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ARTICLE INFO ABSTRACT

Article history: The fractional Laplacian in RY, which we write as (—A)*/2 with « € (0, 2), has multiple
Eeceweg 10 Nof’er;‘"fer 20212 ber 2019 equivalent characterizations. Moreover, in bounded domains, boundary conditions must
AEE:B’; dg](;ec\t/;fer 20(;?; eptember be incorporated in these characterizations in mathematically distinct ways, and there is
Available online 30 October 2019 _currently no consensus in the llteratufe as to wh{ch deﬁrn.tlon. of the fraFtlonal Lgplaaan

in bounded domains is most appropriate for a given application. The Riesz (or integral)

Keywords: definition, for example, admits a nonlocal boundary condition, where the value of a
Fractional Laplacian function must be prescribed on the entire exterior of the domain in order to compute
Anomalous diffusion its fractional Laplacian. In contrast, the spectral definition requires only the standard
Regularity local boundary condition. These differences, among others, lead us to ask the question:
Stable Lévy motion “What is the fractional Laplacian?” Beginning from first principles, we compare several

Nonlocal model commonly used definitions of the fractional Laplacian theoretically, through their stochastic

interpretations as well as their analytical properties. Then, we present quantitative
comparisons using a sample of state-of-the-art methods. We discuss recent advances
on nonzero boundary conditions and present new methods to discretize such boundary
value problems: radial basis function collocation (for the Riesz fractional Laplacian) and
nonharmonic lifting (for the spectral fractional Laplacian).

In our numerical studies, we aim to compare different definitions on bounded domains
using a collection of benchmark problems. We consider the fractional Poisson equation
with both zero and nonzero boundary conditions, where the fractional Laplacian is defined
according to the Riesz definition, the spectral definition, the directional definition, and
the horizon-based nonlocal definition. We verify the accuracy of the numerical methods
used in the approximations for each operator, and we focus on identifying differences in
the boundary behaviors of solutions to equations posed with these different definitions.
Through our efforts, we aim to further engage the research community in open problems
and assist practitioners in identifying the most appropriate definition and computational
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approach to use for their mathematical models in addressing anomalous transport in
diverse applications.
© 2019 Elsevier Inc. All rights reserved.

Guide to our notation and terminology:

We define the fractional Laplacian to be (—A)%/?, where A = 9?/9x] +...+9%/0x3. We take the fractional power of (—A)
to obtain a positive operator. As a result, our definition of the fractional Laplacian (—A)?/2 is the negative generator of
the standard isotropic a-stable Lévy process, and reduces to —A = —32/9x3 — ... — 82 /9x3 when a = 2.
In this work, the symbol « is always used as the fractional order. In particular, the fractional Laplacian is represented as
(—A)¥/2 and « € (0, 2). The symbol s is always used in the representation of a real-ordered Sobolev space, H, and is
often used in this work to describe the regularity of the source function f of a fractional Poisson equation. The symbol
s should not be confused with the fractional order of the Laplacian, as often appears in the literature. All fractional
Sobolev spaces mentioned in this work are defined in Appendix A, where basic properties such as the fractional trace
theorem are reviewed.
In Section 2, we do not make a notational distinction between the definitions of the fractional Laplacian, as the definition
should be clear from the context or can be understood from the subsection heading.
Homogeneous fractional Laplacians are defined in the context of zero boundary conditions, and inhomogeneous fractional
Laplacians are defined with nonzero boundary conditions. The type of boundary condition (in this work, Dirichlet or
Neumann) is specified in the text.
In the sections following Section 2, multiple definitions appear together for the purpose of comparison, so we use the
following notation:

(— ARiesz)*/? represents the Riesz (or integral) definition (see Section 2.3),

(—Aspectral)“/ 2 represents the spectral definition (see Section 2.5), and

(—Am)%¥/? represents the directional definition (see Section 2.4).

1. Introduction
1.1. Overview

During the past few decades, scientists have been exploring fractional calculus as a tool for developing more sophisticated
mathematical models that can accurately describe complex anomalous systems [1-4]. In particular, the fractional Laplacian
has been used in place of the integer-order Laplacian in many applications, including, for example, the fractional models
listed in Table 1. The fractional Laplacian can be defined in RY in many equivalent ways [5]; however, when these definitions
are restricted to bounded domains, the associated boundary conditions lead to distinct operators.

Table 1

Important equations involving the fractional Laplacian.
Fractional equation Domain
Diffusion-reaction [6] Bl + (—A)Y2u4c(t, x)u=0 (0, +00) x R4
Quasi-geostrophic [7] 90 +u-VO+iK(—A)*20=Ff [0, T] x R2
Cahn-Hilliard [8-10] Bl + (—A)Y2(—g2Au+ f(u)) =0 (0, T] % (0, 2m)?
Porous medium [8,11] A + (—A)Y2(Ju™Tsignu) = 0 (0, +00) x R4
Schrodinger [12] oy = Do (—h? M)/ + V (1, )y (r,t) e R3 x (0, +00)
Ultrasound [13,14] Cizafp:vzp— {ta(=0)*72 + n(—n)@tD2} p (—00, +00) x RY

0

The purpose of this work is two-fold: (i) to give a comprehensive report of the commonly used definitions of the frac-
tional Laplacian and examine their differences in bounded domains, and (ii) to quantitatively explore these differences in
benchmark problems using a sample of state-of-the-art numerical methods that are described in a detailed and reasonably
self-contained way. As research on numerical methods for approximating the fractional Laplacian is extensive and ongo-
ing, we do not attempt to include a comprehensive description of all available numerical methods. Instead, the sample of
methods chosen for the comparisons in this work reflects the expertise of the authors. Of significance is the emphasis on
boundary value problems with nonzero boundary conditions, including stochastic methods, and the inclusion of new meth-
ods for discretizing such problems. This work will be of use to practitioners looking to gain insight into which fractional
Laplacian definition and associated numerical methods may be appropriate for their application.

A number of articles which include comparisons of the different fractional Laplacians on bounded domains have ap-
peared recently, such as those of Bonito et al. [15], Duo et al. [16], and Ciegis et al. [17]. The present article differs from
these in that there is a focus on recent advances in boundary value problems with nonzero boundary conditions and the
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inhomogeneous fractional operators that such problems entail. In addition to a review of the theoretical advances in this
area, we include a number of new results and methods, which we now summarize. In Section 3.3.1 a novel radial basis
function collocation method is presented for the Riesz fractional Poisson problem with nonzero Dirichlet boundary con-
ditions based on discretizing the directional representation with the vector Griinwald-Letnikov (GL) formula. This method
offers advantages in complex domains and high dimensions, and has a clear extension to more general, non-symmetric
operators corresponding to non-isotropic Lévy motion. Moreover, the method is applicable in the case of nonzero boundary
conditions, which is significant due to the relative scarcity of solvers for such boundary value problems. In Section 2.6, we
show the equivalence of recently proposed definitions of [18] and [19] for the inhomogeneous spectral fractional Laplacian,
and we provide a new equivalent characterization via the inverse Laplacian. The equivalence of these approaches allows
us to conclude that the problem of defining the inhomogeneous spectral fractional Laplacian, and posing boundary value
problems with it, has largely been solved. In addition, in Section 2.6.3, we introduce a new method of nonharmonic lifting
for the Poisson problem with nonzero boundary conditions for the spectral fractional Laplacian.

Another goal of this article is to illuminate the physical meaning of the different definitions of the fractional Laplacian
in bounded domains through their associated stochastic processes. In particular, we discuss the fact that these differing
definitions can be interpreted through different ways of applying boundary conditions to «-stable Lévy processes. We dis-
cuss this in 2.1.4, 2.3.3, and 2.5.3, and compare the resulting stochastic processes and their operators in 2.7. This is most
easily summarized for Dirichlet boundary conditions, where the stochastic picture involves two successive modifications
of Brownian motion: stopping (when the motion exits the domain 2) and subordination (a stochastic time change by the
standard «-stable subordinator, a strictly increasing jump process). These modifications do not commute, leading to two dis-
tinct stochastic processes depending on the order in which the modifications are performed [20,21]. Each corresponds to a
distinct fractional Laplacian operator. The spectral fractional Laplacian is the negative infinitesimal generator of subordinate
stopped Brownian motion (Section 2.5.3). Since paths of Brownian motion are continuous, stopped Brownian paths stop at
0%, and therefore subordinate stopped Brownian paths also stop at 92, despite being discontinuous in the interior of €.
Thus, a local boundary condition prescribed only on 92 is sufficient for a spectral Laplacian model of anomalous diffusion.
In contrast, the Riesz fractional Laplacian is the negative infinitesimal generator of stopped subordinate Brownian motion
(i.e., stopped «-stable Lévy motion; Sections 2.1.4 and 2.3.3), which represents particles that are stopped upon exiting the
domain via a jump over the boundary. Hence, conditions prescribed merely on the boundary of € are not sufficient to de-
scribe the behavior of particles that are exiting the domain, and instead an exterior condition on the behavior of the process
within R¢\ © must be given to obtain a physically meaningful model. The relation to Lévy processes is more than just
conceptual; we use a recent stochastic solution method, the walk-on-spheres algorithm of [22], to solve the Riesz fractional
Poisson equation, and we use the resulting data in our comparisons.

After considering a one-dimensional example below to illustrate some significant differences between the Riesz and
spectral fractional Laplacians on bounded domains, the remainder of the article is organized as follows. In Section 2, we
provide theoretical background on the fractional Laplacian definitions studied in this work, first in R and then in bounded
domains. In Section 3, we present the numerical methods used in this work, followed by comparisons of the solutions of
two-dimensional benchmark problems with zero Dirichlet boundary conditions in Section 4. In Section 5, we present some
comparisons for nonzero Dirichlet boundary conditions. Section 6 contains a summary of the numerical methods discussed
in this work, along with a discussion of our results and observations.

1.2. Motivating example

To motivate the present study, we consider some one-dimensional benchmark problems involving different definitions of
the fractional Laplacian, which are defined and discussed in detail in Section 2. Later in this work, we will return to this
problem in higher dimensions and in different domains. Consider the one-dimensional fractional Poisson problem on an
interval Q = (—L,L):

(—A)*Pux) = f(x), xeQ, (1)

with zero Dirichlet boundary conditions and « € (0, 2). Importantly, we consider two cases for the operator (—A)%/2: the
Riesz fractional Laplacian (introduced in Section 2.3) and the spectral fractional Laplacian (introduced in Section 2.5). The
formulation of the zero Dirichlet boundary conditions depends on the definition of the fractional Laplacian. For the Riesz
fractional Laplacian (27), the boundary condition is formulated as u(x) =0 in R\ (—L, L), and for the spectral fractional
Laplacian (36), the boundary condition is u(4L) = 0. The reasons for these formulations are discussed in Sections 2.3.1 and
2.5.1. The benchmark problems are posed with source functions f =1 and f =sin(;tx) on Q. Below, we observe that the
spectral and Riesz solutions evolve in different ways as the fractional order « is changed, and that these evolutions are
dependent on the size of the interval Q2. Additionally, we discuss the differing behaviors of the solutions to the benchmark
problems near the endpoints of the interval Q.

Case 1: f(x) = 1. To discretize the spectral definition, we use the discrete eigenfunction method described in Section 3.2.1,
and the Riesz fractional Poisson equation is solved numerically using the one-dimensional spectral method of Ref. [23]. We
plot numerical solutions of the fractional Poisson equation for both the spectral and Riesz definitions in Fig. 1 with various
values of the fractional order «. We observe from Fig. 1 that the maximum value of the Riesz solution at x = 0 does not vary
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Fig. 1. One-dimensional study: The profiles of the numerical solutions of (1) for different fractional orders «: (a)-(e) for « =1.99, 1.5,1.0,0.5,0.1,0.01. The
pink dotted curve corresponds to the solution in the case o =2, and the blue line represents the (discontinuous) solution for « = 0, and are included for
reference. Note that the Riesz solution has greater amplitude than the spectral solution, and this amplitude increases above u =1 as « goes to zero before
decreasing to one in the plot for &« = 0.01. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

in a monotone fashion as « ranges from 1.99 to 0.01. Indeed, from o =1.99 to @ = 0.5, the maximum value increases, and
from o = 0.5 to @ = 0.1, the maximum value decreases. In contrast, the maximum values of the solutions corresponding
with the spectral definition increase in a monotone fashion with o.

If we instead defined Eq. (1) on R, we would expect the solutions for different fractional Laplacian definitions to be
the same, as these definitions are equivalent on R. This observation leads to the following question: is this monotonicity
property of the solutions to Eq. (1) affected by changing the size of the computational domain? To investigate this, we
solved the same fractional Poisson problems (using both the spectral and Riesz definitions) but changed the length of the
interval Q. In this example, we denote the solutions to Eq. (1) by u;, to make the dependence on L explicit. Fig. 2 includes
plots of the trajectories M (o) = max(uy) of the maximum values of the solutions u; for @ € (0, 2] and for different lengths
L of the interval  (each curve corresponds to a different value of L). Using a change of variables, one can show that
the solution uy (x), for both the spectral and the Riesz fractional Laplacian in Eq. (1), has the property uy(x) = L%uq(x/L).
However, as u; itself depends on «, the interaction between the factors L% and uq(x/L) leads to a switch in the trajectories
M| () from monotonically decreasing behavior, to non-monotonic behavior, and finally to monotonically increasing behavior
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for o € (0,2) with f(x) =1. (right) The maximum value of the numerical solutions for the Riesz fractional Poisson equation in the interval (—L, L) for
o € (0,2) with f=1.
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Fig. 3. Plot of differences between the spectral solutions and the Riesz solutions of (1) for the right-hand-side f =1 on the interval (—1, 1). For values of
o between 1 and 2, the difference is greatest in the interior of the interval. When « < 1, a boundary layer forms and sharpens as o — 0.

as L increases. As is clear in Fig. 2, this occurs at different values of « for the different fractional Laplacians (Riesz and
spectral). Thus, we observe that the size of the computational domain affects the behavior of the solutions in relation to the
fractional order «, and it does so in different ways for the different fractional Laplacian definitions.

In Fig. 3, we plot the differences uRjes; — Uspectral Of solutions to (1) on Q = (=1, 1) with f =1 for different values of «.
We observe that boundary layers in the differences start to form as « drops below 1, becoming particularly sharp and
developing singularities in their derivatives as « approaches zero. This behavior can be understood by examining boundary
regularity of solutions arising from the two different fractional Laplacian definitions, which we discuss in detail in Sec-
tion 3.2.2. Furthermore, we notice that the differences are nonnegative in all of €2, indicating that the Riesz solutions, for
any value of o € (0, 2), lie above the spectral solutions. This is consistent with the theoretical result that the inverse Riesz
fractional Laplacian minus the inverse spectral fractional Laplacian (for zero Dirichlet boundary conditions) is positivity pre-
serving [24]. When the problem has nonzero boundary conditions, this property need not hold, as discussed in Section 5.2.
We also observe this property in the two-dimensional zero Dirichlet boundary condition comparisons in Section 4.

Case 2: f(x) = sin(;rx). The solution to the Riesz fractional Poisson equation is computed using a spectral method [23],
and the solution to the spectral Poisson equation is computed using the discrete eigenfunction method discussed in Sec-
tion 3.2.1. The solutions are shown in Fig. 4. The interesting feature to note is the boundary layer in the Riesz solutions that
sharpens as o — 0 in comparison with the smooth behavior of the spectral solutions at the boundaries. Since the source
function in this example, f = sin(rx), is an eigenfunction of the spectral Laplacian, the spectral solution is analytic in
and no boundary layer forms. For the Riesz solution, however, the boundary regularity decreases with «, resulting in the
boundary singularities observed in Fig. 4. In fact, for smooth source functions that satisfy the zero boundary conditions, we
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Fig. 4. One-dimensional study: (left) The numerical solutions of both the spectral and Riesz fractional Poisson equations with f =sin(;rx). The solid curves
are solutions of the spectral Poisson equation computed with the spectral element method where A = 64. The dashed curves represent the solutions of the
Riesz fractional Poisson equation which are computed using a finite element approximation. (right) The absolute differences between the spectral solutions
Uspectral and the Riesz solutions uges; of their respective fractional Poisson equations for the smooth right-hand-side f =sin(;rx) on the interval (-1, 1).

can always expect this difference in behaviors near the boundary. On the other hand, it is possible to achieve a singular (at
the boundaries) solution using the spectral definition if the source function itself is sufficiently singular; see Section 2.6.5.
This is a useful observation for modeling anomalous diffusion systems, since the Riesz definition may be a better choice to
model data that exhibits such a boundary layer, given a smooth forcing function.

2. Definitions and properties of fractional Laplacians

Section overview

To describe and compare the different definitions of the fractional Laplacian considered in this work from a theoretical
perspective, we review the derivations, regularity properties, and stochastic connections for the Riesz, spectral, directional,
and regional definitions of the fractional Laplacian. We first discuss these different characterizations in RY, including their
derivations, equivalence, and relations to Lévy processes. Next, we describe the breakdown in the equivalence when these
characterizations are restricted to a bounded domain with either zero or nonzero boundary conditions. We provide a sum-
mary of the stochastic processes for which each fractional Laplacian (with the associated implicit boundary conditions) is
the infinitesimal generator. This information is useful for developing Feynman-Kac type formulas for solving fractional ellip-
tic/parabolic problems, as in the walk-on-spheres algorithm discussed in Section 3.1.2. Furthermore, we describe extension
methods that have been used to reformulate the spectral fractional Laplacian, which make more conventional computational
techniques useful in discretizing the differential equations involving these operators. We also summarize well-posedness and
regularity properties of each operator.

2.1. The fractional Laplacian on R?

Although the fractional Laplacian on R? is not considered in the numerical experiments contained in this work, the
characterizations discussed in this section will lead to the definitions of the most commonly used fractional Laplacians
(Riesz, directional, and spectral) in a bounded domain. Thus, this section serves as a basis for the entire article. For proofs
that the characterizations we consider in this article, as well as other characterizations, are equivalent in R, see [5].

2.1.1. Spectral/Fourier definition

We wish to construct a fractional power of the Laplacian, (—A)¥/2, for 0 < @ < 2. A general approach to define the
positive real powers L”, with p € [—1, 1], of a positive self-adjoint linear operator L, such as L = —A, is facilitated by the
spectral theorem. This result states that for a self-adjoint, densely defined linear operator L (not necessarily bounded) on a
Hilbert space H,

L:D(L) — H, D(L)adense subspace of , (2)
there is a projection-valued measure E; such that
L= LdE; onD(L) C H. (3)

reo (L)

Here, E; is the unique operator-valued spectral measure (resolution of the identity) associated to L, and o (L) C R is the
spectrum of L, which is the support of E;. See Reed & Simon ([25], p. 263) or Rudin ([26], p. 368) for a full discussion of
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the spectral theorem for self-adjoint operators. The dense domain D(L) is often referred to as a core for the operator L [27],
and may be chosen to be smaller and more convenient space than a “maximal” domain of definition of L. Using the above
spectral representation, powers of the operator L of order —1 <«//2 <1 can be defined as the self-adjoint operator

L%? = / AY2dE,. (4)
reo (L)
The domain of the operator L%/ can then be extended to # by continuity.
We wish to consider L = —A on R? on the Sobolev space H = H2(R?), with domain the dense subspace D(—A) =
e (R%) c # taken with the 7{-norm. This gives —A = fa(fA) AE; from (2) and (3). For a regular domain €2, the spectrum

o(—A) is a point spectrum, i.e., consisting entirely of eigenvalues [25], so one can think of dE, as being, for each A,
a projection operator onto the eigenspace of A. Then, from (4), the fractional Laplacian on RY is defined by

(=A)¥? = / A%/2dE; . (5)
o(—A)

. . . . 2 2 . . .
Let us briefly discuss the use of —A instead of A above. Since A = 387 +...+ 387 has negative eigenvalues, if we were to
1

push such an operator through the above machinery, the resulting fractional operator would have complex eigenvalues. For
this reason, the spectral theorem is usually applied to positive-definite operators.

To make the definition (5) more explicit, the spectrum o (—A) must be known exactly. On RY, this spectrum consists of
eigenvalues |£]2, where & € RY, with corresponding generalized eigenfunctions e~ Thus, the projection valued measure
is given on D(—A) by

1
2m)d

(e el ¥,

where (u, v) = [uvdx denotes the L2 inner product on RY. The scale factor 1/(27)¢ is required so that JdE, =1 (where [
is the identity). The fractional Laplacian in R? can therefore be written as?

1
2m)d

(—A)*u(x) = / 6% (u, e M)t *de = F{|E1* Flu}®)} (v, (6)
Rd

where F and F~! denote the Fourier and inverse Fourier transforms, respectively.> Thus, we see that (—A)%/2, defined by
(5), is a Fourier multiplier operator with symbol |£|%, i.e.,

Flea 2l @ =g Fu®). ()

which generalizes the well-known Fourier multiplier property of —A. Many authors use this relation to define the fractional
Laplacian as a pseudodifferential operator [28]. The drawback of taking this as a starting point is that the Fourier transform
is no longer available for bounded domains, although the functional calculus approach (5) using the spectral theorem is
applicable for the case of zero boundary conditions. Of course, in that setting, the Hilbert space #, spectrum o (—A), and
measure dE, must be taken accordingly, as discussed in Section 2.5.1.

2.1.2. Singular integral representation

The fractional Laplacian can be expressed directly as a singular integral in real space RY, rather than as a 2d-integral in
both real and frequency space, as in Equation (6). This article focuses on positive powers 0 < « < 2, but the negative o case
bears mentioning in connection with this goal.

For —d <« <0, i.e., for fractional inverse Laplacians, the multiplier |£|% is decaying and has a Fourier inverse in the
sense of distributions: F~1{|&|%} = C(d, o)|x|~9~% (see Stein [28] or Landkof [29]). The constant C(d, &) is given by

21 (4 +9)
T (-5) 1

Then, (7) and the convolution property of the Fourier transform imply that the fractional inverse Laplacian is given, for
—2<a <0, by

Cd, )= (8)

2 An alternate statement of the spectral theorem can be made which involves representations of operators as multiplication operators. From that point
of view, this result is not surprising, as F is precisely the unitary transformation 4 — L? specified in that theorem that diagonalizes the Laplacian, turning
it into a multiplication operator ([25], p. 260).

3 Here, we use the convention F{u}(&) = W Jra u@e~%%dx, and F-H{il}(x) = W [ra 0(E)e*dE.
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wdy =: I_au(x). (9)

(=AY 2u(x) = C(d, a)]x| 4 % u(x) = C(d, o:)f uy)
R4 g
This results in a well-defined function if u(x) is, say, a smooth function with sufficient decay (Joshi & Freidlander [30] or
Reed & Simon [25]). This operator I_, is known as the Riesz potential, the properties of which (such as L? boundedness)
are discussed at length in Stein [28]. The Riesz potential is an important tool in harmonic analysis and the analysis of linear
PDEs [31].

For 0 < o < 2 (the fractional Laplacians in which we are interested), the above derivation fails because the inverse
Fourier transform of the symbol |£|% no longer exists, even as a distribution. In addition, the representation (9) does not
continue for « > 0, since the singularity would no longer be integrable. However, starting from the negative o case (9),
a nice argument that can be found in Landkof ([29], p. 45) based on analytic continuation in & of (—A)*/2u(x), for fixed u
and x, yields the following real-space formula for the fractional Laplacian:

(= A2y = C(d, &) p. %

(10)
|x
Rd

The constant C(d, v) is the same as in Eq. (8), and “p.v.” denotes the principal value of the integral:

ux) — u(y)dy —lim ux) —u(y)
)=yl T es0 x — y|d+e
R¢ RA\Be (x)

)

where B¢(x) is a ball of radius € centered at x. The difference u(x) — u(y) in the numerator of (10), which vanishes at
the singularity, provides a regularization, which together with averaging of positive and negative parts allows the principal
value to exist, e.g., for smooth u with sufficient decay.

The relation between the Riesz potential and the fractional Laplacian is discussed in detail in [32], Sections 5.25 and
5.26, where it is shown that

(=AN)*?u =u.

This identity leads to the representation of the fractional Laplacian directly in terms of the Riesz potential:
(=) ?u(x) = —Al—qu(x).

2.1.3. Via the standard Laplacian: elliptic extension, heat semigroup, & Balakrishnan formula

Next, we describe three representations of the fractional Laplacian (—A)*/2 of a function u(x) on R? that require the
solution of equations involving the standard Laplacian, albeit in the (d + 1)-dimensional half-plane. The first is the extension
method, or the Dirichlet-to-Neumann map, which requires the solution of a degenerate elliptic equation in the half-plane
using u(x) as the Dirichlet boundary data, followed by a type-of normal derivative of the solution. The second is the heat
semigroup method, which requires the solution of a parabolic equation - the simple heat equation - in the half-plane with
u(x) as the initial condition, followed by long-time integration. The third is the Balakrishnan formula, which expresses the
fractional Laplacian in terms of the resolvent (sI — A)~1.

The extension method is based on the following result. Given a function u(x) on R4, consider the extension ii(x, y) on
R? x [0, 00) that solves

. 11—«
Axu +

a,il + 3% =0
Y (11)

u(x,0) =u(x).
Then
u(Xa Y) - u(X7 O)
yOl
for a certain constant c that depends on d and «.
The above statement is taken directly from Caffarelli and Silvestre [33], which is the most widely read source for the
extension method. The extension method was reported as early as 1968 by Molchanov and Ostrovskii, in their studies of
symmetric stable processes [34]. The result was also used by other authors (e.g., [35]), before it was systematically addressed

by Caffarelli and Silvestre.
The heat semigroup representation of the fractional Laplacian uses the solution of the heat equation in RY x [0, co):

(—=A)*?u(x) =c lim
y—0

- dt
(AU = m/(em”(")_”("))m—aﬂ‘ (12)
0
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Here, e!® is the propagator of the heat equation, i.e., w(x, t) = e'2u(x) is the solution of the problem

dw — Aw =0onRY x [0, 00)
(13)
w(kx,t=0)=u.

The family {2} is called the heat semigroup. See [36] and [37] for a full discussion. An implementation of the formula (12)
on RY was studied in [38].

The Balakrishnan formula, introduced in [39], is a result from spectral theory and the theory of semigroups. This formula
for the fractional Laplacian is

(=N ?u(x) = Si“(oj‘rin/z)/A(y — A Tux)s*/?1ds.
0

For a further discussion of these characterizations in RY, we refer to [5] and references therein. Although fractional
Laplacians in bounded domains will be introduced in the next subsection, we preface that discussion by pointing out that
analogues of these methods hold in bounded domains, depending on the fractional Laplacian being considered. In the case
of the spectral fractional Laplacian for functions that satisfy zero Dirichlet boundary conditions, the characterization via an
elliptic extension holds with the half-plane being replaced by a cylinder over the original domain [36,37]. The Balakrishnan
formula and the closely related Dunford-Taylor formula (for the inverse spectral fractional Laplacian) are valid and have
efficient numerical implementations [40,41]. The heat kernel formula has been found to be valid even for nonzero boundary
conditions [19]. See Sections 2.5.2 and 2.6.4 for further discussion and references to proofs and implementations of these
methods.

2.1.4. Relation to Lévy processes

The fractional Laplacian is connected to anomalous diffusion, which accounts for much of the interest in modeling with
fractional equations. Just as the Laplacian is the negative generator of Brownian motion (scaled by +/2), the fractional
Laplacian is the infinitesimal generator of a standard isotropic «-stable Lévy motion X, which can be expressed by

o
M) f (g = lim P XD = f®] (14)

h—0 h
This connection is explained more fully in the last two paragraphs of this section. This process X{ is a Lévy process ([3],
p. 100) in which the increments are drawn from a spherically-symmetric «-stable distribution ([3], Ex. 6.24). This process
can be viewed as the long-time scaling limit of a random walk with power law jumps ([3], Theorem 6.17). For o =2, X{
reduces to scaled Brownian motion th = /2B, with the 2-stable distribution being the normal distribution A/(0, 02 = 2).
For o < 2, the «-stable distribution exhibits heavy tails and infinite variance. Moreover, the mean is finite if and only if
o > 1. The Lévy process X{* has superdiffusive scaling X% ~ cl/e X{, and exhibits long, infinite-variance jumps when o < 2.
As an example, a superdiffusing cloud of particles would spread in space like t'/%. In many ways, a-stable Lévy flights are
the simplest generalization of Brownian motion. As a result of (14), the fractional Laplacian naturally appears in macroscopic
governing equations of systems of particles undergoing «-stable Lévy motion, making it a powerful and useful generalization

[3]. In Fig. 5, we include examples of 2D isotropic stable Lévy motion and standard Brownian motion.

The heavy-tailed behavior of «-stable random variables is very much in demand for modeling, although the infinite
variance property may sometimes be undesirable, for physical or numerical reasons. Recently, tempered fractional calculus
has been developed to avoid this issue [42]. Tempered fractional diffusion equations model particles that undergo tempered
a-stable Lévy motion, which is based on an exponentially tempered «-stable density [43]. Roughly, this density exhibits the
power-law decay up to a certain argument, then decays exponentially. The generator of tempered «-stable Lévy motion, i.e.,
the tempered fractional Laplacian, was discussed in [44], where a Riesz basis Galerkin method was proposed to solve the
Poisson problem with this operator.

This characterization as an infinitesimal generator of X{* also lends itself to the stochastic (Monte Carlo) solution of
boundary value problems involving the various fractional Laplacians in bounded domains. These formulas are typically re-
ferred to as Feynman-Kac (Dirichlet boundary conditions, [45]) or Brosamler (Neumann boundary conditions, after [46-48])
formulas. One such solution method is discussed in Section 2.3.3, and its implementation is described in Section 3.1.2.

We now give a brief outline of the probabilistic theory behind the relation of the fractional Laplacian to Lévy processes.
This will also result in the generator form of the fractional Laplacian, which is related to the directional representation in the
next Section 2.1.5. Following the text [3], we review the classical Lévy-Khintchine formula for generators of Lévy processes
and sketch how it results in the fractional Laplacian for the special case of isotropic a-stable processes. Given a Lévy process
{Z; : t > 0}, define the family of linear operators

T f)=E[f(x—Zp], t=0,

for suitable functions f. Suppose that the characteristic function of the random variable Z; is E[e*41]=e¥® where
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Fig. 5. Comparison of Lévy motion and Brownian motion: (left) A 2D standard isotropic stable Lévy motion with o = 1.8. (right) A 2D standard isotropic
stable Lévy motion with o = 2.0 (Brownian motion).
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)d)(dy).

Then T;: f (x) defines a Co-semigroup on Co(R?) with generator ([3], Theorem 6.26)

Lo =-a- 95w +57-avsw+ [ (1= reo+ L o, (15)
where ¢(dy) is some Lévy measure ([3], Eq. (6.20)). The domain of L contains {f: f, f’, f” € Co(R%)} ([3], Theorem 6.26).
This is the Lévy-Khintchine formula. The first order differential term in this operator can be understood as the “drift” term,
the second order differential term can be understood as the standard diffusion, and the Lévy measure describes the jumps
of the Lévy process ([3], p. 159).

As we will now see, if we choose Z; to be the standard isotropic «-stable Lévy motion, then (15) reduces to the negative
of the fractional Laplacian. The details of the following discussion can be found in [3], Examples 6.28 and 6.29. f 0 < < 1
and Z; is a Lévy process such that Z; has the characteristic function

E[e*Z1]=exp | —CI'(1 — ) / (—ik-0)*M(d6) |, (16)
|6|=1

then the generator of the corresponding stable semigroup can be written in the form

Lf(x) = /(f(x— y) = fx)edy), (17)
where
$(dy) =aCr~%"'drM(df) with y =r8,r > 0,and |0| = 1. (18)
If M(d@) is a uniform measure on the unit sphere, and if
C~!'=BI'(1 —«), and B = cos(mra/2) / |61|1*M(d9), (19)
16]=1

then the right-hand side of (16) reduces to exp[—|k|*], so that Z; = X{, the standard isotropic a-stable Lévy motion,*
and L = —(—A)%/2, the negative of the fractional Laplacian ([3], Example 6.24). Indeed, (17) reduces to (10) after a simple
change of variables (see [49], Section 4). Now if 1 <« < 2, and Z; has the characteristic function

4 The general isotropic a-stable random variable has characteristic function exp[—c® [k|*], where c is the scale parameter. The standard «-stable random
variable has scale parameter ¢ = 1. Note that the standard isotropic 2-stable random variable corresponds to a normal random variable with characteristic

—o?|k?
2

function exp[ ] and variance 02 =2.
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E[e“"zl]zexp C% [ (_ik.g)aM(do) , (20)
|0]=1

then the generator of the corresponding stable semigroup can be written in the form

Lf(x):/(f(x—y) —fO+y-VIix)e@y), (21)

where ¢ is defined as in (18), and the constants B and C are defined as in (19). In this case, if M(d@) is a uniform measure
on the unit sphere, then L = (—A)%/2, which has a different sign than in the case 0 < a < 1. The sign change is due to
the fact that B> 0 for 0 <a <1, and B <0 for 1 < o < 2. Equations (17) and (21) yield alternate forms of the fractional
Laplacian (10), known as the generator forms, without using the principal value. The generator form (15) of the fractional
Laplacian is useful for probabilists working in this area.

2.1.5. Directional representation
Another integral characterization of the fractional Laplacian, which we refer to as the directional representation, can be
found in [32] (Eq. (26.24)). The operator is written as

(=A)*2ux) = Cyq / DYu(xdf, x,0cR% ae(0,1)U,2], (22)
19]=1
where the scaling constant before the integral is [32,50]

_PAgHreE)

14d

2w 2

Ca,d

The Fourier transform of (22) corresponds to multiplication of the Fourier transform of u by (16) when « < 1 and by (20)
when « > 1. Here, Dg(-) is the Riemann-Liouville fractional directional derivative [51] given by

DY) =0 V), %() forO<a<1; DY()=(0 -V)’I;7%() forl<a <2;

where § -V =Y, 0,-3%_ is the directional derivative, thus (8 - V)? = Z?zl ¢ 9,-0]-%, and the fractional directional

integral 15(-) is defined by (for g € (0, 1))

+00
1
Igu(x)zr(l—_ﬁ) / g‘ﬂu(x—gO)dg. (23)
0

Note that (22) excludes the case o« = 1. When o = 1, the directional representation is more complicated; for the one-
dimensional case, see [52].

We now explicitly write out the directional representation (22) for one and two dimensions; these formulas will be used
later in this article. In one dimension, using the identity I'(x)["(1 — x) = 7 / sin(;rXx), we have

(5 (%) (5 (-5 e m e

1
_A\a/2 —
(=A)*“u(x) —2cos(”2—"‘)
_ 1
_2cos(”2—0‘)

and so

[Dg—_qu(x) + Dg_ju(x)]
[EﬁoDi‘u(X) + R,fD‘;‘ou(x)] :

where RL_D% and RL D% are the well-known one-dimensional left- and right-sided Riemann-Liouville fractional derivatives,

respectively [53]. Note that, using the Fourier transforms of these operators, F[(—A)%/?u] = m [%(—ié)“ + %(ié)“] u
= |&|%0 for @ # 1. In two dimensions and for « # 1, the fractional Laplacian can be written in polar form as
2
(=A)*?u(x) = Cq 2 / D% u(x)do,
0

where D is a derivative along the direction [cos(6), sin(6)].
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Meerschaert et al. [54] extended the above operator (22) to an anisotropic version, which they called the general (asym-
metric) fractional derivative operator V¢,

Vyu(x) = / Dgu(x)M(df), x,0¢ R o€ (0,1)U(1,2], (24)
10]=1

where M(d@) is an arbitrary probability measure on the unit sphere {|@| = 1}. The motivation for the definition extension
is to generate “the full range of Lévy-stable motions”. For more details, see Equation (16) and the corresponding discussion.
The study of this more general operator is beyond the scope of the current article. However, it is an interesting and pertinent
topic for future extensions of many of the results and methods discussed in this work. It should be noted that the Riesz
fractional Laplacian is recovered if the measure M(d#) is uniform, namely, M(d@) =d# /Sy where Sy = an/z/F(d/Z) is the
surface area of the unit sphere in RY. In this case, the two types of operators are related by
r(%e)rs9)
(=) Pu) = ——FH——
r(4)ve

Vyu(x).

2.2. Fractional Laplacians on bounded domains

We have discussed several characterizations and formulas for the fractional Laplacian in R?, which are all equivalent in
that setting. If we apply these different formulas on a bounded domain Q c RY, certain equivalences break down, which
leads to the definition of several distinct fractional Laplacians in a bounded domain. Some researchers have defined other
fractional Laplacians on a bounded domain directly, instead of restricting the definition for R? [55]. Here, we survey the
Riesz fractional Laplacian (sometimes called the integral fractional Laplacian), the directional fractional Laplacian, and the
spectral fractional Laplacian. We focus on the following topics.

e Appropriate boundary conditions for the Poisson problem

(=A)*?u = fin <. (25)

The spectral fractional Laplacian admits local boundary conditions on 9€2; the regional fractional Laplacian has also
been considered with local boundary conditions. On the other hand, the Riesz (and directional) fractional Laplacians
require exterior boundary conditions on R\ .

e Connection of each fractional Laplacian with given boundary conditions to a stochastic process. The standard negative
Laplacian —A in a bounded domain is the negative generator of stopped [56] Brownian motion if taken with Dirichlet
BCs [57,58], and reflected Brownian motion if taken with Neumann BCs [46,48,59]. Similarly, the fractional Laplacians
are negative generators of certain stopped® or reflected Lévy motions. This is useful for physical interpretation as well
as stochastic solution methods.

e Well-posedness and regularity properties of the fractional Poisson problem (25) with appropriate boundary conditions.

We do not consider the Laplacian with periodic boundary conditions (i.e., on the torus T9) in this article. The construc-
tion of such an operator is unambiguous, and follows the construction of the fractional Laplacian in R? in Section 2.1.1
except that the spectrum is discrete, so the operator is given by a Fourier series. For a basic discussion, see, e.g., [60], and
for discussions of extension characterizations as well as well-posedness and regularity, see [61,62].

2.3. Riesz fractional Laplacian

2.3.1. Definition

One approach to defining the fractional Laplacian on a bounded domain €2 is to apply the real space formula (10) to
functions on 2. This leads to the Riesz fractional Laplacian in €. Let us first consider Dirichlet boundary conditions. Since
formula (10) requires values of u on all of R¢, an exterior boundary condition

u=ginRY\ Q (26)

is required, even to define the Riesz Laplacian within Q. For functions u that satisfy (26), the Riesz fractional Laplacian is
defined for x € by

5 Many results in the probability literature (e.g., [20]) are stated and proved for killed processes rather than stopped processes. Without going into details
here, we note that the resulting semigroups are equivalent when applied to functions f that vanish outside the domain, in the sense that Ey [ f(X;)] is the
same whether X; is the killed or the stopped process. Here, we are assuming that f(3) =0 where 9 is the cemetery point specified for the killed process.
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(—=A)*ux) = C(d, a) p.v. u® —uy)
y|d+Ol

Ix—
Rd
u(x) —u ux) —
—Cda) | pv. [ LRI / uX — W) ,
|x — yld+ |x — y|d+e
@ Ré\Q
The Riesz fractional Laplacian depends directly on €2 and the exterior boundary values g. It also referred to in the literature

as the integral fractional Laplacian [15] or as the restricted (Dirichlet) fractional Laplacian [63,64]; for consistency, we do not
use these terms in this article.

2.3.2. Boundary conditions: Dirichlet vs. Neumann

The Neumann condition for the Riesz Laplacian is, at the time of this writing, an area of active development. A type
of exterior fractional normal derivative is needed to specify u on R?\ Q, but there is no widely studied or accepted
definition. Recently, a fractional Neumann operator was proposed in [65], and the properties were studied in detail in [66].
Another approach to defining reflecting boundary conditions based on mass conservation for diffusion in one dimension
was explored in [67,68].

The Poisson problem with Dirichlet boundary conditions

(=N)*?u=finQ,

(28)
u:gian\Q

has been extensively studied in the g =0 case [69-73], but literature based on the nonzero case is more recent and
limited [73,22,74,75]. For the case of zero exterior Dirichlet condition g =0 in (28), finite element algorithms have been
developed in [69], [71], and in particular the adaptive finite element scheme of [72] has been used for the computations of
this paper. For the case of nonzero exterior Dirichlet condition, in [22] a Monte Carlo method based on the Feynman-Kac
formula for the problem (28) was developed and studied. This method is described in more detail in Section 3.1.2. The
radial basis function collocation method introduced in Section 3.3.1 (based on discretizing the directional representation of
the Riesz fractional Laplacian) readily admits nonzero exterior Dirichlet condition as well. In [76], a finite element method
for nonzero exterior Dirichlet conditions was introduced in which the exterior condition was enforced through a Lagrange
multiplier formulation. Another approach for the case of nonzero exterior condition, with application to exterior control
problems, is that of [75], which implemented nonzero exterior Robin conditions and used this to approximate the solution
to the nonzero exterior Dirichlet problem.

2.3.3. Stopped Lévy motion

The Riesz fractional Laplacian with Dirichlet boundary conditions is the generator of the stopped «-stable Lévy motion.
The stopped Lévy motion is defined as follows [56-58]. Given a stable Lévy motion X{* and a bounded domain 2, we define
the stopping time (or exit time)

oo =inf{t: XY ¢ Q. (29)

Then, the stopped Lévy process is defined as Xf‘MQ. Unlike stopped Brownian motion, which has almost surely continuous
paths that are stopped at the boundary, the paths of a-stable Lévy motion are discontinuous and almost surely exit the
domain by a jump. Thus, the paths of stopped «-stable Lévy motion pass into the exterior RY \ 2 where they are stopped
immediately.

In [22], this stochastic connection was exploited to prove a Feynman-Kac for the Poisson problem.

(—A)*%ux) = f(x), xeQCRY,

(30)
ux)=gkx), xe RY \ Q.
Under mild conditions on f and g, the following Feynman-Kac formula was proven:
oQ
ux) =Ex[g(X5,)] + Ex /f(x;")ds , XeQ, (31)
0

where X is the symmetric a-stable process, Ex(-) denotes the expectation with respect to all the sample paths with the
initial location x, and oq = inf{t > 0: X; ¢ 2} is the first exit time of the sample path.

In addition to a proof, in [22] a walk-on-spheres (WOS) method for much faster computation of (31) was introduced and
analyzed. This speeds up the implementation of (31) by replacing the simulation of exact stopped paths in Q by a series
of maximal inscribed spheres. Conceptually, the WOS method is based on the isotropy of the problem (30) as well as the
analytic formula for mean-exit time of X on a sphere [77]. In the Brownian motion case, the center of each sphere is
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chosen by sampling a uniform distribution on the boundary of the previous sphere, and the procedure terminates when
the process comes within some tolerance & of the boundary of €. In the «-stable case, the center of each sphere is chosen
by sampling a distribution (which is described in detail in Section 3.1.2) on the exterior of the previous sphere, and the
procedure terminates when the process jumps outside the domain €2. This is because, in the «-stable case, the sample path
may exit the sphere by a jump, instead of by passing through the boundary; convergence in finite steps was proven in [22].

2.3.4. Well-posedness and regularity
In this section, we consider the problem

(—A)*?u=finQ,

(32)
u=0inR%\ Q.

Using the Lax-Milgram Lemma, for a bounded Lipschitz domain €2, it is easy to show that this problem is well-posed if
f(x) e H=%/2(Q) and the resulting solution u(x) € H%/2(2). See, for example, [71,15,69]. For the definitions of the Sobolev
space HS, which will also feature in the following regularity results, see Appendix A.

As for regularity, our intention is not to give a complete survey of all the known regularity results for the fractional
Laplacian. Instead, we mention two results that give an indication of the regularity for the Riesz fractional Laplacian, for
the case of the zero boundary condition. These properties should be compared with the regularity of the spectral fractional
Laplacian (see Section 2.6.5). The regularity up to the boundary is a key difference between the two definitions.

The Holder regularity for the solution of the Problem (32) was studied in [70]. The authors were motivated by the exact
solution for f =1 in the ball B;(xp) centered at xo of radius r:

—A)*?y =1in Br(xg),
(=A)**u in d(XO) (33)
u=0inR"\ Br(xp),

which has solution

279T(n/2)
(T +a/2)

5 2 a2
ux) = T (r — |x — Xo| ) in Br(Xp).

This solution exhibits strict C%/2 regularity up the boundary. The authors proved the following result. Let Q be a bounded
C!1 domain and §(x) = d(x, 8$2) denote the distance to the boundary. Then g € L°°(2) implies that u/(S"‘/2 can be extended
to a C'(Q) function for some r < min(c/2, 1 — o/2), and

1u/8% ey < Cligllio -

This result is sharp for the problem (33). Boundary value problems in which weighted boundary conditions (on the trace of
u/8%/2 rather than u) are specified on 92 are studied in [73].

The following theorem relates to the Sobolev regularity of (32). This form is presented nicely in [72] and is based on the
results of [73] and [78]. We mention that although the formulation in [72] considers s > —«/2, [73] establishes the first
case below for —1/2 < «/2 + s < 1/2. Regularity for the inhomogeneous problem (28) is also studied in [72], although we
restrict ourselves to the case below.

Theorem 2.1.[72,73,78] Let 3Q2 € C*®, f € HS(Q) for s > —a /2 and u € H*/2(Q) be the solution of the fractional Poisson problem
(32). Then

HYHs(Q) if0<o/2+s<1/2,

ue
HY2H12=6(Q)Ve >0 if1/2 <a/2 +5.

An interesting feature of the Sobolev regularity for the Riesz fractional Laplacian is that if «/2 4+ s > 1/2, the global
regularity of u need not improve if s, the regularity of f, is increased. Rather, s merely improves the interior regularity of u.
This was proven in [73], where it was shown that for a smooth boundary 92, f € H*(2) implies that u H;’gjs (2). There-
fore, the global regularity (i.e., regularity up to the boundary) for the Riesz fractional Laplacian is in contrast to the global
regularity for the spectral fractional Laplacian (see Section 2.6.5). In the case when f € L2(2) for the spectral Laplacian,
u € H*(Q) for all o € (0, 2), while this is only true if @ < 1 for the Riesz fractional Laplacian. In the case when f € H5(Q2)
and s > 1/2, then u € H"¥(Q) for the spectral fractional Laplacian provided f =0 on the boundary 9%, while for the
Riesz definition, u € H*/2+1/2-¢(Q), independent of s. Even if f £ 0 on 9%, the regularity of u for the spectral definition
improves as « + 1/2 — ¢, while in the Riesz case, it improves as «/2 +1/2 — ¢.
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2.4. Directional fractional Laplacian

We can also apply the directional fractional Laplacian (—A)ﬁ’/,/ 2 to functions on  with an exterior boundary condition,
which is applied in the same way as for the Riesz definition. Although the directional characterization was motivated
in [54] by the desire to capture anisotropic anomalous diffusion, in this work, we always choose M(df#) = df/S; where
Sq= 2nd/2/F(d/2) is the surface area of the unit sphere in RY, so that our computational results for this definition can
be compared to those of the Riesz definition. With this choice of measure, the associated Lévy process is symmetric stable
motion that is stopped upon exiting the domain €2, which is the same process as the one associated with the Riesz fractional
Laplacian. A nice proof of this equivalence can be found in [79], Lemma 4.1. Hence the discussions of Section 2.3.3 and 2.3.4
also apply to the directional fractional Laplacian with our choice of integration measure.

2.5. Spectral fractional Laplacian

In this article, we have split the discussion of the spectral fractional Laplacian into two: the case of zero boundary
condition and the case of nonzero boundary conditions. This is due to the vast body of work that considers only the
homogeneous spectral fractional Laplacian (i.e., the zero boundary condition case), as only recently was the inhomogeneous
version considered. In deference to the fact that many results in the literature apply only to the homogeneous case, we have
taken this approach to avoid misleading the reader. The results reported in Sections 2.5.1 and 2.6.5 on the homogeneous
spectral fractional Laplacian should not be taken to apply in the case of nonzero boundary conditions without modification.

The inhomogeneous spectral fractional Laplacian has been considered by Antil et al. [18] (see Section 2.6.1) and Cusimano
et al. [19] (see Section 2.6.4). In Section 2.6.4, we point out that the definitions considered in [18] and [19] are the same, and
are essentially a harmonic lifting to the homogeneous spectral fractional Laplacian. Moreover, we show that this amounts
to another natural definition in terms of the inverse spectral fractional Laplacian.

2.5.1. Zero boundary condition

The spectral approach to defining the factional Laplacian in  is to start with the standard negative Laplacian —A on
that domain and take the spectral power defined by (5). Let us first consider the case of zero boundary conditions. We will
take D(—A) to be the subspace of H2(2) consisting of smooth functions with zero Dirichlet or zero Neumann boundary
values,® depending on the choice of boundary condition.

The spectrum o (—A), which is now discrete, depends on the domain 2 and on whether Dirichlet or Neumann conditions
are used. The spectrum of the Laplacian in the Dirichlet case is defined by the problem,

—Ae, = Age in Q
e, =00n0%,

and in the Neumann case by

(34)
—Aey = Mg in

The Aj are the eigenvalues, and ej, the eigenfunctions, of —A with zero Dirichlet or Neumann boundary condition, respec-
tively. The spectral decomposition (3) then reads

o0
—AU@) =) (e 2 e (). (35)

k=1
We remark that this identity is valid on D(2), and can be extended by continuity to H%(Q) in the Dirichlet case, or
H%u/anzo(ﬁ) = {u e H2(Q) : g—ﬁ |89 = 0} in the Neumann case. It is not in general true for functions u with nonzero bound-
ary values (Dirichlet or Neumann). For example, in one dimension with —A = —a%, and (A, er) from (34) on [0, 27r] and

u = cos(x), the equation (35) does not hold. In fact, the series on the right-hand side diverges.
Thus, on D(—A), in accordance with (5), the spectral fractional Laplacian is defined by
o
AN®/2 o o/2
(=) Pu) = ;xk (1 e 2 ex (). (36)

As usual, by continuity, this can be extended to an operator on H®*(2) (see Appendix A). The spectral fractional Laplacian
is nonlocal on the interior of  for noninteger « € (0, 2). We see that to compute the inner product (u, ek)%, it suffices

6 We remind the reader that, for using the spectral theorem as in Section 2.1.1, D(—A) need not be all of , or even a “maximal” domain of definition
of —A within #, but rather a more convenient, dense subspace of H (a core for —A).
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for u to be defined on the interior of 2. Unlike the Riesz fractional Laplacian, the spectral fractional Laplacian requires no
information about u on the exterior R\ . Thus, from a conceptual viewpoint, in boundary value problems the spectral
fractional Laplacian admits the same type of boundary conditions as the standard, local Laplacian —A. Precise conditions
and references for rigorous proofs for well-posedness of boundary value problems for the spectral fractional Laplacian with
such local boundary conditions (Dirichlet and Neumann) are discussed in Section 2.6.5.

2.5.2. Other representations

In this section, we merely point out the analogues of the characterizations in Section 2.1.3 which have been proven (and
implemented) for the spectral fractional Laplacian. Unless otherwise stated, these are not applicable without modification
in the case of nonzero boundary conditions. We do not use these characterizations in our numerical comparisons, but each
has its advantages and disadvantages.

The analogue of the extension method (11) for the homogeneous spectral fractional Laplacian on a bounded domain was
derived in [37]. In this characterization, a degenerate elliptic equation is solved in the extruded domain (“cylinder”) over €,
followed by a similar Neumann-type trace. Further studies include [80,81,36]. As this higher-dimensional formulation in-
volves only integer-order operators, standard discretization approaches may be applied, as in [82-84].

The heat semigroup formula on a bounded domain © was studied and implemented in [19], where the heat semi-
group was used to define the spectral fractional Laplacian. This approach is robust for nonzero boundary conditions, and is
discussed at length in Section 2.6.4.

The Balakrishnan formula was implemented in, e.g., [40]. More recently, in [41], a rapidly convergent sinc quadrature
was developed for this formula, which is used together with a finite-element approximation to the resolvent (sI — A)~!.

Yet another approach in [85] considered a reformulation of the spectral fractional Poisson equation with zero Robin
boundary conditions as an integer-order (time-dependent) pseudo-parabolic equation that could be solved with standard
FEMs in space and finite difference methods in time. The solution of the pseudo-parabolic equation at time t =1 turns out
to be the inverse spectral fractional Laplacian applied to the source function, which yields the solution to the fractional
Poisson problem.

2.5.3. Subordinate stopped/reflected Brownian motion

It is well known that the Laplacian in a bounded domain is the generator of stopped Brownian motion for Dirichlet
boundary conditions, and reflected Brownian motion for Neumann boundary conditions [86]. The construction of stopped
Brownian motion uses the same procedure as in (29), while the construction of reflected Brownian motion involves the
solution of the Skorokhod problem [48]. The corresponding processes for the spectral fractional Laplacian can be obtained by
means of subordination. Subordination of a process X; results in a process Xr(), in which time ¢ is replaced by “operational
time” T(t), itself a stochastic process - more specifically, an increasing Lévy process. In RY, an isotropic o-stable Lévy
motion can be constructed by subordinating the isotropic Brownian motion with the stable subordinator (see [87], Section
4.4). The same time change gives a way of converting Brownian paths that are stopped at the boundary into «-stable Lévy
paths that are stopped at the boundary.

The spectral fractional Laplacian with Dirichlet boundary conditions is the generator of subordinate stopped Brownian
motion [20], i.e., stopped Brownian motion that is then subordinated by the standard stable subordinator. The spectral frac-
tional Laplacian with Neumann boundary conditions is the generator of subordinate reflected Brownian motion. These are
both results from the semigroup theory of Markov processes (see [86], Chapter IX; a detailed discussion may be found in [88,
89]). Thus, one imposes the boundary condition on the process first, before subordinating and turning the stopped/reflected
Brownian motion into a Lévy motion. It is important to note the order of the modifications; the reverse order corresponds
to the Riesz fractional Laplacian in €2, as discussed in Section 2.3.3.

2.6. Inhomogeneous spectral fractional Laplacian

The construction of the spectral power (36) cannot simply be repeated for the case of nonzero boundary conditions. This
is because subsets of C*°(Q2) that satisfy a fixed nonzero boundary condition are no longer linear spaces, which prohibits
the use of the spectral theorem. However, in the case of the standard Laplacian —A on a bounded domain, using a lifting
technique, a spectral series can be derived (see eq. (39)). The generalization of this approach can be used to derive a suitable
series representation for the inhomogeneous spectral fractional Laplacian, namely

o0

_ ae;
(—Da)®u=>" (1w e — 1 (u, —’) e,
on 12(3Q)

i=1
where g is the nonzero Dirichlet boundary condition for u. This approach was taken by Antil et al. [18] and is discussed

in Section 2.6.1. The same authors show that under suitable regularity conditions, the inhomogeneous spectral fractional
Laplacian can be written as

(—Aq.g)*?u=(=Agqo)*?[u—vl, (37)
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where —Av =0 in the weak sense, and V|as2 = g. This essentially reduces the inhomogeneous operator to the well-studied
homogeneous spectral fractional Laplacian. The details of the harmonic lifting are discussed in Section 2.6.2. Nonharmonic
lifting functions may also be used; this is discussed in Section 2.6.3. We note here a consequence of (37) that may be
surprising at first: as o — 0, (—Ag,g)“/zu — u — v; in other words, for g #0, (—Ag,g)"‘/2 does not reduce to the identity
operator as o — 0.

A different approach was taken by Cusimano et al. [19] where the heat semigroup was used to define the inhomogeneous
spectral fractional Laplacian, for which they used the notation L‘é/ z:

o 1 T dt
ngz,u =t / (eA2su(x) — u(x) T (38)
0

This approach is discussed in Section 2.6.4. A lifting characterization equivalent to (37) was obtained for this operator Lg/ ;;

thus both the operator (—AQ,g)"‘/2 defined by Antil et al. [18] and the operator E‘é{z defined by Cusimano et al. [19] are

the same. Hence, we use the symbol (—AQ’g)a/ 2 in the remainder of this work. We compare numerical methods that can
be applied to both approaches in Section 5.1.1.

2.6.1. Series representation

We motivate the approach in [18] by discussing the spectral representation of the standard Laplacian —Au = —‘;75‘ —
1
52 . . . .
.= ‘,’)73 on a bounded domain 2 for arguments u with nonzero boundary values. Given a function u such that u|3o = g,
%4

where g need not be zero, subtract from u a harmonic function v inside  with the same boundary values:
—Av=0, vjjo=2g.

We refer to this function v as a harmonic lifting of g. Then
—Au=—Au—-v), U—v)ye=0.

In other words, harmonic lifting of the boundary values does not change the Laplacian of u, and since the boundary value
for u — v is zero, we can use it in formula (35):

—Au=—-AU—v)
= Z/\k(u — V. e 2(Q)ek
=D s e 2gpek — MV, e 2 ek

Let us rewrite the second inner product in the sum, which involves the harmonic function v:

(v.er) = (v, —A=A) e 20

= (v, —A)»k*]ek)Lz(Q) (by the eigenfunction property)
ae av
=) / —Avep + 1! / va—nk — ! /ek% (Green'’s second identity)
Q a0 a0
-1 aey .
= Ak va— (since —Av =0o0n Q and e, =0 on 9L2)
n
a0
-1 ek .
= Ak ua—n (sinceu — v =00n 9%2).
Q

This gives us the spectral expansion of —A which is now valid for any smooth function u on €2, regardless of boundary
values:

aey
—Au:Z Ak/uek—/ua—n( k. (39)
Q Q

This is a key result for defining the inhomogeneous spectral fractional Laplacian. However, before we can proceed, the
operator (—A)~! that appeared in the derivation above requires clarification. A priori, it is a multiple-valued operator, since
(=A)~'f is only specified up to a harmonic function in . However, owing to the uniqueness of the (standard) Poisson
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problem, this arbitrariness may be removed by requiring (—A)~! f to have fixed boundary value & on 8. Thus, we define
u= (—Ag)”f as the function such that —Au = f and u =g on 9. Regardless of the fixed boundary condition, this will
result in a single-valued operator (—Agg)‘] such that

—A(=Ap) ' =1dp, (40)

and

-1
(—Ag) (=A) = Id{ueH2 such that u|yo=g}" (41)

For definiteness, and to obtain an identity operator on a linear subset of H2 in (41), the zero boundary value §=0 is
chosen. We sometimes refer to this as the zero gauge inverse Laplacian, and simply write (—A)~! rather than (—Ag)~!. By
the spectral theorem, the series expansion of the inverse Laplacian is then the spectral power

o0
(—A)_lf = Z)&i_l (f, ei)LZ(Q)eiy
i=1
which defines an operator from H~2($2) to L2(£2). We remark that, even with the choice of a zero gauge, (40) is valid on
functions with arbitrary boundary values.
Using the result (39), a natural approach to defining the spectral fractional Laplacian with nonzero boundary conditions
is to write

(=) U= (= A)** N (= A)u

and to combine a definition of (—A)%/2~1 with the series (39) above. At first glance, this merely shifts the problem to
defining the inverse spectral fractional Laplacian with nonzero boundary conditions. However, defining this inverse inhomo-
geneous operator is considerably easier. By the above discussion of (—A)~!, the spectral power

o0
()27 1= 302 e g i

i=1
is a convergent series defining a single valued operator on H2(®/2~1D(Q), regardless of boundary conditions. For o = 0, we
understand the operator (—A)~'u for u € L? to be the projection onto the zero-boundary value functions H%(Q) of all
functions v such that —Av = u. Thus, the zero-boundary condition is used to eliminate multi-valuedness of (—A)~!, but
the operator (—A)%/2~1 may take as argument a function with arbitrary boundary values, in particular (—A)u.

As a result of these definitions, using the spectral expansion (39) of the inhomogeneous (integer-order) Laplacian, we

obtain

o0
(A Pu= (=) ==Y A8 (= A 2 g i
i=1

00 00 Je
Z 2-1 Z ]

= )\:X/ )\,j(u,ej)LZ(Q)Ej_<u7 8]> ej,ei e;
i1 i=1 n/12eo

> de
2—1 i
= E k?/ Ai(u,ei)Lz(Q) — (Ll, —l> e;
on 12(3Q)

i=1
ad de
2 2-1 i
:Z)\.ix/ (u,ei)LZ(Q)ei—)\,:-X/ <u, a—l> ei.
P— nJ230)

This is the definition in [18] of a general inhomogeneous spectral fractional Laplacian. This can be considered the fractional
analogue of (39). In their paper, Antil et al. also proved a similar formula for nonzero Neumann boundary conditions.
Furthermore, they developed an integration-by-parts formula for these formulations, proved regularity results, introduced
finite element discretizations, derived the associated error estimates, and included numerical experiments.

2.6.2. Harmonic lifting
Taking the above series representation of the operator (—Ag,g)“/ 2 as a definition, Antil et al. [18] considered the inho-
mogeneous spectral fractional Poisson problem:

(Ao u) =fx), xe€Q, ae(0,2),
ux) =g, x € 0%2.
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By linearity, the solution u can be written as

ux) =a(x) +bx), (42)
where a solves

(~Ag)"?a=(-Ag0)*?a=f ing,

(43)
al,o,=0 on 9%,
and the component b solves the equation
(-Aqo)%?h=0  ingQ,
¢ (44)

bl,o=28 on 9<2.

However, this “fractional harmonic” function b, under certain conditions on the regularity of g, is simply the solution to the
standard Laplace equation

—Ab=0 in Q,

(45)
bl,o=28 on Q.

The simple intuition behind this equivalence involves the characterization of the operator (—Agq g)%/? as (—A)*/271(—A)
and our choice of the inverse Laplacian with (—A)%/2-10 = 0, which yield

~Ab=0 = (—Aq)**h=0.

Indeed, the authors of [18] show that Equation (44) is, for boundary functions g € L%(32), equivalent to the very weak
variational form of Equation (45):

fb(—A)¢ =fg%, for all ¢ € H}(2) N H3(R). (46)
Q Q2

The phrase “very weak” refers to the transfer of all derivatives of v to the test function ¢ via fractional integration-by-parts,
a result of the same work [18]. Of course, if the boundary data g is sufficiently regular, then b may be sought as a solution
to the weak (rather than very weak) variational form of Equation (45):

/Vb.vcp:/g%, forall¢€H8(Q)-
Q Q2

For the precise regularity estimate for the problem (46) in terms of the boundary function g, we refer to Lemma 4.1 and the
surrounding discussion in the article [18]. We point out the simplest case, in which g € H'/2(3$2) implies that b € H(Q)
and b satisfies (45) in the weak sense. This approach is implemented in Section 5.1.1.

2.6.3. Nonharmonic lifting

While Antil et al. [18] used a fractional harmonic lifting in their approach, it is possible to obtain a variational form with
an arbitrary (i.e., nonharmonic) lifting function. In this section, we describe a lifting approach in which the lifting function
v € H'(Q) need only satisfy the boundary condition V‘ag Again, we wish to solve the spectral fractional Poisson
problem

= ufyq.

(=AN)*?u=f, inQ
/ (47)
ul,, =g onoQ.

The unknown function u can be decomposed as u = w — v, where v is the lifting function. This function v need not be
unique, and the fractional harmonic function v described above is also admissible.

To derive the variational form of Equation (47), we need the following integration-by-parts formula for the inverse
spectral fractional Laplacian (—A)%/2-1,

Theorem 2.2. Let 0 <o <2 and f, ¢ € L2(R2). Then

(=N 9y = (f, (=) 1g).
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Proof. We use the notation f,- =(f,ej) and J),- = (¢, €j).

(=82 )= | Y a8 e > dje; ZZA“‘/Z 1f1¢>]<ez,e]>—Zx“/2 'Fid
i=1 j=1

i=1 j=1

=Y NP  Rigitenep = | Y Fiei, Y 2SN je; | = (. (—a)** ). O

i=1 j=1 i=1 j=1

This formula is valid regardless of the boundary values of the functions f and ¢. This is due to our choice of zero gauge
for the definition of (—A)®/2=1. Then, the variational form of the problem is written as follows: find the function w € H¢
such that for any ¢ € L2(2),

(=D (W +v), ¢) = (f, $).

Now we can define the inhomogeneous spectral fractional Laplacian of v in weak form by integrating-by-parts in the v
term on the left-hand-side.

(=A)*2v,¢) = (—Av, (=A)*/*"1g)
= (Vv, V(=A)*21¢),

which is our (weak sense) definition of the inhomogeneous spectral fractional Laplacian.
Finally, we can solve for w by solving the variational equation

(=)W, ) = (f, ¢) — (Vv, V((—=A)** 1)), (48)

where all the fractional operators that appear are now applied to functions satisfying zero boundary conditions. Note that
this (standard) weak form (48) requires that v € H'(2), which by v|3o = g and the trace Theorem A.1, requires the bound-
ary data g € H/2(Q). While other weak variational forms leading to less regular solution spaces may be studied to treat
rougher boundary data, for the purposes of this article, (48) will suffice. We recover the solution to Equation (47) using the
relation u =w + v.

These lifting approaches are compared using numerical examples in Section 5.1.1.

2.6.4. Heat semigroup

The authors of [19] proposed an extension of the heat semigroup method to define an inhomogeneous spectral frac-
tional Laplacian. In their work, only discretizations of their newly-defined operator are considered, not the solution of the
Poisson problem using this operator. We compare these discretizations with the approach of Antil et al. [18] numerically in
Section 5.1.2.

Cusimano et al. define their inhomogeneous spectral fractional Laplacian as in Equation (38), in which ef®2z is the
propagator of the heat equation. Next, the authors use a splitting for w(x, t), which allows one to relate E“/ og 0 (— A)‘é/ é,
the homogeneous spectral fractional Laplacian. The unknown function w(x,t) can be expressed as w(x,t) = v(x,t) + z(x),
where z(x) is a harmonic function, i.e.,

—Az=0 inQ,
z=g onog,
and v(x,t) solves a zero boundary value heat equation:
v —Av=0 inQ x [0, 400),

vix,t =0) =ux) — z(x),
v(x,t)=0 ond2 x [0, 4+00).

We notice that w(x, 0) = v(x,0) + z(x) = u(x) — z(x) + z(x) = u(x). Then, using the definition of w(x,t) and Equation (38),
we see that
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EW%———L——iw@U—WQOD—E—
2.8 _F(—a/Z) ’ P 4a )2

m / (196,04 2001 ~ [¥(%,0) + 200] v

—L/(( )~ V(. 0) o
_F(—oz/Z) v(x, v(x, )t1+a/2

tA
= a/z)/(e 5[ — 2100 — [0~ 2100) e

= (—Asz,o)a/z[u —Z](%).

Given this information, we can see that the two formulations of the spectral fractional Laplacians in works [18] and [19]
are equivalent. We know that the heat semigroup approach leads to the relation

2
Lolou = (—Ag 0)*/?[u — 2],

where z is the harmonic function given by Equation (49). We can also obtain a similar formula for the operator of Antil et
al. From Equations (44) and (43), we know

(—Ag.9)*?u=(~Aq0)*?a.

Inserting a =u — b from the splitting (42), we have

(—Aq.o)**u=(~Agq0)*?[u—b].

This shows that the inhomogeneous spectral fractional Laplacian (—Agz,g)‘)‘/2 is just the standard homogeneous operator
applied to the lifting u — b. Since b is also a harmonic function in € with b‘ s0=258 by uniqueness, b = z. Therefore

2
(—Ag.)*u = (—Ag0)**[u—z] = Lg 2u.

This fact is demonstrated numerically in Section 5.1.2.

2.6.5. Well-posedness and regularity

We begin by discussing well-posedness (existence and uniqueness) of the spectral fractional Poisson problem. We con-
sider the general case of nonzero boundary conditions. Thus, the fractional Laplacian that is used in the two problems below
is the inhomogeneous operator that has been reviewed in this section. We have transcribed the existence and uniqueness
theorems proven in [18]. These results have been abbreviated by considering «/2 > 1/2, resulting in minimal regularity of
boundary data g € L2(3€2) in the Dirichlet case, and g € H1(392) for the Neumann case; the full theorems in [18] actually
allow for /2 < 1/2 and rougher boundary data. The Sobolev space notations used in this section are defined in Appendix A.

For the Dirichlet boundary condition, let & be a bounded quasi-convex domain. If f € H-% () and g € H53 (092) for
«/2 > 1/2, then there exists a unique solution u € HZ(Q) to

(—M)*?u=finQ, ulpo=a4g,

which satisfies

u _a .
lull, g g < (nan 2(9)+||g||HH(m))

For /2 =1/2, the convention is H?(9Q) = L?(92). This statement is a special case of Theorem 4.5 in [18].
For the Neumann boundary condition, again let €2 be a bounded quasi-convex domain. Let 1/2 <« /2 <1.1If f € H2 (Q)*

(the dual of HZ (Q); for o /2 > 1/2 this is distinct from H~2(Q)) and ge H—3 (0€2) satisfy the compatibility condition

/f+/g=a
Q R

then there exists a unique solution u € H? (2) such that fQ u=0to
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(—A)*?u=finQ, du/dnjsq =g,

which satisfies

uj o
U8 o) = <|If||H2(Q)*+IIgII zm))

This statement is a special case of Theorem 5.4 in [18].

Next, we discuss regularity for the spectral fractional Poisson equation. Unlike the well-posedness results discussed
above, we now focus exclusively on the case of zero boundary conditions. This is because almost all regularity results that
have been published at the time of this writing have been presented in this form. Various extensions to nonzero boundary
conditions can be made by considering these results in combination with the harmonic lifting property discussed in 2.6.2
and 2.6.4.

For the standard homogeneous spectral fractional Laplacian, we state only the simplest case of the Sobolev regularity
results in [64], and direct the reader to that article for a full discussion. First, we consider the Dirichlet problem, using
the zero Dirichlet boundary value fractional Sobolev space H*/2(Q). Let Q2 be a bounded, C*°-smooth subset of RY. Let u
satisfy the equation

(—A)*?u=finQ, ule=0 (50)

for 0 <« < 2. Then

—_

. If s <1/2, then f € H%(Q) implies u € HS™*(Q).

.If s=1/2, then f € H{,(Q2) implies u € H**¥(Q).

3. If 1/2 <s <2+1/2, then f € H5(2) implies only that u € H'/2=¢+%(Q), and we have the stronger result u € HT¥ ()
if and only if f =0 on 9.

N

We illustrate that this last result is sharp with a simple example. Note that the Sobolev norm in HS(I) of a Fourier sine
series is given by

Zak sin(kx)| = Z(l +I<2)S|aﬁ|.
Hs (1)

Consider the interval [0, 277], where the eigenvalues of the (Dirichlet) Laplacian are A, = k?, with corresponding eigenfunc-
tions ey, = sin(kx). Let us begin by constructing a low regularity f € L2

f= sin(kx). (51)
Z “ Vk log(k +1)
Then, f e L2 since
i 1 _ ]o dx B 7 dx _ ]o dx <
klog®(k+1) —J xlog?(x+1) B (x+1) (log?(x+1) — log?(x+D)\ x2(1—e ) —
k=1 1 1 g X+ log2

But f ¢ H® for any s > 0 since

o0

A+K v R
. - > — =0Q.

Now, the solution to the fractional Poisson problem with zero Dirichlet boundary conditions and f given by (51) is

kx). 52
Zflog(k—!—l) (o 52)

We see ||ul|yste ~ || f]lns, so u has strict H* regularity: u € H¥ and u ¢ H**€. Thus, the «-gain in regularity as stated in the
result above is sharp.

Next, we consider the Neumann problem, and for s > 3/2 we define the zero Neumann boundary value fractional Sobolev
space

0
H3y on=0($2) = {u € H%(S2) such that al - 0} .
on [yq

If s < 3/2, we define ng/anzo(Q) = H%(RQ). Let Q be a bounded, C*®-smooth subset of RY. Let u satisfy the equation
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(=AN)*?u=finQ, du/onjyo =0. (53)
Then,

1. If s <3/2, then f € H%(R) implies u € ng;"anzo(sz).
2.1f3/2 <s<7/2, then f € HS(Q) implies u € H;Ju’f‘anzo(ﬂ) if and only if 9 f/dn =0 on 9.
Among additional results, [64] discusses the extension by induction of the above points to higher HS(2) regularity of f.
Regularity in the Holder spaces C¥' for the spectral fractional Poisson problem was studied extensively in [81]. In that
work, an array of results was obtained, for both interior and boundary regularity of the solution u in the Dirichlet problem
(50) and in the Neumann problem (53), with conditions of the form f € C%"($2) or of the form f e LP(2), under fairly
general conditions on the domain 2. The results also allow for powers of more general, variable-coefficient elliptic operators.
We transcribe just one of these results for the fractional Laplacian, namely, the interior regularity for f € C®7(Q2) of the
Poisson problem, which is the same for both zero Dirichlet or zero Neumann boundary condition:
Assume that € is a bounded Lipschitz domain and that f € C%"(2), for some 0 <r < 1. Let u be a solution to (50) or
(53).

1. If0<r+4oa<1,then u e CO™(Q) and
[ulcorsag) < C(IUll2@) + ke + I fllcorg))-
2.If1<r+a <2, then u e C'+*=1(Q) and
[ulctrte-1(g) < C(||U||L2(Q) + [Ulparzg) + ||f||c0.r(gz))~

The constants C depend only on d, €2, r, and «. For the proof of this the other regularity results, see [81]. Similar results
have also been obtained for the equation (—e A)!/?u 4+ u = f with zero Neumann boundary condition in [90].

2.7. Summary

In Table 2, we have summarized the fundamental properties and stochastic interpretations of the Riesz and spectral
fractional Laplacians, as they were discussed in this section. From the stochastic perspective, these operators differ in that
the Riesz Laplacian is associated to processes that leave the closure of the domain, while the spectral Laplacian is associated
to processes that are confined to the closure of the domain.

Table 2
Comparison of the Riesz and spectral fractional Laplacians in a bounded domain © c RY.
(—A)*2y Definition Domain BC type Stopped process for Reflected process for
Dirichlet BC zero Neumann BC
Spectral 3 A%2(u, e;)es, where Functions on Q Boundary (92) Subordinate stopped Subordinate reflected
(%, e;) is the spectrum Brownian Motion Brownian Motion
of —A on Q [86,20,89] [86,38]
Riesz C pV. [ L"i’i);lzg) dy, Functions on R¢ Exterior (R?\ Q) Stopped «-stable Various
Zar(g+g) motion [22] conditions/processes
for C = “;3, proposed [65,66]
72 (-5

Remark 2.3. The Riesz and the spectral fractional Laplacians are merely the two most commonly used definitions. Another
fractional Laplacian that has been studied is the regional definition:

u@) —u(y)

’

(—Aregional)*/*u(x) = C(d, @) p.v. f
Q

where C(d, o) is given by (8). Note that the domain of this operator consists of functions defined on €, rather than RY. The
regional definition differs from the Riesz definition, even if u(x) = 0 for x € R¢ \ Q:
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(— ARies2)*u(x) = C(d, o) p %
cdd
=C(, o()pv/|7|d+a)dy—u(x) / %dl’
Rd\Q
o Cd,x)
= (— Aregiona)*/2u(X) — u(x) f x—yre

RAO\Q

The well-posedness of the fractional Poisson problem involving the regional Laplacian was studied using the Feynman-Kac
formula [91]. For a further discussion of the regional Laplacian and the relation to reflected and censored «-stable processes,
see [21]. Neumann and Robin boundary conditions for the regional Laplacian have been discussed in [92].

Other notions of fractional Laplacians that arise from related processes are discussed in [93]. In general, the probabilistic
literature on stable-type processes in bounded domains and related notions of fractional Laplacians is very rich [94]. For
example, estimates for eigenvalues of the spectral Laplacian were derived using probabilistic techniques in [95].

3. Numerical methods

Section overview

One of our primary goals in this work is to compare numerical solutions for the fractional Poisson problem using different
definitions of the fractional Laplacian. To this end, we develop new or implement existing methods to discretize each
definition. All methods that we use to compute the solutions of the benchmark problems are described in this section. To
discretize the Riesz fractional Laplacian, we use the adaptive finite element method (AFEM) of [71] and the Walk-on-Spheres
(WOS) method of [22]. We discretize the spectral fractional Laplacian directly using the spectral element method (SEM) of
[96], and the heat semigroup approach [36,19,37], which is used in Section 5, and elliptic extension approaches [33,37,36,
80,81] are also discussed for completeness. We develop a new approximation method for the directional definition using a
radial basis function (RBF) collocation method, which also makes use of the vector Griinwald scheme of [97]. This is also
the first work in which numerical results have been produced using the vector Griinwald scheme, as no other work (to our
knowledge) has implemented the method of [97].

Furthermore, we examine another nonlocal operator, the “horizon-based nonlocal” definition [98], which can be seen as
an approximation to the Riesz fractional Laplacian. We develop a finite volume method to compute the numerical results
of one-dimensional fractional Poisson equations posed with different horizon parameters. We compare these results to the
numerical solution of the Riesz fractional Poisson equation. The horizon-based nonlocal definition is equivalent to the Riesz
fractional Laplacian in the limit as the horizon parameter approaches infinity, as is demonstrated by our numerical examples.
We can also see in these examples approximately how large the horizon parameter should be to result in a reasonably close
approximation of the solution of the Riesz fractional Poisson equation.

3.1. Riesz definition

Using the Riesz definition presented above in Equations (8) and (10), we consider the fractional Poisson equation (1) with
zero Dirichlet boundary conditions u(x) =0 for x € R¢\ ©, where  c R? is a bounded Lipschitz domain, and we define
the Riesz fractional Laplacian to be the restriction of the operator to functions with compact support in Q. The boundary
condition for this definition is considered “nonlocal” and is also called a “volume constraint”, as it is defined on the exterior
of the domain .

3.1.1. Adaptive finite element method (AFEM)
The Riesz fractional Poisson problem takes the variational form [71]

Findu e H*?(Q): a@,v)=(f,v) VveH*? ), (54)

where

a(u,v

_ ¢ 06)/ /d (u(x)—u(y))(v(x)—v(y))

_ y|d+(x

C(d Ol)/' /d U(X)V(X) ny-x—y) (55)

|d+a ’

and where ny is the inward normal to dQ at y. The space H®/2() is defined in Appendix A, Definition A.5.
A straightforward finite element discretization of (54) encounters several difficulties:
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1. The element contributions for adjacent or identical element pairs of (55) are given by singular integrals. Special Gaussian
quadrature methods are given in [71], [72].

2. The resulting linear algebraic system is dense. In [71], the panel clustering technique known from the boundary element
literature is adapted for the fractional Laplacian. This reduced the complexity of the matrix-vector product from O (nz)

to O (n logzd n), where d =1 or d =2 is the spatial dimension.

3. As shown in [73], solutions to the Riesz fractional Laplacian display generally low regularity close to the boundary of
the domain. This behavior is noticeably different from the classical integer-order Laplacian for which higher regularity
of the domain and right-hand side imply higher regularity of the solution. Therefore, globally quasi-uniform meshes are
ill-suited for the discretization of the integral fractional Laplacian. In [72], posteriori error estimates of residual type
and a Dorfler marking strategy are employed to adaptively refine the discretization, resulting in meshes that are highly
refined close to the boundary. It was shown that, using piecewise linear finite elements, optimal rates of convergence
are obtained:

H« 2 LZ
ne/2—2 n—2
n-1/2 n—1/2—a/4

I
N =

Again, a clustering approach leads to O (n log*? n) complexity for the computation of the error indicators.

4. The efficient solution of the arising linear systems of equations can be achieved by a standard multigrid solver [71],
[72]. Quasi-optimal complexity is shown to be obtained.

Remark 3.1. Notice that in the variational form (54), we only require u € H%/2(2), and in the case where 0 < o < 1, this
variational form accepts functions u that may not admit a trace (see Theorem A.1). Although the weak solution of the Riesz
fractional Poisson problem has the regularity described in Theorem 2.1, and therefore admits a trace if o +s > 1/2, the
AFEM approximation space is H%/2(2), which is only contained in the trace space H/2+¢(Q) in the case « > 1. This is the
reason that the examples in Section 4 (namely, Figs. 15, 19, and 20) where o < 1 show solutions to the homogeneous Riesz
fractional Poisson equation in which the zero boundary condition is not strongly enforced on the approximation, despite the
solution belonging to H'/2+¢(Q) and possessing a zero trace. As the finite element mesh is refined and the approximant
converges to the true weak solution, the oscillations at the boundary are diminished.

3.1.2. Walk-on-spheres (WOS) method

The walk-on-spheres method is a type of Monte Carlo method for simulating solutions to the Dirichlet fractional Poisson
problem with both zero and nonzero boundary conditions. It was originally proposed by Muller [99] in 1956 for solving
Laplace equations with Dirichlet boundary conditions (see also [100]), and has been used for Neumann boundary conditions
[101], and Robin boundary conditions [102] as well. This approach has recently been extended [22] to the following Riesz
fractional Poisson problem:

(—Agies)™*u(x) = f(x), inQ,

56
u() =gk, inRY\Q, (56)

where g and f are suitably regular functions, f: Q2 — R, and g: R\ Q — R?. In order to formulate the walk-on-spheres
method, one must first identify the stochastic process that is generated by the operator (—Agjes;)*/%. In this case, the
process is a killed isotropic «-stable process with « € (0, 2) [22]. One significant difference in this setting is that, in contrast
with the Brownian Motion setting when o = 2, the stable process exits 2 by a jump rather than by passing through the
boundary. A consequence of this is that disconnected domains can be considered, and the walk-on-spheres algorithm will
terminate in finite steps, whereas the walk-on-spheres algorithm for Brownian Motion will not terminate and must be
truncated.

Kyprianou et al. [22] proved the following Feynman-Kac formula for the solution of Equation (56) (see Theorem 6.1).
Given a Borel set S, define the space L}X(S) to be all real-valued, measurable functions ¢ that satisfy

/ DXl 4 - oo
14 |x|e+d '
s

Let g € C(2) ﬂL}X (R4 \ Q), f e C¥t¢(Q) with some & > 0. Then there exists a continuous solution u(x) € L}x (RY) to Equation
(56), where

oq
ux) = Ex[g(Xou)] + Ex /f(Xs)dS , (57)
0
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and oq = inf{t > 0: X; ¢ Q} is the first exit time of the process X; from . This equation is known as a Feynman-Kac
formula and allows for stochastic solution of the associated boundary value problem; in principle, the derivation of such
formulas can make possible stochastic solution methods for other definitions of fractional Laplacian and other types of
boundary conditions as well [89].

In order to use the Feynman-Kac formula (57), we must simulate a very large number of paths of the «-stable process
X¢, beginning from the point x €  at which we want to compute the solution. This approach is embarrassingly parallel, as
one could assign each point x in the domain to a different compute node, and no information needs to be shared between
processors. Further, while one could generate an exact simulation of each path, the idea of the walk-on-spheres approach
is to “speed up” these simulations by only computing a few points along each path until the process jumps out of the
domain. This is especially effective when the right-hand side f in the problem (56) is zero, since the Feynman-Kac formula
(57) reduces to an expectation over the distribution of exit points of the process. We will describe the walk-on-spheres
algorithm, first presented in [22], below.

First, we discuss some of the key ingredients of the paper by Kyprianou et al. [22] that are used to formulate the
walk-on-spheres algorithm. The following result gives the distribution of a stable process that begins from the origin when
it first exits the unit sphere:

Theorem 3.2. [22] Suppose that B(0, 1) is the unit ball centered at the origin, and write o'g(,1) = inf{t > 0: X; ¢ B(0, 1)}. Then

Po(Xog.) €dy) =7~ W2FVD(d/2) sin(ror/2)[1 — |y|* 72|y Uy, |y|>1. (58)

Using this theorem, we can construct a series of points along the sample paths of stable processes. One must choose
a tolerance ¢ and an initial point x = Xp. Then x is circumscribed by a sphere of radius ¢. Let E; represent a sampling
from the distribution of Equation (58), which gives the exit from a ball of radius one centered at the origin. Using a scaling
property and the fact that X has stationary and independent increments, x + €Eq gives the exit position from the ball
B(Xop = x, €). Then, we define X; =x+ ¢E1 and proceed inductively, generating X, 1 as the exit point of the ball centered
at X, with radius &, i.e., Xp+1 = Xy + €Eny1, where Ep4q is an ii.d. copy of Eq.

Now we describe the walk-on-spheres solution method for the fractional Poisson equation [22]. Suppose that € is a
convex domain in R?, d > 2. € can be bounded or unbounded, as long as the measure of R\ Q is not zero. Given a
starting position x € 2, we inscribe the largest sphere that fits inside 2 and is centered at pg := x. The radius of this
sphere is denoted by ri. We continue inductively to generate the “walk-on-spheres” (0,, n > 0). Given p,_1, we select the
distribution of p, according to an independent copy of X, under P, 1 (the shifted version of Py from Equation (58)),
where

Bp, ={xeRd (X — pn—1| <m} and op, =inf{t > 0: X; ¢ By}.

The algorithm terminates at the random index N = min{n > 0: p, ¢ 2}, i.e.,, when the walk-on-spheres jumps out of the
domain 2. We refer the reader to [22] for details of the implementation of this procedure.

For two different classes of domain €2, Kyprianou et al. also proved that for all x € 2, the index N will always be
finite and at most geometrically distributed. The first class is convex (possibly unbounded) domains, and the second class
is non-convex bounded domains that satisfy the uniform exterior-cone condition See [22] for proofs in either case and a
discussion of how convexity relates to the proof. Furthermore, the convergence of the walk-on-spheres method is proved,
and the code for the numerical examples implemented in [22] can be found at https://bitbucket.org/wos_paper/wos_repo.

Using the sequences of spheres, the Feynman-Kac formula for the solution u can be replaced by an expectation over
the boundary condition g evaluated at the terminal centers py, and the right-hand side f integrated over the expected
occupation measure of the stable process prior to exiting each sphere. The final representation obtained by [22] is, for
xeD, gell(D% and f e C**¢(D),

N-1
u(x) =Ex[g(pon)] + Ex [Z rVi(0, f(on + rn-))} , where  Vi(x, f() = / f) Vi, dy).

n=0 |ly—x|<1

The expected occupation measure Vi(x,dy) of the stable process prior to exiting a unit ball centered at the origin is
given [103,104], for |y| <1, by

lyl=2-1

—CI/Z 1—‘(d/z) | |Ol—d (u+])—d/2ua/2—1du dy

V1(0,dy)=2"%7 a2y

0

The implementation of this formula, using Monte Carlo integration for the integral V4 (O, f(on+ rn-)), is discussed in [22].
We use the WOS algorithm in Fig. 11 and throughout Sections 4 and 5.
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3.2. Spectral definition

Several approaches have been proposed for discretizing the spectral definition, which is defined in Equation (36). Stinga
and Torrea [37] showed that the fractional Poisson problem

2
(_Aspectral)a/ ux =f®, xeQ, (59)
u(x) =0, xXe o
can be recast as a problem over the extruded domain C = Q x [0, 0c0):
—-V.yPVU (x,y) =0, x,y)ec,
U, y) =0, (x,y) €9.C =092 x [0, 00),

W =dof (0, xeQ,

where 8 =1—0a/2, dy =217 rg(;%)z), and

ou (x)=— lim ﬁau(x )
oanp y—>0+y dy )

The solution to (59) can then be recovered by taking the trace of U on £, i.e. u =trq U. As this higher-dimensional
formulation involves only integer-order operators, standard discretization approaches may be applied, as in [82-84].

The work of Nochetto et al. [82] used the Dirichlet-to-Neumann map for a singular elliptic problem posed on a semi-
infinite cylinder in order to study solution techniques for problems on bounded domains with Dirichlet, Neumann, and Robin
boundary conditions. A truncation was proposed based on the rapid decay of the solution to the problem on the cylinder,
and a priori error estimates were derived in weighted Sobolev spaces. Also along these lines, a hybrid finite element-spectral
method was recently introduced by Ainsworth and Glusa [84], where the discretization along the direction of the problem
domain © was done using a finite element method, and the direction along the cylinder was discretized with a spectral
method. We emphasize that these methods are all for the fractional Poisson problem with zero Dirichlet boundary con-
ditions. For the computations in this article, we prefer to use the spectral element method of Song et al. [96], described
below, due to its accuracy and ease of implementation for the considered examples.

3.2.1. Discrete eigenfunction and spectral element methods
We consider the following eigenvalue problem (EVP) for the spectral Laplacian operator:
—Ap—rp=0, xe,
¢|asz =0,

where Q@ c RY, with d =1,2,3, is a bounded domain. When d = 1, we use a Galerkin expansion to discretize Equation
(60). For a nonnegative integer N, let IPy(£2) be the space of polynomials on € up to order N. The Galerkin basis functions
{p,ﬂ,(x)},’f:1 are chosen from the space Sy(R2) :=Pn(Q)N H(l)(Q), so that the eigenfunctions ¢ can be approximated as

(60)

N
d’%Zd;npn(x)v (61)
n=1

where q@n = (¢, pn) and (-, -) represents the LZ(2)-inner product. The weak form of Equation (60) is then written as

(—A¢, pk) - )"(d)’ pk) = (vd)’ Vpk)_)\-((ﬁ, pk) =0.

The inner product of the gradients is discretized according to

N
(Ve Vpi) =Y ¢n(Vpn, Vi) = AN,

n=1

where (An)in = (Vpn, Vpi) and ¢ = (1, ¢2, ..., dn). Again using the expansion (61) of ¢ in (¢, p) yields

N
(@, p) =Y _ ¢n(Pn, Pr) = (MN)$,

n=1

where (Mn)in = (Pn, Pr)- These discretizations result in the discrete eigenproblem

AN® — AMN¢ =0. (62)
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We left-multiply Equation (62) by M,Ql, so that the discrete eigenproblem becomes
(My'An — )¢ =0.

We define the matrix Ky := M,Q]AN and compute its discrete eigenpairs {(Ai, ¢,~)}§": ; using the QR algorithm, following
[96]. The eigenpairs are used to approximate the fractional Laplacian of a function u according to

N
2
(_Aspectral)a/zu% E )\Ex/ (U,¢i)L2(SZ)¢i‘
i=1

Furthermore, the solution of the spectral fractional Poisson equation with zero Dirichlet boundary conditions may be ap-
proximated using the formula

3 (f.d)

U~ Zukq&k, where uy := a2
k=1 )”k

We call this method the Discrete Eigenfunction Method.

When d > 1, we use a spectral element method (SEM) to discretize Equation (60). First, a grid with ¢ elements is gener-
ated to discretize the domain €2. The SEM is developed using nodal Lagrangian polynomials of degree N on each element.
The number of degrees of freedom for the SEM is denoted by N :=£-N. Axr represents the N x N stiffness matrix as-
sociated with the integer Laplacian, where each element of A/ is the L?-inner product of the gradients of the Lagrangian
polynomials. Similarly, the mass matrix Mas of size A x A/ is computed as the L?-inner product of the Lagrangian polyno-
mials. The eigenpairs {%;, ¢; }{\:f ; are computed by solving the eigenproblem (62). Then, a weighted Gram-Schmidt procedure

is applied to transform the basis {¢;} into the orthonormal basis {J),-}{\:/ 1 (see [96] for the details of this procedure). Finally,
we use the equation

N 5 00 N

Y P ddix Y (g~ Y (f.dodi.
i=1 i=1 i=1

from which we infer that ii; = (u, ¢;) = (f, (Z)i))\i_a/z. Then, the solution is written as u ~ Z{\:fl {i;¢;. Further details of this
method can be found in [96], where it is demonstrated in numerical examples that the method is stable and accurate for
the same domains that we consider in the following sections. Rigorous proofs of these properties are under development
and have not been published at the time of this writing.

3.2.2. Boundary regularity of solutions using the discrete eigenfunction method

Now we address an important issue of regularity near the boundary and the enforcement of boundary conditions of
solutions to the spectral fractional Poisson equation using the discrete eigenfunction method. Recall the regularity results of
Grubb [64] for the Dirichlet problem for the spectral fractional Laplacian for @ < 1, reviewed in Section 2.6.5: if (—A)%/2y =
f,and if f € HS, then u € HS*®. This means that if s+ < 1/2, then u ¢ H'/2*¢, However, numerical solutions obtained by
the discrete eigenfunction method even with s+« < 1/2 will always satisfy the zero boundary condition exactly, even when
the true solution, by the regularity result just stated, does not admit a trace. This is an artifact of the discrete eigenfunction
method, in which the approximant is always a finite-dimensional projection of u onto the eigenfunctions, which are zero on
the boundary. As a simple example in one dimension, one can plot the partial sums of the solution (52) to the homogeneous
spectral fractional Poisson with the strictly L? right-hand side (51); for a < 0.5, the lack of trace of the true solution will
manifest as Gibbs oscillations as the number of discrete eigenfunctions is increased.

3.3. Directional representation

The directional fractional Laplacian Vj; in RY (24) was reviewed in Section 2.1.5. It was pointed out that for a uniform
measure M, the directional fractional Laplacian reduces to the standard fractional Laplacian (—A)®/2 that is the focus of this
paper; otherwise, it represents the generator of general multivariate «-stable Levy motions. Thus, when applied to functions
in a bounded domain satisfying an exterior boundary condition, this (uniform) directional fractional Laplacian agrees with
the Riesz fractional Laplacian, and is an advantageous representation in certain geometries.

In this section, we present a new radial basis function collocation method based on the directional representation and
a modified vector Griinwald-Letnikov formula to discretize the Poisson equation in bounded domains for the Riesz frac-
tional Laplacian. The method has a clear extension to directional fractional Laplacians (with non-uniform measures), but to
maintain the scope of the article, we focus only on the uniform case resulting in the Riesz fractional Laplacian. The use of
this method for numerical studies of general directional fractional Laplacians in bounded domains is an interesting topic for
future work.
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To introduce the method and illustrate the main idea, we split the fractional directional integral (23) appearing in the
directional representation (24) of the fractional Laplacian as the sum of two integrals corresponding to integration of u
inside and outside the bounded domain :

. 5(x.0.) +00
Igu(x) “Ta_p s Pux—cO)ds + / s Pgx—co)ds |. (63)
0 5(x.0.2)

Here, §(x, 0, 2) is the distance from x to the domain boundary 92 along the direction —@. In [50,105], 8(-, -, -) is termed
the backward distance. The nonlocal exterior Dirichlet condition u(x) = g(x) for x € R¢\ Q is assumed. Note that for g =0,
the second integral vanishes. For general (non-zero) g, we introduce a finite difference (Griinwald-Letnikov type) scheme to
approximate the fractional directional derivative Dg‘u(x) following the above representation for 15 u(x), which is then used
in a collocation method.

3.3.1. Aradial basis function collocation method for the Riesz fractional Laplacian
The radial basis function (RBF) collocation method has been used to solve equations involving directional fractional
Laplacians [105]. Here, we focus on the fractional Poisson problem

(—Aries)*?u(x) = f(x), xeQCRY,

d (64)
ux)=gx), xeR"\Q.
The first step of the RBF collocation method is to approximate u(x) inside €2 as the weighted sum of RBFs:
M+N
U~ Y Ajp(x—xj)), xeQ, (65)
j=1

where A;'s are unknown coefficients. The RBF ¢ () is taken as the multiquadric function with the shape parameter c,

¢ (r)=vr? +c%.

It is straightforward to consider other RBFs [106], but here we restrict our attention to the multiquadric RBF. The collection
of points {xj}ﬁ-j”N are called collocation points. The first M collocation points are located inside the domain 2, and the
last N collocation points are located on the boundary 92 (to obtain higher accuracy near 9$2). Enforcing the approximate
solution (65) to satisfy both the equation inside €2 and the exterior condition on 92 from (64) produces the following

equations:

Cad f Dgu(x)dd = f(x), xe€Q, i=12,---,M,
10]=1
M+N
Yo rdxi—xD=g). xe€dQ i=M+1,M+2,--- M+N.
j=1
The full exterior condition u =g on R?\ € in (64) is enforced directly through the discretization of the operator Dy in
the first equation above as alluded to by (63). We discretize Dy through a finite difference scheme known as the vector

Griinwald-Letnikov (GL) formula that was proposed in [97], splitting the terms into interior and exterior contributions. The
original vector GL formula takes the form

o — — K o
DYu(x)) =h g(—u’ <k>u(x,-—kh0)+0(h). (67)

This formula has first-order accuracy with respect to the spatial step h. The coefficients ¢, = (—1)¥ (‘,f) can be alternatively
calculated by the iterative formula co =1, ¢, = (1 - “Tﬂ)ck_l,k > 1. For our scheme, we truncate the vector GL formula
and combine it with the RBF approximation (65):

K1 Ky
Dyu(xj)~h™* chu(x,- —kh@) +h™¢ Z crg(x; — kh)
k=0 k=Ki+1
K1 M+N K> (68)

==Y " > A (xi —kho —x;) +h™ > ceg(xi — khe).

k=0 j=1 k=Kq1+1
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The integer K1 depends on x;, # and 2 - it is determined by the value of the backward distance §(x, #, 2), and is an integer
taken such that x; — K1h6 €  and x; — (K1 + 1)h6 € R4 \ Q. It is easy to see that §(x;, 0, 2) ~ K1h by noting that |6| = 1.
We refer to formula (68) as the modified GL formula.

Before discussing how (68) is used in (66) to obtain a numerical scheme, we discuss in more detail the truncation pa-
rameter K. Unlike K1, the integer K, is user-selected and effects the accuracy of the modified GL formula (68), introducing
the truncation error

o0

R(xj)=h"* Z ckg(xi — kho) (69)
k=Ky+1

into the calculation of Dgu(x;). In the case that g has compact support, choosing K>h > diam(supp g) ensures no truncation
error. In the case that g does not have compact support, but decays at infinity, the following are two strategies to truncate:

1. Replace g in the problem (64) by gxp, where xp denotes the indicator function of an appropriate truncation domain
D outside of which g is sufficiently small:

(—Agies)?il = f(x), xeQCRY,
i(x) =g xp®), xeRI\Q.

One can then use the modified GL formula (68) with gxp as the exterior condition and Kyh > diam(D). Theoreti-
cally, the total error in solving (64) is controlled by the numerical error in solving the truncated problem (70) plus the
truncation error, i.e., the difference of exact solutions u — 1. This truncation error has been studied by Acosta, Bortha-
garay, and Heuer in [76], where the same truncation strategy was used to implement a finite element solver for the
Riesz fractional Poisson problem with nonzero exterior condition. It was shown that g € H(RY \ Q) implies that as
diam(D) — oo, [[u — U]l ya/2(q) — 0. Practically, this strategy corresponds to choosing Kxh ~ §(x;, 6, D).

2. A more direct way to exploit the decay of the coefficients in (67) is to choose K; such that R(x;) is below a threshold
value. In the simplest case where K, is chosen to be a constant independent of x;, theoretically this corresponds to
truncating the integral (63) or equivalently (23) in the definition of the operator. In effect, this introduces a truncating
parameter or horizon into the directional fractional Laplacian (22) (more generally (24)). Truncated forms of the Riesz
fractional Laplacian are discussed Section 3.4, where references are given that establish convergence of the solutions of
the associated Poisson problem to those of (64) in the case of zero exterior condition. However, we are not aware of
such convergence results for the inhomogeneous problem, or for works that establish a connection to truncating the
directional representations (24).

(70)

We adopt the second strategy; in practice, regardless of the strategy, the choice of K, should take into account the rate
of decay of the exterior condition g away from . The truncation error should be studied both at the level of approximating
Dgu(x) (i.e., by computing (69)) at various points x and at the level of the final numerical solution using the RBF collocation
scheme outlined below; the numerical solution should be converged with respect to K, for a fixed set of collocation points.

We demonstrate this study for the case of @ = {(x1,x2) € R? | x§ +x% < 1} and g(x) = exp(—|x|?) for x e R? \ Q. In
Fig. 6, the remainder |R(x;)| in (69) is compared for K, = 2,000 and K, = 6,000 with the spatial step fixed to be h = 0.001
at two “extreme cases” of collocation points x; = (0, 0) and x; = (0.98, 0). The summation in R(x;) is taken from Ky 4+ 1 to
20,000. Comparing the subplots indicates that for the collocation point x; = (0, 0) at the center of the disk, the truncation
error is isotropic with respect to # due to the symmetry of g(x) = exp(—|x|®) around x;, but for the point x, = (0.98, 0)
near the boundary, the truncation error is direction-dependent. However, the choice of K, = 6,000 yields |R(x;)| sufficiently
close to machine precision for use in the RBF collocation scheme.

We also verify that the solution obtained by solving the RBF collocation scheme below is converged at this value of K; in
Fig. 10. In that figure, we show the relative L2-error of the final numerical solution from the reference solution with respect
to K, (for full details, see the discussion of (77) below). Not surprisingly, the final numerical solution u is less sensitive to
K> than is Dz‘u, and is actually converged near K; = 2,000 (at which point the error becomes dominated by the numerical
error of solving the RBF collocation system below). This justifies the use of K, = 6,000 with h = 0.001 for this choice of
and g, which are used as test cases below.

To complete the description of the RBF collocation scheme, next we discuss the discretization of the integral of Dg‘ )
with respect to 6, as called for by (66). This can be done, e.g., with the trapezoidal rule or Gauss-Legendre quadrature; we
adopt the latter. Of course, in one dimension, the desired integral reduces to

gu(xi)do = Dgz(Lo)u(Xi) + D(;:(_Lo)u(xi)
0]=1

and no quadrature rule is needed. In two dimensions, the integral over @ is approximated by
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Fig. 6. Absolute values of truncation errors |R(x;)| (69) for the modified GL formula (68) evaluated at the collocation points x; = (0, 0) and x, = (0.98, 0).
Two truncation parameters K = 2000 and K = 6000 are considered. Subplots (a) and (b) correspond to o = 0.5 and « = 1.5, respectively.

2 P
/ gu(xi)do = f D‘;:(cosa,sin@)u(xi)de ~ Z WlDz,=(cos6,,sin9,)u(xi)' (71)
0

01=1 =1
w; and 6, are the Gauss-Legendre weights and points, respectively. In three dimensions case, Gauss-Legendre quadrature
yields

2

Dgu(xi)do = / [ Dg:(sind; cos 6,sin ¢ sin 6, cos ¢)U(Xi) sin¢d¢do

19]=1 00
P Q
~ Z Z W[V Sin ¢szl=(sin ¢m €0S 6y,sin ¢m sin 6], cos ¢m)u(xi)’
I=1 m=1
where (¢m, Vi) and (6;, wy) are Gauss-Legendre quadrature point and weight pairs, respectively. The sin¢ appearing in the
integrand comes from the determinant of Jacobian matrix in the transformation from Cartesian coordinates to spherical
coordinates. Once the integral of Dfo"u has been discretized as above, it can be combined with the modified GL formula (68)
to obtain a linear system for the coefficients 1; in the RBF expansion (65).

For simplicity, we consider two dimensions. According to the modified GL formula (68) and the quadrature rule (71), we
can rearrange the discretized system (66) as a system of M + N equations in M + N unknown coefficients:

M+N P K1

Cagh™ )" D wi) b (xi —khoy —x;Dij =

j=11=1 k=0

P K>
f@) = Cagh™@ ) wi Y agi—kho), xieQ i=1,2-- M; (72)
I=1 k=Kq1+1
M+N
Z o(xi —xjDrj=g(x), x€0Q, i=M+1,M+2,---,M+N.
j=1

This linear system can also be abbreviated in matrix-vector form as

(=)@ miny | [ Amx1 | _ [ F~R(K2)
- . (73)
PN« (M+N) ANx1 G
3.3.2. Validation using reference solutions and walk-on-spheres
Next, we demonstrate the convergence of the numerical solutions produced by the RBF collocation method by consid-
ering a circular domain {(x1, x2) € R? | x% +x§ < 1}. In principle, the collocation points {x;} can have arbitrary distribution
in Q provided they do not overlap. We choose a total of I? 4+ 1 collocation points in €U 32 on a uniform grid in polar

coordinates:

xi = (i1Arcos(ipAB), i1 Arsin(izA9)), i= (i1 —1) x [ +iy, i1,i2=1,2,-,1, (74)
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where Ar =1/I, and A6 =27 /I. The subscript pair (i1, ip) labeling a collocation point in two dimensions is used to define
the single subscript i to index the vector of collocation points/weights. There are M = (I — 1) x I + 1 collocation points
inside 2, consisting of I — 1 concentric rings of I collocation points together the center point (0, 0), and N = I collocation
points on 9. The number of collocation points varies for convergence studies, but the numerical errors are evaluated at a
fixed collection of test points Xt Which are generated via (74) using I = 39 throughout. The shape parameter c in the RBF
¢ (-) is selected as ¢ = 3/I. For the Gauss-Legendre quadrature (71), 16 quadrature points are taken, i.e., P = 16. The spatial
step in the modified GL formula is h = 0.001. Standard LU decomposition in MATLAB is used to solve the linear system
(73).

Below, we test both the case of zero exterior condition, in which case the term fo:z,(l +1Ck&(x; —kh@) in the modified
GL formula (68) is simply zero, and the non-zero exterior condition case, in which case we take K, = 6000, i.e., Koh =6,
three times the diameter of the unit disk.

Convergence of the GL formula. Before demonstrating the convergence of RBF solutions, we first demonstrate the con-
vergence of the vector GL formula (68) with respect to the parameter h. In two dimensions, we consider the following two
functions:

(i) ur(x) = (1= x%? and (ii) ua (x) = (1 — |x) ;72
where () =x if x>0 and (x)4+ =0 if x < 0. The domain is taken to be a unit disc: 2 = {(x1,x2) | x% +x§ < 1}. The Riesz
fractional Laplacians of these functions are [107]

Fi0 = (~ e 100 = 2T (% 1) (75)
and
f200 = (= Bries)Pu200 =2°T (5 +2) T (5 +1) (1= (1+ S 2)). (76)

respectively. To measure the error, we use the L*°-error

€1 = [1(—=A)*uy (Xeest) — F1 (Xeest) [l 1<,
€2 = | (—A) "y (Xeest) — o (Xeest) [l 1%,
as well as the relative L2-error

Eq = Il (_A)a/zul (Xtest) — F1 (Xeest) Il 2
(1f1 (Xeest) |l 2

_ [[(—A)* 21y (Xeest) — F2 (Xeest) ll2
B 12 (Xtest) [l 12

where (—A)%/2u(x¢est) and f;(Xest) are the vectors formed by the directional Laplacian using (68) and the functions (75),
(76) evaluated at a collection of test points, respectively. Fig. 7 demonstrates first-order convergence of the errors with
respect to h, which agrees with the theoretical convergence rate given in [97].

Convergence of the RBF solution for g(x) = 0. We demonstrate the convergence of the RBF collocation method with
respect to the number of collocation points (namely, M+ N in RBF expansion (65)) for solving the fractional Poisson problem
with a zero Dirichlet boundary condition g(x) =0 for x € ]Rd\Q. We plot in Fig. 8 the convergence of the RBF method for
two fabricated solutions uq and uy and four different values of @ =0.1,0.5,1.5 and 1.9. The convergence is measured in
the relative L, error. It is observed from Fig. 8 that the RBF method is convergent, although the convergence rate loses is
reduced at larger numbers of collocation points due to the rapidly increasing condition number of the collocation matrix
in the linear system (72); see [106] for a discussion of this well-known issue. Also, we see that the RBF method achieves
lower accuracy for u; compared to that for uy; this can be expected since u; has much higher gradients than u, near the
boundary. We study the local behavior of the error in Fig. 9, in which exact and RBF solutions are compared. We see that
the error is larger near the boundary because the collocation points are sparser near the boundary than around the domain
center.

Convergence of the RBF solution for g(x) +# 0 and comparison with walk-on-spheres. From Theorem 2.11 of [108], a so-
lution formula for (64) with f =0 in the case that 2 is a ball B, of radius r is

)

3

Jrivg Pr(y,0g(y)dy x € By,

g2(x) xe R\ B,. 77

ux) = {
The fractional Poisson kernel P(y, x) is given by

r(4)sin 22 (rz— |x|2>°‘/2 1
T3t ly|? —r2 lx—yld-

Pr(}’ax)z
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Fig. 7. Convergence of the modified GL formula with respect to the step size h for the 2D problem with g(x) = 0 on the unit disk. We plot the error between the
modified vector GL formula (68) approximation of the fractional Laplacian of uq(x) and u;(x) and the source functions f1(x) and f»(x), respectively. The
slope of each line is 1, demonstrating that the convergence rate of the vector Griinwald scheme is O(h).

u, (x)=(1-|x] 32 u,(x)=(1-|x| %)+

100 pr ' 107 '
—O—a=0.1 o —O— a=0.1
— % —a=05 + N —%-—qa=05
+ - a=15 g + - a=15
10'1'*\ — B —a=1.9] 1 10'2' +\E — B —a=19| 4
[e] [e]
= EN =
@ [}
[ [
2 102} ] 3 3
© <
o o
o o
- E.QED% -
+
109 ¢ BT 3
10.4 L L L 10.5 L L L
102 10° 10 10? 10° 10*
Number of collocation points Number of collocation points

Fig. 8. Convergence of the RBF method for the 2D fractional Poisson problem with zero exterior values on a unit disk. Left: fabricated solution u; with
o =0.1,0.5,1.5, and 1.9. Right: fabricated solution u; with « =0.1,0.5,1.5, and 1.9.

Using the RBF collocation method, we solve this problem with g(x) = exp(—|x|?). To obtain the reference solution, the
integral in (77) is computed using a costly direct Monte Carlo (MC) integration with 5 x 107 samples. To obtain the RBF
solution, as discussed in section 3.3.1, we use the truncation parameter K, = 6,000 and step size h = 0.001 in (68). Recall
that we verified in Fig. 6 that these values yielded sufficiently high accuracy of the discretization (68), and at the same time
in Fig. 10 that the final RBF solution was converged with respect to these truncation parameters. Using these parameters,
we compute and plot the pointwise errors of RBF and WOS solutions with respect to the reference solution in Fig. 11(a);
we see that both RBF and WOS methods can achieve accurate results.

Next we compare errors and compute (wall) times of the RBF collocation and WOS methods in Fig. 11(b) and Fig. 11(c),
respectively. Both methods are parallelized over 24 cores. We observe that the error of WOS solution decays with the rate
O(NT793) where NT is the number of trajectories, as expected for a Monte Carlo method. The error of the RBF method
does not exhibit consistent convergence rate. Clearly, the convergence of the RBF method is stymied due to the increasing
condition number of the collocation matrix. In terms of the computational time, WOS (which is embarrassingly parallel) has
time complexity O(NT), whereas the time complexity of the RBF method is O (NC?) where NC is the number of RBF collo-
cation points. The assembly time of the collocation matrix (73) is O (NC?), which dominates the solution time and accounts
for the quadratic time complexity here. However, if we solve (73) by direct methods, cubic complexity will be observed as
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Fig. 9. Comparison of reference and RBF solutions for fractional Poisson problem with zero exterior values on a unit disk. Upper left: Reference solution
uy with o = 1.5. Upper right: RBF solution with roughly 10000 collocation points (namely I = 99). Lower left: Pointwise error between exact and RBF
solutions. Lower right: Illustration of collocation points with I =39 where blue and red points are boundary and domain collocation points, respectively.
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Fig. 10. Relative L2 error between the reference solution and the RBF solution to the problem (64) on the unit disk with g(x) = exp(—|x|?) and zero source
term f(x) = 0. This indicates convergence to a consistent numerical solution with respect to the truncation parameter K, in the modified GL formula (68)
for « = 1.5 at a fixed set of 2500 collocation points (I = 39); for K, > 2000, the error is dominated by the numerical error in solving the linear system
(73) at these collocation points.

we increase the number of collocation points. For this reason, iterative methods should be adopted. However, the increas-
ing condition number of the collocation matrix prevents successful application of iterative methods, and preconditioning is
required. It is still an open problem to develop preconditioners for the fractional Laplacian collocation matrix.

For these simulation parameters, the two methods are roughly comparable and WOS method has a slight edge over
the RBF method. For example, to achieve a L; relative error of 1073, the WOS and the RBF methods take around 900 and
1100 seconds, respectively. Nevertheless, the RBF method has the potential to be more flexible and converge faster than
the WOS method. The WOS method requires establishing Feynman-Kac formula for the associated boundary value problem,
but for many fractional PDEs and boundary conditions, the corresponding Feynman-Kac formulas have not yet been found.
Moreover, efficient sampling algorithms for WOS require characterization of exit distributions of the associated stochastic
process.
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3.3.3. Future directions

The RBF collocation method introduced here for the Riesz fractional Laplacian takes advantage of the directional rep-
resentation (22) and extends readily to general nonisotropic directional fractional Laplacians (24). We established two
problems for further work: (1) Development of effective preconditioners for the RBF collocation matrices. This will improve
convergence rates as the number of collocation points increases. (2) Study of truncated fractional directional Laplacians and
error bounds for the difference between solutions of the associated boundary value problems and those of (64). While in
our example we drove the truncation error in (68) close to machine precision by choosing K, sufficiently large, theoretical
justification for truncation in the modified GL formula should be studied. To have full impact, these questions should be
studied in the context of the most general directional fractional Laplacians (24) connected to the class of multivariate stable
processes, which goes beyond the scope of the current article.

3.4. Horizon-based nonlocal definition

Even though we consider fractional equations involving bounded domains, the region of dependence for the Riesz and
directional fractional Poisson equations is still R%. This is in contrast with the spectral fractional Laplacian, which admits
only the usual locally-defined boundary conditions, and does not utilize information about the solution outside the bounded
domain. However, in the Riesz or directional fractional Poisson problems, it can be noticed through computational exper-
iments that the dependence of the solution on points far away from the domain decreases with distance. Du et al. [98]
proposed a type of nonlocal problem admitting a “horizon parameter”, which is used to describe an “interaction domain”,
a proper subset of RY, in which all computational considerations take place. In other words, data from outside the inter-
action domain is ignored. Thus, the operator used in the formulation of these equations is distinct from operators we have
presented above, although the nonlocal operator does approximate the Riesz fractional Laplacian as the interaction domain
increases in size. Indeed, taking the horizon parameter to +o0o, we recover the Riesz definition. In this section, we describe
this nonlocal formulation and demonstrate how the value of the horizon parameter affects the behavior of the solution to
the following problem. A similar study of the nonlocal diffusion operator was carried out by D’Elia et al. in [109]. Another
noteworthy paper by Duo et al. [16] compared numerical results of some one-dimensional fractional diffusion problems for
different definitions of the fractional Laplacian and the horizon-based nonlocal operator, which they call the “peridynamic”
operator.

3.4.1. Nonlocal problem
Let Q:=(—-1,1)CR, L=|Q| =2, and Bs(x) ={y € R : |y — x| < 8} denotes the interval centered at x having length 25,
where § is the horizon parameter. Define the interaction domain as:

Qr={yeR\Q:|ly—x|<dforxeQ}=(—-1-8,—-1]U[1,146),

i.e.,, Q7 consists of those points outside of Q2 that interact with points in 2. Consider the one-dimensional nonlocal problem
with a Dirichlet constraint,

—Lsu(x) = f(x) ing,

u=0 inQ7, (78)
where
—Lsu = Cy p. / %dy, O<a <2,
Bs(x)
with
2% (o +1)/2)

*TORI2T( —a)2)
3.4.2. Finite volume discretization

In order to solve the nonlocal problem (78), we consider a finite volume discretization. We divide the domain Q =[—1, 1]
into N sub-domains, h =2/N is the space step size, and we divide the interaction domain Q7 into 2K sub-domains where

K = §/h. Then, we have a partition x, = —1 + kh, k = — ,0,1,--- ,N,N+1,---,N+ K, and we denote the partition
by Ij =[xj_1,x],j=1,---, N. The finite volume formulatlon of (78) is written as:
u(x) — u(y) 1 .
/ / x|1+0‘ dx:E fdx, j=1,---,N. (79)
Ij Bs(x) I

Let vj:= % f,j v(x)dx be the mean value of v(x) in the interval I;. Note that
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u(x) — u(y) ux) —u(x+2)
f / Ty e / / T ogrra

j Bs(x) j Bs®)

(80)
u(x) u(x+ z)
dzdx.
|Z|1+a
l, -5
Using the right rectangle rule to discretize the inner integral of the above equation, the above equation is equal to
uRx) —u(x+2) —Ujyk — Uk + 21
————~dzdx~ C .
/ / |z|1+e o Z |kh|1+
Ij 0<|z|<Kh O<k=K
Thus, (79) becomes
_a'+l<_ﬁj—l<+2ﬁj - .
C / =fj, j=1,---,N.
o Z |kh|1+e fid
0<k<K
Writing the discretized equation in matrix form, we have
SU =F, (81)
where U = [iiq, i1, ,iun]T and F = [j_“1, j_“1, e ,j_“N]T. S is the stiffness matrix with its elements:
K
2
Sii =2 i
k=1

1 . .
Sigai =~ g k=120 min(K.N = k), j=1.-- N,

If K <N, then S; j1x =0 for |k| > K, from which, we can see that S is a symmetric, diagonally dominant Toeplitz matrix.

The diagonal dominance property ensures that the system (81) admits a unique solution. The third property of S suggests
that we can efficiently solve the linear system (81) in O(NlogN) operations and O(N) storage by using a preconditioned
iterative method, such as GMRES.

3.4.3. Numerical examples
We first test the convergence of the finite volume scheme.

Example 1. Let f(x) = 1. Recall that L =2 is the length of the domain 2. We test two different values of horizon parameter
§ = 2L, 64L for different values of fractional order o = 0.5, 1.5. Since there is no exact solution, we use the numerical
solution with N =21 as the reference solution. The convergence results of the L?>- and L®-error are shown in Fig. 12.

We observe in Fig. 12 that the convergence rates of the L%-error for o = 0.5 and o = 1.5 are about O (h'?) and O (h'?),
respectively, while the convergence rates of the L*°-error for & = 0.5 and o = 1.5 are about O (h%®) and O (h%7), respec-
tively. We point out here that theoretical estimates for the convergence rate for finite-volume schemes are not known at
the time of this writing. However, we mention that L? convergence rates for finite element schemes for such problems have
been established in [74,110].

We now study how the value of the horizon parameter affects the behavior of the solution of the nonlocal problem. We
also compare it with the solution of the nonlocal diffusion problem

Cy p.V. M dy = f(x) in Q,
|x — |(]+a)
(82)

u=0 inQ :=R\Q.
The above problem is equivalent to the Riesz fractional diffusion problem
(~8)*?u@ = f(oinQ,
u=0inR\ Q.
The above fractional diffusion problem can be solved by using the Petrov-Galerkin method proposed in [23] (see also [111]).

Example 2. Let N = 2'4. We vary the value of horizon parameter § for f(x) =1 and f(x) = sin(rx), and consider different
values of the fractional order o = 0.5, 1.5. The results are shown in Fig. 13.
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Fig. 13. Numerical solutions with different values of horizon parameter, N =24, o = 0.5, (left) f =1, (right) f = sin(x).

We observe that the numerical solution converges to the solution of the fractional diffusion problem (82) as the horizon
parameter becomes infinite. This phenomenon has also been observed by D’Elia and Gunzburger [109]. Moreover, we study
the convergence rate in L® in the sense of asymptotic behavior; in particular, we plot ||[u — us|l~ against the horizon
parameter § in log-log scale in Fig. 14. We observe that the convergence rate of ||u — us||~ is 0.5 for & = 0.5 while it is 1.5
for o = 1.5. The convergence rate can also be analyzed theoretically for & > 1. We now show this as follows. Let u and u;
be the solutions of (82) and (78), respectively. It has been shown that (see [109, Theorem 3.1])

lu —usllgasz <C187%,  Jlu —usll2 < C287%.

Thus, by using interpolation theory and noting that ||v|l» < c|v|/ys for s > 1/2, we have

lu —uslloo <C87 %, fora>1.

We point out in the following that, for solving the equation (82) using the FVM, the corresponding integral (80) can be

partitioned as
ux) —u(x+2)
/ / Zjia —————~dzdx

//u(X) u(y)
|1+oz
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The first term of the above integral is computed as before by using a rectangle rule discretization, while the last two terms
are computed exactly. Thus, using the fact that u =0 outside © and x + z lies outside @ for xe I; C 2 and |z| > L = ||,
the above integral is approximated by

—Uj —Uj_+2uj 2Cq g,
Ca Z (kh)1+ TL
0<k<L/h

4. Numerical solutions: comparisons

Section overview

In the preceding sections, we have thoroughly discussed the theoretical properties of the Riesz and spectral fractional
Laplacians, and have established significant differences in the fractional Poisson problem associated to each operator. In
this section, we leverage some of the numerical methods described in Section 3 to demonstrate the practical differences
between these different operators in benchmark problems. As expected from the preliminary numerical studies in Section 1
and the theoretical discussion in Section 2, these differences in the solutions of the respective Poisson problems are highly
dependent on the fractional order o and the properties of the forcing term f. We focus on numerical methods that are
generalizable to higher dimensions, and we use these methods to compute benchmark solutions in two dimensions on the
square, L-shaped, and unit disk domains. We solve fractional Poisson problems on each of these domains using the spectral,
Riesz, and directional definitions with & = 0.5 and o = 1.5 with zero Dirichlet boundary conditions. We make observations
about the differences between these numerical solutions, including regularity issues near the boundary, equivalence of
the directional and Riesz definitions, and boundary oscillations in the case o = 0.5. We also provide plots of the spectral
and Riesz solutions compared along one-dimensional slices of the two-dimensional domains. Finally, we summarize the
computational advantages and disadvantages of each method so that practitioners are better able to choose which method
is best suited for a given equation.

We consider four fractional Poisson problems in three 2-dimensional domains of different shapes. In particular, we
compare the solutions of Equation (1) in a bounded domain  c R? with both the Riesz and spectral fractional Laplacians
and zero Dirichlet boundary conditions, where the choices of 2, f, and « are described in Sections 4.1-4.3 and outlined in
Table 3.

To solve the Riesz fractional Poisson equation, we use the AFEM (see Section 3.1.1), the WOS method (see Section 3.1.2),
and the RBF collocation method (see Section 3.3.1). The shape parameters of the RBF collocation method for each example
are reported in the figure captions for the corresponding grid figures in Appendix B. Sixteen-point Gauss-Legendre quadra-
ture is used to approximate the integral of the directional derivative in Eq. (71). We use multiple methods to verify the
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Table 3

Guide to benchmark problems formulated with zero Dirichlet boundary conditions. The test cases
were used to make comparisons on the square, disk, and L-shaped domains using the Riesz and
spectral definitions as discussed in Sections 4.1-4.3.

Benchmark problems with zero Dirichlet BCs

Sec. 4.1, Square: [—1, 112 Order o Source function f
Case 1 &2 05&15 f=1

Case 3 & 4 05&1.5 f =sin(mx) sin(wy)
Sec. 4.2, Disk: {(x, y): x> + y% <1} Order o Source function f
Case 1 &2 05&15 f=1

Case 3 & 4 05&1.5 f =sin(mr?)

Sec. 4.3, L-shape: [—1,1]%\ [0, 1)? Order o Source function f
Case 1 &2 05&15 f=1

Case 3 & 4 05&15 f =sin(mx)sin(ry)

(a) Solutions u associated with f =1 and « = 0.5 in the square domain using the spectral definition (using SEM) (left) and the
Riesz definition (using AFEM) (center), and the difference between uriesz and uspectral for this case (right).

(b) Solutions u associated with f = 1 and o = 1.5 in the square domain using the spectral definition (using SEM) (left) and
the Riesz definition (using AFEM) (center), and the difference between uries; and Uspectral for this case (right).

Fig. 15. Solutions and differences between ugjes; and Ugpectral ON the square domain for @ = 0.5 and 1.5.

accuracy of the solutions and to ensure that the observed differences in the numerical solutions reflect differences in the
fractional operators instead of inaccuracies in the numerical results. The meshes or collocation points used in each example
below are displayed in Appendix B.

4.1. Square domain

In this section, we solve the benchmark problems on the domain [—1, 1]2. In Fig. 15, we show cases 1 and 2, where
f=1and a =0.5 and 1.5, respectively. In each case, the spectral solution uspectral lies below the Riesz solution ugiesz,
just as for the one-dimensional comparisons in Fig. 1. Since f >0 in the domain, this is a special case of the theoretical
results of [24]. We remark that the apparent failure in the plotted solution ugjes; at enforcing the zero boundary condition
for « = 0.5 is an artifact of the AFEM method [71]; the true solution does in fact possess a zero trace. This is discussed in
detail in Remark 3.1. The solution uUgpectral for oo = 0.5 also possesses a trace (as discussed in Section 3.2.2), and in contrast,
the numerical method used to compute it (SEM) is able to enforce the zero boundary condition.

In Fig. 16, we consider Cases 3 and 4, where f =sin(7x)sin(ry), and o = 0.5 and 1.5, respectively. In this case, the
issue of satisfying the boundary condition in the Riesz solution when o = 0.5 is not as pronounced, but the oscillations are
visible in the plot of ugjes; — Uspectral-

Fig. 17 displays the solutions plotted along the lines y =0 for f =1 and f =sin(srx)sin(7y), respectively. These figures
highlight the difference between the boundary layers for the spectral and Riesz solutions, as we discussed in relation to
Fig. 1. Indeed, the one- and two-dimensional profiles are qualitatively similar for all four cases, and the boundary layer in



A. Lischke et al. / Journal of Computational Physics 404 (2020) 109009 41

uspeclra\
“Yspectral

Riesz

u,

(a) Solutions u associated with f = sin(7x)sin(my) and a = 0.5 in the square domain using the spectral definition (using SEM)
(left) and the Riesz definition (using AFEM) (center), and the difference between ugiesz and Uspectral for this case (right).

YRiesz

(b) Solutions u associated with f = sin(mz)sin(ry) and o = 1.5 in the square domain using the spectral definition (using SEM)
(left) and the Riesz definition (using AFEM) (center), and the difference between ugiesz and Uspectral for this case (right).

Fig. 16. Solutions and differences between ugjes; and Uspectral ON the square domain for o = 0.5 and 1.5.

the Riesz solution for Case 4 (see Fig. 17) due to the singularity in the Riesz definition (9) is particularly noteworthy, as the
spectral solution always will have smooth behavior near the boundary given smooth f.

We also computed the solution to the four benchmark problems using the directional definition (22), and this solution
is plotted in the top left panel of Fig. 18. This figure also shows the Riesz solution computed in three ways: (i) using
the AFEM method [71], (ii) using the walk-on-spheres method of Section 3.1.2, and (iii) using the RBF collocation method of
Section 3.3.1. The similarity of the solutions (on the square domains and on the domains discussed in the following sections)
verifies our numerical results, and demonstrates that the directional solution is equivalent to the Riesz solution, up to some
numerical error. The spectral solution in the top right panel is significantly different from the Riesz and directional solutions,
as indicated by their maximal values reported in the titles of the plots.

4.2. Disk domain

In this section, we solve the benchmark problems in Table 3 on the disk domain:  := {(x, y)|/x% + y2 < 1}. We use
the same numerical methods as in Section 4.1, where we solved the benchmark problems on the square. The mesh for
the SEM used to compute the spectral solution was generated by transforming the square mesh onto the circular domain.
The details of this transformation are included in [96]. The collocation points used for the RBF method and the adaptively
refined meshes used to compute the Riesz solutions are included in Fig. 32.

In Fig. 19, we again see that the Riesz solutions have oscillations near the boundary in the case with o = 0.5, where
the spectral solutions satisfy the boundary conditions. For Cases 3 and 4 with f =sin(zr?), (see Table 3), our observations
are very similar to those of Fig. 16, so these cases are displayed in Appendix C, Fig. 34. As for the case f =1, the property
f >0 leads to the Riesz solution lying above the spectral solution [24]. We also include one-dimensional slice plots of the
Riesz and spectral solutions and their differences along the line y =0 in Fig. 20; the profiles are similar to those we saw in
the square examples, where the Riesz solutions exhibit sharper boundary layers than the spectral solutions.

The comparisons with the directional definition solution using the RBF collocation method are similar to the square
domain examples, and so we include the figure containing these plots in Appendix C.

4.3. L-shaped domain

In this section, we solve the four benchmark problems of Table 3 on the L-shaped domain: € := {[—1,1]%\ [0, 1)},
i.e., the square [—1, 1]> with the upper right corner removed. We display the solutions from two viewing angles: from the
points (—1, —1) and (1, 1), so that all features are clearly visible.



42 A. Lischke et al. / Journal of Computational Physics 404 (2020) 109009

0.25 ‘-‘_‘
h\\ 05— l’1
021t & . /
\‘ 1 0 05 1 /'
S, -’
\, s’
— \~ '/'
50 15 \~\. e
o T~es -
= e ——
SRR 1
| e — — a=15,spectral AR ‘| ————————————
02l , « = 1.5, Riesz N 0.05 --"7 T S
! Vs - = a=0.5, spectral \ -
o1h ,/ —— &= 0.5, Riesz \\ 1
/3 \
0 . | ! 0
-1 -0.5 0 0.5 1
T
0.5 T i 0.05
- = a= 1.5, spectral
04l « = 1.5, Riesz 0.04
- = a= 0.5, spectral
03 — v = (.5, Riesz 0.03
0.2 0.02
0.1 §0.01
B
0 y 0
S
-0.1 -0.01
02 -0.02
-0.3 -0.03
04 -0.04
05 -0.05 : ; ‘
4 -0.5 0 0.5 1 -1 0.5 0 0.5
- T

Fig. 17. Slices along the line y = 0 in the square domain with both o = 0.5 and « = 1.5. (top left) Plots of the solutions for the Riesz and spectral
formulations with f =1 and (top right) plot of the differences upjes; — Uspectral along the line y =0 with f = 1. (bottom left) Plots of the solutions for
the Riesz and spectral formulations with f = sin(x)sin(zry) and (bottom right) plot of the differences ugjes; — Uspectral along the line y =0 with f =
sin(rx) sin(;r y). Some small wiggles that appear in the difference plots are due to the computation of the differences on two different meshes, even
though the solutions are sufficiently converged and stable.

We use the same numerical methods as in Sections 4.1 and 4.2, where we solved the benchmark problems on the square
and disk domains. The mesh for the SEM used to compute the spectral solution includes additional refinement near the
boundary to ensure a converged numerical solution, and is plotted in Fig. 33 in Appendix B. The collocation points used
for the RBF method and the adaptively refined meshes used to compute the Riesz solutions are also included in Fig. 33 in
Appendix B.

Fig. 21 shows the Riesz and spectral solutions for Cases 1 and 2, where o« = 0.5 and 1.5, respectively, and f =1 at the
two viewing angles, and Fig. 22 shows the solutions for Cases 3 and 4. We observe that the difference plots, particularly for
the cases with o = 0.5, exhibit a relatively minor spike near the inside corner of the domain. Note that this spike does not
occur (or is at least much less pronounced) for the cases with o = 1.5.

We also compute the directional definition solution on the L-shaped domain using the RBF collocation method. We show
the comparison in Fig. 36 using the view from (1, 1), and the view from (—1, —1) is included in Appendix D.

In this set of examples, we also plot the solutions and differences along the slices defined by the lines y =xand y =1—x
in Fig. 23 to further observe the behaviors near the corner. Again, the fact that the Riesz solution lies above the spectral
solution is consistent with f > 0 in the domain and the theoretical result of [24]. The spike near the corner is intensified in
the cases where o =0.5.

4.4. Computational considerations

Many of the numerical methods used earlier in this work have only recently been reported, and some require further
development. Therefore, it is not reasonable to directly compare the computational complexities of these methods, since they
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Fig. 18. Square, f(x) =1, and g(x) = 0: Comparison, for & = 1.5, of URjes; and uUspectral, Using three methods to compute the Riesz solution and one method
to compute the spectral solution. Top left: The Riesz solution obtained using the RBF collocation method based on the directional representation. Top right:
The spectral solution obtained using the SEM. Bottom left: The Riesz solution obtained using the AFEM. Bottom right: The Riesz solution obtained using the
WOS method. The only solution with a significant difference is the spectral solution (top right); all other solutions are equivalent up to numerical error.
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(a) Solutions u associated with f =1 and a = 0.5 in the disk domain using the spectral definition (using SEM) (left) and the
Riesz definition (using AFEM) (center), and the difference between urics, and Uspectral for this case (right).
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(b) Solutions u associated with f = 1 and o = 1.5 in the disk domain using the spectral definition (using SEM) (left) and the
Riesz definition (using AFEM) (center), and the difference between uries; and Uspectral for this case (right).

Fig. 19. Solutions and differences between ugjes; and Uspectral 0N the disk domain for f =1 and o =0.5 and 1.5.
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are all at differing stages of development. Instead, in this section, we present an overview of the computational advantages
and disadvantages of each method.

The AFEM of Ainsworth and Glusa [71,72] for solving Riesz (or integral) fractional Poisson equations has been well-
developed, and its overall computational complexity is O (n(logn)*?) operations, including the assembly, computation of
error indicators for the adaptive refinement, and solving the linear system. A detailed study of the complexity was included
in [72]. At this time, the AFEM has been applied only to zero Dirichlet boundary conditions, although it may be possible to
extend this method to nonzero Dirichlet conditions using a similar clustering approach as was mentioned in Section 3.1.1.
As can be seen in the adaptively refined meshes shown in Appendix B, the AFEM captures the boundary singularity with a
high degree of accuracy, and is a robust method for discretizing the Riesz fractional Laplacian.

Another approach we used to discretize the Riesz definition was the WOS algorithm (see Section 3.1.2), which can be
applied to quasi-convex domains and zero or nonzero Dirichlet boundary conditions. In this method, the computational
complexity is dominated by the Monte-Carlo simulation of many sample paths for each point in the bounded domain €,
although the complexity of our implementation scaled as the product of the number of sample paths multiplied by the
number of points in the computational domain. Furthermore, the WOS computation of the solution at each point in Q is
independent of the computations for any other point, which means all of the walks-on-spheres can be done simultaneously.
Therefore, WOS is an embarrassingly parallel algorithm. The WOS algorithm also has the advantage that no modification
needs to be made when the Dirichlet boundary condition is nonzero other than inserting the appropriate function g(x) into
the Feynman Kac formula (31). In [22], the convergence of the WOS algorithm is proved, and sample code for solving the
fractional Poisson equation is provided.
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(a) Solutions u associated with f =1 and @ = 0.5 in the L-shaped domain using the spectral definition (using SEM) (left) and
the Riesz definition (using AFEM) (center), and the difference between uRriesz and Uspectral for this case (right).

uspec(ral

(b) Solutions u associated with f =1 and o = 1.5 in the L-shaped domain using the spectral definition (using SEM) (left) and
the Riesz definition (using AFEM) (center), and the difference between ugies, and ugspectral for this case (right).
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(c) Solutions wu associated with f = 1 and « = 0.5 in the L-shaped domain using the spectral definition (using SEM) (left) and
the Riesz definition (using AFEM) (center), and the difference between ugies, and uspectral for this case (right).
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(d) Solutions u associated with f =1 and a = 1.5 in the L-shaped domain using the spectral definition (using SEM) (left) and
the Riesz definition (using AFEM) (center), and the difference between ugies, and Uspectral for this case (right).

Fig. 21. Solutions and differences between ugjes; and Ugpectral ON the L-shaped domain for « = 0.5 and 1.5.

To discretize the directional definition (22), we used the RBF collocation method of Section 3.3.1. An advantage of this
approach is that it can be easily modified to handle the case where the measure M(df) is non-uniform, as was done
using another version of this method in [105]. The RBF collocation method is applicable to problems with nonzero Dirichlet
boundary conditions as long as the exterior boundary value decays at infinity. In addition to these advantages, there are
some aspects in which further development is needed. When collocation points are too close together, the method becomes
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(a) Solutions u associated with f = sin(7z)sin(7y) and o = 0.5 in the L-shaped domain using the spectral definition (using
SEM) (left) and the Riesz definition (using AFEM) (center), and the difference between uries, and uspectral for this case (right).
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(b) Solutions u associated with f = sin(wz)sin(ry) and o = 1.5 in the L-shaped domain using the spectral definition (using
SEM) (left) and the Riesz definition (using AFEM) (center), and the difference between ugies, and uspectral for this case (right).
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(c) Solutions u associated with f = sin(nz)sin(ny) and o = 0.5 in the L-shaped domain using the spectral definition (using
SEM) (left) and the Riesz definition (using AFEM) (center), and the difference between ugies, and uspectral for this case (right).
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(d) Solutions u associated with f = sin(wz)sin(ry) and o = 1.5 in the L-shaped domain using the spectral definition (using
SEM) (left) and the Riesz definition (using AFEM) (center), and the difference between uries, and uspectral for this case (right).

Fig. 22. Solutions and differences between ugjes; and Uspectral ON the L-shaped domain for & = 0.5 and 1.5.

unstable, which limits the level of accuracy this method can achieve [106]. Furthermore, for direct and iterative solvers,
the linear system resulting from the RBF approach requires cubic and squared complexity to solve, respectively. Currently,
we lack good preconditioners due to the complicated matrix structure formed by the Griinwald-Letnikov scheme as well as
Gaussian quadrature for the integral with respect to 6.

For the spectral definition, there are many choices of numerical methods. In the comparisons above, we reported results
computed using the SEM described in Section 3.2.1. Given a mesh of elements on a bounded domain €2, this method requires
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Fig. 23. Slices along the line y =x and y =1 — x in the L-shaped domain with f =1 and both & = 0.5 and o = 1.5. (top left) Plots of the solutions for the
Riesz and spectral formulations along y = x and (top right) plot of the differences ugies; — Uspectral along the line y = x. (bottom left) Plots of the solutions
for the Riesz and spectral formulations along y =1 — x and (bottom right) plot of the differences ugies; — Uspectral along the line y =1 — x.

the computation of a large number of eigenvalues and eigenfunctions of the standard Laplacian. This is computationally
expensive, and for larger eigenvalues, the computation of these eigenpairs becomes inaccurate. Furthermore, the resulting
linear system is of cubic complexity. The advantage of this approach is its flexibility with respect to different types of
boundary conditions and complex domains. Furthermore, if the SEM is applied to a time-dependent problem, e.g., the
space-fractional heat equation, the eigenpairs need only be computed once at the beginning, and can be reused during
each time step. To understand why this is the case, recall that the discretized form of the fractional Poisson equation

is

AUy = f,

where f is the load vector, A is the discrete counterpart of the spectral fractional Laplacian:

N ~ ~
A=Y @i d.

n=1

and {¢;} are the orthonormal Lagrange basis functions generated by the WGS procedure. Hence, A is a diagonal matrix, so
solving the linear system is simply a computation of the matrix-vector product A~!f. So this method is inexpensive in the
context of time-dependent problems. For more details of the implementation and computational complexity for the SEM,

see [96].
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5. Nonzero boundary conditions

Section overview

Depending on the fractional Laplacian definition, nonzero boundary conditions can lead to a significant increase in the
computational cost of solving our benchmark equations. Most importantly, modifications to the definition itself may be
necessary, particularly in the case of the spectral fractional Laplacian, as discussed in Section 2.5. We demonstrate how our
numerical methods may be adapted for this case. We also present computationally feasible approaches to solving the Riesz
fractional Poisson equation with nonzero Dirichlet boundary conditions, and we make comparisons between the solutions
to some inhomogeneous benchmark problems. We note some qualitative differences in the solutions for the inhomogeneous
case from our observations of the solutions to the homogeneous problems.

We are unable to compute solutions to the fractional Neumann problem involving the Riesz definition for two reasons.
Firstly, because the formulation of the nonlocal Neumann condition is a subject of some controversy, as there are multiple
formulations in the literature with no consensus [66,20,112,21,113]. Secondly, numerical approaches have not yet been
developed for these fractional Neumann problems. It is more straightforward to define Neumann boundary conditions for
the spectral fractional Laplacian, since this definition only requires local boundary conditions, as discussed above. However,
the points we make in the following section can be understood fully using only nonzero Dirichlet boundary conditions.

5.1. Spectral definition

In this section, we follow up on the discussion of the different (equivalent) formulations of the inhomogeneous spectral
fractional Laplacian in Section 2.5 by presenting some numerical comparisons involving nonzero Dirichlet boundary condi-
tions. We demonstrate numerically that the approach of Antil et al. [18], the heat semigroup formulation of Cusimano et
al. [19], and our nonharmonic lifting approach are all equivalent ways of describing the inhomogeneous spectral fractional
Laplacian. As these formulations require distinct numerical approaches, we also compare these approaches in Section 5.1.2.

5.1.1. Numerical comparison of nonharmonic lifting and harmonic lifting methods

In Section 2.6.3, we described the nonharmonic lifting approach for discretizing the inhomogeneous spectral fractional
Laplacian. In this section, we compare the results of the nonharmonic lifting method with the harmonic lifting method of
Antil, Pfefferer, and Rogovs [18], described in Section 2.6.2. In our figures, we frequently refer to the latter as the “APR”
method. Recall that this method allows for lifting the boundary data by functions v that solve —Av =0 in a very weak
variational form (46); however, in all of the examples we consider, the boundary data is smooth enough that we can lift by
standard harmonic functions.

For the harmonic lifting method, as explained in Section 2.6, any method used to discretize the homogeneous spectral
fractional Laplacian can be applied after the harmonic lifting. In our examples, we use the spectral element method de-
scribed in Section 3.2.1 in order to discretize (—A)®/2u(x). For the nonharmonic lifting method, we also apply the spectral
element method (or the discrete eigenfunction method in the case d = 1) of Section 3.2.1, where the numerical solution
of the fractional Poisson problem is approximated by a function in the space (Py N H(l))(Q). We consider the fractional
Poisson equation (1) with nonzero Dirichlet boundary u(x)| a0 = &(). Let u =w + v, where w is an unknown function
and w‘ 90 =0, and v is a function chosen to satisfy V’ag = g. Hence this function v is not unique. Assuming that 92 is
smooth, g must belong to the space H'/2(3<2), since the solution u € H(])(Q) and has trace equal to g. Then, following the
approach of Section 2.6.3, the weak form of the inhomogeneous fractional Poisson problem can be written as follows: Find
w e (Py N H})(R), such that

(=82, ¢) = (f,¢) - (Vv. V(-0)**"9))

for all ¢ € (Py NHY)().

We solve this problem in the domain Q = (-1, 1), where we test two cases with different forcing terms, f = x and
f = —x with boundary conditions u(—1) = —1 and u(1) = +1. We have exact solutions in the case « =2: u = %x3 + %x with
the forcing term f = —x (CaseI), and u = —%x3 + %x with the forcing term f = x (Case II). We choose the lifting functions
v =x and v = x3 for our numerical tests. We plot the differences of the numerical solutions between the nonharmonic lifting
method and the harmonic lifting method of [18] in Fig. 24 for different values of « and different lifting functions v(x). We
can see from Fig. 24 that the differences are on the order of machine precision, demonstrating that these approaches yield
equivalent solutions.

5.1.2. Numerical comparison of the harmonic lifting and heat semigroup approaches

In this section, we compute the spectral fractional Laplacian of u = cos(rrx) sin(;r y) on the domain €2 = [0, 1] using both
the harmonic lifting method [18] as well as the heat semigroup formulation of Cusimano et al. [19], which we abbreviate as
“Heat SG” in our figures. The idea of this section is to give an indication of the computational cost of computing (—A)%/2u(x)
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Fig. 24. Differences between the APR harmonic lifting method [18] and nonharmonic lifting method using (left) f = x and (right) f = —x with different
fractional orders «. The black solid lines, dashed cyan lines, and dashed brown lines represent the differences between the two versions of the lifting
method with v =x and v = x> for different values of «. These differences turn out to be very similar regardless of the values of «. We also plot the
differences (for different ’s) between the very weak solution, u4, and the lifting solution with v =x> denoted u,_,s.

using the different (equivalent) formulations. Once again, we use the SEM described in Section 3.2.1 in order to discretize the
harmonic lifting (APR) formulation of (—A)%/2u(x). For the heat SG formulation, we use a quadrature rule to approximate
the (truncated) integral (38), and we use the same SEM of Section 3.2.1 along with the Euler method to solve the heat
equation (13). We give more details of these computations below.

The heat semigroup approach uses the formulation of (38) and (13), as discussed in Section 2.6.4. The integration (38)
over (0, c0) is truncated to the interval (0, T) and is approximated using the quadrature formula

Nt N[
L&louxi) =Y (€ Bu(x) —u())Bj = Y (Wn(xi. t)) — wh(xi, 0)B;,
j=1 j=1

where g := = ra/D a 72 f b +AA:/22 ﬂfg 7. The wy represents the SEM approximation of the solution w(x, t) to (13). Equation (13)

is discretized in space using the SEM of Section 3.2.1, and the time discretization is done using a first order Euler method.
The solution wy(x;, t}) is computed by evaluating the polynomial expansion produced by the SEM at x; at time step j. For
the case with nonzero boundary condition u| 20 = & we use a lifting function v that satisfies the integer order equation

—Av=0, xeQ,
v=g, Xxe€dQ.

Then we subtract the harmonic lifting function v from u and proceed as above to calculate LZ'SXZ/ (2) (u—v).

In Fig. 25, we plot (—A)*/2u(x) with & = 0.5 and o = 0.8 for both the harmonic lifting and Heat SG formulations, both in
the square [0, 1]2 and along the slice y = 0.46. We also plot the differences between these approximations along the same
slice, y = 0.46. In these examples, we use the SEM with a single element and expansion order N = 20, both in the harmonic
lifting discretization and in the space-discretization of the heat equation (13) associated with the heat SG formulation. For
the time-discretization of the heat equation (13), we used the forward Euler method with time step size 6e-5 and 200,000
iterations. The integral (38) was approximated with 30 quadrature points and the integration was truncated to the interval
0, T=1).

Although theoretical estimates for the convergence of the SEM in Section 3.2.1 are currently under development, it is still
possible to have a heuristic discussion comparing the efficiency of using the SEM together with the APR/harmonic lifting
formulation of [18] vs. using the heat semigroup formulation of [19] to discretize the inhomogeneous spectral fractional
Laplacian. We remark for the heat semigroup formulation, one must solve the (standard) heat equation for many time steps
and use the solution to compute the integral (38) over t € (0, c0). The advantage of this approach is that many robust
methods exist to discretize the heat equation with arbitrary boundary conditions in high dimensions. On the other hand,
discretizing according to the APR formulation [18] using the SEM requires the computation of N eigenvalues and eigen-
functions on each element of the domain, which has complexity N3. Therefore, for time-independent fractional equations,
the heat SG formulation may offer a faster discretization. However, in order to solve a time-dependent equation, such as a
fractional heat equation, the heat semigroup formulation would require repeatedly solving a standard heat equation for long
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Fig. 25. a = 0.5: Plots of (—A)*/2u(x) for u(x) = cos(;rx)sin(;ry) using (a) the harmonic lifting (APR) formulation [18] and (b) the heat SG formulation
[19] on the square domain [0, 1]2. (c) Plots of the solutions along the slice y = 0.46, where the discretizations appear on top of each other. (d) Difference
of the two discretizations plotted along the slice y = 0.46. o = 0.8: Plots of (—A)%/2u(x) for u(x) = cos(zrx)sin(ry) using (e) the harmonic lifting (APR)
formulation and (f) the heat SG formulation on the square domain [0, 1]%. (g) Plots of the solutions along the slice y = 0.46, where the discretizations
appear on top of each other. (h) Difference of the two discretizations plotted along the slice y = 0.46. In subplots (d) and (h), the difference between
the two numerical solutions arrives at a maximum near the boundaries, but is zero exactly at the boundaries because the boundary condition is strongly
enforced. This difference will decrease and converge to zero as the accuracy each method is increased, by increasing the integration time and decreasing
the time step size in the Heat SG method and increasing the number of eigenfunctions and fineness of the mesh in the SEM discretization used in the APR

method.

RBF wos Spectral

Fig. 26. Solutions to the inhomogeneous fractional Poisson equation: (left) RBF solution corresponding to the directional definition, (center) WOS solution
corresponding to the Riesz definition, and (right) SEM solution corresponding to the spectral definition.

time at each time step, leading to significantly higher computational complexity. In contrast, the eigenpairs of the SEM need
only be computed once, and can be re-used at each time step. Therefore, the APR with SEM formulation can be expected to

be more efficient for time-dependent problems.
5.2. Comparison of spectral, directional, and Riesz solutions

Now we can compare the solutions of the inhomogeneous spectral, directional, and Riesz fractional Laplacians. (See
Fig. 26.) Consider the following equation with nonzero Dirichlet boundary conditions.

(=N*?u=1, xeQ:=[-1,11x[-1,1],
ux) =g :=exp(—|x|?), xeaQorR?\Q,

where « is chosen to be 1.5. The boundary condition is posed on 92 for the spectral fractional Laplacian, and it is posed
on R?\ Q for the Riesz and directional definitions.

We use the method of [18] to solve (83) using the spectral fractional Laplacian, the WOS method for the Riesz definition,
and the RBF collocation method for the directional definition. We again find that the directional and Riesz solutions are
equivalent up to numerical error, as shown in Fig. 27. We also observe that the spectral solution is of greater magnitude

(83)
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RBF - WOS Spectral - RBF Spectral - WOS

0.04

0.03

Fig. 27. Differences of the solutions to the inhomogeneous fractional Poisson equation: (left) the difference between the RBF and WOS solution demonstrates
the close similarity between these solutions, as the directional and Riesz definitions are equivalent; (center) the difference between the spectral and RBF
solutions; (right) the difference between the spectral and WOS solutions. In these examples, the source function is f =1 and the BC is g = exp(—|x|?), and
« = 1.5. Furthermore, the spectral solution has greater magnitude than the directional and Riesz solutions, which is in contrast with the results for zero
boundary conditions.

Solutions plotted alongy = 0 Differences plotted alongy =0
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Fig. 28. Plots of solutions and differences along the line y = 0: (left) We plot the RBF, WOS, and spectral solutions along the line y =0, and (right) the
differences between the solutions. The oscillations are due to the WOS method and are expected since this method is based on the Feynman-Kac approach.

Table 4

Influence of truncation parameter K, on the RBF collocation numerical solution for inhomogeneous boundary condition on the unit square [—1,1] x [—1,1]. We
consider the 2D fractional Poisson problem with the forcing term f(x) =1 and the boundary condition g(x) = exp(—|x|2). The collocation points are on
a 41 x 41 regular grid, including 1521 domain points and 160 boundary points. The RBF shape parameter is 0.05 and the spatial step size h is set to be
0.001. We increase the truncation parameter from K, = 1000 to K; = 6000 until the numerical solution becomes sufficiently consistent with respect to K.

Truncation parameter K L, difference from previous solution L, difference from reference solution
1000 N/A 1.06e+0

1200 5.41e-1 5.19e-1

1600 4.05e-1 1.14e-1

2000 9.27e-2 2.15e-2

3000 2.13e-2 1.50e-4

4000 1.50e-4 2.63e-7

6000 (reference solution) 2.63e-7 0

than the other solutions in this example, contrary to the observations we made in the zero boundary condition case. This
indicates that the relative magnitudes of the solutions for different definitions relies on the boundary condition. In Fig. 28,
we plot the solutions and differences along the line y = 0, where this property can be more easily observed.

The influence of the truncation parameter on the solution accuracy for the RBF collocation method is shown in Table 4.
The solution in this case is converged when the truncation parameter K, = 6000, due to the rapid decay of the exterior
condition g(x) = exp(—|x|?).

6. Summary and discussion

In this work, we followed a joint theoretical and computational approach to examining the different characteristics of
different fractional Laplacians and solutions of related fractional Poisson equations formulated on bounded domains. This
included the spectral and horizon-based nonlocal definitions of the fractional Laplacian as well as various formulations of
the Riesz fractional Laplacian. We made numerical comparisons using different methods and high levels of refinement in
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Riesz Definition
on
Bounded Domains

Zero Dirichlet

AFEM [71], Sec. 3.1.1
RBF Collocation, Sec. 3.3.1
Walk on Spheres [22], Sec. 3.1.2

Nonzero Dirichlet

RBF Collocation, Sec. 3.3.1
Walk on Spheres [22], Sec. 3.1.2

Fig. 30. Numerical methods that are focused on or developed in this work for solving equations involving the Riesz fractional Laplacian. This is by no means
an exhaustive list of all possible methods for the Riesz fractional Laplacian.

order to compare solutions to both one- and two-dimensional benchmark problems formulated with different fractional
Laplacians. We surveyed relevant numerical methods for performing these computations and detailed the implementation
of the methods used in this work, and a new radial basis function collocation method was presented. We discussed relative
advantages of the computational approaches we implemented and identified directions for future development. We also
outlined the theoretical derivation of each fractional Laplacian definition in RY and contrasted the different approaches to
restricting these definitions to bounded domains. Connections were made between fractional Laplacians with different types
of boundary conditions with their associated stochastic processes. We surveyed relevant regularity results for the fractional
Poisson problems, and discussed the well-posedness of the considered equations.

The nonlocality of the fractional Poisson problems presented significant computational challenges even when posed with
zero Dirichlet boundary conditions, and nonzero boundary conditions further compounded these difficulties. We discussed
recently-proposed approaches for approximating the inhomogeneous fractional Laplacians [18,19] and compared these ap-
proaches to nonharmonic lifting of the equation to a homogeneous reformulation. We found that all considered methods
resulted in equivalent solutions to the inhomogeneous benchmark problems, and we proved this equivalence analytically for
the first time.

The numerical methods used in this work are not representative of the breadth of research on this topic, and the types
of methods considered reflect the desire of the authors to maintain a focus on fundamental questions (such as nonzero
boundary conditions) related to the fractional Laplacian rather than a comprehensive survey of numerical methods. (See
Figs. 29, 30.) For example, finite-difference approaches to fractional Laplacians and fractional diffusion, such as [114,115,67,
52], have not been discussed at length despite being of classical importance and an area of active development. However, the
discussion of the varied types of methods implemented and developed for this work, which we believe to be state-of-the
art at the time of this writing, has significant value for aiding researchers simulating fractional models in choosing an
appropriate numerical method.

Using these numerical methods, we were able to make several interesting observations. We found that the size of the
domain has a significant effect on the evolution of the numerical solutions as the fractional order o was changed, as
discussed in Section 1. We also emphasized the singular behavior of the Riesz fractional Poisson equation solutions near the
boundary, which sharply contrasted with the smooth behavior of the spectral solutions in the same locations. We observed
in our examples that given a source function f with no boundary singularity, we can expect that the solution to the Riesz
fractional Poisson equation will have a boundary singularity, and the solution to the spectral fractional Poisson equation will
be smooth at the boundaries. This observation should be considered when choosing which definition to use to fit data most
appropriately. The analytical perspective on this boundary regularity issue was discussed in detail in Sections 2 and 3.2.2.

Although the study of the fractional Laplacian is far from complete, this work can serve as a starting point for researchers
using these operators to model systems exhibiting anomalous transport phenomena.
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Appendix A. Sobolev spaces and the trace theorem

In this appendix, we assemble the commonly-used Sobolev spaces for the fractional Laplacian. These spaces are discussed
in [73,64], but we have more closely followed the exposition and notation of [18].

Definition A.1 ([18]). For 0 < s < 1, we define the fractional Sobolev space

B 2
HY Q) = uel?(Q): //'”(X) U 4y < 0oL
|X y|n+23

with the semi-norm and norm

s u(x) —u(y)?
lulys () '—f mdmy,
Q Q

) ) 1/2
lullisc = (1412 gy + 1uliscey )
Definition A.2 ([116]). For any u € C*°(£2), define the trace operator y| 20 b
Y]aqu®) =u®, xeiQ.

Theorem A.1. Trace Theorem [116]. Let 2 be a bounded, simply connected Lipschitz domain and 1/2 < s < 3/2. Then the
trace operator V!ag is a bounded linear operator from H*(2) to HS—% (0Q).

This range for s, 1/2 <s < 3/2, is sufficient for the discussion of traces in this article. Now we can define the subspace
H3(2) of HS(Q).

Definition A.3. For s > 1/2,
H{(Q) := {u e H¥(Q) : y|,qu(x) =0}.

1/2

In the case s =1/2, we must define another fractional Sobolev space, denoted H ;" (£2).

Definition A.4 ([18]).

2
HI2 @) = Ju e HV2 (@) : / U™y

dist(x, 092)
Q
The associated norm is defined
X 1/2
2 u“(x)
l[ull HIZ @) T lullg/2 g + distx, 09)
Q

We define the space H(2), which is used to characterize the regularity properties of the spectral fractional Laplacian.

Definition A.5 ([18]). For any s > 0,

o0 o0
HY(Q) := {u =) g € LP(Q) : |ullfys () = Y Muf <00
k=1 k=1
where (A, ¢) are the eigenpairs of the integer Laplacian —A on  with zero Dirichlet boundary conditions.

As noted in Ref. [18], the following relationship exists between the fractional Sobolev spaces presented in Definitions A.1,
A3, A4, and A5
H*(Q) =Hy(R) if0<s<1/2,
HE () = { Hg)’ () ifs=1/2,
H} () if1/2<s<1.
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Definition A.6. The space H—5(L2), for s > 0, is defined to be the dual space of H ().

Definition A.7. H} () = {u € H*(K) for all compact sets K Q.
Appendix B. Grids

Here (Figs. 31-33), we include the meshes used for the two-dimensional numerical comparisons of Section 4.

RBF collocating points for square

1 1
0.5 0.5
0 0
0.5 0.5
-1 -1
-1 -0.5 0 0.5 1 1 -0.5 0 0.5 1

(a) 1600 RBF collocation points with shape parameter 0.3 used for RBF collocation method (left) and mesh used for SEM
method (right).
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(b) Adaptively refined meshes for finite element solution to Riesz fractional Poisson equation corresponding to the constant
source term f =1 for o = 0.5 (left) and for a = 1.5 (right).

1.04 1.04
0.5 0.5
04 04
-0.5 1 -0.5
-1.04 -1.04
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(c) Adaptively refined meshes for finite element solution to Riesz fractional Poisson equation corresponding to the source term
f =sin(nz) sin(ny) for o = 0.5 (left) and for o = 1.5 (right).

Fig. 31. Comparisons on the square: Meshes and collocation points used for each numerical method in computing the solutions of the directional (top left),
spectral (top right), and Riesz (center and bottom) fractional Poisson equations.
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RBF collocating points for unit disc

0.5

0.5

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

(a) Comparison on the unit disk: distribution of 1965 RBF collocation points with shape parameter 0.3 used to compute the

solution to the directional fractional Poisson equation (left) and mesh for SEM used to compute the solution to the spectral
fractional Poisson equation (right).
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(b) Adaptively refined meshes for finite element solution to Riesz fractional Poisson equation corresponding to the constant
source term f =1 for o = 0.5 (left) and for a = 1.5 (right).
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(c) Adaptively refined meshes for finite element solution to Riesz fractional Poisson equation corresponding to the source term
f =sin(nz) sin(my) for o = 0.5 (left) and for a = 1.5 (right).

Fig. 32. Comparisons on the disk: Meshes and collocation points used for each numerical method in computing the solutions of the directional (top left),
spectral (top right), and Riesz (center and bottom) fractional Poisson equations.
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ad

RBF collocating points for L-shap

0.5+

05r

B 05 0 05 i
X - 0.5 0 05 1
(a) Distribution of 1976 RBF collocating points using shape parameter 0.2 for the RBF collocation, which is used to compute
the solution to the directional fractional Poisson equation (left), and the mesh used in the SEM to compute the solution to
the spectral fractional Poisson equation for both o = 0.5 and 1.5 (right). The same points and mesh are used regardless of

the definition of the source function f.
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(b) Adaptively refined meshes for finite element solution to Riesz fractional Poisson equation corresponding to the constant
source term f =1 for « = 0.5 (left) and for o = 1.5 (right).
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(c) Adaptively refined meshes for finite element solution to Riesz fractional Poisson equation corresponding to the source term
f = sin(wz) sin(wy) for a« = 0.5 (left) and for o = 1.5 (right).

Fig. 33. Comparisons on the L-shaped domain: Meshes and collocation points used for each numerical method in computing the solutions of the directional
(top left), spectral (top right), and Riesz (center and bottom) fractional Poisson equations.
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Appendix C. Additional disk comparisons (Figs. 34 and 35)

(a) Solutions u associated with f = sin(7r?) and a = 0.5 in the disk domain using the spectral definition (using SEM) (left)
and the Riesz definition (using AFEM) (center), and the difference between uries> and uspectrar for this case (right).
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(b) Solutions u associated with f = sin(77?) and o = 1.5 in the disk domain using the spectral definition (using SEM) (left)
and the Riesz definition (using AFEM) (center), and the difference between uries> and Uspectrar for this case (right).

Fig. 34. Solutions and differences between ujes; and Ugpecerqr 0N the disk domain for o = 1.5.

Directional Definition (RBF, Max = 0.416) Spectral Definition (SEM, Max = 0.369)
0.6 0.6
0.4
0.2
0
1
1
Riesz Definition (AFEM, Max = 0.418) Riesz Definition (WOS, Max = 0.418)
0.6 0.6

4 A4

Fig. 35. Unit disk, f =1, and g(x) = 0: Comparison, for a = 1.5, of Ugjes; and Uspectral, Using three methods to compute the Riesz solution and one method
to compute the spectral solution. Top left: The Riesz solution obtained using the RBF collocation method based on the directional representation. Top right:
The spectral solution obtained using the SEM. Bottom left: The Riesz solution obtained using the AFEM. Bottom right: The Riesz solution obtained using the
WOS method. The only solution with a significant difference is the spectral solution (top right); all other solutions are equivalent up to numerical error.
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Appendix D. Additional L-shape comparisons (Figs. 36 and 37)

Directional Definition (RBF, Max = 0.293) Spectral Definition (SEM, Max = 0.25)

0.4 0.4

0.2 0.2

Riesz Definition (AFEM, Max = 0.299) Riesz Definition (WOS, Max = 0.299)

0.4 0.4

0.2

11

Fig. 36. L-shaped domain, f(x) =1, and g(x) = 0: Comparison, for o = 1.5, of URjes; and Uspectral, Using three methods to compute the Riesz solution and
one method to compute the spectral solution. Top left: The Riesz solution obtained using the RBF collocation method based on the directional representation.
Top right: The spectral solution obtained using the SEM. Bottom left: The Riesz solution obtained using the AFEM. Bottom right: The Riesz solution obtained
using the WOS method. The only solution with a significant difference is the spectral solution (top right); all other solutions are equivalent up to numerical
error.

Directional Definition (RBF, Max = 0.293) Spectral Definition (SEM, Max = 0.25)
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Riesz Definition (AFEM, Max = 0.299) Riesz Definition (WOS, Max = 0.299)
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Fig. 37. The same as Fig. 36, but with a view facing the outside corner.
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