

k

\Biggr) M+1

d\lambda 
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and M = | p| +K. With the substitution v = (\lambda +
\surd 
\lambda 2  - k2)/k,

Ip =

\int \infty 

1

e
k\rho 
2 ( - v+v - 1)vMdv

\leq 
\int \infty 

1

e
k\rho 
2 ( - v)

\left(  M - 1\sum 
j=0

1

j!

\biggl( 
k\rho 

2
v - 1

\biggr) j

+
1

M !

\biggl( 
k\rho 

2
v - 1

\biggr) M

e
k\rho 
2 v - 1

\right)  vMdv

\leq 
M - 1\sum 
j=0

1

j!

\biggl( 
k\rho 

2

\biggr) j \int \infty 

0

e
k\rho 
2 ( - v)vM - jdv +

1

M !

\biggl( 
k\rho 

2

\biggr) M \int \infty 

1

e
k\rho 
2 ( - v+1)dv

=
M - 1\sum 
j=0

(M  - j)!

j!

\biggl( 
k\rho 

2

\biggr) 2j - M - 1

+
1

M !

\biggl( 
k\rho 

2

\biggr) M - 1

= M !

\biggl( 
k\rho 

2

\biggr)  - M - 1 M\sum 
j=0

cj ,

where

(3.17) cj =
(M  - j)!

M !j!

\biggl( 
k\rho 

2

\biggr) 2j

, j = 0, . . . ,M.

One can verify c0 = 1, c1 = (k\rho /2)
2
/M \leq (M  - 1)/M . For 1 \leq j \leq M  - 2, we have

cj+1/cj = (k\rho )2/4(j+1)(M - j) \leq 1/2. For cM we have cM/cM - 1 = (k\rho )2/(4M) \leq 1.

By summation,
\sum M

j=0 cj \leq c0 + 2c1 \leq 1 + 2(M  - 1)/M \leq 3, so
(3.18)

| E+
p | \leq CkK+1Ip \leq 3CkK+1M !

\biggl( 
k\rho 

2

\biggr)  - M - 1

\leq 3C (| p| +K)!

\biggl( 
2

\rho 

\biggr) K+1\biggl( 
k\rho 

2

\biggr)  - | p| 

.

To get the expansion (3.3) with (x, y) = (0, \rho ) on [k\prime ,\infty ), by using Lemma 2.1 and
(3.18), we have \int \infty 

k\prime 

\bigm| \bigm| \bigm| Jp(k\rho \prime )eip\theta \prime 
e - 

\surd 
\lambda 2 - k2\rho ( - iw(\lambda ))

p
f(\lambda )

\bigm| \bigm| \bigm| d\lambda 
\leq 1

| p| !

\biggl( 
k\rho \prime 

2

\biggr) | p| 

\cdot 3C (| p| +K)!

\biggl( 
2

\rho 

\biggr) K+1\biggl( 
k\rho 

2

\biggr)  - | p| 

= 3C
(| p| +K)!

| p| !

\biggl( 
2

\rho 

\biggr) K+1\biggl( 
\rho \prime 

\rho 

\biggr) | p| 

.

Now, as in (3.6), by using Fubini's theorem, we have the expansion of (3.14),\int \infty 

k\prime 
e - 

\surd 
\lambda 2 - k2(\rho +y\prime )+i\lambda ( - x\prime )f(\lambda )d\lambda 

=

\int \infty 

k\prime 

\infty \sum 
p= - \infty 

Jp(k\rho 
\prime )eip\theta 

\prime 
e - 

\surd 
\lambda 2 - k2\rho ( - iw(\lambda ))

p
f(\lambda )d\lambda 

=
\infty \sum 

p= - \infty 
Jp(k\rho 

\prime )eip\theta 
\prime 
E+

p
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Fig. 4. The mapping \phi : D - \rightarrow D+. The shadowed regions D1 and \phi (D1) are for illustration.

with a P -term truncation error for P \geq (k\rho )2/4 + 1 - K,\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
E+

p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 
| p| \geq P

3C
(| p| +K)!

| p| !

\biggl( 
2

\rho 

\biggr) K+1\biggl( 
\rho \prime 

\rho 

\biggr) | p| 

\leq c(P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

.

Remark 3.5. The bound of | E+
p | in Lemma 3.4 is shown as an analogue of the

asymptotic behavior of H
(1)
n (x) \sim (n - 1)!(x/2)n/(i\pi ) for x > 0 as n \rightarrow \infty [1, equation

(9.3.1)].

3.3. Convergence of general integral Bessel-type expansions. In order
to obtain the convergence estimate of the integral Bessel-type expansion (3.3) on an
infinite interval, we will take two steps. First, the Cagniard--de Hoop transform [4] will
be used to convert the general (x, y) case to the (0, \rho ) case as discussed in Lemma 3.4,

namely, the complex factor e - 
\surd 
\lambda 2 - k2y+i\lambda x in (3.3) is converted to e - 

\surd 
\lambda 2 - k2\rho . Second,

we deform the new complex contour of integration as a result of the transform to the
real axis; see the illustration in Figure 4.

3.3.1. The Cagniard--de Hoop transform. Given positive real numbers x,
y, and T satisfying x < Ty. Letting (\rho , \theta ) be the polar coordinates of (x, y). Letting
\beta = \pi 

2  - \theta \in (0, \pi 
2 ), then y + xi = \rho ei\beta .

Define an open set

(3.19) \Omega = \{ z \in \BbbC : \Re z > 0, z /\in (0, k]\} .

Then the holomorphic Cagniard--de Hoop mapping [4] \phi : \Omega \rightarrow \BbbC is given by

(3.20) \phi (z) = z cos\beta + i
\sqrt{} 
z2  - k2 sin\beta .

Consider the right branch of the hyperbola

(3.21) \Gamma =

\Biggl\{ 
a+ bi : a, b \in \BbbR ,

a

cos\beta 
=

\sqrt{} 
b2

sin2 \beta 
+ k2

\Biggr\} D
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with its vertex k cos\beta on the real axis, and the upper and lower parts of \Gamma denoted
as \gamma + and \gamma  - , respectively, i.e.,

(3.22) \Gamma = \gamma + \cup \gamma  - \cup \{ k cos\beta \} .

We can easily verify that \phi ((k,+\infty )) = \gamma +, and \phi (\gamma  - ) = (k,+\infty ), namely,

(3.23) \gamma + = \phi ((k,+\infty )) , \gamma  - = \phi  - 1 ((k,+\infty )) ,

where

(3.24) \phi  - 1(w) = w cos\beta  - i
\sqrt{} 
w2  - k2 sin\beta .

Usually, \Gamma is known as the Cagniard--de Hoop contour. The two straight lines passing
the origin with slopes \pm tan\beta are the asymptotes of \gamma \pm , respectively.

Define regions to the right of \Gamma in the first and the fourth quadrant, respectively,
by

(3.25) D\pm = \{ z + t : z \in \gamma \pm , t \in \BbbR +\} .

D\pm are isomorphic as the following lemma shows.

Lemma 3.6. \phi | D - is a bijection to D+ with inverse \phi  - 1| D+ given by (3.24).

Proof. See Appendix A.

3.3.2. The general Bessel-type expansion. With the above preparation, we
can now prove the expansion (3.3) when f(\lambda ) has a polynomial bound in \Omega and | \lambda | 
is sufficiently large and \Im \lambda /\Re \lambda is bounded. To be specific, we make the following
assumptions.

Assumption 3.7. Given T > 0, \epsilon 0 > 0. Let f(\lambda ) be a complex function with
branch points \pm k0, . . . ,\pm kL, even, and meromorphic in \BbbC excluding the branch cuts
of
\sqrt{} 
\lambda 2  - k2l , 0 \leq l \leq L, with poles of order up to one. Also, we assume the following:
\bullet f(\lambda ) has a decomposition

(3.26) f(\lambda ) =

nr\sum 
r=1

fr
\lambda  - \lambda r

+ \=f(\lambda ) and \=f(\lambda ) =

nc\sum 
c=1

fc
\lambda  - \lambda c

+ \=\=f(\lambda );

here \lambda r \not = 0 are all the real poles of f(\lambda ) with residue fr, and \lambda c are all the
(complex) poles of f(\lambda ) in the region

(3.27) \Omega +
T = \{ a+ bi : a > 0, 0 < b < aT\} 

with residue fc, respectively. Further, we suppose the complex poles in \Omega +
T

have a given bound \lambda M , i.e., \lambda M \geq max1\leq c\leq nc
| \lambda c| .

\bullet 
\bigm| \bigm| \bigm| \=\=f(\lambda )\bigm| \bigm| \bigm| \leq C

\bigl( 
1 + | \lambda | K

\bigr) 
for any \lambda \in \Omega +

T \cup \BbbR + satisfying min0\leq l\leq L | \lambda  - kl| \geq \epsilon 0;

here C > 0 and K \in \BbbN \cup \{ 0\} are given integer constants.

\bullet For k\prime = 4kM +2\lambda M +2\epsilon 0, kM = max\{ k1, . . . , kL\} , S =
\int k\prime 

 - k\prime 

\bigm| \bigm| \=f(\lambda )\bigm| \bigm| d\lambda < +\infty .

Lemma 3.8. Let \mu > 1, T > 0, \epsilon 0 > 0 be some given constants, and the function
f(\lambda ) satisfy Assumption 3.7, and \=f(\lambda ) is so defined with the real poles removed from
f(\lambda ), (\rho , \theta ) and (\rho \prime , \theta \prime ) are the polar coordinates of (x, y) and (x\prime , y\prime ), respectively,
and \rho > \mu \rho \prime \geq 0. Suppose y > 0, y + y\prime > 0, and | x| < Ty. Then, the integral
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Bessel-type expansion (3.3) holds on the interval (k\prime ,\infty ) (by replacing the original
f(\lambda )) with \=f(\lambda ), with a truncation error estimate for a finite P -term truncation

(3.28)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
\int \infty 

k\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c+(P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

for any sufficiently large P \geq m+(\rho ). Here, m+(\rho ) is an (at most) quadratic function
of \rho , and c+(P, \rho ) is a function having polynomial growth rate in P .

Proof. If x = 0, then y =
\sqrt{} 
x2 + y2 = \rho , and

| \=f(\lambda )| \leq 
nc\sum 
c=1

| fc| 
\Im \lambda c

+ C
\bigl( 
1 + | \lambda | K

\bigr) 
\leq C1

\bigl( 
1 + | \lambda | K

\bigr) 
for \lambda \in (k\prime ,\infty ); here C1 > 0 is a constant only depending on f(\lambda ). By Lemma 3.4,
we can choose

m(\rho ) =

\biggl( 
k\rho 

2

\biggr) 2

+ 1 - K, c+(P, \rho ) = 6C1(K + 1)!

\biggl( 
2\mu 

\rho (\mu  - 1)

\biggr) K+1

(P +K)K .

If x \not = 0, without a loss of generality, we assume x > 0, since the case x < 0 will
follow by taking complex conjugates. Let \beta = \pi 

2  - \theta , then tan\beta \in (0, T ). Let \kappa be
the segment from \phi (k\prime ) to k\prime (see Figure 4); here \phi is the Cagniard--de Hoop mapping
defined in (3.20). One can verify that the length of \kappa is bounded by

\surd 
2k\prime and that

\lambda M + kM \leq | \lambda | \leq 
\surd 
2k\prime and | \lambda  - kl| > \epsilon 0 for \lambda \in \kappa , 0 \leq l \leq L. Defining

(3.29) E =

\int 
\kappa \cup (k\prime ,\infty )

\Psi (\lambda )\Psi \prime (\lambda ) \=f(\lambda )d\lambda , G =

\int 
\kappa 

\Psi (\lambda )\Psi \prime (\lambda ) \=f(\lambda )d\lambda ,

we will discuss the expansions for E and G, separately, then give the integral Bessel-
type expansion for E  - G. On \kappa we have the bound of \=f(\lambda ) given by

(3.30) | \=f(\lambda )| \leq C
\bigl( 
1 + | \lambda | K

\bigr) 
+

nc\sum 
n=1

| fc| 
| \lambda  - \lambda c| 

\leq C
\Bigl( 
1 + (

\surd 
2k\prime )K

\Bigr) 
+

nc\sum 
c=1

| fc| 
kM

:= C2.

Thus by Lemma 3.2, the Bessel-type expansion for G is given by

(3.31) G =
\infty \sum 

p= - \infty 
Jp(k\rho 

\prime )eip\theta 
\prime 
Gp, Gp =

\int 
\kappa 

\Psi (\lambda ) ( - iw(\lambda ))
p \=f(\lambda )d\lambda ,

with a truncation error

(3.32)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
Gp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c\kappa 

\biggl( 
\rho \prime 

\rho 

\biggr) P

for P \geq m\kappa (\rho );

here c\kappa = 2\mu C2 \cdot 
\surd 
2k\prime /(\mu  - 1), m\kappa (\rho ) = e(\lambda M + k/2)\rho . For the contour \kappa \cup (k\prime ,\infty ),

with the substitution \lambda = \phi (\lambda \prime ) = \lambda \prime cos\beta + i
\surd 
\lambda \prime 2  - k2 sin\beta we have\sqrt{} 

\lambda 2  - k2 =
\lambda cos\beta  - \phi  - 1(\lambda )

i sin\beta 
=

\phi (\lambda \prime ) cos\beta  - \lambda \prime 

i sin\beta 
=
\sqrt{} 
\lambda \prime 2  - k2 cos\beta + i\lambda \prime sin\beta ,
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1458 WENZHONG ZHANG, BO WANG, AND WEI CAI

so

\Psi (\lambda ) = e - (
\surd 
\lambda \prime 2 - k2 cos \beta +i\lambda \prime sin \beta )(\rho cos \beta )+i(\lambda \prime cos \beta +i

\surd 
\lambda \prime 2 - k2 sin \beta )(\rho sin \beta ) = e - 

\surd 
\lambda \prime 2 - k2\rho .

Similarly, \Psi \prime (\lambda ) = e - 
\surd 

\lambda \prime 2 - k2\rho \prime sin(\theta \prime  - \beta ) - i\lambda \prime \rho \prime cos(\theta \prime  - \beta ) and w(\lambda ) = e - i\beta w(\lambda \prime ). Hence

(3.33) E =

\int 
\phi  - 1(\kappa )\cup \gamma \prime 

e - 
\surd 

\lambda \prime 2 - k2(\rho +\rho \prime sin(\theta \prime  - \beta )) - i\lambda \prime \rho \prime cos(\theta \prime  - \beta ) \~f(\lambda \prime )d\lambda \prime ,

where \gamma \prime = \phi  - 1 ((k\prime ,\infty )) is the lower part of \gamma starting from \phi  - 1(k\prime ) located some-
where on \gamma  - , and

(3.34) \~f(\lambda \prime ) = \=f(\lambda )
d\lambda 

d\lambda \prime =
\=f (\phi (\lambda \prime ))

\sqrt{} 
\phi (\lambda \prime )2  - k2\surd 
\lambda \prime 2  - k2

.

Since \phi (\lambda \prime ) has a polynomial bound, roughly,

(3.35) | \phi (\lambda \prime )| =
\bigm| \bigm| \bigm| \lambda \prime cos\beta + i

\sqrt{} 
\lambda \prime 2  - k2 sin\beta 

\bigm| \bigm| \bigm| \leq | \lambda \prime | +
\sqrt{} 
| \lambda \prime | 2 + k2 \leq 2| \lambda \prime | + k

when \lambda \prime \in D - and | \lambda \prime | is sufficiently large, \~f(\lambda \prime ) also has a polynomial bound of | \lambda \prime | .
Next, we proceed to change the contour of the integral E from \phi  - 1(\kappa ) \cup \gamma \prime back

to (k\prime ,\infty ). Let \zeta be the counterclockwise arc with radius r connecting \phi  - 1(\kappa )\cup \gamma \prime and
the real axis, parameterized by \lambda \prime = rei\eta , where the range of \eta is a subset of ( - \beta , 0).
On the arc \zeta : \lambda \prime = rei\eta , as r \rightarrow \infty , the exponent of the integrand in E satisfies

 - 
\sqrt{} 
\lambda \prime 2  - k2 (\rho + \rho \prime sin(\theta \prime  - \beta )) - i\lambda \prime \rho \prime cos(\theta \prime  - \beta ) \sim  - \lambda \prime ei\beta 

\Bigl( 
\rho e - i\beta + i\rho \prime e - i\theta \prime 

\Bigr) 
\sim r\=\rho exp

\Bigl( 
i
\Bigl( 
\eta + \=\theta + \beta +

\pi 

2

\Bigr) \Bigr) 
,

where (\=\rho , \=\theta ) are the polar coordinates of (x - x\prime , y+ y\prime ), and the rest of the integrand
has a polynomial bound. Since y+ y\prime > 0, \rho > \rho \prime , one can verify \=\theta \in (0, \pi  - \beta ). Then

\Re 
\Bigl\{ 
r\=\rho exp

\Bigl( 
i
\Bigl( 
\eta + \=\theta + \beta +

\pi 

2

\Bigr) \Bigr) \Bigr\} 
\leq r \cdot max \{  - (y + y\prime ), - \rho  - \rho \prime sin(\theta \prime  - \beta )\} 

for any \eta \in ( - \beta , 0), so the integrand on \zeta decays exponentially, and the corresponding
integral on \zeta vanishes as r \rightarrow +\infty . Also notice that there are no poles of \~f(\lambda \prime ) in D\prime \subset 
D - , where D\prime is the region enveloped by (k\prime ,+\infty ) and \phi  - 1(\kappa ) \cup \gamma \prime . This is because
\phi is a holomorphic function on D\prime which maps any possible pole in D\prime to a pole of f
in \phi (D\prime ); however, for any \lambda \prime \in D\prime and any pole \lambda c \in \Omega +

T , | \phi (\lambda \prime )| \geq \lambda M + kM > | \lambda c| .
Hence, by deforming the integration contour in E to the real axis, we have

(3.36) E = E\prime :=

\int 
(k\prime ,\infty )

e - 
\surd 

\lambda \prime 2 - k2(\rho +\rho \prime sin(\theta \prime  - \beta )) - i\lambda \prime \rho \prime cos(\theta \prime  - \beta ) \~f(\lambda \prime )d\lambda \prime .

Now, for \lambda \prime \in (k\prime ,\infty ), recalling that

\~f(\lambda ) =

\surd 
\lambda 2  - k2\surd 
\lambda \prime 2  - k2

\Biggl( 
\=\=f(\phi (\lambda \prime )) +

nc\sum 
c=1

fc
\phi (\lambda \prime ) - \lambda c

\Biggr) 
,

for each \lambda c we have | \phi (\lambda \prime )  - \lambda c| \geq | \phi (\lambda \prime )|  - | \lambda c| \geq 
\sqrt{} 
\lambda \prime 2  - k2 sin2 \beta  - \lambda M \geq 3kM , so

using (3.35), there exists some constant C2 > 0 such that

| \~f(\lambda \prime )| \leq 2| \lambda \prime | + 2k

3kM

\Biggl( 
C
\bigl( 
1 + (2| \lambda \prime | + k)K

\bigr) 
+

nc\sum 
c=1

| fc| 
3kM

\Biggr) 
\leq C2| \lambda \prime | K+1.
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Hence by Lemma 3.4, E\prime has a series expansion

(3.37) E\prime =
\infty \sum 

p= - \infty 
Jp(k\rho 

\prime )eip(\theta 
\prime  - \beta )

\int \infty 

k\prime 
e - 

\surd 
\lambda \prime 2 - k2\rho ( - iw(\lambda \prime ))

p \~f(\lambda \prime )d\lambda \prime 

with a P -term truncation error estimate
(3.38)\bigm| \bigm| \bigm| \bigm| \bigm| \sum 

| p| \geq P

Jp(k\rho 
\prime )eip(\theta 

\prime  - \beta )

\int \infty 

k\prime 
e - 

\surd 
\lambda \prime 2 - k2\rho ( - iw(\lambda \prime ))

p \~f(\lambda \prime )d\lambda \prime 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq cE\prime (P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

for P \geq mE\prime (\rho ) = (k\rho )2/4 - K. Here

(3.39) cE\prime (P, \rho ) = 6C2(K + 2)!

\biggl( 
2\mu 

\rho (\mu  - 1)

\biggr) K+2

(P +K + 1)K+1.

In the series (3.37), the pth term is

e - ip\beta 

\int 
(k,\infty )

e - 
\surd 
\lambda \prime 2 - k2\rho ( - iw(\lambda \prime ))

p \~f(\lambda \prime )d\lambda \prime 

= e - ip\beta 

\int 
\phi  - 1(\kappa )\cup \gamma \prime 

e - 
\surd 
\lambda \prime 2 - k2\rho ( - iw(\lambda \prime ))

p \~f(\lambda \prime )d\lambda \prime (3.40)

=

\int 
\kappa \cup (k\prime ,\infty )

\Psi (\lambda ) ( - iw(\lambda ))
p \=f(\lambda )d\lambda := Ep.(3.41)

In the above equation, the first equality is obtained by changing the contour, and on
the path \zeta : \lambda \prime = rei\eta the integrand decays exponentially as r \rightarrow \infty as the real part
of the exponent

\Re 
\Bigl( 
 - 
\sqrt{} 
(rei\eta )2  - k2\rho 

\Bigr) 
\sim \Re ( - rei\eta \rho ) \leq  - ry,

while the remaining parts have polynomial growth rate. The second equality is by
the substitution from \lambda \prime to \lambda . In total we have proven the series expansion of E given
by E =

\sum \infty 
p= - \infty Jp(k\rho 

\prime )eip\theta 
\prime 
Ep with a P -term truncation error estimate

(3.42)

\bigm| \bigm| \bigm| \bigm| \bigm| E  - 
\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
Ep

\bigm| \bigm| \bigm| \bigm| \bigm| \leq cE\prime (P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

for P \geq mE\prime (\rho ).

For each p,

Ep  - Gp =

\int 
\kappa \cup (k\prime ,\infty )

\Psi (\lambda ) ( - iw(\lambda ))
p \=f(\lambda )d\lambda  - 

\int 
\kappa 

\Psi (\lambda ) ( - iw(\lambda ))
p \=f(\lambda )d\lambda 

=

\int \infty 

k\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda ,

(3.43)

which is the desired expansion function in the Bessel-type expansion (3.3).
Finally, by combining the results (3.32) and (3.42), \forall P \geq max\{ mE\prime (\rho ),m\kappa (\rho )\} ,\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \infty 

k\prime 
\Psi (\lambda )\Psi \prime (\lambda ) \=f(\lambda )d\lambda  - 

\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
\int \infty 

k\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\bigm| \bigm| \bigm| \bigm| \bigm| E  - 
\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
Ep

\bigm| \bigm| \bigm| \bigm| \bigm| +
\bigm| \bigm| \bigm| \bigm| \bigm| G - 

\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
Gp

\bigm| \bigm| \bigm| \bigm| \bigm| \leq (cE\prime (P, \rho ) + c\kappa )

\biggl( 
\rho \prime 

\rho 

\biggr) P

,

which suggests c+(P, \rho ) = cE\prime (P, \rho ) + c\kappa and m+(\rho ) = max\{ mE\prime (\rho ),m\kappa (\rho )\} .
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Theorem 3.9 (the Bessel-type expansion). Suppose the conditions of Lemma 3.8
are satisfied. Further suppose 0 < \rho m < \rho M are given such that \rho \in [\rho m, \rho M ]. Then,
the integral Bessel-type expansion (3.3) holds with a truncation error estimate

(3.44)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int \infty 

 - \infty 
e - 

\surd 
\lambda 2 - k2(y+y\prime )+i\lambda (x - x\prime )f(\lambda )d\lambda  - 

\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
Fp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c(P )

\biggl( 
\rho \prime 

\rho 

\biggr) P

for some function c(\cdot ) with polynomial growth rate when P is sufficiently large, i.e.,
P \geq m(\rho M ), m(\rho M ) is an at most quadratic function.

Proof. Consider the decomposition of the integral

I =

\int \infty 

 - \infty 
e - 

\surd 
\lambda 2 - k2(y+y\prime )+i\lambda (x - x\prime )f(\lambda )d\lambda 

=

nr\sum 
r=1

\tau ri\pi \Psi (\lambda r)\Psi 
\prime (\lambda r)fr +

\Biggl( \int  - k\prime 

 - \infty 
+

\int k\prime 

 - k\prime 
+

\int \infty 

k\prime 

\Biggr) 
\Psi (\lambda )\Psi \prime (\lambda ) \=f(\lambda )d\lambda 

:=

nr\sum 
r=1

Ir + I - + I0 + I+;

(3.45)

here each \tau r = \pm 1 are determined by the well-posed physical problem (see (2.10)).
Each term Ij of the decomposition with index j has the corresponding Bessel-type
expansion, j = 0, 1, . . . , nr,+, - . Namely, for each Ir, by Lemma 3.1, by choosing
cr = 2\pi \mu | fr| /(\mu  - 1) and mr(\rho ) = e(| \lambda r| +k/2)\rho , the pointwise Bessel-type expansion
(3.2) holds,

Ir =
\infty \sum 

p= - \infty 
Jp(k\rho 

\prime )eip\theta 
\prime 
Ir,p, Ir,p = \tau ri\pi \Psi (\lambda r) ( - iw(\lambda r))

p

with the truncation error for a P -term truncation

(3.46)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
Ir,p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq cr

\biggl( 
\rho \prime 

\rho 

\biggr) P

for P \geq mr(\rho ).

For I0, by Lemma 3.3, by choosing c0 = 2\pi \mu S/(\mu  - 1) and m0(\rho ) = ek\prime \rho , the integral
Bessel-type expansion (3.3) holds,

I0 =
\infty \sum 

p= - \infty 
Jp(k\rho 

\prime )eip\theta 
\prime 
I0,p, I0,p =

\int k\prime 

 - k\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda 

with the truncation error for a P -term truncation

(3.47)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
I0,p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c0

\biggl( 
\rho \prime 

\rho 

\biggr) P

for P \geq m0(\rho ).

For I+ and I - , by choosing the c+(P, \rho ) and m+(\rho ) provided by Lemma 3.8, and
c - (P, \rho ) = c+(P, \rho ) and m - (\rho ) = m+(\rho ) due to the symmetry, the integral Bessel-
type expansion (3.3) holds as I\pm =

\sum \infty 
p= - \infty Jp(k\rho 

\prime )eip\theta 
\prime 
I\pm ,p, where

I+,p =

\int \infty 

k\prime 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda , I - ,p =

\int  - k\prime 

 - \infty 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda 
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with the truncation error for a P -term truncation

(3.48)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
| p| \geq P

Jp(k\rho 
\prime )eip\theta 

\prime 
I\pm ,p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c\pm (P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

for P \geq m\pm (\rho ).

For each p, the expansion functions add up to Fp because

Fp =

nr\sum 
r=1

\tau ri\pi \Psi (\lambda r) ( - iw(\lambda r))
p
fr +

\Biggl( \int  - k\prime 

 - \infty 
+

\int k\prime 

 - k\prime 
+

\int \infty 

k\prime 

\Biggr) 
\Psi (\lambda ) ( - iw(\lambda ))

p \=f(\lambda )d\lambda 

=

nr\sum 
r=1

Ir,p + I - ,p + I0,p + I+,p.

Hence by adding the series expansions up, for any P \geq m(\rho ) := maxj mj(\rho ),\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| I  - 
\sum 
| p| <P

Jp(k\rho 
\prime )eip\theta 

\prime 
Fp

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq c(P, \rho )

\biggl( 
\rho \prime 

\rho 

\biggr) P

,

where c(P, \rho ) :=
\sum nr

r=1 cr+c0+c+(P, \rho )+c - (P, \rho ). Since the only dependence of c(P, \rho )
on \rho appears in the terms c\pm (P, \rho ) which reach their upper bounds at \rho = \rho m, and
each mj(\cdot ) is an increasing function, we conclude that by choosing c(P ) := c(P, \rho m),
the truncation error estimate (3.44) holds for any P \geq m(\rho M ).

3.4. Proof of Theorem 2.5. We first consider the proof of the ME (2.27) and
let \~x = x - xc, \~y = \tau \ast (y  - d\ast t ) + \tau  \star (yc  - d \star s), \~x

\prime = x\prime  - xc, \~y
\prime = \tau  \star (y\prime  - yc), and

f(\lambda ) = e(
\surd 

\lambda 2 - k2
s - 

\surd 
\lambda 2 - k2

t )\tau 
\ast (y - d\ast 

t )\sigma \ast  \star 
ts (\lambda )(3.49)

so that the integral (2.7) can be written as

u\ast  \star 
ts (x,x\prime ;\sigma \ast  \star 

ts ) =

\int \infty 

 - \infty 
e - 

\surd 
\lambda 2 - k2

t \tau 
\ast (y - d\ast 

t ) - 
\surd 

\lambda 2 - k2
s\tau 

 \star (y\prime  - d \star 
s)+i\lambda (x - x\prime )\sigma \ast  \star 

ts (\lambda )d\lambda 

=

\int \infty 

 - \infty 
e - 

\surd 
\lambda 2 - k2

s(\~y+\~y\prime )+i\lambda (\~x - \~x\prime )f(\lambda )d\lambda .

With the assumption that the sources, the targets, and the centers are bounded in a
given box and that | yc  - d \star s| has a nonzero lower bound, there exists fixed T > 0 such
that | \~x| < T \~y. By Theorem B.1, \sigma \ast  \star 

ts (\lambda ) has a polynomial bound in the region \Omega T =
\{ a+ bi : a > 0, - aT < b < aT\} when \Re \lambda is sufficiently large and has a finite number
of poles in \Omega T , which easily imply the same for f(\lambda ). With the decomposition (3.26),
when neighborhoods of each branch point kl with a sufficiently small radius \epsilon 0 > 0
are excluded from \Omega T ,

\=\=f(\lambda ) is finite and hence has polynomial bound. Replacing
x, y, x\prime , y\prime , k in Theorem 3.9 by \~x, \~y, \~x\prime , \~y\prime , ks finishes the proof of (2.27).

For the LE (2.28), similarly, , \~x = xl
c - x\prime , \~y = \tau \ast (ylc - d\ast t )+\tau  \star (y\prime  - d \star s), \~x

\prime = xl
c - x,

\~y\prime = \tau \ast (y  - ylc), k = kt, and f(\lambda ) = e(
\surd 

\lambda 2 - k2
t - 

\surd 
\lambda 2 - k2

s)\tau 
 \star (y\prime  - d \star 

s)\sigma \ast  \star 
ts (\lambda ).

For the M2L (2.29), for each LE coefficient L\ast  \star 
m (xl

c,x), choose \~x = xl
c  - xc, \~y =

\tau \ast (ylc  - d\ast t ) + \tau  \star (yc  - d \star s), \~x
\prime = x\prime  - xc, \~y

\prime = \tau  \star (y\prime  - yc), k = ks, and

f(\lambda ) = e(
\surd 

\lambda 2 - k2
s - 

\surd 
\lambda 2 - k2

t )\tau 
\ast (yl

c - d\ast 
t )\sigma \ast  \star 

ts (\lambda )
\bigl( 
iwt(\lambda )

 - 1
\bigr) m

.

D
ow

nl
oa

de
d 

08
/0

3/
20

 to
 1

29
.1

19
.6

7.
75

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1462 WENZHONG ZHANG, BO WANG, AND WEI CAI

For the L2L (2.30), for each LE coefficient L\ast  \star 
m (xl

c,x), choose \~x = xl
c  - x\prime , \~y =

\tau \ast (ylc  - d\ast t ) + \tau  \star (y\prime  - d \star s), \~x
\prime = xl

c  - \~xl
c, \~y

\prime = \tau  \star (\~ylc  - ylc), k = kt, and

f(\lambda ) = e(
\surd 

\lambda 2 - k2
t - 

\surd 
\lambda 2 - k2

s)\tau 
 \star (y\prime  - d \star 

s)\sigma \ast  \star 
ts (\lambda )

\bigl( 
iwt(\lambda )

 - 1
\bigr) m

.

Remark 3.10 (dependence of convergence estimate on the number of layer in-
terfaces L). As pointed out in Theorem B.2, if the interface conditions (2.3) satisfy
at, bt \in \BbbR +, 0 \leq t \leq L, then each \sigma \ast  \star 

ts (\lambda ) is asymptotically sublinear as \lambda \rightarrow \infty regard-
less of L (the number of the interfaces). When applying Theorem 3.9 and Lemma 3.8,
the bounds of \sigma \ast  \star 

ts (\lambda ) are assumed of the same polynomial order as \lambda \rightarrow \infty . There-
fore, as L increases, the required terms for truncation, namely, the m(\rho M ) in the proof
of Theorem 3.9 has linear dependence on the distribution of the poles as shown by
Lemma 3.1, while the leading term (k\rho M/2)2 remains unchanged.

4. Conclusion. Far-field expansions of ME, LE as well as M2L and L2L trans-
lation operators are derived and the exponential convergence rates are proven. The
analysis shows that the convergence of ME and LE for the reaction field components
depends on the distance between the target and the equivalent polarization source.
This fact shows how the ME and LE for the layered media can be used in the tra-
ditional FMM framework, and such an approach has been implemented for the 3-D
Helmholtz equation in [15] and the 3-D Laplace's equation in [16].

In a future work, we will extend the convergence analysis results to the 3-D
Helmholtz equation and the 3-D Laplace equation in layered media.

Appendix A. Proof of Lemma 3.6. We begin with the following two lemmas,
which are stated given the same conditions as in Lemma 3.6.

Lemma A.1. Let a, b \in \BbbR such that z = a+ bi \in D - , then \Re \phi (z) > 0, \Im \phi (z) > 0.

Proof. Let u, v \in \BbbR such that u + vi =
\surd 
z2  - k2, then uv = ab < 0. With the

convention of the branch cut (2.9), we have u > 0, so v < 0. Recalling that \beta \in (0, \pi 
2 ),

we have u sin\beta  - b cos\beta > 0 and \Re \phi (z) = a cos\beta  - v sin\beta > 0. For \Im \phi (z), let

(A.1) Q1 = (a2  - b2  - k2)2 + 4a2b2, Q2 = (a2  - b2  - k2) sin2 \beta  - 2b2 cos2 \beta .

By simple calculation, we have 2u2 sin2 \beta  - 2b2 cos2 \beta =
\surd 
Q1 sin

2 \beta +Q2, and

Q1 sin
4 \beta  - Q2

2 = b2 sin2(2\beta )
\bigl( 
a2 cos - 2 \beta  - b2 sin - 2 \beta  - k2

\bigr) 
> 0,

so
\surd 
Q1 sin

2 \beta =
\bigm| \bigm| \surd Q1 sin

2 \beta 
\bigm| \bigm| > | Q2| , which implies

\Im \phi (z) = b cos\beta + u sin\beta =

\surd 
Q1 sin

2 \beta +Q2

2(u sin\beta  - b cos\beta )
> 0.

Lemma A.2. If w \in \gamma +, then \phi (z) \not = w for any z \in D - .

Proof. Suppose for contradiction that z \in D - , \phi (z) = w. Since w \in \gamma +, \exists x0 \geq k
such that w = x0 cos\beta +i

\sqrt{} 
x2
0  - k2 sin\beta . Therefore, x0 and z are distinct roots of the

quadratic equation \lambda 2  - 2\lambda w cos\beta + w2 = k2 sin2 \beta of \lambda . Hence z = 2w cos\beta  - x0 =
x0 cos(2\beta ) + i

\sqrt{} 
x2
0  - k2 sin(2\beta ) /\in D - because \Im z \geq 0, a contradiction.

Proof of Lemma 3.6. Define \phi \prime : D+ \rightarrow \BbbC by \phi \prime (w) = w cos\beta  - i
\surd 
w2  - k2 sin\beta .

It suffices to show that \phi \prime is the inverse of \phi on D+, i.e., \phi  - 1| D+ = \phi \prime . First, we
will show that \phi (D - ) \subset D+. By Lemmas A.1 and A.2, \phi (D - ) is a subset of the
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first quadrant, and it has no intersection with the hyperbola \Gamma . If w = \phi (z) for some
z \in D - and w /\in D+, when we move z horizontally to the left, eventually z touches \Gamma 
and \phi (z) approaches the positive real axis, so the trajectory of \phi (z), which must be
continuous because \phi is holomorphic, crosses \Gamma in the first quadrant, but it contradicts
Lemma A.2 since the intersection must has its inverse in D - . Similarly (by taking
complex conjugates), \phi \prime (D+) \subset D - . Second, we will show that \phi is bijective on D - 

with inverse \phi \prime . Let a, b \in \BbbR + such that z = a+ bi \in D - , then w = \phi (z) \in D+ is one
of the roots of the quadratic equation of \lambda 

(A.2) \lambda 2  - 2\lambda z cos\beta + z2 = k2 sin2 \beta .

Let u, v \in \BbbR such that
\surd 
z2  - k2 = u+ vi, then u > 0, and the pair of roots are given

by

(A.3) \lambda \pm = (a cos\beta \mp v sin\beta ) + i(b cos\beta \pm u sin\beta ).

By Lemma A.1, \Im w = \Im \phi (z) > 0, so w = \lambda +. Conversely, z is the only root of the
quadratic equation \lambda 2  - 2\lambda w cos\beta + w2 = k2 sin2 \beta in D - provided \phi (z) = w by a
similar reason, so \phi is injective and z = \phi \prime (w). Repeating this step for any w\prime \in D+

and let z\prime = \phi \prime (w\prime ), we have \phi is surjective and w\prime = \phi (\phi \prime (w\prime )).

Appendix B. Properties of Green's function in layered media. As pre-
liminaries for the proofs of the convergence estimates, some properties of Green's
function in layered media are discussed, including the decomposition (2.6), the alge-
braic structure of the reflection/transmission coefficients \sigma \ast  \star 

ts (\lambda ), and their polynomial
bound in frequency \lambda .

B.1. Green's functions in layered media. Suppose a source x\prime is in layer s
and a target x is in layer t. Consider the 1-D Fourier transform x - x\prime \mapsto \rightarrow \lambda ,

(B.1) G(x,x\prime ) =

\int \infty 

 - \infty 
ei\lambda (x - x\prime ) \^G(y, y\prime , \lambda )d\lambda .

In the frequency \lambda domain, we have the decomposition \^G = \delta t,s \^G
f
s + \^ur, and from

(2.12) the free-space part in the frequency domain can be shown as

(B.2) \^Gf
s =

e - 
\surd 

\lambda 2 - k2
s | y - y\prime | 

4\pi 
\sqrt{} 
\lambda 2  - k2s

,

and the reaction field \^ur satisfies a homogeneous Helmholtz equation

(B.3) ( - \lambda 2 + \partial yy)\^u
r + k2t \^u

r = 0.

The solution to this ordinary differential equation has a general form

(B.4) \^ur = A\uparrow 
ts(y

\prime , \lambda )e - 
\surd 

\lambda 2 - k2
t (y - dt) +A\downarrow 

ts(y
\prime , \lambda )e - 

\surd 
\lambda 2 - k2

t (dt - 1 - y),

where A\uparrow 
ts and A\downarrow 

ts do not depend on y within each layer, only on the target and
source layer indices t, s. Here, we have assumed

(B.5) d - 1 = \infty , dL =  - \infty ,

and the corresponding term vanishes as the Sommerfeld radiation condition requires.
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The interface condition at y = dl given by (2.3) is equivalent to

(B.6) [at\^u
r] =  - 

\Bigl[ 
\delta t,sat \^G

f
s

\Bigr] 
,

\biggl[ 
bt
\partial \^ur

\partial y

\biggr] 
=

\Biggl[ 
\delta t,sbt

\partial \^Gf
s

\partial y\prime 

\Biggr] 
at y = dl,

where the brackets describe the jump between layer t = l and layer t = l + 1. When
treated as linear equations for A\uparrow 

ts and A\downarrow 
ts, using (B.2), the right-hand side of the

equation is always a linear combination of e - 
\surd 

\lambda 2 - k2
s(y

\prime  - ds) and e - 
\surd 

\lambda 2 - k2
s(ds - 1 - y\prime )

with coefficients not depending on y\prime . The separation of variable y\prime implies

(B.7) A\ast 
ts(y

\prime , \lambda ) = \sigma \ast \uparrow 
ts (\lambda )e

 - 
\surd 

\lambda 2 - k2
s(y

\prime  - ds) + \sigma \ast \downarrow 
ts (\lambda )e

 - 
\surd 

\lambda 2 - k2
s(ds - 1 - y\prime ), \ast \in \{ \uparrow , \downarrow \} ,

which proves (2.6) with (B.4).

B.2. The algebraic structure of the reflection/transmission coefficients.
Now we make some further observation on the interface conditions to characterize the
coefficients \sigma \ast  \star 

ts (\lambda ) in more detail.
With the separation of variables y and y\prime , the interface condition (B.6) can be

further expanded as linear equations of \sigma \ast  \star 
ls (\lambda ) and \sigma \ast  \star 

l+1,s(\lambda ):

 - al\sigma 
\uparrow  \star 
ls  - alel\sigma 

\downarrow  \star 
ls + al+1el+1\sigma 

\uparrow  \star 
l+1,s + al+1\sigma 

\downarrow  \star 
l+1,s = v \star l,s,

blhl\sigma 
\uparrow  \star 
ls  - blhlel\sigma 

\downarrow  \star 
ls  - bl+1hl+1el+1\sigma 

\uparrow  \star 
l+1,s + bl+1hl+1\sigma 

\downarrow  \star 
l+1,s = w \star 

l,s,
(B.8)

where  \star \in \{ \uparrow , \downarrow \} , v\uparrow l,s = \delta l,sal/(4\pi hl), v
\downarrow 
l,s =  - \delta l+1,sal+1/(4\pi hl+1), w

\uparrow 
l,s = \delta l,sbl/(4\pi ),

w\downarrow 
l,s = \delta l+1,sbl+1/(4\pi ), and the coefficients

(B.9) ht =
\sqrt{} 

\lambda 2  - k2t et = e - ht(dt - 1 - dt) t = l, l + 1.

As e0 and eL vanish in (B.8), these terms will be ignored from the equations.
If we expand all the 2L interface conditions into the form (B.8), two linear system

for unknowns \bfitsigma \uparrow 
s , consisting of components \sigma \ast \uparrow 

ts , and \bfitsigma \downarrow 
s , consisting of components \sigma \ast \downarrow 

ts ,
are then obtained in the form

(B.10) A(\lambda )\bfitsigma \uparrow 
s (\lambda ) = b\uparrow 

s(\lambda ), A(\lambda )\bfitsigma \downarrow 
s (\lambda ) = b\downarrow 

s(\lambda );

here A does not depend on the source layer s or the source-related direction  \star . The
functions \sigma \ast  \star 

ts (\lambda ) can be solved from linear systems (B.10) using the Cramer's rule, so
the complex roots of detA(\lambda ) are the poles of each \sigma \ast  \star 

ts (\lambda ).
Consider the field \BbbF of functions of \lambda defined by field extension from \BbbC 

(B.11)

\BbbF = \BbbC (ht, em; 0 \leq t \leq L, 1 \leq m \leq L - 1)

= \BbbC 
\biggl( \sqrt{} 

\lambda 2  - k2t , e
 - 
\surd 

\lambda 2 - k2
m(dm - 1 - dm); 0 \leq t \leq L, 1 \leq m \leq L - 1

\biggr) 
,

where ht, em are defined in (B.9). Since coefficients of the linear systems (B.10) are
all in \BbbF as shown in (B.8), it follows that each

(B.12) \sigma \ast  \star 
ts (\lambda ) \in \BbbF .
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For example, if the Helmholtz equation is equipped with interface conditions (2.3)

with each at = 1, then the linear system for \bfitsigma \downarrow 
1 is\left[    

 - 1 e1 1 0
0  - 1  - e1 1

b0h0  - b1h1e1 b1h1 0
0 b1h1  - b1h1e1 b2h2

\right]    
\left[     
\sigma \uparrow \downarrow 
01

\sigma \uparrow \downarrow 
11

\sigma \downarrow \downarrow 
11

\sigma \downarrow \downarrow 
21

\right]     =

\left[    
 - 1

4\pi h1

0
k1

4\pi 
0

\right]    ,

and the coefficient \sigma \downarrow \downarrow 
11(\lambda ) \in \BbbF has closed form

(B.13) \sigma \downarrow \downarrow 
11(\lambda ) =

1

4\pi h1

(b0h0  - b1h1)(b2h2 + b1h1)

(b0h0 + b1h1)(b2h2 + b1h1) - e21(b0h0  - b1h1)(b2h2  - b1h1)
.

B.3. Polynomial bounds of the reflection/transmission coefficients. An
alternative point of view on the linear systems (B.10) will reveal a polynomial bound
of the functions \sigma \ast  \star 

ts (\lambda ) in a certain domain in the complex plane. This estimate will
be crucial to the error estimates on the far-field expansions.

Take any kM \geq max0\leq l\leq L kl and T > 0, and define the open set

(B.14) \Omega T = \{ a+ bi : a > 0, - aT < b < aT\} \setminus (0, kM ]

in the complex plane. Since for the branch cut \{ \lambda |  - kl < \lambda < kl\} for
\sqrt{} 
\lambda 2  - k2l

is excluded from \Omega T , \sigma 
\ast  \star 
ts (\lambda ) is a meromorphic function in \Omega T . We claim there is a

polynomial bound of \sigma \ast  \star 
ts (\lambda ) for \lambda \in \Omega T having a sufficiently large real part.

Theorem B.1. Suppose the function \sigma (\lambda ) \in \BbbF . Suppose \forall \epsilon > 0, \sigma (\lambda ) \ll exp(\epsilon \lambda )
as \lambda \rightarrow +\infty . Then, \exists k\prime M > 0, C > 0, and nonnegative integer K such that | \sigma (\lambda )| \leq 
C| \lambda | K when \lambda \in \Omega T and \Re \lambda > k\prime M . In addition, \sigma (\lambda ) has finitely many poles in \Omega T .

Proof. Since \sigma (\lambda ) \in \BbbF , there exist polynomials P1 and P2 such that

(B.15) \sigma (\lambda ) =
I1
I2

=
P1

\Bigl( \sqrt{} 
\lambda 2  - k2l , . . . , e

+
\surd 

\lambda 2 - k2
m(dm - 1 - dm), . . .

\Bigr) 
P2

\Bigl( \sqrt{} 
\lambda 2  - k2l , . . . , e

+
\surd 

\lambda 2 - k2
m(dm - 1 - dm), . . .

\Bigr) ;
here P1 and P2 are complex polynomials of the terms in the parentheses, including
terms with indices 0 \leq l \leq L and 1 \leq m \leq L  - 1. To show the asymptotic behavior
of I1 and I2, we characterize them as elements of a ring \scrS defined below. Let \Omega T,M =
\{ a+ bi \in \Omega T : a, b \in \BbbR , a > kM\} be an open subset of \Omega T . Define

\scrG =

\Biggl\{ 
g(\lambda ) =

\infty \sum 
n=0

cn\lambda 
m - n : m \in \BbbZ , cn \in \BbbC , c0 \not = 0, g(\lambda ) is holomorphic in \Omega T,M

\Biggr\} 
,

which is the collection of holomorphic functions in \Omega T,M such that the number of
nonzero terms with positive exponent is finite in the Laurent series of g(\lambda ) at \infty .

It follows that each
\sqrt{} 
\lambda 2  - k2l \in \scrG , because it has neither a pole nor a branch

point in \Omega T,M , where \Re \lambda > kM \geq kl, and

(B.16)
\sqrt{} 
\lambda 2  - k2l =

\infty \sum 
n=0

\surd 
\pi ( - k2l )

n

2\Gamma (n+ 1)\Gamma ( - n+ 3
2 )

\lambda 1 - 2n.
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Letting \scrS be the collection of all holomorphic functions h(\lambda ) in \Omega T,M in the form

(B.17) \scrS =

\Biggl\{ 
h(\lambda ) =

Q\sum 
q=1

eAq\lambda gq(\lambda ) : Q \geq 0, A1 > . . . > AQ \geq 0, each gq \in \scrG 

\Biggr\} 
,

we claim that \forall d > 0, e
\surd 

\lambda 2 - k2
i d \in \scrS . To show this, notice that the exponential has

neither a pole nor a branch point in \Omega T,M and that e
\surd 

\lambda 2 - k2
l d = e\lambda de(

\surd 
\lambda 2 - k2

l  - \lambda )d.
For the second factor, setting \mu = \lambda  - 1, we have

(B.18) e(
\surd 

\lambda 2 - k2
l  - \lambda )d = exp

\Biggl( \infty \sum 
n=0

\surd 
\pi ( - k2l )

n+1d

2\Gamma (n+ 2)\Gamma ( - n+ 1
2 )

\mu 2n+1

\Biggr) 
,

which is regular in a neighborhood of \mu = 0. Therefore, the Laurent series at 0 in the

\mu -plane has zero principle part, which implies e(
\surd 

\lambda 2 - k2
l  - \lambda )d \in \scrG and e

\surd 
\lambda 2 - k2

l d \in \scrS .
It is obvious that \scrG \subset \scrS , and \scrS is a ring with function addition and multiplication.

For any function h(\lambda ) =
\sum Q

q=1 e
Aq\lambda gq(\lambda ) \in \scrS which is not identical to 0, if the leading

term of g1(\lambda ) is B\lambda m, then

(B.19) h(\lambda ) \sim eA1\lambda B\lambda m

as \Re \lambda \rightarrow \infty . This is because in \Omega T,M , \Re \lambda \leq | \lambda | \leq 
\surd 
1 + T 2\Re \lambda , the limit as | \lambda | \rightarrow \infty 

and the limit as \Re \lambda \rightarrow \infty happen together. As | \lambda | \rightarrow \infty , each gq(\lambda ) \in \scrG approaches
its leading term, in addition, as \Re \lambda \rightarrow \infty ,

\bigm| \bigm| eA1\lambda B\lambda m
\bigm| \bigm| dominates.

Now we look at \sigma (\lambda ). Since I1, I2 are polynomials of elements of the ring \scrS , we
have I1, I2 \in \scrS . Suppose the numerator and the denominator

I1 \sim eA1\lambda B\lambda m, I2 \sim eA
\prime 
1\lambda B\prime \lambda m\prime 

as \Re \lambda \rightarrow \infty , then it immediately follows that

(B.20) \sigma (\lambda ) \sim e(A1 - A\prime 
1)\lambda 

B

B\prime \lambda 
m - m\prime 

and that A1 \leq A\prime 
1 because \sigma (\lambda ) \ll exp(\epsilon \lambda ) for any \epsilon > 0. As a result, \sigma (\lambda ) =

\scrO (| \lambda | m - m\prime 
) for \lambda \in \Omega T,M as \Re \lambda \rightarrow \infty , so the polynomial bound can be found for

sufficiently large \Re \lambda > k\prime M and can be given in terms of C| \lambda | K . This immediately
implies that poles of \sigma (\lambda ) in \Omega T can only be found for sufficiently small \Re \lambda , i.e., in a
bounded region. Hence the number of poles must be finite in \Omega T .

The proof above also implies the asymptotic property of \sigma \ast  \star 
ts (\lambda ) as \Re \lambda \rightarrow \infty .

Indeed, given any two nonzero asymptotic orders eA\lambda \lambda m, where A,m \in \BbbR , we can
always compare their orders, i.e., the limit of the ratio is either infinity or a real num-
ber. The following theorem provides an improved estimate for some usual interface
conditions.

Theorem B.2. With the conditions in Theorem B.1, if the interface conditions
of the Helmholtz equation (2.3) satisfy at, bt \in \BbbR +, 0 \leq t \leq L, then as \Re \lambda \rightarrow \infty , all
coefficient \sigma \ast  \star 

ts (\lambda ) = \scrO (| \lambda |  - 1).

Proof. Without a loss of generality, suppose among all the reflection/transmission

coefficients, \sigma \uparrow  \star 
ls (\lambda ) has the highest asymptotic order as \Re \lambda \rightarrow \infty . Suppose

(B.21) lim
\Re \lambda \rightarrow \infty 

\lambda  - 1/\sigma \uparrow  \star 
ls = 0.
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In (B.8), dividing the first equation by \sigma \uparrow  \star 
ls , we have

(B.22)  - al  - alel
\sigma \downarrow  \star 
ls

\sigma \uparrow  \star 
ls

+ al+1el+1

\sigma \uparrow  \star 
l+1,s

\sigma \uparrow  \star 
ls

+ al+1

\sigma \downarrow  \star 
l+1,s

\sigma \uparrow  \star 
ls

=
v \star l,s

\sigma \uparrow  \star 
l,s

.

Since as \Re \lambda \rightarrow \infty , el = exp( - hl(dl - 1  - dl)) \rightarrow 0 and el+1 \rightarrow 0, and hl =
\sqrt{} 

\lambda 2  - k2l

and hl+1 =
\sqrt{} 
\lambda 2  - k2l+1 are on the order of \lambda , by taking the limit of (B.22), we get

(B.23) lim
\Re \lambda \rightarrow \infty 

\sigma \downarrow  \star 
l+1,s

\sigma \uparrow  \star 
ls

=
al

al+1
> 0.

Dividing the second equation of (B.8) by hl\sigma 
\uparrow  \star 
ls and taking the limit, similarly we get

(B.24) lim
\Re \lambda \rightarrow \infty 

\sigma \downarrow  \star 
l+1,s

\sigma \uparrow  \star 
ls

=  - bl
bl+1

< 0,

which is a contradiction, implying that (B.21) cannot be true, and thus we reach the
conclusion of the theorem.
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