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ABSTRACT: The degree of hydrophobicity and net charge per
residue are physical properties that enable the discrimination of
folded from intrinsically disordered proteins (IDPs) solely on the
basis of amino acid sequence. Here, we improve upon the existing
classification of proteins and IDPs based on the parameters
mentioned above by adopting the scale of nonpolar content of
Rose et al. and by taking amino acid side-chain acidity and basicity
into account. The resulting algorithm, denoted here as net charge
nonpolar or NECNOP, enables the facile prediction of the folded
and disordered status of proteins under physiologically relevant
conditions with >95% accuracy, based on amino-acid sequence
alone. The NECNOP approach displays a much-enhanced
performance for proteins with >140 residues, suggesting that
small proteins are more likely to have irregular charge and hydrophobicity features. NECNOP analysis of the entire Escherichia coli
proteome identifies specific net charge and nonpolar regions peculiar to soluble, integral membrane, and non-integral membrane
proteins. Surprisingly, protein net charge and hydrophobicity are found to converge to specific values as chain length increases,
across the E. coli proteome. In addition, NECNOP plots enable the straightforward identification of protein sequences
corresponding to prion proteins and promise to serve as a powerful predictive tool for the design of large proteins. In summary,
NECNOP plots are a straightforward approach that improves our understanding of the relation between the amino acid sequence
and three-dimensional structure of proteins as a function of molecular mass.

T he physical properties of intrinsically disordered and
folded proteins are important for fully understanding the

sequence−structure paradigm.1−3 The polar and nonpolar
characteristics of individual residues, for instance, are well-
known contributors to protein foldability. Specifically, the
degree of nonpolar content is proportional to the extent of the
hydrophobic effect, which plays a significant role in folding
through the energetically favorable burial of nonpolar surface
away from the aqueous solvent.4−8 From the early days of
protein chemistry, it was noted that the first X-ray crystal
structure of a folded protein, myoglobin, has most of its
nonpolar side chains buried in the core.9 This concept was
later shown to apply to the majority of nonpolar side chains of
all proteins.6,7,10−12 The importance of nonpolar side chains in
protein folding is pictorially illustrated in Figure 1a.
Net charge is another defining characteristic of proteins. As

schematically illustrated in Figure 1b, electrostatic interactions
between two charged groups can be attractive or repulsive.13

Attractive electrostatic forces between two moieties of opposite
charge typically result in salt bridges, also known as ion pairs.14

The role of salt bridges in protein thermodynamic stability is
overall moderate.15,16 While the Coulombic interaction
between charges is favorable in ion pairs, this effect is

countered by the thermodynamically unfavorable charge
desolvation that takes place upon salt-bridge formation.15

The thermodynamic balance between these opposing effects
ultimately governs the net thermodynamic effect of salt
bridges. The latter is highly dependent upon the protein
environment, which primarily leads to variations in the degree
of surface solvation.16 In case salt bridges have a net stabilizing
effect, it was estimated that each of them contributes
approximately 1−3 kcal/mol to protein stability.17 Again,
overall, salt bridges are believed to have a small, nondominant
effect on protein thermodynamic stability.17 Repulsive electro-
static forces increase the protein net charge and contribute to
protein thermodynamic stability. These interactions are
generally thermodynamically unfavorable, often resulting in
unfolding.17
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In summary, among Coulombic effects, it is clear that
electrostatic repulsion affects protein thermodynamic stability
much more than ion pairs.
According to the criteria mentioned above, it is reasonable

to make the highly qualitative conceptual prediction that if a
protein is not sufficiently nonpolar or if it has a high net
charge, it is expected to be thermodynamically unstable, hence
unfolded. This concept is pictorially illustrated in panels c and
d of Figure 1. Consistent with this prediction, Uversky,
Gillespie, and Fink reported that two simple protein
parameters, hydrophobicity and net charge, are sufficient to
describe the folded versus disordered status of polypeptide and
protein chains based on primary structure, i.e., amino acid
sequence, alone.18 Their method involves assessment of
nonpolar content via the hydropathy scale by Kyte and
Doolittle15 and estimation of net charge via the absolute value
of the difference between the number of positively (Arg and
Lys) and negatively (Asp and Glu) charged residues in a
protein. The resulting net charge−hydropathy plots show that
intrinsically disordered proteins (IDPs) tend to have a lower
nonpolar content per residue and a wider range of net charge
per residue values than folded proteins.18 More recently,
Uversky and co-workers updated their original model by
employing a computationally derived hydrophobicity scale
denoted as IDP-hydropathy,19 which leads to more accurate
charge−hydropathy plots for IDPs.19 In addition, Pappu and
co-workers established a detailed classification of IDP
conformational features upon taking the nonpolar content,
net charge, and position of residues and residue clusters into
account.20 These advances targeted primarily amino acid
sequences corresponding to IDPs and were extremely
successful on that front.
On the other hand, a more reliable prediction of amino acid

sequences corresponding to folded proteins (as opposed to
IDPs) is highly desirable. First, accurate identification of amino

acid sequences corresponding to folded proteins is expected to
greatly benefit proteomics and structural genomics. Namely,
correct identification of gene sequences compatible with folded
proteins will acceleration the selection of open reading frames
(ORFs) worthy of overexpression followed by structural
analysis. Second, identification of amino acid compositions
compatible with folded proteins is expected to be a valuable
tool in protein design.
Here, we move a step forward toward the objectives

mentioned above by developing an optimized algorithm to
determine the mean net charge per residue (MNC) and mean
nonpolar content per residue (MNPC) of proteins of any given
amino acid sequence. Unlike previous studies, we took into
account amino acid protonation/deprotonation and evaluated
nonpolar amino acid content based on the scale by Rose et
al.,21 which quantifies the nonpolar nature of amino acids in
proteins based on database analysis and first principles. Our
method enables classification of folded proteins and IDPs with
unprecedented accuracy for folded proteins of >140 amino
residues. Extension to the analysis of the Escherichia coli
proteome showed that the mean net charge per residue and the
mean hydrophobicity per residue of proteins from this
organism converge to specific values, as the chain length
increases. Intriguingly, we also found that prion proteins,
which are often partly folded and partly disordered in their
non-infectious cellular form, lie along the discriminant line of
NECNOP plots.

■ METHODS

Determination of the Mean Net Charge and Mean
Nonpolar Content per Residue. At room temperature and
at a given pH, the net charge per residue (Z) of a molecule
bearing multiple independent ionizable functional groups (e.g.,
a protein), each with its own pKa, is

Figure 1. Schematic representation of the role of hydrophobic and electrostatic effects in protein folding. (a) Consistent with the hydrophobic
effect, most nonpolar residues are typically buried from aqueous solvent upon folding. (b) Overall, salt bridges do not significantly stabilize
mesophilic proteins while electrostatic repulsion can be strongly destabilizing. (c) Higher hydrophobicity and (d) moderate charge repulsion per
residue are expected to favor protein folding.
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where N is the number of residues and i and j denote positively
and negatively charged groups, respectively. Equation 1 is
based on the Henderson−Hasselbalch relation. In the case of a
protein, this equation applies to the side-chain pKa of the
positively (Lys, Arg, and His) and negatively (Glu, Asp, Tyr,
and Cys) charged amino acid side chains.22 The mean net
charge per residue (MNC) parameter was computed assuming
neutral pH, upon dividing Z (see eq 1) by the total number of
residues.
Note that the pKa values of Tyr and Cys are 10.07 and 8.18,

respectively. Therefore, at neutral pH a single Tyr and Cys
contribute −0.00085 and −0.062 to the total net charge,
respectively. While these contributions may be regarded as
insignificant for proteins bearing only a very small fraction of
Tyr and Cys, the role of Tyr and Cys deprotonation is
expected to be non-negligible for proteins carrying a large
percent of these residues.
For the sake of simplicity, MNC calculations assumed that

all Cys residues are reduced. Analysis of a subset of proteins
with known Cys disulfides (or lack thereof) revealed that this
approximation is appropriate, given that the MNC values of
the tested proteins do not significantly change in the absence
and presence of disulfide bridges (data not shown). Mean
nonpolar content per residue (MNPC) values were deter-
mined according to Rose et al.21 with a five-residue sliding
window. Values for each residue were summed, and the
resulting number was divided by the total number of amino
acids minus 4, to account for the sliding window. Both MNC
and MNPC values were computed via a Python script (see
below). We separately tested the effect of variable-size window
sizes and found that a five-residue window yields optimal
results (see also the Supporting Information).
Generation of NECNOP Plots. Five different databases of

known folded proteins and IDPs were employed in this work.
Database definitions are provided in the Supporting
Information and Table S1. In addition, the specific proteins
belonging to databases 1−3 are listed in Tables S2−S4.
Databases 4 and 5 comprise a large number of proteins (1147
and 4305, respectively) whose identity can be retrieved directly
from the Protein Data Bank (PDB) and from the UniProt
repositories (see the Supporting Information).
MNC and MNPC values were computed, and NECNOP

plots were generated with a custom-generated Python 2.7
script taking advantage of the Biopython tool set. The linear
discriminant analysis function of MATLAB (The MathWorks
Inc., Natick, MA, ver. 2016a), in combination with procedures
by Guo et al.,23 led to the establishment of the optimal
discriminant line separating folded proteins from IDPs

| | = × −MNC 12.0698 MNPC 8.4815 (2)

where |MNC| denotes the absolute value of the MNC
parameter. Two discriminant lines were plotted, corresponding
to |MNC| and −|MNC|, to facilitate the classification of folded
and intrinsically disordered proteins irrespective of MNC sign
(see the Supporting Information).
Error bars in Tables 1 and 2 were estimated as follows. The

percent of correctly predicted proteins (PCP), verified against
databases of known folded proteins (databases 1 and 3) and
IDPs (database 2), is defined as

= ×PCP 100
no. of correctly predicted proteins

total no. of proteins (3)

where the parameters denoted as no. of correctly predicted
proteins and total no. of proteins refer to the chosen category,
i.e., either folded protein or IDP. We then assessed the
accuracy of PCP by first estimating the standard error (SE)
based on a binomial distribution of the fraction of correctly
predicted proteins (p = PCP/100) according to24

= ×
−p p

n
SE 100

(1 )

(4)

where n is the total number of proteins known to belong to a
given category (i.e., folded or IDP), followed by evaluation of
the 95% confidence interval, which was estimated from the SE
and the two-tailed Student’s t distribution as described
previously24 and found to be equal to ±1.96 × SE. The
accuracy of PCP was the estimated ±95% confidence interval.

Table 1. Summary of NECNOP Performance, Focusing on
the Ability of This Algorithm to Correctly Predict IDPsa

and Foldedb Proteins Starting from Databases of Proteins
with Known Structure or a Lack Thereof

protein type

no. of correctly
predicted
proteins

no. of
incorrectly
predicted
proteins

percent of correctly
predicted proteinsc

(PCP) (%)

folded (any
size)

217 14 93.9 ± 3.1

folded with
<140
residues

91 14 86.7 ± 6.5

folded with
>140
residues

126 0 100 ± 0

IDP (any
size)

41 5 89.1 ± 9.0

IDP with
<140
residues

21 2 91.3 ± 5.9

IDP with
>140
residues

20 3 86.9 ± 7.0

aDatabase 2 (see Table S3) was used to generate the data in this
table. bDatabase 3 (see Table S4) was used to generate the data in
this table. cThe estimated error on PCP values is reported as a 95%
confidence interval (see Methods).

Table 2. Summary of NECNOP Performance for the
Prediction of Folded Protein Identity Employing a Large
Database of Known Folded Proteinsa

protein type

no. of correctly
predicted
proteins

no. of
incorrectly
predicted
proteins

percent of correctly
predicted proteinsb

(PCP) (%)

folded (any
size)

1092 55 95.2 ± 1.2

folded with
<140
residues

264 45 85.4 ± 3.9

folded with
>140
residues

828 10 98.8 ± 0.7

aDatabase 4 (see Table S5 for outliers in Figure 5) was used to
generate the data in this table. bThe estimated error on PCP values is
reported as the 95% confidence interval (see Methods).
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All of the predictions listed this study imply ambient
temperature and atmospheric pressure, given that they rely on
databases of electrostatic and nonpolar properties of proteins
assessed under these conditions.
Determination of Solvent-Accessible Protein Surface

Area. Surface Racer (version 5.0)25 was used to determine the
solvent-accessible surface area (SASA) of 52 single-domain
proteins of variable size. Proteins were selected using a
random-number generator from databases 1−3 (see Tables
S2−S4). To ensure the proper representation of large chain
lengths, several proteins with >1000 residues were included in
this set. A spherical solvent probe with a 1.4 Å radius and van
der Waals atomic radii according to Chothia26 were employed.

■ RESULTS AND DISCUSSION

NECNOP: A Refined Tool for the Identification of
Folded and Disordered Protein Sequences Based Solely
on Amino Acid Composition. Identification of protein
structure corresponding to given amino acid sequences is the
hallmark of protein structure prediction.27−32 A much less
specific, yet extremely useful, goal is to predict whether the
amino acid sequence of a known protein of unknown structure
is expected to be folded or intrinsically disordered, under
ambient conditions.
Here, we target the latter topic and hypothesize that a

sufficiently high hydrophobicity as well as a sufficiently low
electrostatic repulsion promotes the folded status (relative to
IDP) of a protein with a known amino acid sequence, under
ambient conditions. This concept is pictorially illustrated in
Figure 1. The hypothesis described above is supported by a
class of plots by Uversky and co-workers18,19 featuring net
charge per residue versus mean net hydrophobicity per residue.
We started by improving upon the algorithms underlying the
latter plots as outlined below and took advantage of the
resulting knowledge to unveil novel protein properties.
First, we employed the Henderson−Hasselbalch equation,

combined with known pKa information about amino acid side
chains, to generate realistic mean net charge values of proteins
of known amino acid sequence at neutral pH and ambient
temperature and pressure. Next, we took advantage of the scale
by Rose and co-workers to quantitatively assess the degree of
nonpolar content from protein sequence.21 The scale by Rose
was used, instead of the Kyte−Dolittle hydropathy33 employed
by Uversky and co-workers, because the Rose scale is derived
from a uniform set of rigorously defined principles, i.e., solvent-
exposed surface area across the folded proteome, which more
accurately define the amino acid degree of nonpolar nature.21

We generated a Python script to perform the calculations and
denoted the resulting two-dimensional views of net charge and
nonpolar content per residue as NECNOP (net charge −

nonpolar) plots.
The NECNOP tool performs very well and leads to the

correct prediction of 93.9 ± 3.1% of the folded proteins and
86.7 ± 6.5% of the IDPs (Table 1 and Figure 2), out of
databases comprising a total of 277 proteins. As shown in
Figure 2, most folded proteins fall to the right of the
discriminant line and are characterized by an MNPC larger
than those of most IDPs, while the majority of IDPs falls to the
left of the discriminant line. These results are consistent with
the expectations, discussed above and illustrated in Figure 1,
that (i) more nonpolar proteins are more likely to be folded
and (ii) IDPs can accommodate a somewhat wider range of
net charge than folded proteins.

To provide a direct comparison with the previous literature
on charge versus hydropathy plots, we computed the balanced-
accuracy parameter of NECNOP plots, defined according to
Huang et al.19 This parameter accounts for the overall success
in the prediction of both folded proteins and IDPs. The
balanced-accuracy value of NECNOP plots is 92%. This value
compares favorably with the 79% balanced accuracy achieved
via net charge−hydropathy plots,18 and with the more recent
value of 90% obtained via the IDP-hydropathy scale by Huang
et al.19

While the overall 2% improvement over that of Huang et al.
is somewhat moderate, the most significant advantage of the
NECNOP plots lies in the analysis of midsize to large (i.e.,
>140 residues) folded proteins, as highlighted in the next
section.

Additional Comparisons with Charge−Hydropathy
Plots by Uversky and Co-workers. To further compare our
method with the original predictions by Uversky et al.,18 we
generated a Python script to determine MNC and MNPC
values according to the criteria established by these authors.18

MNCs were determined by assigning each residue with an
overall positively charged side chain with a charge of +1 (Asp
and Glu). Similarly, we assigned each residue with an overall
negatively charged side chain with a charge of −1 (Arg and
Lys). We then divided the total net charge by the number of
residues. MNPCs were evaluated with a five-residue window
via the Kyte−Doolittle scale (normalized over the range of 0−
1). We then divided the resulting score by the total number of
residues minus 4, to account for the window size. The script
carrying out the calculations described above was successfully
validated by verifying that a few proteins listed in the work by
Uversky et al.18 yielded the published MNC and MNPC
values.
We then compared the performance of Uversky’s18 and

NECNOP methods for a protein set similar to that used by
Uversky et al.18 We found that Uversky’s method predicts
disordered proteins slightly better than the NECNOP
approach, with 43 correctly predicted IDPs of 46 via Uversky’s
method (93.5% success rate) versus 41 correctly predicted
IDPs via the NECNOP approach (89.1% success rate).
On the other hand, the NECNOP procedure is significantly

better at predicting folded proteins. Namely, the NECNOP
strategy correctly predicted 217 of 231 folded proteins,

Figure 2. NECNOP plot illustrating the mean net charge per residue
(MNC) and nonpolar content per residue (MNPC) of single-domain
globular folded proteins and unfolded or intrinsically disordered
proteins (IDPs). The black discriminant line (dl) separates regions
pertaining to folded (right of the dl) and unfolded proteins/IDPs (left
of the dl).
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corresponding to a 93.9% success rate, while Uversky’s method
correctly predicted only 181 of the 231 folded-protein
sequences, resulting in a success rate of 78.4%.
The Prediction Accuracy of Folded Proteins Increases

Dramatically for Chain Lengths of >140 Residues. Next,
we focused on the correct prediction of folded proteins, given
its potential impact on proteome analysis and protein structure
prediction. As shown in panels a and b of Figure 3, which is
based on the data in Figure 2, we noticed that the incorrectly
predicted folded proteins tend to be shorter than the correctly
predicted folded proteins. In contrast, correctly and incorrectly
predicted IDPs are distributed in a more size-independent
fashion (Figure 3c,d). Note that the distribution in Figure 3d is
perfectly flat because a total of only five IDPs (of progressively
increasing size) were incorrectly predicted.
The distributions in Figure 3 suggest that the net charge and

nonpolar content criteria exploited in NECNOP plots are less
reliable for small folded proteins.
Indeed, a replotting of the data of Figure 2 including only

folded proteins with >140 residues leads to a large increase in
the percent of correctly predicted folded proteins, from 93.9 ±
3.1% to 100 ± 0.0%. This result is detailed in Figure 4 and
Table 1. On the other hand, no improvement was achieved in

the ability to predict IDP status, when the >140-residue cutoff
was applied. In summary, our NECNOP algorithm is

Figure 3. Histogram illustrating the chain-length distribution of single-domain globular proteins and IDPs of Fure 2. The frequency vs logarithm of
chain length is plotted for (a) correctly predicted folded proteins, i.e., proteins whose MNC and MNPC fall within the folded-protein region; (b)
incorrectly predicted folded proteins whose MNC and MNPC fall within the predicted disordered-protein region; and IDPs (c) correctly or (d)
incorrectly predicted to fall within the IDP region.

Figure 4. NECNOP plot illustrating the mean net charge and
nonpolar content per residue of known folded, globular, single-
domain proteins with >140 residues. The plot was generated starting
from database 3 (see Table S4), which comprises 231 proteins from a
variety of organisms.

Biochemistry pubs.acs.org/biochemistry Article

https://dx.doi.org/10.1021/acs.biochem.9b01114
Biochemistry 2020, 59, 1881−1895

1885



particularly effective at predicting the folded status of proteins
with >140 residues.
To more thoroughly validate the significance of the latter

result and increase accuracy, we generated NECNOP plots for
a larger protein database comprising 1147 folded proteins of
known structure (see the Supporting Information for the
definition of database 4) from E. coli. As shown in Figure 5a
and Table 2, the folded status of proteins of all sizes is correctly
predicted with 95.2 ± 1.2% accuracy.
Remarkably, the prediction accuracy for folded proteins

improves to 98.8 ± 0.7%, when the analysis is restricted to
proteins with >140 residues (Figure 5b and Table 2). Given
the large size of the database used to generate the latter set of
data, we regard 98.8 ± 0.7% as a more reliable estimate of the
performance of the NECNOP algorithm for the prediction of
folded proteins with >140 residues.
Table S5 describes the 10 proteins that are incorrectly

predicted to lie in the IDP region of the plot in Figure 5b. No
particular trends were identified. Hence, we conclude that
these outlier proteins represent a true reflection of the
limitations of the NECNOP analysis.
In summary, data in Figure 5 and Table 2 demonstrate that

the folded state of midsize to large proteins (>140 residues) is
reliably predicted by the NECNOP method (Table 3).

Analysis of the E. coli Proteome. The NECNOP
approach was then applied to the entire proteome of E. coli
(K12 strain). We focused on E. coli proteins with >140
residues, given the higher reliability of NECNOP for this class
of proteins. The resulting plots are shown in Figure 6. Panel a
shows that most E. coli proteins fall within the folded region,
with a densely populated section comprising proteins with a
high nonpolar content (>0.7). The high representation of
proteins on the right-hand side of the discriminant line

suggests that the E. coli proteome contains very few or no IDPs
of >140 residues. Indeed, the eight proteins lying in the IDP
region of Figure 6a are fewer than the statistically expected
number of folded proteins incorrectly assigned to the IDP
region [1.2% proteins (see Table 2)]. Hence, our data predict
that there are no IDPs with >140 residues in E. coli. This result
is qualitatively consistent with the reported expectation that
5% of the E. coli proteome consists of disordered proteins.34

Interestingly, the NECNOP distribution of folded proteins,
on the right of the discriminant line, is far from uniform and
has a distinctly bimodal profile (Figure 6a). Region I (0.71 <
MNPC < 0.75) includes relatively nonpolar proteins, while
region II (0.75 < MNPC < 0.79) comprises proteins with a
higher nonpolar content.
Additional insights are deduced from analysis of individual

subclasses of the E. coli proteome defined according to the
UniProt database. The soluble subclass of the proteome
(Figure 6b) falls mostly within region I. The majority of these
proteins has a negative mean net charge per residue. This result
is consistent with the fact that most soluble E. coli proteins
have a low isoelectric point and few positively charged amino
acids and are enriched with aspartic and glutamic acid.35,36

As shown in panels c of Figure 6 and its enlarged version
(Figure 6d), integral membrane proteins span regions I and II.
A comparison with the full proteome (Figure 6a) shows that
the fraction of proteins with MNPC values of >0.75 consists
mostly of integral membrane proteins. Thus, while region I
includes soluble proteins (panel b), non-integral membrane
proteins (panel e), uncharacterized proteins (panel f), and
some integral membrane proteins, the more highly nonpolar
region II is nearly exclusively populated by integral membrane
proteins.
Panel d of Figure 6 highlights the interesting finding that

MNC increases linearly with MNPC, in integral membrane
proteins. The origin of this trend is not clear at this juncture
and is likely nontrivial. One potential rationalization is that a
higher fraction of positive charges may be necessary for the
proper membrane insertion and orientation of highly hydro-
phobic integral membrane proteins. Interestingly, integral
membrane proteins with a higher hydrophobicity per residue,
i.e., a larger MNPC, tend to be smaller in size and relatively
richer in positively charged residues (see text below).

Figure 5. NECNOP plot illustrating the mean net charge per residue (MNC) and mean nonpolar content per residue (MNPC) of (a) all E. coli
proteins with a determined structure and (b) E. coli proteins with a determined structure carrying >140 residues. Plots were generated starting from
database 4 (see the Supporting Information), which comprises a large number (i.e., 1147) of proteins from E. coli that are known to be folded.
Table 3 summarizes the general features of the proteins in this figure (see Table S5 for outliers).

Table 3. Summary of General Characteristics of Proteins
Plotted in Figure 5

total no. of
proteins

total no. of folded
proteins

total no. of
unfolded proteins

all proteins 1147 1092 55

proteins with >140
residues

838 828 10

Biochemistry pubs.acs.org/biochemistry Article
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Therefore, the observed trends suggest that smaller integral
membrane proteins are more hydrophobic and more positively
charged.
Panel e shows that non-integral membrane proteins exhibit

trends in mean net charge and nonpolar content per residue
similar to those of soluble proteins. These results are not
surprising as non-integral membrane proteins experience an
environment largely dominated by bulk solution properties.
The remaining proteins, plotted in panel f, are defined as

uncharacterized in the UniProt database. These proteins have a
fairly wide distribution of mean net charge and a moderate
nonpolar content.
Convergence of E. coli-Protein MNC at a High

Molecular Mass. Figure 7 illustrates the dependence of
MNC on protein chain length. Panel a shows that, across the E.

coli proteome, MNC dramatically converges toward a small net
negative value.
Proteins with fewer than ∼140 residues display a large

variability in their mean net charge per residue with no bias
toward either positive or negative values (Figure 7a). In
contrast, larger proteins are characterized by a remarkably
narrower distribution, up to a convergence point of
approximately −0.05 MNC. This value is reached at chain
lengths equal or larger than ∼1000 residues.
Partitioning of the E. coli proteome according to protein type

[soluble, integral, and non-integral membrane proteins (panels
b−d, respectively, of Figure 7)] shows that the observed
convergence at large protein chain lengths is common to all
protein types.

Figure 6. NECNOP plots showing the MNC and MNPC values of all E. coli proteins with >140 residues: (a) all proteins, (b) water-soluble
proteins, (c) integral membrane proteins, (d) integral membrane proteins (enlarged), (e) non-integral membrane proteins, and (f) uncharacterized
proteins. All protein categories are defined according to the UniProt database. All proteins in this figure belong to a subset of database 5 (see
Supporting Information).
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Control Experiments. Next, we carried out control
computations to explore whether the observed convergence
might be merely a result of statistical arguments. Toward this
end, random protein sequences with lengths between 10 and
2400 residues were generated and constrained to fulfill the
known amino acid frequency in proteins.37 MNC values were
calculated as a function of chain length. The results are shown
in Figure 7e. As the number of residues increases, the fractional
abundance of each amino acid in the full-length protein more
accurately approaches the average proportion of that amino
acid in Nature, leading to a narrower distribution. Panel e of
Figure 7 shows that the shorter control sequences exhibit a
slightly wider distribution in net charge compared to the longer
control sequences (black dots in Figure 7e), yet the change in
distribution width at short and long chains is considerably
smaller than in the case of the experimental values based on
existing proteins (see the gray dots in Figure 7e), especially in
the case of very small proteins (≲140 residues).
We conclude that the observed MNC convergence of large

proteins is only partially explained by simple statistical
arguments. Therefore, the observed convergence is a novel
property of bacterial proteins identified by our NECNOP

plots. These results highlight the large variability in MNC
values for small proteins.
The control and experimental MNC values at long protein

chain lengths match remarkably well, as shown in Figure 7e.
The actual convergence value is entirely predictable on the
basis of the amino acid abundance in proteins, consistent with
the nature of the control computations (Figure 7e). Indeed,
the plot of Figure 7e shows that the convergence value
corresponds to the average MNC for proteins of all sizes.
Given that this value was deduced from data on proteins from
a variety of organisms, we conclude that the MNC
convergence may be a general property of proteins; i.e., it
may not be solely restricted to the bacterial realm.

Why Does Protein MNC Converge to Slightly
Negative Values? Given the findings described above, it is
natural to wonder why a slightly negative MNC convergence
value is observed for proteins of high molecular mass. Recent
studies showed that positively charged proteins translationally
diffuse 100 times more slowly than negatively charged proteins
in the bacterial cytoplasm, due primarily to nonspecific
interactions with the negatively charged ribosomes.38 Thus,
we propose that the demand for effective intracellular

Figure 7. Plot of MNC as a function of chain length across the E. coli proteome (in the Supporting Information, see database 5): (a) all proteins,
(b) water-soluble proteins, (c) integral membrane proteins, (d) non-integral membrane proteins, and (e) uncharacterized proteins. All protein
categories are defined according to the UniProt database. Panel e includes computationally generated control data (black dots) consisting of
random sequences of variable chain length, preserving the known frequency of occurrence of amino acids in proteins.
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translational diffusion, particularly for large proteins that
intrinsically diffuse more slowly, justifies the observed
convergence to slightly net negative MNC values at high
molecular masses.
What Is the Origin of the Observed Protein MNC

Convergence? Additional Considerations. The shape of
the MNC plots of Figure 7 can be further justified on the basis
of simple geometrical arguments and protein surface proper-
ties. As shown in Figure 8, the ratio of surface area to volume is

expected to decrease as the protein radius increases, regardless
of whether proteins have a globular [approximately spherical
(Figure 8a)] or elongated [approximately cylindrical (Figure
8b)] shape. In other words, geometrical arguments show that
larger folded proteins are expected to be more effective at
burying surface area than smaller proteins. This prediction is
consistent with the experimental finding, based on X-ray crystal
structure data, that a greater fraction of surface area is buried in
structured proteins with higher masses.26 In summary, larger
folded proteins are expected to have a smaller solvent-exposed
area relative to their volume.
Let us consider this conclusion and, in addition, some

fundamental surface properties of proteins. It is reasonable to
propose that the ratio of the polar to nonpolar surface of
folded proteins (necessary to grant solubility) is roughly size-
independent. This assumption is corroborated by the surface−
property calculations of panels a and b of Figure S1. These
calculations were carried out with Surface Racer and were
based on known values for single-domain folded proteins.
Now, let us also assume, for the sake of simplicity, that the

majority of a protein’s net charge is contributed by surface
residues.39,40

As shown in Figure 9, additional calculations reveal that the
net charged ASA/total ASA ratio of the folded state is widely

distributed at short chain lengths and converges toward a
slightly negative value for larger proteins. This trend is
qualitatively similar to the MNC trends observed in Figure 7a.
Therefore, we propose that the wide distribution in MNC at

short chain lengths and the narrowing observed at larger
lengths result from the fact that, in larger proteins, a smaller
fraction of residues contributing to the net charge is needed
due to the decreased surface area/volume ratio. Intriguingly,
our results imply that smaller proteins can accommodate a
wider range of net charge values on their surface. This effect
may relate to the size dependence of protein translational
diffusion in the cell.41,42 However, the actual origin of this
phenomenon is still unclear at this juncture, and its
understanding needs to await further investigations.

Convergence of E. coli-Protein MNPC at High
Molecular Masses. Figure 10a shows that the distribution
of mean nonpolar content per residue (MNPC) as a function
of protein chains length is bimodal. The first cluster,
characterized by a lower value for MNPC (centered at
MNPC ∼ 0.72), is populated primarily by soluble proteins and
by non-integral membrane proteins, with some representation
by integral membrane proteins. The second cluster, centered at
a higher value of MNPC (∼0.76), is populated almost
exclusively by integral membrane proteins.
Soluble proteins and non-integral membrane proteins are

likely to be less hydrophobic than integral membrane proteins,
consistent with their existence in the cytoplasm in water-
soluble form.
Panels b−d of Figure 10 show that each protein subclass

populates a characteristic range of MNPC values. Soluble
proteins (panel b) have hydrophobicity ranging from ∼0.68 to
0.75, converging around 0.72 as the chain length increases.
Integral membrane proteins (panel c) span a wider MNPC
range, from 0.71 to ∼0.80, with a higher population density at
large MNPC values. Overall, integral membrane proteins also
converge to an MNPC of ∼0.72, at large chain lengths. Non-
integral membrane proteins behave like soluble proteins,
consistent with the fact that these proteins have only a small
fraction of their length embedded in the membrane.
Figure 10e shows an overlay of the plot for all E. coli proteins

(gray dots) and control sequences (black dots). The same
random sequences were employed for the controls in Figures

Figure 8. Expected protein surface area to volume ratio for molecular
shapes resembling either (a) a sphere or (b) a cylinder.

Figure 9. Plot of the ratio of net charged solvent-accessible surface
area to total solvent-accessible surface area (net charged ASA/total
ASA) as a function of chain length, for 52 single-domain proteins
from databases 1−3 (see Methods). Surface areas were computed
with Surface Racer.
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7e and 10e. Interestingly, the control plots of Figure 10e show
a degree of convergence very similar to that of the
experimental data for soluble and non-integral membrane
proteins. Hence, we conclude that the MNPC convergence
observed for this class of proteins at a high molecular mass is
simply due to the more complete statistical averaging of
MNPC.
An integral membrane protein can be modeled as a series of

repeating units consisting of nonpolar sections that are
embedded in the membrane and polar sections that are
exposed (Figure 11a). The number of these units increases
with protein length. Therefore, consistent with the data of
Figure 10c, the average MNPC is expected to decrease as the
chain length increases because the average ratio of nonpolar to
polar residues in all units approaches a mean value. Figure 10c
shows that the integral membrane proteins with the highest
MNPC per residue values are fewer than 85 residues in length.
On the basis of the width of the E. coli membrane and the
length of α helices, we calculated that approximately 42
residues span the width of the membrane. Thus, proteins with
fewer than 84 residues are likely to pass through the membrane
only twice. This result indicates that short integral membrane
proteins may be significantly more hydrophobic, because they

have a higher fraction of residues embedded within the
membrane compared to the sections of protein that extend out
of the membrane (Figure 11b).
In summary, the observed MNPC trends are accounted for

by a combination of statistical arguments (dominant effect for
soluble and non-integral membrane proteins) and the expected
decrease in nonpolar content per residue at high molecular
masses (dominant effect for integral membrane proteins).

NECNOP Plots Are of General Significance. NECNOP
plots shed light on the intrinsic nature of protein structure and
how mean net charge and hydrophobicity modulate it. Despite
the fact that this work focuses solely on the E. coli proteome,
the NECNOP plots can be generated for proteomes of any
organism. Hence, NECNOP plots are expected to be generally
useful for enabling predictions on proteins that are
uncharacterized or have undetermined structures.

NECNOP Plots Are Valuable Tools for the Prediction
of Prions. In addition to the binary classification of proteins as
folded or intrinsically disordered outlined above, NECNOP
plots have additional useful applications. Here, we highlight
NECNOP plots in the context of prion discovery.
Prions are proteins whose typically monomeric native

cellular state, often denoted PrPC, has two distinct domains,

Figure 10. Plot of MNPC as a function of chain length across the entire E. coli proteome (in the Supporting Information, see database 5): (a) all
proteins, (b) water-soluble proteins, (c) integral membrane proteins, (d) non-integral membrane proteins, and (e) uncharacterized proteins. All
protein categories were defined according to the UniProt database. Panel e includes computationally generated control data (black dots) consisting
of variable-length random sequences carrying the known frequency of occurrence of amino acids in proteins.
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one folded and one disordered.43,44 Both domains are usually
of comparable length.43,44 Misfolded prion protein isoforms,
known as PrPSc, are deemed infectious in the sense that they
induce misfolding and aggregation of PrPC, causing a class of
neurodegenerative diseases known as transmissible spongiform
encephalopathies.45−47 The structure of PrPSc and the
mechanism of conversion of PrPC to PrPSc are not fully
understood, to date.48 While the existence of mammalian and
yeast prions has been known for a long time, the potential
presence of prions in bacteria has been proposed only
recently,49,50 Two bacterial prion-like proteins have been
experimentally identified,51−53 and a biological assay for
identifying bacterial prions has been developed.54

Given its importance for basic science and the development
of antibacterial strategies, computational methods for the
prediction of prions have been recently developed. These
methods are based on the identification of regions enriched
with glutamine and asparagine and devoid of prolines and
charged residues, which are characteristic of yeast prions.50,55

This approach led to the identification of several prion
candidates in a variety of organisms.49,56

NECNOP plots of known prion amino acid sequences,
shown in Figure 12, display considerable potential for the
prediction of novel representatives of this class of proteins.
Due to the presence of folded and intrinsically disordered IDP-
like domains of comparable size in prions, NECNOP plots of
PrPC from chickens, mice, humans, and yeast happen to fall
either on top of or extremely close to the NECNOP
discriminant line (Figure 12). In addition, most of these
prions display nearly identical values of the MNC and MNPC

parameters, suggesting that the overall nonpolar and electro-
static characteristics of prions may be nonrandom.
With these facts in mind, it is interesting to note that any

proteins with more than one intrinsically disordered region
(IDR) of total length comparable to the total length of folded
regions are also likely to lie along the discriminant line of
NECNOP plots. Hence, our predictions are not necessarily
restricted to the identification of prion proteins alone. Folded
proteins with several IDRs totaling to a length comparable to
that of the folded regions are also likely to fall on (or close to)
the NECNOP discriminant line.
In summary, the finding described above shows that the

NECNOP method can be employed as an aid in the
identification of novel prions in bacteria or other organisms.
A combination of NECNOP plots and the other prion-specific
computational and experimental tools listed above are a
promising avenue for future more refined investigations.

Implications of NECNOP Plots for De Novo Protein
Design. Naturally occurring proteins comprise only a small
fraction of the vast number of possible sequences and
structures.57 Consequently, there is a great deal of interest in
designing non-naturally occurring protein sequences, poten-
tially able to perform ad hoc functions, both computationally
and experimentally.58−61

De novo computational protein design has been successful.
For instance, this approach has enabled the generation of small
(<50 residue) protein sequences that can bind specific
therapeutic targets.62,63 However, one of the greatest
challenges associated with this field has been the time and
computing power required for the design of proteins of a large
size.57,64,65

The NECNOP algorithm has the potential to become a
useful tool in protein design. Namely, we envisage NECNOP
to be helpful during all stages of protein design, to narrow
down the number of amino acid compositions (>140 residues)
that are compatible with a folded status under ambient
conditions. NECNOP may be particularly useful in the design
of large proteins with >140 residues. Proteins fulfilling this size
constraint were shown here to fall within a well-defined and
accurately characterized range of MNC and MNPC values.

Figure 11. Cartoons qualitatively illustrating the fact that (a) as
integral membrane proteins increase in length, the ratio of the number
of nonpolar to polar residues in each repeat unit is expected to
converge to an average value, assuming that the overall composition is
not chain length-dependent. The cartoons in panel b show that short
integral membrane proteins are expected to be more hydrophobic
than long integral membrane proteins of similar composition, due to
the higher fraction of nonpolar membrane-embedded residues.

Figure 12. NECNOP plots of mammalian and yeast prion proteins.
Prion proteins are readily identified as they overlap with, or fall
extremely close to, the discriminant line. In addition, all prion proteins
share very similar MNC and MNPC values, except for the yeast prion,
which falls on the discriminant line but bears a smaller MNC and
MNPC than prions from other organisms. Prion-protein sequences
were obtained from the UniProt database (see details in Supporting
Information).
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To directly test the potential of NECNOP plots to serve as
tools in protein design, we applied the NECNOP algorithm to
a set of well-characterized de novo-designed proteins. We
initially focused on successfully de novo-designed sequences of
>140 residues that were experimentally prepared and purified,
and whose three-dimensional structures were independently
determined and deposited in the Protein Data Bank (PDB)
(see Tables S6 and S7). The results are shown in panels a and
b of Figure 13. Interestingly, most of the de novo-designed
proteins in Figure 13a (which have no stretches of identical
amino acid sequence) lie in the proper folded-protein region of
the NECNOP plot. On the other hand, a significant number of
de novo-designed repeat proteins, which bear stretches of
identical amino acid sequence and are shown in Figure 13b, lie
in the IDP region. This result suggests that indeed de novo-
designed protein sequences may be further optimized, and
NECNOP plots have the potential to serve as a valuable tool to
facilitate and streamline this process.
Next, we generated NECNOP plots of novel protein

sequences that were generated via directed evolution,58,59,61

as opposed to de novo approaches. The results are shown in
Figure 13c (see also Table S8). Interestingly 100% of the
directed-evolution-produced proteins fall well within the
NECNOP folded-protein region. Given that the directed-

evolution approach typically yields sequences fairly close to
those of the corresponding reference wild-type protein, with
only a small percent of the overall residues being mutated, the
features of the NECNOP plot in Figure 13c are perhaps not
entirely surprising. On the other hand, this plot highlights the
fact that directed evolution is overall a safe approach, in that
the proteins generated via this technique tend to retain the
global, overall physical properties of the parent wild-type
protein sequence.
Finally, as shown in Figure 13d and Table S9, we generated

a NECNOP plot for a set of small (43−71 residues) de novo-
designed proteins. These proteins, which were designed by
Rocklin and co-workers and were experimentally shown to
have a folded state in solution,63 fall mostly within the IDP
region of the NECNOP plot, in the absence of the N-terminal
histidine tag (Figure 13d and Table S9). Interestingly, addition
of the N-terminal tag increases the net charge of all of the
proteins designed by Rocklin et al. and also augments their
nonpolar nature. As a result, most proteins bearing the tag lie
in the folded-protein region of the NECNOP plot (Figure 13d
and Table S9). This result highlights the fact that small de
novo-designed proteins may lie in unexpected regions of the
NECNOP plot, relative to the majority of proteins found in
Nature. These data also clearly show that introduction of a

Figure 13. NECNOP plots of a variety of de novo-designed proteins as well as proteins generated via directed evolution. All proteins were
experimentally prepared, and their three-dimensional structures were determined and deposited in the Protein Data Bank (PDB): (a) de novo-
designed proteins with >140 residues with a well-folded three-dimensional structure, excluding proteins with large stretches of identical amino acid
sequences; (b) de novo-designed proteins with >140 residues with a well-folded three-dimensional structure and bearing large stretches of identical
amino acid sequences, denoted here as repeat proteins; (c) proteins generated via directed evolution and reference wild-type proteins; and (d)
proteins that were de novo-designed as well as experimentally generated and characterized by far-ultraviolet circular dichroism and thermal or
chemical denaturation by Rocklin et al.63 and found to have a folded structure. Note that the proteins in panels a−c were identified via an
exhaustive PDB search focusing on structures with a single amino acid chain and bearing no ligands or cofactors. See Tables S6−S9 for additional
information about each of the proteins in this figure.
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simple unstructured tag can have dramatic effects, in this case
clearly advantageous, on the overall physical properties of a
protein.
We conclude that NECNOP plots are a promising tool for

protein design, especiallybut not onlyin the case of amino
acid sequences with >140 residues.

■ CONCLUSIONS

In summary, we developed the NECNOP method to
accurately discriminate folded proteins from IDPs, based on
amino acid sequence alone. NECNOP plots are particularly
effective for the prediction of folded proteins whose chain
length is >140 amino acids.
Analysis of the E. coli proteome shows that the folded region

is densely populated at relatively low MNC (±0.1) and high
MNPC (>0.7) values. Consistent with the literature, the
soluble E. coli proteome is folded and mostly populated by
negatively charged proteins. Non-integral membrane proteins
exhibit trends similar to those of soluble proteins. Integral
membrane proteins may or may not be more hydrophobic than
soluble proteins and are characterized by increasingly positive
MNC as the chain length increases.
In total, this work improves the classification of folded

proteins based on mean nonpolar and mean net charge content
per residue. In addition, it identifies peculiar characteristics of
the amino acid sequence of very large proteins and prions. It is
hoped that the criteria established here will ultimately serve to
improve the a priori evaluation of protein structural character-
istics based on amino acid sequence alone and contribute to
the enhancement of the available toolkit for the de novo design
of new proteins.
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