


S ¼

Z

dt

Z

dr ðr; tÞ� i
@

@t
� H0

� �

 ðr; tÞ

�

Z

dt

Z

dr �ðr; tÞ½�ðr � r0Þð ðr; tÞ
� � �ðr; tÞ�Þ�

�

Z

dt

Z

dr �ðr; tÞ�½�ðr � r0Þð ðr; tÞ � �ðr; tÞÞ�; ð3Þ

where �ðr; tÞ is the Lagrange multiplier. By calculating

�S ¼ 0, the TDSE takes the form

i
@

@t
�H

� �

 ðr; tÞ ¼ 0; ð4Þ

H ¼ H0 þ
�ðr; tÞ�ðr � r0Þ

 ðr; tÞ
: ð5Þ

The Hamiltonian becomes time independent in the stationary

and final state, and thus the Lagrange multiplier is chosen

to be �ðr; tÞ � e�iEt to cancel the time dependence of the

Hamiltonian for the stationary-state wave function  ðr; tÞ ¼

e�iEt�̂ðrÞ. Accordingly, the modified Hamiltonian is given by

H ¼ H0 þ ae�iEt
1

 ðr; tÞ
�ðr � r0Þ; ð6Þ

where the second term is a complex injecting potential. In this

method, we solve the modified TDSE, Eq. (4), with Eq. (6)

at the source point r0, and solve the TDSE, Eq. (1), with

Eq. (2). We can choose the constant a arbitrarily, because it

only determines the amplitude of the wave function at the

point r0.

2.2 Computational details

The simulations are carried out using a real-space grid.

Thus, the wave function is represented on each grid point and

the derivatives of the wave function are calculated by the

fourth-order finite difference scheme. To avoid artificial

reflections, a complex absorbing potential (CAP) is placed at

the ends of the calculation box. The form of the CAP is the

same as that suggested in Ref. 12. In a one-dimensional

system the calculation box has a 80-Ry length with a grid

spacing of 0.2Ry and the width of the CAP is 20Ry, while

the calculation box is a square of 90 � 90Ry2 with a grid

spacing of 0.3Ry and the width of the CAP is 6.9 Ry in a

two-dimensional system. We choose the initial wave function

to be Gaussian at the source point r0 with a standard

deviation of � ¼ 5Ry. The simulations are carried out until

t ¼ 2000Ry with a time step �t ¼ 0:01Ry. The wave

function and electron density are obtained at the end of the

simulations when the stationary state has been reached.

The transmission coefficients are determined by the

amplitudes of the incident wave and the transmitted wave,

which are calculated from fitting the stationary-state wave

function obtained from the simulations to the plane wave.13)

3. Results and Discussion

3.1 Scattering in one dimension

First, we consider electron scattering by a rectangular

potential barrier in one dimension,

VðxÞ ¼
V0 for 0 < x < d

0 otherwise

�

; ð7Þ

where V0 ¼ 4Ry and d ¼ 2Ry are chosen. The incident-

energy dependent transmission coefficients are calculated and

shown in Fig. 2. The blue solid curve indicates the analytical

solution, while the black dots indicate the calculated values.

The calculated values are in good agreement with the

analytical solution. To check the validity of the present

method, we also simulated electron scattering by a unique

potential,14,15)

VðxÞ ¼ ��2nðn þ 1Þ sech2ð�xÞ; ð8Þ

for which the transmission coefficient is exactly one at any

incident energy, when n is a positive integer. In our

simulation, the parameters are chosen to be n ¼ 1 and � ¼ 1,

and the incident energy is E ¼ 2Ry. The calculated trans-

mission coefficient is T ¼ 1:00001, so the numerical

accuracy in the coefficient is 10�5, indicating that the present

method is reliable for practical use.

3.2 Scattering by a double slit

Here, we calculate the interference patterns of scattered-

electron intensity (IPSEI) by a double-slit barrier. A double-

slit Gedankenexperiment for electrons that demonstrates the

wave–particle duality of electrons was first introduced by

Feynman.16) Feynman remarked that the experiment would

be difficult to conduct because the apparatus would have to

be made on an extremely small scale. However, a double-

slit experiment for electrons were carried out by Jönsson in

196117,18) and Merli et al. in 1976.19) Later, Tonomura et al.

performed a double-slit experiment in 1989,20) which was

selected as one of the most beautiful experiments by

Physics World.21) In the numerical simulation of electron

scattering by a double slit using the WP method for solving

the TDSE, the IPSEI has been calculated.1) Recently, an

extremely interesting result on IPSEI through asymmetric

double-slit experiments was reported, where the electrons

were categorized into three groups: electrons that passed

through only the first slit, electrons passing through only the

other slit, and electrons passing through both slits simulta-

neously.22)

Figure 3 shows the calculation box used in the present

simulations. The black rectangles denote the wall, with d ¼

2:4Ry and W ¼ 5Ry. The CIP is placed at the red point,

which is 15Ry away from the center wall. The IPSEI are

observed at the black half circle of H ¼ 36Ry. The incident

energy is E ¼ 50 eV, which corresponds to a wavelength of

� ¼ 3:3Ry.
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Fig. 2. (Color online) Energy dependence of the transmission coefficient

for a rectangular potential barrier. The blue line indicates the analytical

solution, while the black dots indicate the calculated values.
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The IPSEI for the two double-slits of different gaps D are

shown in Fig. 4. The black dots indicate the results of the

simulations, while the blue solid curves indicate the analytic

form obtained in the optics:23)

IðsÞ ¼ I0
sin

2ðkds=2Þ

ðkds=2Þ2
cos

2
kDs

2

� �

; s ¼ sin �; ð9Þ

where k, d, and θ are the wave number, slit width and angle

defined in Fig. 3, respectively. The simulated results

reproduce the overall features and D dependence of IPSEI

fairly well. We note that the differences in bigger angle in

Figs. 4(a) and 4(b) are caused by the different conditions on

between the derivation of Eq. (9) and our simulation. In the

derivation of the optical formula of Eq. (9), light is diffracted

by the double slits with zero thickness. In our simulation,

however, the electrons are diffracted by the double slits with

finite thickness in which reflections appear. As a result, the

IPSEI are influenced by the slit thickness as discussed by

Endoh et al. in Ref. 24. We actually find the agreement of

IPSEI in bigger angle between the calculated values and

analytical ones in a single-slit configuration by using zero

thickness slit in our simulation. This is not shown in our

paper.

3.3 Aharonov–Bohm effect

We numerically demonstrate the Aharonov–Bohm (AB)

effect, which was theoretically introduced by Aharonov and

Bohm in 195925) and first experimentally observed by

Tonomura et al. in 1986.26) The AB effect dictates that a

physical quantity experienced by electrons is not an electro-

magnetic field but is a vector potential. Since the vector

potential modifies the phase of an electron’s wave function,

the IPSEI by an asymmetric double slit caused by a vector

potential is strongly influenced. Figure 5 shows the distribu-

tions of the vector potential and the corresponding magnetic

field in the double slit used in the simulation. The size of the

system and the incident energy are the same as for the above

simulations with D ¼ 12Ry.

We consider a situation for which the magnetic flux Φ

exists only inside the center wall (blue-colored). A uniform

magnetic field B is determined to satisfy the relation � ¼
R

B � dS, and the vector potential A is similarly determined to

satisfy the relation B ¼ r � A. The vector potential in the

Landau gauge is1)

Aðx; yÞ ¼ ð0; AyðxÞ; 0Þ; ð10Þ

where

CIP

Fig. 3. (Color online) Schematic diagram of the calculation box. L ¼

90Ry for each side of the square box. The black rectangles denote a wall of

thickness W ¼ 5Ry with slits of width d ¼ 2:4Ry. Interference patterns of

the scattered-electron intensity are observed at the black half circle of H ¼

36Ry. The CIP is placed 15Ry away from the wall. The CAP is placed at the

box boundaries, shown by the gray area.
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π/2-π/2 0
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0
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1

π/2-π/2

Fig. 4. (Color online) IPSEI for two double-slits of different gaps D:

(a) D ¼ 6Ry and (b) D ¼ 12Ry. The black dots indicate the results of our

simulation, while the blue solid curves indicate the analytic values calculated

by Eq. (9).

CIP

vector

potential

wall

wall

slit

(a) (b)

Fig. 5. (Color online) (a) Schematic diagram of the calculation box. The

shape and dimensions of the box and the double slit are the same as in Fig. 3.

A magnetic flux exists in the center wall (blue-colored) and the vector

potential exists only inside the upper slit (green-colored). (b) Schematic (left)

and field distributions (right) of the magnetic field and vector potential along

the orange dashed line in (a).
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AyðxÞ ¼
BðD � dÞ : inside the upper slit

0 : in the other area

�

: ð11Þ

Based on this, the magnetic field exists only in the center wall

(blue-colored) and the vector potential exists only inside the

upper slit (green-colored). We use the minimal-coupling

Hamiltonian given by

H0 ¼ �
ħ
2

2m
r þ

ie

ħ
A

� �2

þ VðrÞ; ð12Þ

instead of Eq. (2). Here, e is the absolute value of the

electron’s charge. In this subsection, we use SI units.

The IPSEI for different magnetic fluxes are shown in

Fig. 6. The black dots indicate the results of the simulations,

while the blue solid curves indicate the analytic form:

IðsÞ ¼ I0
sin

2ðkds=2Þ

ðkds=2Þ2
cos

2ð��Þ; s ¼ sin �: ð13Þ

Here, �� is the phase difference of electrons from the two

slits, which is defined as

�� ¼
kDs

2
�
e�

2ħ
: ð14Þ

The IPSEI agree with the analytical values, as clearly shown

in Figs. 6(a) and 6(b). The AB phase shift is π in Fig. 6(a)

and 2	 in Fig. 6(b). Figure 6 indicates that the interaction of

electrons with the vector potential is correctly taken into

account by the stationary electron-wave method. It is noted

that the calculated values (black dots) are asymmetry. The

asymmetry is considered to originate from the numerical

errors that is caused by the asymmetric vector-potential

distribution in the double-slit configuration [Fig. 5(b)]. The

differences in IPSEI between the calculated values and

analytical ones in bigger angle in Figs. 6(a) and 6(b) are due

to the same reason as that discussed in Figs. 4(a) and 4(b).

3.4 Arranged CIPs for double sources

Lastly, we construct a new form of a double source using

multiple CIPs, as shown in Fig. 7 as an alternative to the

conventional type shown in Figs. 3 and 4. We calculate the

IPSEI generated by the double multiple-CIP sources. In this

set up, the center wall is removed and nine CIPs are

uniformly arranged at intervals of 0.3Ry on each side,

corresponding to a slit width of d ¼ 2:4Ry. The IPSEI for the

two double sources with different D are shown in Fig. 8. The

red solid curves indicate the results for the arranged-CIP

method, while the black solid curves are the same as the

black dots in Fig. 4. The agreement of the IPSEI between the

apparently different configurations of Figs. 3 and 7 indicates

that the electron wave function passing through the double

slits can be interpreted as that launched from individual point

sources (CIP here) within each slit, which follows Huygens’s

principle.

It is of interest to note that the present configuration

(double sources with multiple CIPs) is similar to that of an

experiment observing the interference patterns of Bose–

Einstein condensates (BECs).27,28) In this experiment,27) two

separate BECs were first trapped by a double-well potential.

The two BECs expanded immediately after the potential was

switched off and the interference pattern generated by the two

BECs was observed. The overall features of the interference

patterns in Fig. 2 of Ref. 27 are similar to those of Fig. 8

of this paper. Since the initial phases of the two BECs are

not necessarily the same and the interference pattern was

changed by the phase difference, it is useful to simulate

beforehand the phase-difference dependent interference

pattern of the BECs. We can simulate the situation easily

by introducing a phase shift in the Hamiltonian,

H ¼ H0 þ ae�iEt
X

9

i¼1

�ðr � riÞ

 ðr; tÞ
þ ae�iðEt�
Þ

X

9

j¼1

�ðr � rjÞ

 ðr; tÞ
;

ð15Þ
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Fig. 6. (Color online) IPSEI for different magnetic fluxes Φ: (a) � ¼ h=2e

and (b) � ¼ h=e. The black dots indicate the results of our simulation, while

the blue solid curve indicates the analytic values calculated from Eq. (13).

CIPs

Fig. 7. (Color online) Schematic diagram of the calculation box. The

shape and dimensions of the box are the same as in Fig. 3. The CIPs are

arranged in a line, illustrated as red points, instead of two slits.
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where γ, ri, and rj are the phase shift and the position of the

CIPs inside the lower slit and the upper slit, respectively. The

red solid curve indicates the result for 
 ¼ 0, which is the

same as the red solid curve in Fig. 8(b), while the red dashed

curve indicates the result for 
 ¼ 2

5
	. The (fractional) phase

shift effect on the interference patterns is clearly demon-

strated by Eq. (15), as seen in Fig. 9. Therefore, the present

technique, which enables control of the phase difference

between two independent sources, also contributes toward

explaining the detailed interference patterns of BECs

observed in experiments.

4. Conclusion

We simulated stationary-state electron scattering in one

dimension and in a double-slit system by solving the TDSE

with a CIP. The transmission coefficients through one-

dimensional potentials and the IPSEI caused by double slits

show good agreement with analytical results. The interaction

between electrons and the vector potential is properly taken

into account in the AB effect simulation. Also, from the

simulation of the arranged-CIP method, we predict that this

new method can be applied to BEC interference simulations.

Since the present method can be straightforwardly

extended to TDDFT, we can simulate field electron emission,

photo-induced electron emission, secondary electron emis-

sion, thermionic emission, and so on.
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Fig. 8. (Color online) IPSEI for different distances between the two line

CIP sources. The red solid curves indicate the results for the arranged CIPs

method, while the black curves are the same as the black dots in Fig. 4.
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