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Simulation of a hydrogen atom in a laser field using the time-dependent variational principle
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The time-dependent variational principle is used to optimize the linear and nonlinear parameters of Gaussian
basis functions to solve the time-dependent Schrödinger equation in one and three dimensions for a one-body
soft Coulomb potential in a laser field. The accuracy is tested comparing the solution to finite difference grid
calculations using several examples. The approach is not limited to one particle systems and the example
presented for two electrons demonstrates the potential to tackle larger systems using correlated basis functions.

DOI: 10.1103/PhysRevE.101.023313

I. INTRODUCTION

The experimental advances in attosecond extreme ultra-
violet light pulses and intense x-ray sources [1] made pos-
sible the exploration of many time-dependent phenomena in
atoms. These experiments allow, for example, the real time
observation of ultrafast electron dynamics [2,3], study of
high harmonic generation [4], temporal resolution of ultrafast
electron diffraction [5], attosecond imaging [6], and the mon-
itoring of electronic coherence [7]. The need for theoretical
understanding of the new experimental findings has led to
intense research to develop efficient numerical solutions of
the time-dependent Schrödinger equation (TDSE) [8–20]. The
conventional way of solving the time-dependent Schrödinger
equation is to represent the wave function in terms of basis
functions or using a real space grid, and describe the dy-
namics with the time-dependent linear coefficients. Three-
dimensional or radial grids [21–23] are flexible representa-
tions of time-dependent wave functions, but discrete variable
representations [24,24–26] and B splines [27–29] are also
often used to solve the TDSE. To solve the TDSE for problems
including ionization, one often needs to represent the wave
function up to a few hundred Bohr distances, requiring large
spatial grids or basis dimensions. The proper boundary con-
ditions in these problems are usually enforced by using com-
plex absorbing potentials [11,30,31], exterior complex scaling
[32,33], or perfectly matched layers [34]. In the conventional
approaches described above the basis functions or grid is time
independent and the linear coefficients are used to describe the
dynamics. The goal of this paper is to explore an alternative
approach using time-dependent basis functions with time-
dependent linear coefficients. One expects that the increased
flexibility allows more efficient calculations. In our approach
the basis functions will be instantaneously optimized to ac-
curately represent the rapidly changing time-dependent wave
function. The optimization of the parameters of the basis
function is based on the time-dependent variational principle
(TDVP) [35,36].

The time-dependent variational method was introduced by
Dirac [35], extended by McLachlan [36], and reformulated
for Gaussian wave packets in Ref. [37]. The time-dependent

variational method has been used in various calculations,
such as in the description of the dynamical behavior of
Bose-Einstein condensates [38], and in wave packet dy-
namics [39,40]. Furthermore, the study of the dynamics of
strongly interacting lattice bosons [41] and strongly correlated
electrons [42] reflect the increasing popularity of the time-
dependent variational method in other fields.

The TDVP is also often used in approximating complex
many-body wave functions, e.g., fermionic molecular dynam-
ics [43], electron nuclear dynamics [44], and time-dependent
multiconfiguration self-consistent-field calculations [45]. In
these approaches, the wave function is approximated by Slater
determinants of localized single particle orbitals. The orbitals
are parametrized by dynamical variables (wave packet width,
average position, or momentum) and the TDVP is used to
derive equation of motion for these dynamical variables.

In this work we will solve the time-dependent Schrödinger
equation by time propagation using a time-dependent basis.
We will construct the basis by using Gaussian functions

e−[αr (t )+iαi (t )]x2

(1)

allowing time-dependent complex nonlinear parameters
αr (t ) + iαi(t ), and optimize the parameters by TDVP.

Gaussian basis functions are the most popular choices
of quantum mechanical calculations because their matrix
elements can be evaluated analytically [46,47]. Gaussian
functions, however, have difficulties in reproducing the char-
acteristic oscillatory behavior of continuum orbitals in the
asymptotic region. Gaussians with complex parameters may
be better suited to describe the continuum because of their
inherent oscillatory nature [48]. An alternative way to extend
Gaussians for problems involving ionization is to augment
them with suitable functions such as B splines [49].

The conventional way to optimize the parameters of the
Gaussians is to use a gradient based Newton-Raphson ap-
proach [46,50,51], or use a random optimization, the so
called stochastic variational method [46,47]. Both approaches
produce highly accurate ground state energies and wave
functions [46]. It is not immediately clear that the TDVP
is efficient and powerful enough to optimize the nonlinear
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parameters to reach similar accuracy. To test the TDVP for
ground states, in a previous paper we used the imaginary
time propagation method combined with the TDVP to solve
few-particle problems [48]. It was shown that the TDVP can
be used to obtain basis functions with accuracy comparable
or better than gradient based Newton-Raphson optimization.
This success paves the way for the application of the TDVP
to time-dependent problems, which is the objective of the
present work.

To test the solution of the TDSE using time-dependent
Gaussian basis functions with time propagating the linear
and nonlinear parameter simultaneously on equal footing,
we will study the interaction of one and two electron atoms
with strong laser pulses [52]. The examples include 1D and
3D hydrogen atoms and a 1D two electron He atom. The
Coulomb interaction will be represented with a Gaussian
or soft Coulomb potential to avoid the singularity in 1D
and to allow the direct comparison with the results of finite
difference grid calculations.

II. FORMALISM

A. Time-dependent variational principle

A variational ansatz (a linear combination of basis func-
tions depending on some parameters) for a time-dependent
wave function in a general form can be written as

ψ (x, q, t ), (2)

where q(t ) = [q1(t ), q2(t ), . . ., qK (t )] is a set of linear and
nonlinear variational parameters, x is a set of spatial co-
ordinates describing the system (e.g., the position of the
electrons), and K is the total number of unknown variables, the
sum of the number of linear and nonlinear basis parameters.
To simplify the notation we drop the spatial dependence and
use the following shorthand notation:

ψ (t ) = ψ (q, t ). (3)

The time-dependent Schrödinger equation,

i
d

dt
ψ (t ) = Hψ (t ) (4)

will be solved by the McLachlan variational method [36]. In
this approach, the norm of the deviation between the right-
hand and the left-hand side of the time-dependent Schrödinger
equation is minimized with respect to the trial function. The
quantity

I = ||iφ(t ) − Hψ (t )||2 → min (5)

is to be varied with respect to φ only, and then the equivalency
ψ̇ ≡ φ is enforced. At time t the wave function is known and
its time derivative is determined by minimizing I . In the case
of I = 0, an exact solution exists, but the approximation in the
expansion of ψ (t ) leads to I > 0 values.

The variations of I with respect to φ give the equations of
motion:

〈

∂ψ

∂q

∣

∣

∣

∣

iψ̇ − Hψ

〉

= 0. (6)

This equation can be used to determine the (linear and nonlin-
ear) variational parameters.

B. Parameter optimization

The equation of motion, Eq. (6), is a set of equations
〈

∂ψ

∂q j

∣

∣

∣

∣

iψ̇ − Hψ

〉

= 0, j = 1, 2, . . ., K, (7)

which, using

ψ̇ =
K

∑

k=1

∂ψ

∂qk

q̇k, (8)

can be rewritten as

i

K
∑

k=1

〈

∂ψ

∂q j

∣

∣

∣

∣

∂ψ

∂qk

〉

q̇k −
〈

∂ψ

∂q j

∣

∣

∣

∣

Hψ

〉

= 0, j = 1, 2, . . ., K.

(9)
By defining

Mi j =
〈

∂ψ

∂qi

∣

∣

∣

∣

∂ψ

∂q j

〉

(10)

and

vi =
〈

∂ψ

∂qi

∣

∣

∣

∣

Hψ

〉

, (11)

we can write the equation of motion in matrix form as

iMq̇ = v. (12)

This can be solved to express the time dependence of the
variational parameters as

q̇ = −iM−1v. (13)

There are various established ways to solve such first order
linear differential equations [53–55], and approximations al-
lowing larger time steps such as a Runge-Kutta approach can
be used, but we elected to use the Euler method for time
propagation for simplicity. The Euler method is a simple first
order approximation of the time derivative and leads to

q(t + �t ) = q(t ) − iM−1v�t, (14)

where �t is the time step.

C. Hamiltonian and basis functions

We will test the approach by using a Hamiltonian describ-
ing a particle in a laser field in length gauge

H = −
1

2

(

d2

dx2
+

d2

dy2
+

d2

dz2

)

+ V (x, y, z) + F (t )z, (15)

where F (t ) is the time-dependent electric field pulse, which is
defined as

F (t ) = E0e−(t−T )2/τ 2

cos(ωt ). (16)

We define two different types of basis functions to represent
the time-dependent wave function. The first one takes on the
form

gi = ciz
ni gαi

(x)gαi
(y)gβi

(z) = ciz
ni e−αi (x2+y2 )−βiz

2

, (17)

where

gσ (x) = e−σx2

(18)
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is a one-dimensional Gaussian and will be referred to as
polynomial times Gaussian (PTG). The second basis is a plane
wave times Gaussian (PWG):

gi = cigαi
(x)gαi

(y)gβi
(z)ekz = cie

−αi (x2+y2 )−βiz
2+kz. (19)

The parameters of the Gaussians are kept equal in the x and
y direction due to the cylindrical symmetry of the potential.
In one-dimensional (1D) test calculations α = 0 is used to
reduce the basis to 1D.

The variational parameters form a vector,

q(t ) =

⎛

⎝

c(t )
α(t )
β(t )

⎞

⎠ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1(t )
...

cN (t )
α1(t )

...
αN (t )
β1(t )

...
βN (t )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (20)

in the case of PTG and a similar vector can be defined for
PWG. For PTG, the values of nk must be set to be integers.
The variational trial function is

ψ (t ) = ψ (q(t )) =
N

∑

k=1

ck (t )φk (t ) =
N

∑

k=1

gk (t ). (21)

To illustrate the flexibility of the Gaussian basis in
time-dependent calculations, we solve the TDVP equation
[Eq. (12)] analytically for a free particle in Appendix A. This
case can be used to test the time step and matrix elements in
the numerical calculations.

As the example in Appendix A and Eq. (14) show, the
parameters of the basis functions become complex during the
time propagation. This shows that to use the TDVP for time
propagation one has to allow complex basis functions, which
in our case is a Gaussian function with complex parameters.

A Gaussian with a complex parameter can be written as

e−(αr+iαi )x2 = e−αr x2

[cos(αix
2) + i sin(αix

2)]. (22)

This function is an oscillatory function with a Gaussian enve-
lope, and seems to greatly enhance the flexibility of the basis
function [48]. To make the integrals of the matrix element
convergent, αr should be positive, which is not explicitly
guaranteed in the time propagation of Eq. (14), but in our
numerical examples it was always satisfied. The reason for
preservation of the positive sign is not clear. In the simple
example of the free wave packet, Eq. (A10) shows that if one
starts with a real positive α(0) (which is a natural choice to
describe a localized initial state), then the real part of α(t )
will remain positive. We could not derive an analytical proof
for a more general case.

We will use two potentials to test the approach. A single
Gaussian potential,

V = −V0e−μ(x2+y2+z2 ), (23)

TABLE I. Ground state energies (in a.u.). The basis dimension is
N for the PWG and PTG, and the number of grid points in the 1D
and 3D grid case.

Basis N Potential Energy

1D PTG 30 Gauss −0.79526702
1D PWG 20 Gauss −0.79526702
1D Grid 5000 Gauss −0.79526702
1D PWG 20 Soft Coulomb (a = 1) −0.66977138
1D Grid 5000 Soft Coulomb (a = 1) −0.66977138
1D PWG 30 Soft Coulomb (a = 2) −0.50000000
1D Grid 5000 Soft Coulomb (a = 2) −0.50000000
3D PWG 30 Soft Coulomb (a = 1) −0.27489135
3D Grid 4465200 Soft Coulomb (a = 1) −0.27461231

with V0 = 1 and μ = 0.1 a.u., and a soft Coulomb potential,

V = −
1

√

x2 + y2 + z2 + a2
. (24)

The value of a used in the calculations is listed in Table I.
We will use the soft Coulomb potential because the Coulomb
potential cannot be easily used in grid calculations [56] and its
use is problematic in 1D [57]. In the case of the PWG basis,
the soft Coulomb potential is expanded into 50 Gaussians to
facilitate the analytical calculations of the matrix elements.
Soft Coulomb potential has been often used in model calcula-
tions of the ionization of atoms [58,59].

In 1D test cases, the condition x = y = 0 is set in the
potential and α = 0 is used in the basis function with 1D
kinetic energy. The matrix elements of these basis functions
can be calculated analytically as it is shown in Appendixes B,
C, and D.

D. Time propagation of the wave function

In Eq. (20) we have defined q(t ) for Gaussian
basis functions by separating the linear parameters
[c1(t ), c2(t ), . . ., cN (t )] of the wave function from
the nonlinear ones (that appear in the exponents)
[α1(t ), . . ., αN (t ), β1(t ), . . ., βN (t )]. Equation (14) defines
the time propagation of both linear and nonlinear parameters
of the wave function. With the exception of very small time
steps, the simple first order finite difference approximation
is not expected to be accurate enough to preserve the norm
of the wave function. To alleviate this problem, we only use
Eq. (14) to time propagate the nonlinear parameters and we
update the linear parameters separately to preserve the norm.
One can view this as an optimization of the basis functions by
updating the nonlinear parameters using TDVP. We then time
propagate the wave function on the updated basis.

We have a set of basis functions in time t , φk (t ), which is
time propagated to time t + �t to become φk (t + �t ) using
Eq. (14). Both of these sets of basis functions can be used to
represent the wave function at time t :

ψ (t ) =
N

∑

k=1

ĉk (t, t )φk (t ) =
N

∑

k=1

ĉk (t, t + �t )φk (t + �t ).

(25)
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In this equation ĉk (t, t ) is known as we know the wave
function at time t [and it is not calculated using Eq. (14)].
The unknown ĉk (t, t + �t ) coefficients can be easily derived
by defining the overlap of the basis functions

Si j (t, t ′) = 〈φi(t )|φ j (t
′)〉 (26)

and multiplying Eq. (25) with ψi(t ). The result is

ĉi(t, t + �t ) =
N

∑

j=1

S−1
i j (t, t )

N
∑

k=1

S j,k (t, t + �t )ĉk (t, t ). (27)

Now we know the linear combination coefficient of the wave
function ψ (t ) at time t on the optimal basis φk (t + �), so we
can time propagate the wave function in the conventional way
using

ψ (t + �t ) = e−iH�tψ (t ) (28)

to calculate ĉk (t + �t, t + �t ). We choose the numerically
stable Crank-Nicolson approach to update the coefficients:

Ĉ(t + �t, t + �t )

=
S(t + �t, t + �t ) − i

2 H (t + �t, t + �t )

S(t + �t, t + �t ) + i
2 H (t + �t, t + �t )

Ĉ(t, t + �t ),

(29)

where ĈT = (ĉ1, . . ., ĉN ) and

Hi j (t, t ′) = 〈ψi(t )|H |ψ j (t
′)〉. (30)

This approach significantly improves the stability of the ap-
proach and allows larger time steps.

III. CALCULATIONS

A. Ground state

Before the time propagation we need to calculate the
ground state (without the laser field) in the time propagation
that will be the initial state at t = 0. To calculate the ground
state the parameters of the Gaussians will be defined with a
geometric progression,

1
√

αi

= aν i−1, (31)

with a = 0.5 and ν = 1.3. For the ground state calculation, we
will use n = 0 for the PTG basis and k = 0 in the PWG basis.
For 1D grid calculation, N = 5000 equidistant grid points are
used with h = 0.125 grid spacing and a N = 61 × 61 × 1200
size grid with h = 0.25 is used in 3D. While very fine grid
spacing can be used in 1D, it must be larger in 3D due to
the increase in computational cost. These grid parameters
define a 600 a.u. box size in 1D and 300 a.u. size in 3D in the
direction of the laser field. The atom is placed in the middle
of the box. These simulation boxes are sufficiently large to
propagate the wave function during the laser field without
reflection from the boundaries. The grid dimensions are listed
in Table I. We note that due to the cylindrical symmetry
of the system one could use cylindrical coordinates instead
of Cartesian 3D ones. This would significantly reduce the
computational cost for the 3D H atom. In this work our main
goal is to demonstrate the accuracy of the time-dependent

0 20 40 60 80 100
t

-1.0

-0.5

0.0

0.5

1.0

F
(t

)

FIG. 1. Laser fields used in the calculation: laser A, E0 =
0.25, τ = 20.5, ω = 1.0/2π, T = 50 (black dotted line); laser B,
E0 = 1.0, τ = 20.5, ω = 1.0, T = 50 (red line).

Gaussian basis and for that purpose the 3D grid approach can
be simply implemented and provides sufficient precision.

The ground state energies are listed in Table I. These
energies were calculated by diagonalization of the PTG and
PWG case. In the case of the grid calculations, the ground
state energy was calculated by the conjugate gradient method
using the codes of [60]. There is an excellent agreement in
1D, and a slight difference between the PWG and the grid
calculation in 3D. While agreement can be achieved with
a finer grid, there are more computational constraints the
finer the grid becomes. We only used the PTG for the Gauss
potential, so the PTG ground state energy for other cases is
not shown.

B. Time propagation

Two different laser pulses are used in the calculation. The
first (see Fig. 1), laser A, has only a few cycles and moves
the electron to one direction as will be shown later. The
second, laser B, has many cycles and moves the electron
almost symmetrically left and right. The time step is �t =
0.001 a.u. in 1D calculations, and �t = 0.0005 a.u. in the 3D
calculations for both the PWG and the grid. The PTG requires
a smaller time step as we will discuss later.

The PTG ground state calculation was restricted to n = 0
and, to make a starting PTG basis for time propagation, the
basis will be doubled by adding n = 1 states with the same
βi parameters as of the n = 0 states. These states are needed
because the laser field operator F (t )z matrix elements are
only nonzero for basis states for even ni + ni′ + 1. To start
the calculation from the ground state, the linear coefficients of
the ni = 1 basis states will be set to zero. States with n > 1 do
not seem to improve the calculation. The PWG basis does not
need any modification and one can start the computation from
the ground state wave function.

The electron density, |ψ (x, t )|2, after time propagation up
to t = 100 a.u., are compared in Fig. 2 in the case of the Gaus-
sian potential. The agreement between the grid and the PWG
calculations are excellent. In the asymptotic region where the
density becomes smaller than 10−4, the two approaches do not
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FIG. 2. Electron densities in Gaussian potential at t = 100 a.u.
for laser A and laser B.

fully agree. This is partly because of numerical noise, which
can be decreased with a smaller time step, and partly due to
the grid spacing.

Test calculations show that PTG basis can only be used
with smaller time steps (�t = 0.00001 a.u.) to produce the
same results as the grid and PWG. This is because this
basis easily becomes nearly linearly dependent (large overlap
between basis functions), especially in the 1D case, which
makes the calculation of the inverse of M difficult. The other
difficulty is choosing the optimal number of basis states with
n = 0 and n = 1. It is still useful to consider the PTG basis as
an alternative test, especially that in 3D the Coulomb potential
can be analytically calculated for this basis (see Appendix C).

Figures 3 and 4 show the energy and the occupation proba-
bility of the ground state as a function of time. The occupation
probability is defined as

P(t ) = |〈ψ (0)|ψ (t )〉|2. (32)

0 50 100

0

2

E
(t

)

0 50 100
t

0.0

0.5

1.0

P
(t

)

FIG. 3. Gaussian potential with laser field A in 1D. Top: energy
as a function of time for grid (solid blue line), PWG (red dashed
line), and PTG (black dotted line). Bottom: ground state occupation
probability as a function of time for grid (solid blue line), PWG
(red dashed line), and PTG (black dotted line). The three lines are
indistinguishable in the resolution of the figure.
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-0.5

0.0

0.5
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(t

)

0 20 40 60 80 100
t

0.0

0.5

1.0

P
(t

)

FIG. 4. Gaussian potential with laser field B in 1D. Top: energy
as a function of time for grid (solid blue line), PWG (red dashed
line), and PTG (black dotted line). Bottom: ground state occupation
probability as a function of time for grid (solid blue line), PWG
(red dashed line), and PTG (black dotted line). The three lines are
indistinguishable in the resolution of the figure.

The energy and the occupational probability are in excellent
agreement for the grid, PTG, and PWG basis functions for
both laser fields. The ionization probability is equal to 1
minus the occupation probability of the bound states. In these
examples the excited state occupation probabilities are much
smaller than the occupation probability of the ground state,
so the ionization probability is ≈1 − P(t ) (the bound state
excitations are negligible). Laser A strongly ionizes the system
and the ground state occupation becomes about 0.3 after the
pulse. This means (see Fig. 2) that the tail of the wave function
has large amplitude far away from the center of the potential,
but the complex Gaussian basis is flexible enough to represent
this.

The next example is a test for a soft Coulomb potential.
Since the PTG requires much a smaller time step, we exclude
it from the discussion for now. Figures 5 and 6 show that the
approach works well for the soft Coulomb potential as well.
Comparing Figs. 3 and 4 to 5 and 6 shows that the effect
of the laser field is very similar in both the Gauss and soft
Coulomb potentials. The electron is slightly less bound in the
soft Coulomb potential and the laser causes larger excitation
and ionization.

The last 1D example is the calculation of the photoelectron
spectra (PES). To calculate the PES we will use the approach
proposed in Ref. [61]. This approach calculates the wave
function ψ (R, t ) in time at a fixed sampling point R far away
from the nucleus. This function is time Fourier transformed to
energy space

ψ (R, E ) =
∫ ∞

0
eiEtψ (R, t )dt . (33)

Using this function we can define

PR(E ) = |ψ (R, E )|2, (34)

which represents the probability of having an electron at R

with energy E . This approach has been tested by comparing
to other definitions of PES in Ref. [62]. We have calculated the
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1.0

P
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)

FIG. 5. Soft Coulomb potential with laser field A in 1D. Top:
energy as a function of time for grid (solid blue line) and PWG
(red dashed line). Bottom: ground state occupation probability as a
function of time for grid (solid blue line) and PWG (red dashed line).

PES of the 1D H atom using the benchmark test of Ref. [62].
This model uses a soft Coulomb potential with a = 2 and
a 25 fs long laser field. The laser parameters are listed in
Fig. 3 of [62]. We have used a large simulation box for
the grid calculations (5000 grid points with grid spacing of
0.4 a.u.) to avoid reflections from the boundary. One could
add a complex absorbing potential to avoid reflections (as it
has been done in Ref. [62]), but that could slightly change
the PES. Moreover, as we do not use a complex absorbing
potential in the TDVP PWG approach, it is better to compare
the calculations without absorbing boundary. We have used
N = 30 Gaussians (see Table I), which is a larger basis than
the ones used in the previous examples, because the laser
pulse in the PES calculation is longer. The PES was calculated
at R = 500 a.u. from the center. The results presented in
Fig. 7 are in very good agreement with Ref. [62]; the grid

0 20 40 60 80 100

-0.5

0.0

0.5

1.0

E
(t

)

0 20 40 60 80 100
t

0.0

0.5

1.0

P
(t

)

FIG. 6. Soft Coulomb potential with laser field B in 1D. Top:
energy as a function of time for grid (solid blue line) and PWG
(red dashed line). Bottom: ground state occupation probability as a
function of time for grid (solid blue line) and PWG (red dashed line).
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E [a.u.]
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-5

P
R
(E
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FIG. 7. PES calculated by PWG (solid black line) and grid (red
dotted line). The 1D model presented in Ref. [62] was used in the
calculation. The grid calculation uses the same parameters as the
sampling point method in Ref. [62] and shows the same characteristic
spectrum, with peaks appearing at integer multiples of ω = 0.0856.

and the Gaussian basis produces very similar PES. This is
not surprising considering that, as we have shown before, the
wave functions calculated on the grid and using TDVP with
Gaussians are nearly identical (see Fig. 2).

The next example covers the case of soft Coulomb in 3D
for lasers A and B, which are illustrated in Figs. 8 and 9.
The agreement between the grid and PWG calculations is still
very good, although the necessary time step to reach accuracy
is smaller for PWG than in 1D. The grid calculation would
converge with a time step that is 10 times larger, but we used
the same time step for both grid and PWG for consistency.
However, even with a larger time step, the grid calculation is
computationally demanding due to its large grid size.

We have also tested a restricted PTG basis, constraining
the Gaussian to be spherically symmetric by choosing α = β

in Eq. (19). Test calculations for shorter, weaker pulses show

0 50 100
-2

0

2

4

6

8

E
(t

)

0 50 100
t

0.0

0.5

1.0

P
(t

)

FIG. 8. Soft Coulomb potential with laser field A in 3D. Top:
energy as a function of time for grid (solid blue line) and PWG
(red dashed line). Bottom: ground state occupation probability as a
function of time for grid (solid blue line) and PWG (red dashed line).
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FIG. 9. Soft Coulomb potential with laser field B in 3D. Top:
energy as a function of time for grid (solid blue line) and PWG
(red dashed line). Bottom: ground state occupation probability as a
function of time for grid (solid blue line) and PWG (red dashed line).

good agreement between this restricted basis and the grid
calculations, but this basis is not flexible enough for accurate
calculations in the test examples presented in this work.
Despite this, the result is still noteworthy because it may lead
to an extension of Gaussian atomic orbitals for weak fields.

To test the applicability of the approach for larger systems
we have considered a two electron system in 1D with the
Hamiltonian

H = −
1

2

d2

dx2
1

−
1

2

d2

dx2
2

(35)

− 2V (x1)−2V (x2)+V (x1−x2)+F (t )(x1+x2), (36)

with a Gaussian potential, V (x) = eμx2
, μ = 0.1 a.u. The basis

function is taken in the form

gi = cie
−α1ix

2
1−α2ix

2
2+βix1x2+k1ix1+k2ix2 , (37)

0 20 40 6 80 0
t

-1.5

-1.0

-0.5

0.0

0.5

E
(t

)

FIG. 10. Energy (black line) and laser field (dashed line) of a
two electron system as a function of time. The laser parameters are
E0 = 0.1, τ = 20.5, ω = 1.0, T = 25. The amplitude of the laser on
the figure is multiplied by 10 for better visibility.

FIG. 11. Snapshots of the two electron density at (a) t = 0,
(b) t = 30, and (c) t = 50 a.u. The plane axes are x1 and x2, the
coordinates of electrons 1 and 2.

with six variational parameters, α1i, α2i, βi, k1i, k2i and ci, (i =
1, . . ., N . The two particles are assumed to be distinguishable
(one electron with spin up and one with spin down).

The energy of the two electron system as the function of
time is shown in Fig. 10. The convergence was checked by
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using different starting basis sets and different basis dimen-
sions. N = 15 basis functions with �t = 0.0001 a.u. yields
well converged results. Figure 11 shows the snapshots of the
two-electron density. At t = 0 the electrons are confined to
the potential well around the origin. The laser field moves
them out of the well towards the positive direction (t = 30 a.u.
in Fig. 11), and then back toward the origin. After the peak of
the laser field (in Fig. 11, t = 50 a.u.) there are two peaks
that appear in the density. This corresponds to a configu-
ration where the first electron’s probability distribution has
a maximum close to the origin, while the second electron’s
probability distribution has two maxima, which are left and
right with respect to the origin.

IV. SUMMARY

We have used the TDVP to solve the time-dependent
Schrödinger equation using time-dependent Gaussian basis
functions. The TDVP optimizes the linear and the nonlinear
parameters on the same footing. The results are compared
to those of grid calculations and the accuracy to the present
approach is demonstrated. We have tested various forms of
basis functions including Gaussians multiplied by polynomi-
als, plane waves, and nonspherical Gaussians. The complex
parameters of the Gaussians make the basis functions flexible
enough to represent oscillatory wave functions. In addition,
several potentials and laser fields were used to test the ap-
proach for different degrees of ionization.

The approach has several advantages. First, a simple Gaus-
sian basis can be used to solve time-dependent problems,
which may be useful in various electronic structure codes.
Second, the number of basis functions needed is considerably
smaller than the number of grid points required to represent
a wave function. The tradeoff is similar to the solution of a
time-independent problem comparing atomic orbital like basis
functions to a real space grid. The atomic functions can be
used to form a smaller basis, but the resulted Hamiltonian
matrix is dense and the basis is nonorthogonal. The dimen-
sion of the real space grid is high, but it is an orthogonal
representation with very sparse Hamiltonian. The Gaussian
basis facilitates analytical expressions for the matrix elements,
while the grid approach approximates the derivatives with fi-
nite differences. A further advantage is that no boundary con-
ditions need to be enforced, and the TDVP automatically gen-
erates the Gaussians to represent the wave function in space.
As the free Gaussian wave packet example (Appendix A)
shows, the wave function can propagate from any given
point to any desired distance without artificial reflections. In
principle, a complex absorbing potential can also be used,
in which case the number of Gaussian basis states may be
less, because the wave function only needs to be represented
in a well defined region. The approach can be extended to
larger systems using explicitly correlated Gaussians [46]. The
TDVP example using explicitly correlated Gaussians for a
time-dependent two electron system presented in this paper
shows promising results.

The main disadvantage is that the basis needs to be
carefully initialized; otherwise, large overlap between basis

functions can make the inversion of the M matrix in Eq. (10)
difficult. This can possibly be alleviated by using a singular
value decomposition for calculation of the inverse. It is also
somewhat difficult to determine a sufficient number of basis
functions and their desired initial parameters to minimize
error during time propagation.

The approach can be improved in several ways. Chief
among them, the simple first order time propagation should
be replaced with a more accurate approach. The approach can
also benefit from adaptive time steps, using larger time step for
smooth regions of the time-dependent potential and smaller
time steps where the potential has abrupt changes. Both of
these improvements would allow for larger time steps and
faster calculation. One can also design some scheme to prune
the number of Gaussians and add new Gaussians as needed.
Finally, another possibility is to refit the wave function with a
completely new set of Gaussians after a certain time interval
to exclude ill-behaved basis states.
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APPENDIX A: PROPAGATION OF A FREE GAUSSIAN

WAVE PACKET

To illustrate the time propagation on a simple example, we
consider the time evolution of a Gaussian wave packet in 1D.
The Hamiltonian is

H = −
1

2

∂2

∂x2
, (A1)

and the trial function is written in the form defining a one-
dimensional Gaussian as

g = eγ−αx2−κx. (A2)

The derivatives with respect to the parameters are

∂g

∂γ
= g,

∂g

∂α
= −x2g,

∂g

∂κ
= −xg, (A3)

so the M matrix [see Eq. (10)] is

M =

⎛

⎝

〈g|g〉 −〈g|x2|g〉 −〈g|x|g〉
−〈g|x2|g〉 〈g|x4|g〉 〈g|x3|g〉
−〈g|x|g〉 〈g|x3|g〉 〈g|x2|g〉

⎞

⎠. (A4)

The action of the Hamiltonian on the trial function can be
expressed as

Hg = −
1

2

∂2g

∂x2
= [(α − κ2/2) − 2α2x2 − 2ακx]g. (A5)

The v vector is defined as

v =

⎛

⎝

〈g|H |g〉
−〈g|x2H |g〉
−〈g|xH |g〉

⎞

⎠, (A6)
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which can be rewritten using Eq. (A5) and the definition of M

as

v = M

⎛

⎝

α − κ2/2
2α2

2ακ

⎞

⎠. (A7)

Using this Eq. (12) becomes

iM

⎛

⎝

γ̇

α̇

κ̇

⎞

⎠ = M

⎛

⎝

α − κ2/2
2α2

2ακ

⎞

⎠. (A8)

The equation for α,

iα̇ = 2α2, (A9)

can be integrated easily:

α(t ) =
α(0)

2iα(0)t + 1
. (A10)

Substituting this into

iκ̇ = 2ακ, (A11)

we get

κ (t ) =
κ (0)

2iα(0)t + 1
. (A12)

Now using

iγ̇ = α − κ2/2, (A13)

we get

γ (t ) = −
1

2
ln[2iα(0)t + 1] +

iκ (0)2t

4iα(0)t + 2
+ γ (0). (A14)

The solution agrees with the analytical solution of time prop-
agation of Gaussian wave packets.

APPENDIX B: MATRIX ELEMENTS: 1D PTG

For simplicity, first we calculate the matrix elements for a
single basis function:

g = zneγ−βz2

, (B1)

and the we show how to generalize the results for N basis
functions. Instead of using the linear coefficient c we use
c = eγ , which makes the equations simpler: the derivative of
the exponential function is proportional to the exponential so
the basis function remains in the same form. In the ground
state calculations, c is a real number, so to initialize γ we set
Im(γ ) = 0 if c > 0 and Im(γ = π ) if c < 0. Alternatively,
one can write the matrix elements in terms of γ and switch
back to c in the numerical work.

We take the derivatives with respect to the parameters:

dg

dγ
= g, (B2)

dg

dβ
= −z2g. (B3)

We then get the matrix M from Eq. (10):

M =
(

〈g|g〉 −〈g|z2|g〉
−〈g|z2|g〉 〈g|z4|g〉

)

. (B4)

Then v is defined as

v =
(

〈g|H |g〉
−〈g|z2H |g〉

)

. (B5)

To calculate these matrix elements we need the action of
the kinetic energy operator on g:

−
1

2

∂2g

∂z2
=

(

−
1

2
n(n − 1)z−2 + (2n + 1)β − 2β2z2

)

g.

(B6)
The generalization for N basis functions, g1, . . ., gN is simple.
The M matrix in Eq. (B4) will now be built up in N × N block
matrices:

M =
(

〈gi|g j〉 −〈gi|z2|g j〉
−〈gi|z2|g j〉 〈gi|z4|g j〉

)

. (B7)

Similarly for v we have

v =

(

∑N
k=1〈gi|H |gk〉

−
∑N

k=1〈gi|z2H |gk〉

)

. (B8)

Now we assume a general potential can be expanded in
terms of Gaussians:

V (z) =
∑

i

vie
−v

i
zz2

. (B9)

In this case all the necessary matrix elements can be derived
from

〈gσ |zke−νz2 |gσ ′〉 = eγ ∗+γ ′ (k − 1)!!
√

π

(σ ∗ + σ ′ + ν)(k+1)/22(k/2)
(B10)

if k is even and zero otherwise. Note this formula is valid if
the integral is convergent, which in turn is true if Re(σ ∗ +
σ ′ + ν) > 0. The principal value square root should be used
in Eq. (B10).

APPENDIX C: MATRIX ELEMENTS: 3D PTG

In this section we calculate the matrix elements for a PTG
basis function:

g = zneγ−α(x2+y2 )−βz2

. (C1)

We need the derivatives with respect to the parameters:

∂g

∂γ
= g, (C2)

∂g

∂α
= −(x2 + y2)g, (C3)

∂g

∂β
= −z2g. (C4)

To calculate these matrix elements we need the action of the
kinetic energy operator on g:

−
1

2

(

∂2

∂x2
+

∂2

∂y2

)

g = [2α − 2α2(x2 + y2)]g, (C5)

−
1

2

∂2g

∂z2
=

(

−
1

2
n(n−1)z−2+(2n+1)β−2β2z2

)

g. (C6)
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The M matrix in Eq. (10) will now be built up N × N block
matrices:

M=

⎛

⎝

〈gi|g j〉 −〈gi|x2+y2|g j〉 −〈gi|z2|g j〉
−〈gi|x2+y2|g j〉 〈gi|(x2+y2)2|g j〉 〈gi|(x2+y2)z2|g j〉

−〈gi|z2|g j〉 〈gi|(x2+y2)z2|g j〉 〈gi|z4|g j〉

⎞

⎠.

(C7)

Similarly, for the v vector we have

v =

⎛

⎜

⎝

∑N
k=1〈gi|H |gk〉

−
∑N

k=1〈gi|(x2 + y2)H |gk〉
−

∑N
k=1〈gi|z2H |gk〉

⎞

⎟

⎠
, (C8)

where each entry corresponds to a N × 1 block matrix.
Now we will assume that a general potential can be ex-

panded in terms of Gaussians:

V (x, y, z) =
∑

i

vie
−νi

xx2−ν i
yy2−ν i

zz2

. (C9)

For spherically symmetric potentials this expansion further
simplifies:

V (r) =
∑

i

vie
−νi (x2+y2+z2 ). (C10)

In the case of Gaussian potentials, all the necessary matrix
elements of M and v can be derived from
〈

gσx

∣

∣xkx e−νxx2 ∣
∣gσ ′

x

〉〈

gσy

∣

∣yky e−νyy2 ∣
∣gσ ′

y

〉〈

gσz

∣

∣zkz e−νzz2 ∣
∣gσ ′

z

〉

. (C11)

The one-dimensional integral can be easily calculated as
above in Eq. (B10).

One can also calculate the matrix elements analytically for
the 3D Coulomb potential:

V (r) = −
1

√

x2 + y2 + z2
. (C12)

We can calculate the necessary matrix elements using the
following integral identity:

1
√

x2 + y2 + z2
=

2
√

π

∫ ∞

0
e−u2 (x2+y2+z2 )du. (C13)

This allows us to evaluate the integral:

〈g|V (x, y, z)|g′〉 = −
2

√
π

eγ ∗+γ ′
∫ ∞

0
du

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
zn+n′

× e−(u2+a)(x2+y2 )−(u2+b)z2

dx dy dz, (C14)

where

a = α∗ + α′, b = β∗ + β ′. (C15)

With n + n′ = 0 (C14) yields

〈g|V (x, y, z)|g′〉 = −2π eγ ∗+γ ′
arccos

(√
a√
b

)

√
a
√

b
√

1 − a
b

, (C16)

where Re(a) > 0 and Re(b) > 0. In the case that a = b:

〈g|V (x, y, z)|g′〉 = −
2π

a
eγ ∗+γ ′

. (C17)

Note that (C14) will be zero when the polynomial terms are
of odd degree. We can thus evaluate the more general form by
taking derivatives as follows:

(−1)n ∂n

∂an
〈g|V (x, y, z)|g′〉 = 〈g|(x2 + y2)nV (x, y, z)|g′〉,

(C18)

(−1)n ∂n

∂bn
〈g|V (x, y, z)|g′〉 = 〈g|z2nV (x, y, z)|g′〉, (C19)

∂2n

(∂a∂b)n
〈g|V (x, y, z)|g′〉 = 〈g|(x2 + y2)nz2nV (x, y, z)|g′〉.

(C20)

When a = b, the form (C16) cannot be evaluated. In
this case, Eq. (C14) simplifies considerably into a form
which can be easily evaluated and yields simple polynomial
answers [47].

APPENDIX D: MATRIX ELEMENTS: 3D PWG

In this case we have the basis function in the form

g = eγ−α(x2+y2 )−βz2+kz. (D1)

The M matrix in Eq. (10) will now be built up N × N block
matrices:

M =

⎛

⎜

⎜

⎝

〈gi|g j〉 −〈gi|x2 + y2|g j〉 −〈gi|z2|g j〉 〈gi|z|g j〉
−〈gi|x2 + y2|g j〉 〈gi|(x2 + y2)2|g j〉 〈gi|(x2 + y2)z2|g j〉 −〈gi|(x2 + y2)z|g j〉

−〈gi|z2|g j〉 〈gi|(x2 + y2)z2|g j〉 〈gi|z4|g j〉 −〈gi|z3|g j〉
〈gi|z|g j〉 −〈gi|(x2 + y2)z|g j〉 −〈gi|z3|g j〉 〈gi|z2|g j〉

⎞

⎟

⎟

⎠

. (D2)

Similarly, for the v vector we have

v =

⎛

⎜

⎜

⎜

⎝

∑N
k=1〈gi|H |gk〉

−
∑N

k=1〈gi|(x2 + y2)H |gk〉
−

∑N
k=1〈gi|z2H |gk〉

∑N
k=1〈gi|zH |gk〉

⎞

⎟

⎟

⎟

⎠

. (D3)

All the necessary matrix elements can then be calculated from Eq. (C11) using Eq. (B10) provided that the potential is expanded
into Gaussians. The matrix elements for 1D PWG can be obtained by taking α = 0 and eliminating the second row and column
from M and the second row from v.
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[40] T. Fabčič, J. Main, and G. Wunner, Phys. Rev. A 79, 043417

(2009).
[41] G. Carleo, F. Becca, M. Schiró, and M. Fabrizio, Sci. Rep. 2,

243 (2012).
[42] K. Ido, T. Ohgoe, and M. Imada, Phys. Rev. B 92, 245106

(2015).
[43] H. Feldmeier and J. Schnack, Rev. Mod. Phys. 72, 655 (2000).
[44] E. Deumens, A. Diz, R. Longo, and Y. Öhrn, Rev. Mod. Phys.

66, 917 (1994).
[45] R. Anzaki, T. Sato, and K. L. Ishikawa, Phys. Chem. Chem.

Phys. 19, 22008 (2017).
[46] J. Mitroy, S. Bubin, W. Horiuchi, Y. Suzuki, L. Adamowicz,

W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and K. Varga,
Rev. Mod. Phys. 85, 693 (2013).

[47] Y. Suzuki and K. Varga, Stochastic Variational Approach

to Quantum-Mechanical Few-Body Problems (Springer, New
York, 1998), p. 172.

[48] K. Varga, Phys. Rev. A 99, 012504 (2019).
[49] C. Marante, L. Argenti, and F. Martín, Phys. Rev. A 90, 012506

(2014).
[50] M. Cafiero, S. Bubin, and L. Adamowicz, Phys. Chem. Chem.

Phys. 5, 1491 (2003).
[51] S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L.

Adamowicz, Chem. Rev. 113, 36 (2013).
[52] A. K. Kazansky, J. Phys. B 31, L579 (1998).
[53] C. Leforestier, R. Bisseling, C. Cerjan, M. Feit, R. Friesner,

A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D.
Meyer, N. Lipkin, O. Roncero, and R. Kosloff, J. Comput. Phys.
94, 59 (1991).

[54] H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
[55] D. Kosloff and R. Kosloff, J. Comput. Phys. 52, 35 (1983).
[56] A. Gordon, C. Jirauschek, and F. X. Kärtner, Phys. Rev. A 73,

042505 (2006).
[57] G. Palma and U. Raff, Can. J. Phys. 84, 787 (2006).
[58] X. Zhou and C. D. Lin, Phys. Rev. A 61, 053411 (2000).
[59] V. C. Reed and K. Burnett, Phys. Rev. A 42, 3152 (1990).
[60] K. Varga and J. A. Driscoll, Computational Nanoscience

(Cambridge University Press, New York, 2011).
[61] A. Pohl, P.-G. Reinhard, and E. Suraud, Phys. Rev. Lett. 84,

5090 (2000).
[62] U. De Giovannini, D. Varsano, M. A. L. Marques, H. Appel,

E. K. U. Gross, and A. Rubio, Phys. Rev. A 85, 062515 (2012).

023313-11


