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Breast Cancer Detection With Low-Dimensional
Ordered Orthogonal Projection in Terahertz Imaging

Tanny Chavez
Jingxian Wu

Abstract—This article proposes a new dimension reduction al-
gorithm based on low-dimensional ordered orthogonal projection,
which is used for cancer detection with terahertz (THz) images
of freshly excised human breast cancer tissues. A THz image
can be represented by a data cube with each pixel containing a
high-dimensional spectrum vector covering several THz frequen-
cies, where each frequency represents a different dimension in
the vector. The proposed algorithm projects the high-dimensional
spectrum vector of each pixel within the THz image into a low-
dimensional subspace that contains the majority of the unique
features embedded in the image. The low-dimensional subspace
is constructed by sequentially identifying its orthonormal basis
vectors, such that each newly chosen basis vector represents the
most unique information not contained by existing basis vectors. A
multivariate Gaussian mixture model is used to represent the statis-
tical distributions of the low-dimensional feature vectors obtained
from the proposed dimension reduction algorithm. The model
parameters are iteratively learned by using unsupervised learning
methods, such as Markov chain Monte Carlo or expectation max-
imization, and the results are used to classify the various regions
within a tumor sample. Experiment results demonstrate that the
proposed method achieves apparent performance improvement
in human breast cancer tissue over existing approaches such as
one-dimensional Markov chain Monte Carlo. The results confirm
that the dimension reduction algorithm presented in this article is a
promising technique for breast cancer detection with THz images,
and the classification results present a good correlation with respect
to the histopathology results of the analyzed samples.

Index Terms—Breast cancer, expectation maximization
(EM), Gaussian mixture model (GMM), Gibbs sampling,
low-dimensional ordered orthogonal projection (LOOP), terahertz
(THz).

1. INTRODUCTION

REAST CANCER is one of the most common types of
cancer among women with over two million new cases in
2018 [1]. Breast conserving surgery, also known as lumpectomy,
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is a commonly suggested treatment option when breast cancer
is detected at an early stage. The aim of lumpectomy is to
excise all the cancerous tissues surrounded by a small margin of
healthy breast tissue [2]. Currently, the success of lumpectomy
is determined through histopathology analysis of the excised
tissue, which may take around ten days to process. As a result,
one in five patients has to go under a second surgery to extract
remaining cancerous tissues [3]. This necessitates the design of
new technologies that can examine the margins of the freshly
excised breast cancer tissue in the operation room while the
surgery is still ongoing. In this context, terahertz (THz) imaging
has shown promising results for tissue classification within
freshly excised breast cancer tumors [4]—[8].

THz imaging has been used for various medical applications,
such as the evaluation of brain injuries [9], colon cancer in-
spection [10], diagnosis of oral lichen planus [11], liver cancer
identification [12], [13], breast cancer detection [4]-[8], ctc.
Different approaches are adopted by these works to identify
the regions of interests from the rest of the sample, and the
classifications are achieved by utilizing the distinguishing fea-
tures of differentregions embedded in THz signals. For instance,
the electromagnetic propagation parameters, such as absorption
coefficient, complex permittivity, refractive index, and dielectric
loss tangent of the cells, are used as features for the detector of
colon cancer [10]. Many studies employ statistical learning and
machine learning techniques to achieve THz image segmenta-
tion. An unsupervised k-means clustering method with ranked
sct sampling is proposed in [14] for the segmentation of THz
images. Supervised learning techniques in THz imaging include
support vector machines (SVMs) [11]-[13], [15], probabilistic
neural networks [12], [13], and deep neural networks [16].
While machine learning techniques have proven to achieve good
correlation with respect to their pathology counterparts, the need
for a large amount of training samples make their applications
complicated and occasionally inconsistent.

A THz image can be represented by a data cube with each
pixel containing a high-dimensional spectrum vector covering
several THz frequencies, where each frequency represents a
different dimension in the vector. The high-dimensional vector
per pixel contains both common features that are shared by all
regions within a tissue sample, and unique features that can
be used to distinguish different regions. Thus, it is desirable
to extract the unique features embedded in the THz signals to
reduce complexity and improve accuracy. In [5] and [8], the
high-dimensional THz waveform per pixel is summarized into
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a scalar, such as the peak of the reflected time-domain signal or
the energy over a certain frequency band. The one-dimensional
(1-D) feature extractions used in [5] and [8] show good perfor-
mance for tumor samples with two regions, but its performance
drops considerably when there are three or more regions in the
sample tissue. While some studies summarize the information
per pixel using a pre-established characteristic [10], the usage of
dimension reduction algorithms has gained interest due to their
systematic information extraction capabilities. Some commonly
used dimension reduction algorithms are principal component
analysis (PCA) [11], [12], [15], Isomap [12], [13], and linear
preserving projections [12].

In this article, we propose a new low-dimensional ordered or-
thogonal projection (LOOP) algorithm, which is used to extract
low-dimensional features embedded in the high-dimensional
THz waveform. The low-dimensional feature extraction is
achieved by projecting the original THz signal into a low-
dimensional subspace containing the majority of the salient
information necessary for classification. The low-dimensional
subspace is constructed by sequentially identifying its orthonor-
mal basis vectors with a specific order, such that each new basis
vector is chosen as the one that contains the most amount of
unique information not represented by all previous basis vectors.
Such an approach can ensure that all spectrum vectors within the
dataset can be represented by the basis vectors with minimum
information loss; thus, the majority of the useful information in
the original THz signal is captured by the constructed subspace.
Unlike single-dimensional feature extraction methods that are
limited by the selection of one physical parameter of the THz
signal [5], [8], the LOOP algorithm extracts the most significant
information from the waveform as a low-dimensional vector,
which represents a combination of all important features. The
clements in the low-dimensional vector do not correspond to a
specific physical feature, and they are usually combinations of
several important physical features. While an early version of
this dimension reduction algorithm was briefly discussed in [17],
the LOOP algorithm presented in this article explores a new
ordering technique that differs significantly from the projection
method in [17]. In addition, the work presented in [17] was
focused on murine samples, while the results presented in this
article focus on human breast tumor samples.

The low-dimensional feature vector is analyzed and modeled
by using a multivariate Gaussian mixture model (GMM) [18],
with each component in the GMM corresponding to onc pos-
sible tissue type within the sample. The prevalence of different
tissue types within a sample is modeled by using the weight
or prior probability for each component in the GMM. Such a
probabilistic approach can capture the statistical nature of the
THz signal and provide important reliability information that
is not available in deterministic approaches. Two unsupervised
learning algorithms, Markov chain Monte Carlo (MCMC) [19]
and expectation maximization (EM) [20], are used to learn
the parameters of the GMM with the low-dimensional feature
vectors. Given that the acquisition of breast cancer samples is
limited and laborious, in particular for fresh human samples,
unsupervised learning algorithms are preferred due to the lack
of a training phase. The results are used to classify different

regions within sample tissues. Unlike existing works that focus
on the binary classification of a tissue (cancerous versus healthy
tissue) [12], this article focuses on the identification of different
regions, such as collagen, fibro, and fat, within heterogeneous
breast cancer samples. The proposed LOOP algorithm with
unsupervised learning is applied to THz imaging of freshly
excised human breast cancer tissue with three regions: cancer,
collagen or fibro, and fat. Experiment results demonstrated that
the proposed LOOP algorithm is a promising technique for
cancer detection with THz images, and the classification results
present a good correlation with respect to results obtained from
histopathology analysis.

The rest of this article is organized as follows. Section II
presents the experiment setup and data collection process. Sec-
tion IIT introduces the problem formulation and notations used
in this article. Details of the LOOP algorithm are explained in
Section IV. Section V defines the GMM and the unsupervised
learning algorithms based on the low-dimensional vector ob-
tained by LOOP. Section VI shows the experimental results.
Section VII concludes this article.

II. EXPERIMENT SETUP

The tissue samples handled in this article follow the Environ-
mental Health and Safety Protocol of the University of Arkansas.
The experimental work done in this article makes use of human
breast cancer tissues #ND10898, ND15526, and ND15588 ob-
tained from the National Disease Research Interchange within
24 h of excision. These samples were obtained via left breast
masectomy from a 59-year-old patient diagnosed with ITI/III
grade infiltrating dual carcinoma (IDC), radical masectomy from
a 90-year-old patient with III/IIl grade IDC, and masectomy
from a 63-year-old patient with II/III grade IDC, respectively. On
receiving the tissue in the THz laboratory, it was removed from
the Dulbecco’s Modified Eagle Medium (DMEM) solution [see
Fig. 1(a)]. After removing excess water using filter paper [see
Fig. 1(b)], the tissue was positioned between two polystyrene
plates and pressed softly to make the imaging surface as flat as
possible, while also maintaining the original shape of the tissue
[see Fig. 1(c)]. This arrangement of the tissue was then mounted
on the scanner stage for the reflection imaging procedure, as
shown in Fig. 1(d).

The reflection measurements were taken by using a TPS
Spectra 3000 pulsed THz imaging and spectroscopy system
(from TeraView Ltd., U.K.). The diagram of the system is shown
in Fig. 2(a). The system uses a Ti:Sapphire laser that produces
an 800-nm pulse to excite the THz emitter and the THz receiver.
Upon excitation, the THz emitter generates a time-domain THz
pulse, as shown in Fig. 2(b). The Fourier transform of the pulse,
as shown in Fig. 2(c), demonstrates a power spectrum of pulse
ranging from 0.1 to 4 THz. This emitted pulse is made incident
on the sample through a set of mirrors, and the reflected pulse
from the sample is directed toward the THz receiver [8]. In
the reflection mode measurements, both the THz emitter and
the detector are offset 30° with respect to the normal direction
on the sample. To obtain the THz-reflected signal at each pixel
on the tissue to produce an image, the scanning stage was set to
move in increments of 200-um step size using a stepper motor.
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Sample preparation process. (a) Tissue immersed in DMEM solution. (b) Removal of excess water in tissue using filter paper. (c) Tissue positioned in a

sandwich between two polystyrene plates. (d) Positioning the tissue sandwich on the scanner stage for imaging.
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Fig. 2. (a) THz system diagram for reflection imaging. (b) Incident time-
domain THz pulse. (c) Frequency spectrum of THz pulse in (b).

The total time span of the imaging process was ~30—40 min.
During this time, the samples could get slightly dried on the sur-
face; however, the pathologist did not report any damage at the
cellular level. For imaging, we focus the THz beam on the tissue
surface and conduct two scans; the first one is a quick line scan
using 400 pm to assure the flat level of the tissue based on the
B-scan (cross section), and the second scan is for the final image
in the zy plane taken at 200-pm step size. Upon finishing the
scanning process, the tissue was immersed in formalin solution
and shipped to the Oklahoma Animal Disease Diagnostic Lab-
oratory for the pathology process. The histopathology process
involves fixing the tissue in formalin and embedding it in paraffin
blocks. Furthermore, from the formalin fixed paraffin embed-
ded (FFPE) tissue blocks, two ~3—4-pm-thick slices were cut,
stained with hematoxylin and eosin, and fixed on the glass slides
to produce pathology images using low-power microscope. For
assessing the images of the freshly excised tumor and the FFPE
tissue block, the THz images are compared with the pathology
images, as will be discussed in Section VL.

III. PROBLEM FORMULATION

The problem formulation and notations are described in this
section. Let the tensor W € RN *N2xT' represent the THz
image of size N1 x No. Each pixel Wy, y, » corresponds to the
reflected time-domain signal, which contains 7" time samples at
the output of the THz system. The subscriptsn; € {1,... , Ny}
and ng € {1,..., Ny} represent the coordinates of the pixel
along the x and y axes, respectively.

For simplicity, the tensor WV is unfolded into a matrix W =
[wy,...,wy] € RT*N with N = N; x Na, such that each
column of W represents the 7' time samples of one pixel of

the THz image. Once unfolded, the algorithm computes the
complex spectrum of the signal per pixel in the frequency domain
by using fast Fourier transform (FFT). The frequency-domain
representation of the ith pixel is y, = F(w;), where F(-) is the
FFT operator. Since w; is real, the FFT of w, is even-symmetric.
Thus, the size of y; is F' = % Define the frequency-domain THz
image matrix as D = [dy, ... ,dy] € CF*N.

In our experiment setup, each pixel contains N = 1024 time
samples with a sampling period 7 = 0.026 ps. Correspond-
ingly, the frequency-domain representation of each pixel has 512
frequency samples. Theoretically, the frequency span of each
pixel is QLTO = 18.97 THz, with the frequency-domain resolu-
tion being Fj = ﬁ = 37.05 GHz. Considering the physical
limitations of the THz system, the frequency-domain signal of
each pixel is limited to [0.1, 4] THz, which corresponds to the
system’s operation range. Therefore, the number of frequency
samples per pixel is reduced to F' = 106.

Either the original complex THz spectrum or its amplitude
can be used to classify the various regions inside a tissue sam-
ple. The subsequent analysis is applicable to both the complex
spectrum and the amplitude spectrum. To unify notations, define
anew spectrum matrix Y = [y, ..., yn] to represent both the
complex and amplitude spectra. For analysis of the complex
spectrum, we have Y = D; for analysis of the amplitude spec-
trum, Y is obtained by replacing all elements in DD with their
respective amplitudes.

We will perform cancer detection by utilizing the frequency-
domain THz matrix Y, such that each pixel can be classified into
one category from a finite set of tissue types, such as cancer, fat,
muscle, etc. The information of the ith pixel is represented by
the frequency-domain vector y,, which has a relatively large
dimension of F' = 106. The frequency-domain vector y, con-
tains both common features that are shared by multiple tissue
types and unique features that can be used to distinguish different
types of tissues. Performing classification directly over y; means
that the algorithm needs to process both common features and
unique features. This will incur unnecessarily high computation
complexity, and the overall performance of the classifier will be
negatively affected by the Hughes phenomenon [21].

It is thus desirable to perform low-dimensional feature ex-
traction before classification. With low-dimensional feature ex-
traction, the high-dimensional vector y; can be mapped to a
low-dimensional feature domain that contains the majority of
the salient information of the unique features. Such an ap-
proach can significantly improve the classification accuracy and
efficiency.
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IV. LOW-DIMENSIONAL ORDERED ORTHOGONAL PROJECTION

In this section, we propose a LOOP algorithm to achieve low-
dimensional feature extraction from the frequency-domain THz
matrix Y.

The main objective of the algorithm is to identify a low-
dimensional subspace of the space spanned by the columns
of Y, and the subspace should contain the majority of the
salient information of the unique features embedded in Y.
Once the subspace is identified, the frequency-domain vector
of each pixel can then be projected into the subspace to achieve
low-dimensional feature extraction.

The subspace can be described by an orthonormal basis
Br = {by,...,br}, where L < F is the dimension of the
subspace. The LOOP algorithm identifies B by using a modified
Gram-Schmidt (GS) process [22]. The conventional GS process
sequentially identifies a set of orthonormal vectors that form the
basis of the space spanned by a set of vectors. The sequential
procedure of the conventional GS is performed in an arbitrary
order without considering the features embedded in the vectors.
The LOOP algorithm improves the GS process by ordering the
sequentially identified orthonormal basis vectors, such that most
of the unique features embedded in Y are contained in the
subspace spanned by the first L orthonormal basis vectors.

To achieve this goal, the LOOP algorithm calculates each
new orthonormal basis vector by using the pixel that is least
represented by all previous basis vectors. That is, each new
orthonormal basis vector is chosen as the one that contains
the most amount of unique information not represented by all
previous basis vectors. Following such an ordered sequential
process, most of the unique information embedded in Y is
captured by the first few basis vectors. Details of the LOOP
algorithm are described as follows.

In the LOOP algorithm, the first orthonormal basis vector is
calculated by normalizing the average vector of all pixels as

1<

b= oo
9l

where y = & ZZ 1Y;» and ||[g]| = /gy is the norm of g,
with 7 being the vector conjugate transpose operator.

The subsequent orthonormal basis vectors are calculated in
a sequential manner. Assume that the first [ orthonormal ba-
sis vectors have been identified, and they are represented as
By = [by,...,b]. The (I 4 1)th basis vector will be calculated
by using the pixel that is least represented by B;. How well a
vector is represented in a subspace can be measured by using the
angle between the vector and its projection in the subspace. A
right angle means the subspace does not contain any information
of the vector, and a 0° angle means the vector can be fully
represented by the subspace.

The projection of the vector y; onto a subspace spanned by
BB; can be calculated as

l
Py (y;) = (i,b )
Jj=1

(1

and {y;,by) =
and b7

yZH b; is the inner product between vectors y;

Denote the angle between the two vectors y; and P, (y (y
0i1 = Z(Y;, Py, (y;)); then, we have
<yi» PBL (yz)>
il - 112, ()l

Based on the above notations, we can identify the pixel that
is least represented by the subspace B; as

;) as

cos(b; 1) = 3)

w41 = argmin | cos(6; ;)| 4)
Y. €N
where ) contains all the y; vectors that are not in the subspace
spanned by 5;.
Once the vector u;41 is identified, the (I + 1)th basis vector,
b, 1, can then be calculated by following the GS procedure:

Vi1 = U — By (W) ®)
Vi1
by = . (6)
T o]

The procedure is repeated until | min; cos(6;;)| is less than
a predefined threshold or a predefined dimension L is reached.
Once the orthonormal basis By, is identified, we can project
each pixel into the subspace spanned by 3, to achieve a low-
dimensional representation of the THz image. Define By =
[by,...,br] € CF*L; then, the low-dimensional representation
of y, can be expressed as

y,=Bp x z;, fori=1,...,N. @)

The output of the LOOP algorithm is the low-dimensional
representation of the THz image in the feature subspace as
Z =z1,...,zy] € CE*N and it can also be represented in
a compact form as

Y =B xZ ®)

where Z can be determined using a least-squares approach.

V. UNSUPERVISED LEARNING WITH THE GMM

In this section, we present two unsupervised learning methods
to classify the pixels based on the low-dimensional feature
matrix Z. Both methods are developed by using GMMs.

In the complex spectrum analysis, the elements in Z are
complex numbers. To simplify notation, define a real-valued
matrix by separating the real and imaginary part of Z as [23]

X =[R(Z"),3(Z2")" e RPN, 9)

On the other hand, for the amplitude spectrum analysis, all ele-
ments in Z are real numbers, and we define X = Z € REXN,

The ith column of X is denoted by x;. In the GMM, it is
assumed that the low-dimensional feature vector x; follows a
multimodal Gaussian distribution, with each mode correspond-
ing to a specific region within the sample tissue. The GMM can
be represented as

K
) = > arg(@ilpe, k)

k=1

f (@il [, Sk, arlieq (10)

where K is the number of categories in the sample tissue,
g 1s the prior probability of a pixel in the kth category, and
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g(zi|pr, i) ~ N (pr, i) is the Gaussian probability density
function with mean g, and covariance matrix 3j.

Define a set of latent variables, ¢; € {1,... , K}, which are
used to indicate the classification result of the ¢th pixel, for i =
1,...,N.Thatis, (; = k indicates that the ith pixel belongs to
the kth category. It is assumed that the latent variable ; follows a
multinomial distribution with prior probability 7(¢; = k) = g,
fork=1,...,K.

The optimum classifier is the maximum a posteriori proba-
bility (MAP) detector, which can then be represented as

(= argmax Pr(¢; = k| X).
ke{l,... . K}

(1)

The direct calculation of the posterior probability is numer-
ically challenging due to the high dimension of the variables
and parameters. Two unsupervised learning methods, MCMC
and EM, are adopted by this article to obtain the classification
results.

A. Markov Chain Monte Carlo

The posterior probability Pr(¢; = k|X') can be numerically
estimated by using MCMC with Gibbs sampling. Gibbs sam-
pling iteratively takes Monte Carlo samples based on the
full conditional distributions of all variables in the mixture
model [24]. The samples can be used to obtain an estimate of
the posterior probability.

Before starting the iterative process of Gibbs sampling, we
need to initialize all the variables within the model, including q,
Wi, Xp,and ¢ = [C1, ... ,(n]. All variables are first initialized
by applying K-means classification on the data. Denote the
results of K-means classification as CZ-(O) = k. Define S}go) =

{i: CZ(O) = k} as the set of pixels classified into the kth category,
and n\”) = |8\ is the cardinality of S\”’. The initial values of
the variables can then be calculated as

n®

ql(CO):T’ kzl,,K
0 _ 1 g
WY =5 Y kLK

kst

1
E(AO):
i n,io)—l
T
X Z (mi—ug))(wi—u?)) , k=1,... K.
ies”

Under the Bayesian setting, the unknown parameters are random
with prior distributions

7(q) = Dir(ay)
(k) = N (tok, o)
(X)) = InvWish, (¥, v)

where Dir and InvWish represent the Dirichlet and inverse
Wishart distributions, respectively; ag, pog, 2ok, ¥, and v
are the hyperparameters of the distributions. Since there is

no prior knowledge about these distributions, we assume that
por =0p, Yo =1, ¥ =1p/, and v = L' + 1 [25], where
L' corresponds to L and 2L for the amplitude and complex
spectrum analysis, respectively.

Given these priors, the posterior full conditional distributions
of these variables can be calculated as follows [19].

1) Posterior distribution of g

qr ~ Dir(ag + nyg) (12)

where ny is the number of pixels classified into the kth
category in the previous iteration.
2) Posterior distribution of 3

3 ~ InvWish, (S + ¥, n;, + v) (13)

where S =3, o (T — px)(Ti — i)’ and Sy is the set
of pixels classified into the kth category in the previous
iteration.

3) Posterior distribution of s,

Hi ~ N(N’p? Ep) (14)
Where 3, = (S + 71;623121)71 and  p, =
N BT i .
(Bop +2L") (Bog ok + B Y s, )
4) Posterior distribution of (;
Pr (G = ke, i S, anlf )
g (@il e, Bn, G = k) a5s)

- K
Ep:l Q,ng(mz“l’pa 2])» G = p)

The Monte Carlo samples of all variables can be iteratively
drawn from the above full conditional distributions. The samples
are used to numerically approximate the posterior distribution
of (; as

1 &

Pr(¢i = k| X) = lim - ;11((}”) =k  (16)
where Z(a) = 1 if @ = TRUE and 0 otherwise. MAP detection
can then be applied with (16) to perform classification. It should
be noted that, before applying the MCMC algorithm, the data
vector X might need to be scaled up to avoid numerical underflow
during the iteration process. The scaling factor depends on the
data values and the precision of the floating number represen-
tation used in the computer. In this article, the vectors X are
scaled by a factor of 15 before applying the amplitude MCMC
algorithm to fresh samples.

B. Expectation Maximization

The posterior distribution of the latent variable ¢ can be
alternatively estimated with the EM approach. In this method,
we iteratively determine the estimators of the parameters in-
volved in the GMM, 6 = [uk, Ei, gx]i_,, that maximize its
log-likelihood function, £(0) = log p(X|0), as

N K
0(0) => log (qug(:lziKi = k,@)). (17)
i=1 k=1
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It is difficult to directly maximize the log-likelihood function
£(0) due to the logarithm of summation. The EM algorithm
iteratively maximizes the log-likelihood function by employing
an expectation step (E-step) and maximization step (M-step)
[26].

1) E-Step: In the E-step of the mth iteration, the algorithm
first calculates the posterior probability of ; by using (15), and
the result is denoted as

(m) _

) py (g— — k\xi,e)(m)) (18)
where (™) [Ni(cm), 2,(;"), q,(;n)],{?:1 are the model parameters

from the mth iteration.

2) M-Step: In the M-step, the algorithm maximizes the con-
ditional expectation of the joint log-likelihood function of y and
(s, which can be expressed as

N
=D Egjom [logp (@i.Gil0)]  (19)

i=1

Q(e10™)

where the expectation is performed with respect to the posterior
distribution of Pr(¢; = k|6™).
Calculating the conditional expectation in (19) yields

(m) 1
Qol0 Zn [togqy, — 5logl2n ]
1 n K
—522’7(7”) — )" (@i — )
i=1 k=1
(20)
where
N
=3 5. @1
i=1

Maximizing Q(0|0")) with respect to 0 yields the following
parameter estimators.
1) Estimator of ¢y

1 U(m
ql(Cer ) _ g

e (22)
2) Estimator of gy
| X
pt Y = =3 (23)
M =
3) Estimator of 3,
m+1) 1 . m+1 m1)y
== p” Yo @i — ) (@)
i=1
Z (24)

The convergence of the algorithm is guaranteed because the
M-step will always increase the log-likelihood function £(8)
[26].

VI. EXPERIMENTAL RESULTS

The performance of the newly proposed LOOP algorithm with
unsupervised learning is quantitatively evaluated in this section

with THz images of freshly excised breast cancer tissue. All the
source codes used for this analysis are available in [27].

The classification results from THz images of freshly excised
tissues are compared to histopathology results from the corre-
sponding FFPE tissues. Since the FFPE samples are obtained
by fixing fresh tissue samples in paraffin, there is usually a
significant mismatch between the shapes of the FFPE and fresh
tissues. Thus, a direct pixel-by-pixel comparison between the
results from the THz image and the histopathology results is not
possible.

To enable quantitative evaluations of the results, we employ
the image morphing algorithm [5] on the pathology results to
create a reference image with the same size and resolution
as the THz image. The morphed pathology image is used to
represent the real classification of each pixel according to the
pathology report. Such a morphing method enables the quanti-
tative evaluation of the detection results through pixel-by-pixel
comparisons between the detection results and the morphed
pathology results. This comparison is summarized in a receiver
operating characteristic (ROC) curve, which is a plot showing
the true detection rate as a function of the false detection rate.
Since the results of the statistical analysis are represented as the
probability of each pixel belonging to different regions, we can
adjust the probability threshold for the detection of a certain
region to obtain different points on the ROC curve.

In the proposed LOOP algorithm, each pixel is summarized
as a low-dimensional vector extracted from the THz spectrum.
During the analysis, the LOOP algorithm was applied to both
the amplitude spectrum and the complex spectrum of the THz
image, respectively. For each tissue sample, results from various
sizes of the low-dimensional vectors obtained from the LOOP
algorithm are compared, and the one that yields the best per-
formance is presented. In addition, we will compare the perfor-
mance of the LOOP algorithm with several existing algorithms,
including the 1-D MCMC algorithm that summarizes each pixel
into a 1-D scalar [5], [8], and the PCA algorithm [28]. It is
important to mention that the 1-D MCMC algorithm classifies
the regions according to the spectral power of the frequency-
domain signal per pixel for fresh tissue, and the peak reflection
of the time-domain signal for block tissue, respectively [8]. All
detection algorithms are applied to three different human breast
tumor samples, and the corresponding results are given in this
section.

A. Results From Freshly Excised Samples

We first present the results obtained by analyzing three hu-
man breast cancer tissue samples: ND10898, ND15526, and
ND15588, with dimensions 15 x 15mm, 8.7 X 13mm, and
8 x 15.3 mm, respectively. We receive fresh tissue of thickness
ranging from 3 to 4 mm. As reported in [7], the tissue have
high-absorption coefficient ranging from ~100 to 700 cm !
in the frequency range of 0.1-3.5 THz. Thus, the multiple
reflection interference inside the tissue becomes insignificant.
For example, at 0.5 THz, the signal penetration depth is ~276 ym
in cancer [29]; therefore, the reflected signal from tissue of
less than ~2-mm thickness could be adversely affected by the
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Fig. 3.

Sample ND10898 fresh. (a) THz image. (b) Pathology image. (c) Morphed pathology. (d) 1D MCMC model. (e) 2-D amplitude MCMC model. (f) 2-D

amplitude EM model. (g) 4-D complex MCMC model. (h) 4-D complex EM model.

multiple reflection. These samples contain three regions: cancer,
collagen or fibro, and fat.

Fig. 3(a) shows the THz image collected from sample
ND10898 while it was still fresh, where each pixel represents
the power spectra of its THz waveform [8]. Fig. 3(b) represents
the histopathology results obtained by analyzing the FFPE tissue
sample fixed in paratfin, which corresponds to the gold standard
within cancer detection. Fig. 3(c) shows the morphed pathology
mask obtained by employing the morphing algorithm [5]. The
morphed pathology mask is used as a benchmark for the THz im-
age classification results. The white spots within all the images
in Fig. 3 represent air bubbles (artifact from the data collection
process) that were removed before further processing to avoid
data contamination.

The classification results of the THz image obtained by using
the 1-D MCMC approach [5], [8], 4-D MCMC with amplitude
spectrum, 2-D EM with amplitude spectrum, 4-D MCMC with
complex spectrum, and 4-D EM with complex spectrum are
presented in Fig. 3(d)—(h), respectively. The 2-D and 4-D results
are obtained by using the proposed LOOP algorithm. By visually
inspecting the classification models results side-by-side, we can
observe that the fibro detection in the 1-D MCMC approach is the
best among all the models at the cost of a large misclassification
of cancer. On the other hand, the correlation among the cancer
and fat regions is improved in the 2-D and 4-D models presented
in Fig. 3(e)—(h) when compared to the morphed pathology results
in Fig. 3(c).

To quantify the performance of each model, the corresponding
ROC curves of the classification results of sample ND10898
fresh are presented in Fig. 4. The ROC curves are obtained
by performing pixel-by-pixel comparisons between the de-
tection results and the morphed pathology results. The areas

underneath the ROC curves are listed in Table I. All results ob-
tained with the proposed LOOP algorithm perform significantly
better than the 1-D MCMC approach [8] for both cancer and
fat, while the detection of fibro is better in 1-D MCMC. The
results from 2-D feature vectors achieve larger cancer ROC areas
(~60%) than those from the 1-D approach (~50%). Hence, we
can state that the analysis of higher dimensional feature vectors
significantly improves the detection accuracy. In terms of areas
underneath the ROC curves, 2-D amplitude EM achieves the
best performance for cancer and fat detection.

Similarly, Fig. 5(a) represents the THz image collected from
sample ND15526 fresh. Fig. 5(b) and (c) correspond to the origi-
nal and morphed histopathology results. Fig. 5(d)—(h) shows the
classification results for 1-D MCMC, 2-D amplitude MCMC,
2-D amplitude EM, 3-D complex MCMC, and 6-D complex EM,
respectively. Visually, 1-D MCMC, 2-D amplitude MCMC, and
3-D complex MCMC present similar classification areas with
good cancer correlation, but with poor collagen detection. On
the contrary, 2-D amplitude EM and 6-D complex EM present
a better collagen detection at the cost of large cancer regions
misclassification.

Fig. 6 presents the ROC curves for sample ND15526
fresh and their areas under the ROC curves are presented in
Table I. We can observe that the detection of cancer and fat is
comparable among the 1D MCMC approach and most of the
higher dimensional models, with 1-D MCMC being slightly
better. Overall the best classification results are obtained by the
6-D complex EM approach. This method achieved areas under
the ROC of 77% or above for all the regions presented in this
sample.

Fig. 7(a) shows the THz image collected from sample
ND15588 while it was still fresh. Fig. 7(b) represents the
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Fig. 4.

ROC curves for sample ND10898 fresh.

AREAS UNDER THE ROC CURVES

False Detection Rate Fibro

TABLE I

False Detection Rate Fat
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ND10898 Fresh (15 X 15 mm)
Region 1D MCMC | 2D amplitude MCMC 2D amplitude EM | 4D complex MCMC | 4D complex EM
Cancer 0.5676 0.6130 0.6101 0.5631 0.5934
Fibro 0.6682 0.5370 0.5663 0.4723 0.5528
Fat 0.6530 0.7885 0.7963 0.7571 0.7971
ND15526 Fresh (8.7 x 14 mm)
Region 1D MCMC | 2D amplitude MCMC 2D amplitude EM | 3D complex MCMC 6D complex EM
Cancer 0.7468 0.7122 0.7353 0.7011 0.7750
Collagen 0.6458 0.5576 0.6027 0.6008 0.7705
Fat 0.8390 0.8215 0.8247 0.8256 0.8327
ND15588 Fresh (8 x 15.3 mm)
Region 1D MCMC | 2D amplitude MCMC 2D amplitude EM | 3D complex MCMC | 4D complex EM
Cancer 0.6338 0.7435 0.7469 0.7481 0.7083
Collagen 0.6521 0.7338 0.7412 0.7286 0.7451
Fat 0.7372 0.7619 0.7685 0.7941 0.7759
ND15588 Block (7.5 x 14.9 mm)
Region 1D MCMC 6D amplitude MCMC 6D amplitude EM | 2D complex MCMC | 2D complex EM
Cancer 0.7305 0.7997 0.7977 0.6735 0.6752
Collagen 0.4843 0.6366 0.6280 0.6052 0.6668
Fat 0.8743 0.7999 0.7674 0.7109 0.7588

histopathology results obtained by analyzing the correspond-
ing FFPE tissue sample fixed in paraffin. Fig. 7(c) shows the
morphed pathology mask obtained by employing the morphing
algorithm [5]. The classification results obtained by using the
1-D MCMC approach, 4-D MCMC with amplitude spectrum,
2-D EM with amplitude spectrum, 4-D MCMC with complex
spectrum, and 4-D EM with complex spectrum are presented in
Fig. 7(d)—(h), respectively. For the 1-D MCMC approach, large
portions of the cancer regions are misclassified as collagen. For
the 2-D and 4-D results obtained with amplitude spectrum, there
is a slight improvement in the detection of the cancer region
for both MCMC and EM algorithms. For the high-dimensional
results obtained from the complex spectrum, the detection of
cancer and fat slightly improves when compared to their ampli-
tude counterparts, but at the cost of a higher misclassification
of collagen. It is important to mention that the surrounding
cancer zones in Fig. 7(e)—(h) that do not correlate with the
histopathology results correspond to the misclassification of the
detection algorithms.

The corresponding ROC curves of the classification results
of sample ND15588 fresh are presented in Fig. 8. The areas
underneath the ROC curves are listed in Table I. All results
obtained with the proposed LOOP algorithm perform consid-
erably better than the 1-D MCMC approach [8]. The results
from 2-D, 3-D, and 4-D feature vectors achieve larger ROC
areas (~ 70%) than those from the 1-D approach (~ 60%).
Thus, we can conclude that increasing the dimension of the
feature vector by just one dimension over the 1-D approach can
achieve apparent performance improvement. In terms of areas
underneath the ROC curves, 2-D amplitude EM achieves the
best performance for all the regions.

B. Results From FFPE Block Sample

We also analyze the classification results obtained by using
the THz image of FFPE block sample, where the image is
obtained by scanning the paraffin embedded block sample. The
THz image of sample ND15588 block is shown in Fig. 9(a),
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Fig. 5.

Sample ND15526 fresh. (a) THz image. (b) Pathology image. (c) Morphed pathology. (d) 1-D MCMC model. (e) 2-D amplitude MCMC model. (f) 2-D

amplitude EM model. (g) 3-D complex MCMC model. (h) 6-D complex EM model.
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Fig. 6. ROC curves for sample ND15526 fresh.

where each pixel is represented by using the peak reflection of
the THz waveform [8]. The dimensions of this block sample
are 7.5 x 14.9 mm and its thickness is ~3—4 mm. As explained
in [8], the block tissue is sensitive to multiple reflections in
the frequency domain due to its low absorbance; hence, the
power spectra arc not utilized for this type of samples in the
1-D case. For imaging the dehydrated tissue block (FFPE),
the time-domain peak reflection from each pixel on the surface
is measured. These peaks are not affected by the multiple re-
flections due to the difference in arrival times. Even though this
set of results corresponds to the same sample, as presented in
Fig. 7(a), this image was collected from scanning the paraffin
block tissue obtained after the pathology process. As a result,

False Detection Rate Collagen

False Detection Rate Fat

the THz image of FFPE block tissue is different from that of its
fresh counterpart shown in Fig. 7(a). It is important to mention
that we include the results obtained from block tumor samples to
illustrate the behavior of the algorithms within this sample type.
Since the region detection among block samples is of limited
clinical interests, we present one sample only for this purpose.

The corresponding histopathology results and morphed
histopathology mask are shown in Fig. 9(b) and (c), respectively.
The classification results obtained by using the 1-D MCMC
approach [5], [8], 6-D MCMC with amplitude spectrum, 6-D
EM with amplitude spectrum, 2-D MCMC with complex spec-
trum, and 2-D EM with complex spectrum are presented in
Fig. 9(d)—(h), respectively. The corresponding ROC curves are
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Fig. 7.

Sample ND15588 fresh. (a) THz image. (b) Pathology image. (c) Morphed pathology. (d) 1-D MCMC model. (¢) 2-D amplitude MCMC model. (f) 2-D

amplitude EM model. (g) 3-D complex MCMC model. (h) 4-D complex EM model.
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Fig. 8. ROC curves for sample ND15588 fresh.

given in Fig. 10. The areas underneath the ROC curves are listed
in Table L.

Visually, the results obtained from the 6-D amplitude MCMC
and 6-D amplitude EM models have the best overall correlation
with the histopathology results. This is corroborated by the ROC
curves for the cancer region. The cancer ROC areas of the 6-D
amplitude MCMC and EM approaches are 79.97% and 79.77%,
which are significantly higher than other methods with ROC
areas ranging from 67.35% to 73.05%. It should be noted that
the relatively large cancer ROC area of the 1-D MCMC model is
achieved at the cost of extremely poor performance of collagen,
where the majority of the collagen pixels are misclassified as
cancer, as shown in Fig. 9(d). In terms of the collagen ROC

False Detection Rate Collagen

False Detection Rate Fat

area, the 6-D amplitude MCMC and 2-D complex EM models
achieve the best performance among all cases, with that of 2-D
complex EM being better. However, the 2-D complex EM model
has a large misclassification of cancer. For the fat region, the
1-D MCMC and 6-D amplitude MCMC models have the best
performance, followed by the 6-D amplitude EM model. The
6-D amplitude MCMC model has the best overall performance in
terms of visual correlation and ROC areas, which are comparable
to the results obtained from the 6-D amplitude EM model. The
ROC areas of the 6-D amplitude MCMC model are 79.97%,
63.66%, and 79.99%, respectively.

It is to be noted that heterogeneous human tissues have an
uneven surface. This necessitates some “facing in” of the paraffin
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Fig. 9.

Sample ND15588 block. (a) THz image. (b) Pathology image. (c) Morphed pathology. (d) 1-D MCMC model. (e) 6-D amplitude MCMC model. (f) 6-D

amplitude EM model. (g) 2-D complex MCMC model. (h) 2-D complex EM model.
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Fig. 10.  ROC curves for sample ND15588 block.

block in order to obtain a full/intact tissue section. In general,
“facing in” the block will result in the loss of approximately
100 pum off the uneven surface. Therefore, THz imaging of
dehydrated samples, such as FFPE, has shown better correlation
with pathology because both images were taken from the same
surface. On the other hand, the THz imaging of fresh samples
was taken from different surfaces. Furthermore, the contrast
between cancer and healthy nonfatty tissue is affected by the
water content in both.

Overall, the amplitude-based models perform better than the
complex spectrum models for block tissues. Visually, the results
obtained with complex spectrum do not correlate well with the
morphed pathology results. Hence, utilizing both amplitude and

False Detection Rate Collagen

False Detection Rate Fat

phase information of the THz spectrum might negatively impact
the overall classification results with FFPE tissue samples.

C. Comparison With Other Methods

The performance of the proposed LOOP algorithm with
unsupervised statistical learning is compared to several other
commonly used algorithms in the literature, including PCA [28],
K-means [30], and SVM [31]. PCA is a widely used dimension
reduction algorithm. K-means and SVM arec commonly used un-
supervised and supervised machine learning algorithms, respec-
tively. The comparison is performed by using sample ND15588
fresh. For fairness of comparison, the same dimension is used
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Sample ND 15588 fresh with different classification methods. (a) Morphed histopathology mask. (b) 2-D amplitude MCMC with LOOP. (¢) 2-D amplitude

MCMC with PCA. (d) 3-D complex MCMC with LOOP. (¢) 3-D complex MCMC with PCA. (f) K-means clustering with full spectrum. (g) SVM clustering with

full spectrum.
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Fig. 12.  ROC curves for sample ND15588 fresh with different classification methods.
TABLE II
AREAS UNDER THE ROC CURVES FOR SAMPLE ND 15588 FRESH: LOOP VERSUS PCA
Region 2D amplitude MCMC with LOOP | 2D amplitude MCMC with PCA | 3D complex MCMC with LOOP | 3D complex MCMC with PCA
Cancer 0.7435 0.6871 0.7481 0.6307
Collagen 0.7338 0.7067 0.7286 0.6418
Fat 0.7619 0.7387 0.7941 0.7327

by both PCA and LOOP. The low-dimensional vectors obtained
from PCA or LOOP are further processed by using amplitude or
complex MCMC. No dimension reduction is applied to either
K-means or SVM. Since SVM is a supervised algorithm, it is
first trained with sample ND15526, and the trained model was
then applied to sample ND15588. The morphed histopathology
results are presented in Fig. 11(a). The classification results of
2-D amplitude MCMC with LOOP, 2-D amplitude MCMC with

PCA, 3-D complex MCMC with LOOP, 3-D complex MCMC
with PCA, K-means, and SVM are shown in Fig. 11(b)—(g),
respectively. The corresponding ROC curves of the cancer, col-
lagen, and fat regions are shown in Fig. 12. The areas underneath
the ROC curves are listed in Table II. It should be noted that
K-means and SVM are hard-clustering techniques; therefore,
the results of K-means or SVM are fixed, and they cannot be
tuned based on the tradeoff between the true positive and false
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TABLE III
DETECTION RATES FOR SAMPLE ND15588 FrESH: K-MEANS AND SVM
Region ] K-Means ] ] SVM .
True Detection Rate | False Detection Rate | True Detection Rate | False Detection Rate
Cancer 0.3525 0.2179 0.1559 0.1127
Collagen 0.7998 0.4774 0.8217 0.7353
Fat 0.2848 0.0331 0.2748 0.0455

positive probabilities. Consequently, the results from K-means
and SVM are represented as single dots on the ROC curves in
Fig. 12. The true and false detection rates of K-Means and SVM
for all the regions within this sample are shown in Table III.

Overall, the 2-D amplitude MCMC and the 3-D complex
MCMC models with LOOP achieves the best performance
among all the different methods. K-means achieves comparable
results with respect to 2-D amplitude MCMC for both collagen
and fat, but its detection of cancer is much worse than MCMC.
The SVM method shows poor detection of cancer and a large
missclassification of collagen. The LOOP algorithm outper-
forms the PCA algorithm in all three regions within the tumor
sample. The areas under the ROC curves for the PCA approaches
achieve values of 63.07%-73.87% for all regions, while the
LOOP counterparts achieve areas of 72.86%—79.41%. Thus, the
proposed LOOP algorithm can achicve better performance than
the well-established algorithms, such as PCA, K-means, and
SVM.

VII. CONCLUSION

A new dimension reduction algorithm has been proposed
to extract the salient information embedded in THz images
of cancer tissues. The LOOP algorithm summarizes the wide
spectrum of each pixel in the THz image as a low-dimensional
feature vector, which is then modecled by using multivariate
GMMs. The low-dimensional feature vectors were utilized by
MCMC or EM algorithms to classify the different regions within
a sample tissue. The newly proposed algorithm was applied to
human breast cancer tissue samples with three regions. Experi-
ment results have demonstrated that the LOOP method achieves
apparent performance improvement over existing approaches,
such as the 1-D MCMC approach [5], [8]. For example, the
areas under the cancer ROC curves have been improved from
63.38% to 74.69% by simply replacing the 1-D features in the
1-D MCMC algorithm with 2-D feature vectors extracted from
the LOOP algorithm in sample ND15588 fresh.

In general, the EM algorithm with the LOOP method achieves
the best overall performance, for both freshly excised tissues
and FFPE block tissues. In particular, the algorithms present
promising results for freshly excised human tissues with at least
60%—70% of areas underneath the ROC curves. This represents
an important milestone in the region classification of human
breast cancer tissues, which are significantly more heteroge-
neous and complex than the xenograft mice tissues used in [5]
and [8]. The classification of tumor tissues with three or more
regions still remains as a significant challenge for future works.
To further improve the classification performance, we plan to
explore the spatial correlation among neighboring pixels by

using graph theory and spatial statistics, which can identify and
model the dependence among pixels in a given neighborhood.
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