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We simulated stationary electron scattering by solving the time-dependent Schrodinger equation with a complex
injecting potential (CIP). The calculated electron transmission probabilities through one-dimensional potentials and the
electron interference patterns caused by double slits show good agreement with analytical results. The Aharonov—Bohm
effect is also clearly demonstrated by the presence of a vector potential at one side of the double-slit configuration. The
stationary electron-scattering method by a CIP can be straightforwardly extended to studies of various electron-emission
phenomena as well as electron-transport phenomena in the framework of time-dependent density functional theory.

1. Introduction

Electron scattering is the one of the most fundamental
phenomena in quantum physics and has been applied to
many experimental techniques, such as transmission electron
microscopy (TEM), scanning electron microscopy (SEM),
and electron holography. Stationary-state electron scattering
is observed in electron scattering experiments for long-time-
period electron beam injection. Theoretical investigations of
electron scattering are often performed using the Lippmann—
Schwinger (LS) equation with the Born approximation.
However, electron scattering by realistic systems, such as at
surfaces and molecules, are often beyond the regime of the
Born approximation. Therefore, it is necessary to directly
solve the time-dependent Schrodinger equation (TDSE) for a
complete understanding of the electron scattering processes.

In previous studies, the wave packet (WP) electron
scattering method was used for solving the TDSE" and the
time-dependent density functional theory (TDDFT). Using
the latter method, secondary electron emission (SEE),>?
angle-resolved secondary electron emission (ARSEE),"
electron transmittance,” low-energy electron diffraction
(LEED),%” and the electron Talbot effect on graphene® have
been investigated. In the WP simulation in Ref. 6, the
transmission coefficients were calculated by extracting the
plane wave components from the Fourier transformed
transmitted wave. Short-time-period (transient) electron
scattering can be investigated using this method, but long-
time-period (stationary) electron scattering, which is realized
in experiments, cannot be investigated.

In 2012 a method that enables simulation of stationary-
state electron scattering was developed by Wibking and
Varga, called the complex injecting potential (CIP) method.”
The advantage of the CIP over previous studies is that the
desired state can be injected into the system and the
stationary state can be reached. Figure 1 shows a wave
function scattered by a square well potential in the WP
propagating method [Fig. 1(a)] and CIP method [Fig. 1(b)].
Using the CIP method, He et al. simulated stationary-state
electron transport and investigated local currents in graphene
nanoribbons and other materials.'”) In the present study, we
simulate stationary-state electron scattering in one dimension
and in a double-slit system using the CIP to check the validity
and accuracy of the CIP method.

In Sect. 2, we briefly review the formulation of the CIP
method and give the computational details. The results and
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Fig. 1. Wave functions scattered by a square well potential of the (a) WP
propagating method and (b) CIP method.

discussion for one-dimensional and double-slit systems are
presented in Sect. 3. Conclusions are given in Sect. 4.

2. Method

2.1 Formalism

The TDSE is written as (Rydberg atomic units, i = 2m =
e’ =1, are used throughout the paper, unless stated
otherwise):

ot
Hy = —V? + V(r), 2)

where Hj, w(r,t), and V(r) are the Hamiltonian, wave
function and external potential, respectively. The TDSE can
be solved in an iterative manner numerically. In this study,
we used the fourth-order Taylor expansion method for the
time-evolution operator.'"” Although the time-evolution
operator in this method is not exactly unitary, the norm of
the wave function is conserved with good accuracy by
choosing a sufficiently small time step At.

We use the CIP method to inject electrons into a quantum
system.” The CIP method was formulated using a variational
principle under the constraint of w(ry,?) = ¢(rp,t) =
e Et(ry). The variational functional is written as

<i3—Ho>l//(l',t)=0, ey
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S = /dt/dl‘l//(l‘, n* (z% - Ho)y/(r, 1)

- fdt[dl'/l(l', D[3(r — ro)(y(r, )" — ¢(r,n")]

- /dt/dl‘ﬂ(l’, N*[8(r = ro)(y(r, 1) — p(r,0)],  (3)

where A(r,7) is the Lagrange multiplier.
65 = 0, the TDSE takes the form

By calculating

0 B
(1 - H) w(r, ) = 0, @)
_ Alr, H)o(r — rp)
H=Hy+ =5 (5)

The Hamiltonian becomes time independent in the stationary
and final state, and thus the Lagrange multiplier is chosen
to be A(r,1) ~ e’ to cancel the time dependence of the
Hamiltonian for the stationary-state wave function y(r,t) =
e~ (r). Accordingly, the modified Hamiltonian is given by

H=Hy+ ae ™ ﬁ o(r —ryp), (6)
where the second term is a complex injecting potential. In this
method, we solve the modified TDSE, Eq. (4), with Eq. (6)
at the source point rp, and solve the TDSE, Eq. (1), with
Eq. (2). We can choose the constant a arbitrarily, because it
only determines the amplitude of the wave function at the
point rg.

2.2 Computational details

The simulations are carried out using a real-space grid.
Thus, the wave function is represented on each grid point and
the derivatives of the wave function are calculated by the
fourth-order finite difference scheme. To avoid artificial
reflections, a complex absorbing potential (CAP) is placed at
the ends of the calculation box. The form of the CAP is the
same as that suggested in Ref. 12. In a one-dimensional
system the calculation box has a 80-Ry length with a grid
spacing of 0.2Ry and the width of the CAP is 20 Ry, while
the calculation box is a square of 90 X 90 Ry? with a grid
spacing of 0.3 Ry and the width of the CAP is 6.9Ry in a
two-dimensional system. We choose the initial wave function
to be Gaussian at the source point r, with a standard
deviation of o = 5Ry. The simulations are carried out until
t =2000Ry with a time step Ar= 0.01Ry. The wave
function and electron density are obtained at the end of the
simulations when the stationary state has been reached.

The transmission coefficients are determined by the
amplitudes of the incident wave and the transmitted wave,
which are calculated from fitting the stationary-state wave
function obtained from the simulations to the plane wave.'?

3. Results and Discussion

3.1 Scattering in one dimension
First, we consider electron scattering by a rectangular
potential barrier in one dimension,
Vo forO<x<d
V(x) = o (7)
0  otherwise
where Vy = 4Ry and d = 2Ry are chosen. The incident-
energy dependent transmission coefficients are calculated and
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Fig. 2. (Color online) Energy dependence of the transmission coefficient
for a rectangular potential barrier. The blue line indicates the analytical
solution, while the black dots indicate the calculated values.

shown in Fig. 2. The blue solid curve indicates the analytical
solution, while the black dots indicate the calculated values.
The calculated values are in good agreement with the
analytical solution. To check the validity of the present
method, we also simulated electron scattering by a unique
potential, 14.15)

V(x) = —a’n(n + 1) sech’(ax), (8)

for which the transmission coefficient is exactly one at any
incident energy, when n is a positive integer. In our
simulation, the parameters are chosentoben =1 and a = 1,
and the incident energy is E = 2Ry. The calculated trans-
mission coefficient is 7 = 1.00001, so the numerical
accuracy in the coefficient is 107>, indicating that the present
method is reliable for practical use.

3.2 Scattering by a double slit

Here, we calculate the interference patterns of scattered-
electron intensity (IPSEI) by a double-slit barrier. A double-
slit Gedankenexperiment for electrons that demonstrates the
wave—particle duality of electrons was first introduced by
Feynman.'® Feynman remarked that the experiment would
be difficult to conduct because the apparatus would have to
be made on an extremely small scale. However, a double-
slit experiment for electrons were carried out by Jonsson in
1961'1®) and Merli et al. in 1976.'> Later, Tonomura et al.
performed a double-slit experiment in 1989,>” which was
selected as one of the most beautiful experiments by
Physics World.”" In the numerical simulation of electron
scattering by a double slit using the WP method for solving
the TDSE, the IPSEI has been calculated.” Recently, an
extremely interesting result on IPSEI through asymmetric
double-slit experiments was reported, where the electrons
were categorized into three groups: electrons that passed
through only the first slit, electrons passing through only the
other slit, and electrons passing through both slits simulta-
neously.?”

Figure 3 shows the calculation box used in the present
simulations. The black rectangles denote the wall, with d =
2.4Ry and W = 5Ry. The CIP is placed at the red point,
which is 15Ry away from the center wall. The IPSEI are
observed at the black half circle of H = 36 Ry. The incident
energy is E = 50eV, which corresponds to a wavelength of
A =3.3Ry.

©2020 The Physical Society of Japan
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Fig. 3. (Color online) Schematic diagram of the calculation box. L =
90 Ry for each side of the square box. The black rectangles denote a wall of
thickness W = 5 Ry with slits of width d = 2.4 Ry. Interference patterns of
the scattered-electron intensity are observed at the black half circle of H =
36 Ry. The CIP is placed 15 Ry away from the wall. The CAP is placed at the
box boundaries, shown by the gray area.
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Fig. 4. (Color online) IPSEI for two double-slits of different gaps D:
(a) D = 6Ry and (b) D = 12 Ry. The black dots indicate the results of our
simulation, while the blue solid curves indicate the analytic values calculated
by Eq. (9).

The IPSEI for the two double-slits of different gaps D are
shown in Fig. 4. The black dots indicate the results of the
simulations, while the blue solid curves indicate the analytic
form obtained in the optics:*®

sin®(kds/2) z(kl)s

I(S) = I() (kds/2)2 2

), s = sin 6, )
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Fig. 5. (Color online) (a) Schematic diagram of the calculation box. The

shape and dimensions of the box and the double slit are the same as in Fig. 3.
A magnetic flux exists in the center wall (blue-colored) and the vector
potential exists only inside the upper slit (green-colored). (b) Schematic (left)
and field distributions (right) of the magnetic field and vector potential along
the orange dashed line in (a).

where k, d, and 6 are the wave number, slit width and angle
defined in Fig. 3, respectively. The simulated results
reproduce the overall features and D dependence of IPSEI
fairly well. We note that the differences in bigger angle in
Figs. 4(a) and 4(b) are caused by the different conditions on
between the derivation of Eq. (9) and our simulation. In the
derivation of the optical formula of Eq. (9), light is diffracted
by the double slits with zero thickness. In our simulation,
however, the electrons are diffracted by the double slits with
finite thickness in which reflections appear. As a result, the
IPSEI are influenced by the slit thickness as discussed by
Endoh et al. in Ref. 24. We actually find the agreement of
IPSEI in bigger angle between the calculated values and
analytical ones in a single-slit configuration by using zero
thickness slit in our simulation. This is not shown in our

paper.

3.3 Aharonov-Bohm effect

We numerically demonstrate the Aharonov—Bohm (AB)
effect, which was theoretically introduced by Aharonov and
Bohm in 1959% and first experimentally observed by
Tonomura et al. in 1986.° The AB effect dictates that a
physical quantity experienced by electrons is not an electro-
magnetic field but is a vector potential. Since the vector
potential modifies the phase of an electron’s wave function,
the IPSEI by an asymmetric double slit caused by a vector
potential is strongly influenced. Figure 5 shows the distribu-
tions of the vector potential and the corresponding magnetic
field in the double slit used in the simulation. The size of the
system and the incident energy are the same as for the above
simulations with D = 12 Ry.

We consider a situation for which the magnetic flux @
exists only inside the center wall (blue-colored). A uniform
magnetic field B is determined to satisfy the relation @ =
/B - dS, and the vector potential A is similarly determined to
satisfy the relation B = V X A. The vector potential in the
Landau gauge is"

A(x,y) = (0,A,(x),0), (10)
where

©2020 The Physical Society of Japan
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Fig. 6. (Color online) IPSEI for different magnetic fluxes @: (a) @ = h/2e
and (b) @ = h/e. The black dots indicate the results of our simulation, while
the blue solid curve indicates the analytic values calculated from Eq. (13).
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Based on this, the magnetic field exists only in the center wall

(blue-colored) and the vector potential exists only inside the

upper slit (green-colored). We use the minimal-coupling

Hamiltonian given by

hz . 2
<V+f A) + (1),

Hy = (12)

T 2m h
instead of Eq. (2). Here, e is the absolute value of the
electron’s charge. In this subsection, we use SI units.

The IPSEI for different magnetic fluxes are shown in
Fig. 6. The black dots indicate the results of the simulations,
while the blue solid curves indicate the analytic form:

sin®(kds/2) .
(kds/2)*

Here, A¢ is the phase difference of electrons from the two
slits, which is defined as

1(s) = I 0s?(Ag), s=sinh.  (13)

pp D5 _e®

2 2h (14

The IPSEI agree with the analytical values, as clearly shown
in Figs. 6(a) and 6(b). The AB phase shift is z in Fig. 6(a)
and 2z in Fig. 6(b). Figure 6 indicates that the interaction of

CIPs

y

Fig. 7. (Color online) Schematic diagram of the calculation box. The
shape and dimensions of the box are the same as in Fig. 3. The CIPs are
arranged in a line, illustrated as red points, instead of two slits.

errors that is caused by the asymmetric vector-potential
distribution in the double-slit configuration [Fig. 5(b)]. The
differences in IPSEI between the calculated values and
analytical ones in bigger angle in Figs. 6(a) and 6(b) are due
to the same reason as that discussed in Figs. 4(a) and 4(b).

3.4 Arranged CIPs for double sources

Lastly, we construct a new form of a double source using
multiple CIPs, as shown in Fig. 7 as an alternative to the
conventional type shown in Figs. 3 and 4. We calculate the
IPSEI generated by the double multiple-CIP sources. In this
set up, the center wall is removed and nine CIPs are
uniformly arranged at intervals of 0.3Ry on each side,
corresponding to a slit width of d = 2.4 Ry. The IPSEI for the
two double sources with different D are shown in Fig. 8. The
red solid curves indicate the results for the arranged-CIP
method, while the black solid curves are the same as the
black dots in Fig. 4. The agreement of the IPSEI between the
apparently different configurations of Figs. 3 and 7 indicates
that the electron wave function passing through the double
slits can be interpreted as that launched from individual point
sources (CIP here) within each slit, which follows Huygens’s
principle.

It is of interest to note that the present configuration
(double sources with multiple CIPs) is similar to that of an
experiment observing the interference patterns of Bose—
Einstein condensates (BECs).””?® In this experiment,”” two
separate BECs were first trapped by a double-well potential.
The two BECs expanded immediately after the potential was
switched off and the interference pattern generated by the two
BECs was observed. The overall features of the interference
patterns in Fig. 2 of Ref. 27 are similar to those of Fig. 8
of this paper. Since the initial phases of the two BECs are
not necessarily the same and the interference pattern was
changed by the phase difference, it is useful to simulate
beforehand the phase-difference dependent interference
pattern of the BECs. We can simulate the situation easily
by introducing a phase shift in the Hamiltonian,

electrons with the vector potential is correctly taken into 9
. . _ie N O — qe—iE=1) o(r —1;)
account by the stationary electron-wave method. It is noted H=H,+ ae Z W Z o
that the calculated values (black dots) are asymmetry. The = ¥ =1V
asymmetry is considered to originate from the numerical (15)
044002-4 ©2020 The Physical Society of Japan
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Fig. 8. (Color online) IPSEI for different distances between the two line
CIP sources. The red solid curves indicate the results for the arranged CIPs
method, while the black curves are the same as the black dots in Fig. 4.
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Fig. 9. (Color online) The red solid curve indicates the result for y = 0,
which is the same as the red solid curve in Fig. 8(b), while the red dashed
curve indicates the result for y = %ﬂ'.

where y, r;, and r; are the phase shift and the position of the
CIPs inside the lower slit and the upper slit, respectively. The
red solid curve indicates the result for y = 0, which is the
same as the red solid curve in Fig. 8(b), while the red dashed
curve indicates the result for y = %zr. The (fractional) phase
shift effect on the interference patterns is clearly demon-
strated by Eq. (15), as seen in Fig. 9. Therefore, the present
technique, which enables control of the phase difference
between two independent sources, also contributes toward
explaining the detailed interference patterns of BECs
observed in experiments.

4. Conclusion

We simulated stationary-state electron scattering in one

044002-5

dimension and in a double-slit system by solving the TDSE
with a CIP. The transmission coefficients through one-
dimensional potentials and the IPSEI caused by double slits
show good agreement with analytical results. The interaction
between electrons and the vector potential is properly taken
into account in the AB effect simulation. Also, from the
simulation of the arranged-CIP method, we predict that this
new method can be applied to BEC interference simulations.

Since the present method can be straightforwardly
extended to TDDFT, we can simulate field electron emission,
photo-induced electron emission, secondary electron emis-
sion, thermionic emission, and so on.
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