
Multi-user Multi-channel Computation
Offloading and Resource Allocation for

Mobile Edge Computing
Samrat Nath∗, Yaze Li∗, Jingxian Wu∗, and Pingzhi Fan†

∗Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
†Institute of Mobile Communications, Southwest Jiaotong University, Chengdu 611756, P. R. China

Email: ∗{snath, yazeli, wuj}@uark.edu, †pzfan@home.swjtu.edu.cn

Abstract—We study the problem of computation offloading
and resource allocation in multi-user multi-channel mobile edge
computing (MEC) systems. Each user equipment (UE) in the
system has a computation-intensive and time-sensitive task that
needs to be executed either locally or remotely in an MEC server.
All UE tasks have individual deadline constraints that are treated
as soft constraints. The MEC server has limited computational re-
sources, which impose hard constraints on the overall offloading
computation capacity. The objective is to minimize a cost function
that is expressed as a weighted sum of energy consumption,
delay, and deadline penalty of all UEs. The optimum design is
performed with respect to three decision parameters: whether
to offload a given task, which wireless channel to use during
offloading, and how much MEC resources should be allocated
for an offloaded task. We apply a Deep Reinforcement Learning
approach known as Deep Deterministic Policy Gradient to solve
the problem. Simulation results demonstrate that the proposed
algorithm outperforms other existing schemes such as Deep Q-
Network (DQN).

Index Terms—mobile edge computing, computation offloading,
resource allocation, deep reinforcement learning

I. INTRODUCTION

With the ever-growing popularity of smart mobile devices
in the emerging 5G era, new mobile applications such as
natural language processing, face recognition, online interac-
tive gaming, and augmented or virtual reality are generating
great attention [1]. This kind of mobile applications typically
require intensive computation and high energy consumption.
However, due to the physical size constraint, mobile user
equipment (UE) has limited battery life and computational
capacity. Therefore, it is difficult for mobile UEs to meet
the requirements of these mobile applications. In order to
bridge the gap between the limited resources on UEs and
the ever-increasing computational demands required by mobile
applications, the technology of mobile edge computing (MEC)
[2] has been proposed as a promising solution.

MEC is a new paradigm in cloud radio access network
(C-RAN). Instead of using the remote public clouds such as
Amazon Web Services and Microsoft Azure, MEC enhances
the computational capability at the edge of mobile networks by
deploying densely distributed high-performance servers close
to mobile users [2]. It enables UEs to offload computational

The work was supported in part by the U.S. National Science Foundation
(NSF) under Award Number ECCS-1711087.

tasks to the MEC server associated with a base station (BS)
through wireless channels. Through computation offloading,
UEs can considerably reduce the latency and energy con-
sumption and thus improve the Quality of Experience (QoE)
of mobile applications. Therefore, the topic of computation
offloading in MEC system has been attracting a lot of interests
among researchers [3].

Computation offloading largely depends on the efficiency
of wireless data transmission, which requires MEC systems
to manage radio resources and computational resources and
to efficiently perform computation tasks. Different strategies
of MEC computation offloading and resource allocation for
different design objectives have been widely investigated in the
literature [4]–[10]. In general, the approaches for computation
offloading in MEC can be categorized into two groups, namely,
binary computation offloading [4]–[8] and partial computation
offloading [9], [10]. Specifically, binary computation offload-
ing means that a UE can either execute its computational task
locally using its own central processing unit (CPU) or it can
offload that task completely to the MEC server. In [4], the joint
optimization problem of the binary computation offloading,
resource allocation, and content caching strategy is formulated
and solved by applying the alternating direction method of
multipliers (ADMM). In partial computation offloading, the
UE can offload parts of the task and execute the rest of it
locally, which offers more flexibility than its binary coun-
terparts. The latency-minimization problem for a multi-user
MEC system is investigated in [10] by exploiting users’ partial
computation offloading and jointly optimizing the allocations
of the computation and communication resources.

All the above-mentioned works intend to solve the compli-
cated joint computation offloading and resource allocation as
optimization problems, which are in general non-convex and
challenging. Recently, with the explosive growth in the deep
neural networks (DNNs), researchers have started exploiting
DNNs, specifically Deep Reinforcement Learning (DRL) to
solve these problems [7]–[9], [11]. The works in [7], [8],
[11] adopts the Deep Q-Network (DQN) method [12], while
Deep Deterministic Policy Gradient (DDPG) algorithm [13] is
utilized in [9].

To this end, we focus on the design of a DRL-based scheme
for the problem of computation offloading and resource al-

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Arkansas. Downloaded on August 03,2020 at 18:11:44 UTC from IEEE Xplore. Restrictions apply.

location in MEC by addressing three key questions: 1) how
should a BS decide between local execution and offloading
computation for a particular UE? 2) if offloading computation
is decided for a UE, how can the BS choose a proper
channel for that UE in order to obtain high wireless access
efficiency given the possible co-channel interference among
UEs sharing the same offloading channel? and 3) how much
computational resources should the MEC server allocate to
the offloading UEs? It is assumed that the offloading decision,
channel allocation, and computational resource allocation are
determined centrally by the BS, and then the results are sent
to the UE. Our objective is to develop a DRL-based solution
for efficient computation offloading and resource allocation
in a multi-user multi-channel MEC system. We assume that
the MEC server has a limited computation resource capacity.
Specifically, the problem is formulated as a joint optimization
of energy consumption and delay in task computation along
with the consideration of individual deadline for each task.
The problem is solved by employing the DDPG framework,
which can deal with the continuous space of optimization
variables. Simulation results show that the proposed DDPG-
based solution outperforms other existing schemes such as
DQN, which requires the discretization of the continuous
optimization variables.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network and Communication Model

A small-cell wireless network with one BS and N UEs
is considered. The BS is equipped with an MEC server. Let
N = {1, 2, · · · , N} denote the set of UEs. There are M
(M < N) wireless access channels and the set of channels
is denoted as M = {1, 2, · · · ,M}. We assume that each
UE has a computation-intensive and time-sensitive task to be
completed. Each UE could execute the task locally or offload
the task to the MEC server through any of the M wireless
channels. The capacity of the MEC server is limited and may
not be sufficient for all UEs to offload tasks.

We denote xn ∈ {0} ∪ M as the computation offloading
decision variable of UE n. Specifically, if xn ∈ M, then
UE n chooses to offload the computation to the MEC server
via the wireless channel xn; if xn = 0, then UE n chooses
to execute its task locally. Given the computation offloading
decision vector x = (x1, x2, · · · , xN) of all UEs, we can
determine the uplink data rate of UE n that decides to offload
the computation to the MEC server via a wireless channel
xn ∈ M as [14]

rn(x) = W log2

[
1 +

Pnhn

σ2
0 +

∑
i∈N\{n}:xi=xn

Pihi

]
, (1)

where W is the channel bandwidth, Pn is the transmission
power of UE n for uploading data, hn is the channel gain
between UE n and the BS, and σ2

0 is the background noise
power. According to the wireless interference model for urban
cellular radio environment [14], we set the channel gain
hn = l−β

n , where ln is the distance between UE n and the

BS, and β is the path loss exponent. From the communication
model in (1), it can be observed that when too many UEs
decide to offload computation via the same wireless channel
simultaneously, they may incur severe interference, which will
yield low data rates. This can negatively affect the performance
of MEC computing.

Similar to many previous research works in mobile cloud
computing and mobile networking [5], [7], [8], we consider a
quasi-static scenario where the set of UEs N and the channel
conditions remain fixed throughout a computation offloading
period (e.g., several hundred milliseconds), while they may
change across different periods.

B. Task Computation Model

We consider that each UE n has a computation-intensive
and time-sensitive task Zn � (bn, dn, τn), where bn denotes
the size of computation input data (e.g. program codes and
input parameters) needed for computing the task, dn denotes
the total number of CPU cycles required to accomplish the
computation task, and τn denotes the maximum tolerable delay
of task Zn. The CPU cycle dn is positively related to the task
size bn. All three parameters may differ between different UEs
due to different kinds of applications and features.

1) Local Computation: For the local computing approach,
UE n executes its computation task Zn locally using its CPU.
Let f l

n be the computation capability (i.e., CPU cycles per
second) of UE n. Computational capabilities may differ among
different UEs. The computation execution time of the task Zn

by local computing can then be expressed as

T l
n =

dn
f l
n

. (2)

The corresponding energy consumption of task Zn is

El
n = ζndn, (3)

where ζn is the coefficient representing the energy consump-
tion per CPU cycle. We set ζn = 10−27(f l

n)
2 according to the

measurement results reported in [15].
2) Offloading Computation: For the offloading computing

approach, UE n will offload its computation task Zn to the
MEC server via a wireless channel and the MEC server
will execute the computation task on behalf of the UE. This
approach will be divided into three steps. First, UE n uploads
input data (i.e., program codes and parameters) of size bn to
the BS through wireless access network and BS forwards data
to the MEC server. Then the MEC server allocates part of its
computational resource to execute the task Zn, and finally the
MEC server returns the execution output data to UE n.

In the first step, the transmission delay of UE n for
offloading the input data of size bn can be computed as

T o
n,t(x) =

bn
rn(x)

, (4)

where rn(x) stands for the uplink data rate of UE n, and it
depends on the computation offloading decision vector x as
shown in the communication model (1).

Authorized licensed use limited to: University of Arkansas. Downloaded on August 03,2020 at 18:11:44 UTC from IEEE Xplore. Restrictions apply.

The corresponding energy consumption of the first step is

Eo
n,t(x) = PnT

o
n,t(x) =

Pnbn
rn(x)

. (5)

In the second step of executing the computation task Zn,
the MEC server will incur processing delay, which can be
expressed as

T o
n,p =

dn
fn

, (6)

where fn denotes the computational resource (i.e., CPU cycles
per second) allocated to UE n by the MEC server.

Denote f = (f1, f2, · · · , fN) as the MEC computational
resource allocation vector for all the UEs, and F as the total
resource of the MEC server. Therefore, the total amount of
allocated resources can not exceed the entire computational
resource of the MEC server, i.e.,∑N

i=1
1(xi �= 0)fi ≤ F, (7)

where 1(κ) is the indicator function with 1(κ) = 1 if the event
κ is true and 0 otherwise.

During the computation at the MEC server, the UE n is
assumed to be idle and the corresponding energy consumption
is defined as

Eo
n,p = P i

nT
o
n,p =

P i
ndn
fn

, (8)

where P i
n denotes the power consumption by UE n during the

idle state.
In the final step, UE n downloads the output data from

the MEC server. Similar to many studies such as [5]–[7], we
neglect the delay and energy consumption during this step.
This is because the size of the computation output data is
much smaller than the size of computation input data for
many applications and the download data rate is also very
high generally.

The total execution delay of UE n for task Zn in the offload-
ing computation approach can be computed by combining the
transmission delay (4) and processing delay (6) as

T o
n(x,f) =

bn
rn(x)

+
dn
fn

. (9)

Similarly, the energy consumption of UE n is computed by
combining the energy consumption during transmission (5)
and idle state (8) as

Eo
n(x,f) =

Pnbn
rn(x)

+
P i
ndn
fn

. (10)

C. Problem Formulation

Given the computation offloading decision vector x =
(x1, x2, · · · , xN) and the MEC computational resource al-
location vector f = (f1, f2, · · · , fN), the delay and energy
consumption for UE n can be expressed respectively as

Tn(x,f) = 1(xn = 0)T l
n + 1(xn �= 0)T o

n(x,f), (11)

En(x,f) = 1(xn = 0)El
n + 1(xn �= 0)Eo

n(x,f). (12)

The objective of this paper is to minimize the weighted sum
cost of delay and energy consumption of all UEs in the MEC
system, which is defined as

C(x,f) =
∑N

n=1
En(x,f) +

∑N

n=1
ωnTn(x,f), (13)

where ωn denotes the weight parameter for the delay experi-
enced by UE n. Different UEs may have different requirements
for delay depending on the task. For UEs dealing with time-
sensitive tasks, ωn can be set to large values to prioritize faster
execution.

The optimization problem is formulated as follows

(P1) min
x,f

C(x,f)

s.t. (C1) xn ∈ {0} ∪M, ∀n ∈ N
(C2) 0 ≤ fn ≤ F, ∀n ∈ N
(C3)

∑N

i=1
1(ai �= 0)fi ≤ F

(C4) Tn(x,f) ≤ τn ∀n ∈ N
The resource capacity constraint (C3) is regarded as a hard

constraint. However, it may be possible that there is no feasible
set of decision variables which satisfy both the constraints (C3)
and (C4) simultaneously. So, the deadline constraint is treated
as a soft constraint for solution feasibility. We introduce a
penalty term for the deadline constraint such that

Cτ (x,f) =
∑

n∈N max [Tn(x,f)− τn, 0] . (14)

Then, the problem formulation is redefined as

(P2) min
x,f

J(x,f) = C(x,f) + ωτCτ (x,f)

s.t. (C1), (C2), and (C3)

where ωτ is weight for deadline penalty.
Problem (P2) can be solved by finding optimal values

of the computation offloading decision vector x and the
MEC computational resource allocation vector f . However,
the feasible set and objective function of problem (P2) is
not convex. Moreover, the size of problem (P2) increases
exponentially with the increasing number of UEs. Instead of
applying conventional optimization methods to solve the NP-
hard problem (P2), we propose a DRL-based method to find
the optimal x and f .

III. DRL-BASED SOLUTION FOR COMPUTATION

OFFLOADING AND RESOURCE ALLOCATION

Since DRL is considered as an advanced Reinforcement
Learning (RL) method implemented with DNNs, we first
review RL briefly and then present the proposed DRL-based
solution.

A. RL Framework

Generally, the RL framework is well-suited for providing
solutions to complicated decision-making processes [16]. The
framework consists of three key elements, state, action, and
reward. An RL agent interacts with its environment in discrete
time steps. At each time t, the agent’s behavior is defined by

Authorized licensed use limited to: University of Arkansas. Downloaded on August 03,2020 at 18:11:44 UTC from IEEE Xplore. Restrictions apply.

a policy μ, which maps states to actions μ : st → at. After
the RL agent selects an action at according to the policy μ,
the environment then returns a scalar reward rt and makes
a transition from state st to st+1. The RL algorithm aims at
learning an optimal policy in order to maximize the expected
long-term accumulative reward.

To interpret problem (P2) in the RL framework, we define
the key elements according to the system model as follows:

1) State: The system state at an arbitrary time index t is
defined as

st � {x(t),f(t)} (15)

= {x1(t), x2(t), · · · , xN (t), f1(t), f2(t), · · · , fN (t)}.
In particular, the dimension of system state vector is 2N ,
which includes the optimization variables i.e., the computation
offloading decisions xn(t) ∈ {0}∪M and resource allocation
fn(t) ∈ [0, F] for all UEs.

2) Action: We use the action to describe how we move
between two consecutive system states. Specifically, we denote
x′
n(t) = xn(t + 1) ∈ {0} ∪ M as the new computation

offloading decision for UE n and Δfn(t) = fn(t+1)− fn(t)
as the change in the allocated computational resource by the
MEC server for UE n. The system action is then defined as

at � {x′
1(t), · · · , x′

N (t),Δf1(t), · · · ,ΔfN(t)}. (16)

Let N o
t denote the set of UEs who decide to offloading their

computation to the MEC server at time t+1, i.e., N o
t = {n :

x′
n(t) �= 0}. |N o

t | denotes the total number of offloading UEs
at time t + 1. In order to satisfy the constraint (7) regarding
the computational resource capacity in the MEC server, the
support for the variable Δfn(t) ∀ n ∈ N is defined such that

Δfn(t) ∈
{ {−fn(t)}, if x′

n(t) = 0,
(−fn(t),Kt(F − fn(t))], otherwise,

(17)

where Kt =
F−∑

n∈No
t
fn(t)

|N t
o |F−∑

n∈No
t
fn(t)

.

3) Reward: Given a particular state st and an action at,
we can determine the transition of state from st to st+1.
Moreover, at an arbitrary time index t, the objective function
in (P2) can be expressed as a function of the state variable.

J(st) = J{x(t),f(t)} (18)

Based on J(st) and J(st+1), we define the reward of the
state-action pair (st,at) as

rt � J(st)− J(st+1). (19)

B. DRL-based Solution

The well-known Q-learning algorithm [16] provides a viable
way to solve the RL problem. Specifically, the algorithm
solves the Q function; a function of the state-action pair which
quantifies the long-term accumulative reward. The Q function
is given by

Q(st,at) ← Q(st,at) (20)

+ α

[
rt + γmax

at+1

Q(st+1,at+1)−Q(st,at)

]
,

where α is the learning rate, and γ is the discount factor. We
consider γ = 1 in this paper.

The complexity in solving (20) grows exponentially as the
sizes of the state space and action space increase. A promising
approach to address this issue is to approximate the Q function
with a finite number of parameters. DQN [12] proves to be an
efficient solution methodology, which exploits the architecture
of DNN in order to approximate the Q function and thus to
facilitate solving (20).

Even though DQN can successfully solve problems in high-
dimensional state spaces, it can handle only discrete and
low-dimensional action spaces. For problems with continuous
action space, the action space has to be discretized first
before applying DQN. This will result in loss of precision
and increase in complexity.

We propose to address this problem by applying DDPG
[13], which can be applied to problems with continuous action
space and state space. In DDPG, an actor-critic approach is
adopted by using two separate DNNs, where the actor network
μ(s|θμ) approximates the policy function μ, and the critic
network approximates the Q function Q(s,a|θQ), where θμ

and θQ are the neural network weights of the actor and
critic networks, respectively. Details of the proposed solution
is described in Algorithm 1, where mod() is the remainder
operation and τ denotes the weight update rates for target actor
network μ′(s|θμ′

) and target critic network Q′(s,a|θQ′
).

Compared to the vanilla DDPG algorithm [13], we pro-
pose modifications at the start of every training episode in
Algorithm 1. In order to facilitate faster convergence, we
set the initial state at the beginning of every 100 episodes
as the best state from all the previously observed states. A
similar approach with DQN is applied in [8]. In our design of
the DNN architecture for both the actor and critic networks,
two hidden layers are considered. The dimensions of the
first and second hidden layers are 4N and 3N , respectively.
Adaptive parameter noise approach [17] in the actor network
is employed for action exploration, while adaptive moment
estimation (Adam) method [18] is adopted for learning the
neural network parameters.

IV. SIMULATION RESULTS

Simulation results are presented in this section to demon-
strate the performance of the proposed algorithm obtained
through DDPG. In the simulations, we consider a wireless
small cell BS with a coverage radius of 50m. There are N =
5 UEs randomly scattered over the coverage region. The BS
consists of M = 2 channels and the channel bandwidth is W
= 5 MHz. The UE’s transmission power and idle power are set
to be Pn = 500 mW and P i

n = 100 mW [19]. The background
noise power is set as σ2

0 = 10−9 W [9] and β = 3 is the path
loss exponent.

For the computation task, we assume the data size of
the computation offloading bn (in kbits) is uniformly dis-
tributed between [400, 600], the number of CPU cycles dn
(in Megacycles) is uniformly distributed between [900, 1100],
and the maximum tolerable delay τn (in seconds) is uniformly

Authorized licensed use limited to: University of Arkansas. Downloaded on August 03,2020 at 18:11:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Proposed Solution using DDPG
Input: System environment parameters, experience replay
buffer size |R|, mini-batch size B, soft update rate for target
networks τ , number of training episodes Kmax, number of
time steps in each episode Tmax.

1: Initialization: Randomly initialize actor network μ(s|θμ)
and critic network Q(s,a|θQ) with weights θμ and θQ,
respectively.

2: Initialize associated target networks μ′ and Q′ with
weights θμ

′ ← θμ, θQ
′ ← θQ.

3: Initialize the experience replay buffer R.
4: Initialize Jmin to a very large value.
5: for each episode k = 1, 2, · · · ,Kmax do
6: Randomly generate an initial state s1
7: if mod(k,100) = 0 then
8: Change initial state to current best result: s1 ← s∗

9: end if
10: for each episode t = 1, 2, · · · , Tmax do
11: Determine the computation offloading decision and

resource allocation vector by selecting an action at =
μ(st|θμ)+Δμ using the current policy θμ and generating
exploration noise Δμ.

12: Execute action at and observe the new state st+1

and reward rt = J(st) − J(st+1) from the simulation
environment.

13: if J(st+1) < Jmin then
14: Update the result for best state observed so far
15: s∗ ← st+1 and Jmin ← J(st+1)
16: end if
17: Save the transition (st,at, rt, st+1) into the the

replay buffer R.
18: Randomly sample a mini-batch of B transitions

{(si,ai, ri, si+1)}Bi=1 from R.
19: Update the critic network Q(s,a|θQ) by minimiz-

ing the loss LB obtained from the samples:

LB =
1

B

B∑
i=1

[
ri +Q′(si+1, μ

′(si+1|θμ′
)|θQ′)

−Q(si,ai|θQ)
]2

(21)

20: Update the actor network μ(s,a|θQ) by using the
sampled policy gradient:

1

B

B∑
i=1

ΔaQ(si,a|θQ) |a=ai Δθμμ(si|θμ) (22)

21: Update the target networks:

θμ
′ ← τθμ + (1− τ)θμ

′
and θQ

′ ← τθQ + (1− τ)θQ
′

22: end for
23: end for
Output: Decision variable s∗ and total system cost Jmin.

Fig. 1. Overall system cost v.s. the capacity of MEC server.

distributed between [0.5, 1.5]. The computation capacity of the
MEC server is F = 5 GHz and the CPU frequency of each
UE is f l

n = 0.5 GHz. The delay weight parameters are ωn = 1
for all UE n and the deadline penalty weight is ωτ = 10.

For learning the neural network parameters, the learning
rates for the actor and critic networks are 10−4 and 10−3,
respectively, and the soft update rate for the target networks is
τ = 10−3. Moreover, the number of episodes is Kmax = 1000,
the maximum number of steps in each episode is Tmax = 100,
the experience replay buffer size is |R| = 50000, and the mini-
batch size is B = 128.

For comparing the performance of the proposed DDPG-
based solution, the baseline schemes are introduced as follows:
(1) Full Local: all UEs execute their tasks by local computing.
(2) Full Offload: all UEs offload their tasks to the MEC server
and the whole computational resource F is allocated equally
to each UE. For UE n ∈ N , the selected channel is xn =
mod (n− 1,M) + 1.
(3) DQN-based Solution: The conventional discrete action
space based DRL algorithm, DQN [12], is also implemented
as a solution approach. The discrete space for x′ is {0}∪M,
and the support space for Δf is discretized into finite L levels.
Specifically, given the state variable fn(t) for each UE n at
time index t,

Δfn(t) ∈ { − fn(t),−fn(t) + δn,t,−fn(t) + 2δn,t, · · · , 0,
δn,t, 2δn,t, · · · ,Kt(F − fn(t))},

where, δn,t =
Kt(F−fn(t))+fn(t)

L−1 .
Consequently, for N UEs, the size of the action space

becomes (M+1)N×LN . We arbitrarily set L = 5 and maintain
the same structure for hidden layers as mentioned in Section
III-B. Moreover, ε-greedy exploration method with ε = 0.01
is adopted for exploring the actions during network training.

Fig. 1 shows the overall system cost as a function of
the resource capacity of the MEC server (F) with different
optimization algorithms. The performance of the full local ap-
proach remains the same regardless of the value of F , because
the UEs do not utilize the computational resource of the MEC

Authorized licensed use limited to: University of Arkansas. Downloaded on August 03,2020 at 18:11:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overall system cost v.s. the number of UEs.

TABLE I
EFFECT OF NUMBER OF CHANNELS (M) ON SYSTEM COST WITH N = 8

M 2 3 4 5

Full Offload 55.77 46.22 40.45 29.21
Full Local 25.69 25.69 25.69 25.69

DQN 22.31 21.21 21.08 20.89
Proposed DDPG 18.12 17.74 17.49 16.63

server. All other methods show improvement in performance
with increasing values of F due to the extra resources from
MEC. The proposed DDPG-based algorithm achieves the best
result and it demonstrates at least 9.9% improvement over
its DQN-based counterpart. While increasing the number of
discrete levels L in the DQN approach may help to get better
results for DQN, but it will yield a very high-dimensional
action space and thus a much slower convergence than DDPG.

Fig. 2 demonstrates the impacts of the number of UEs (N)
on the overall cost of the MEC system. As expected, the
overall system cost becomes larger as N increases. While the
performance of all the other methods are relatively stable with
respect to N , the cost in full offload approach increases much
more rapidly with the increase in N . This is because when
the number of UEs becomes large, the resource capacity of
the MEC server F is not sufficient to support all UEs for
offloading computation. The proposed DDPG-based algorithm
performs the best, and it achieves at least 10.5% performance
improvement compared to the DQN-based solution.

Table I shows the effects of the number of channels (M)
on system cost. As M increases, the possibility of interference
among the UEs decreases, which results in better uplink data
rates and thus lower system cost. Again the proposed DDPG-
based algorithm achieves the best performance compared to all
other algorithms, and it achieves at least 14.2% performance
improvement compared to the DQN-based solution.

V. CONCLUSION

We have studied the problem of computation offloading and
resource allocation in multi-user multi-channel MEC systems,
where multiple UEs have computation-intensive and time-
sensitive tasks that need to be executed either locally or

remotely in an MEC server. All the UE tasks have individ-
ual deadline constraints and the MEC server has a limited
computational resource capacity. The problem is formulated as
the joint optimization of total energy consumption, delay, and
deadline penalty of all the UEs. DDPG is applied to solve the
problem and simulation results have shown that the proposed
algorithm outperforms other existing schemes such as DQN.

REFERENCES

[1] W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a unified elastic computing
platform for smartphones with cloud support,” IEEE Network, vol. 27,
no. 5, pp. 34–40, Sep. 2013.

[2] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the internet of
things,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91,
Oct. 2016.

[3] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, Aug.
2017.

[4] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[5] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[6] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge
computing in 5g heterogeneous networks,” IEEE Access, vol. 4, pp.
5896–5907, 2016.

[7] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for mec,” in Wire-
less Communications and Networking Conference (WCNC), Barcelona,
Spain, Apr. 2018, pp. 1–6.

[8] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digital Communications and Networks,
vol. 5, no. 1, pp. 10–17, Feb. 2019.

[9] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: A deep reinforcement learning approach,”
arXiv preprint arXiv:1812.07394, 2018.

[10] J. Ren, G. Yu, Y. Cai, and Y. He, “Latency optimization for resource
allocation in mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 5506–5519, Aug. 2018.

[11] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, 2019.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] T. S. Rappaport et al., Wireless communications: principles and practice.
New Jersey, USA: Prentice Hall PTR, 1996, vol. 2.

[15] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,”
in Proc. IEEE Conference on Computer Communications (INFOCOM),
Orlando, FL, USA, Mar. 2012, pp. 2716–2720.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA, USA: MIT press, 2018.

[17] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen,
T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise for
exploration,” in International Conference on Learning Representations,
Vancouver, Canada, Apr. 2018.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] Y. Cao, T. Jiang, and C. Wang, “Optimal radio resource allocation for
mobile task offloading in cellular networks,” IEEE Network, vol. 28,
no. 5, pp. 68–73, Sep. 2014.

Authorized licensed use limited to: University of Arkansas. Downloaded on August 03,2020 at 18:11:44 UTC from IEEE Xplore. Restrictions apply.

