

A new framework to incorporate high-latitude input for meso-scale electrodynamics in HIME

D. S. Ozturk¹, X. Meng¹, O. P. Verkhoglyadova¹, R. H. Varney², A. S. Reimer², J. L. Semeter³

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

²Center for Geospace Studies, SRI International, Menlo Park, CA, USA

³Center for Space Physics, Boston University, Boston, MA, USA

Key Points:

- For the first time local, dynamic, 2D electric field estimates are merged with a global empirical model.
- Local meso-scale electric field variability is successfully communicated to GITM.
- The energy deposited locally in HIME-driven simulations are higher compared to Weimer-driven simulations.

Copyright 2019. All rights reserved.

15 **Abstract**

16 Global Circulation Models (GCMs) for the ionosphere-thermosphere system (I-T) tra-
 17 ditionally use empirical models to specify upper boundary conditions to represent so-
 18 lar wind and magnetospheric drivers. However, the magnetosphere, ionosphere and ther-
 19 mosphere systems are coupled on different spatial and temporal scalesDuring increased
 20 levels of geomagnetic activity, these empirical models can't resolve dynamic electric field
 21 variability (<500 km, <15 minutes) because of their statistical nature and/or low spa-
 22 tial and temporal resolutions. This results in an underestimation of energy input to the
 23 ionosphere, causing disagreements between model results and observationsThis paper
 24 introduces a new framework to incorporate dynamic electric fields into GCMs: High-latitude
 25 Input for Meso-scale Electrodynamics (HIME). As a demonstration HIME uses the Poker
 26 Flat Incoherent Scatter Radar (PFISR) electric field estimates during an experiment on
 27 2 March 2017. The electric potentials were calculated using the PFISR estimates and
 28 merged with a global empirical model of electric potential. A set of high-latitude elec-
 29 tric potential drivers were used to drive the University of Michigan Global Ionosphere
 30 Thermosphere Model (GITM) to understand the effects of driving at different scales. Data
 31 vs model comparisons for ion temperature, electron temperature, and electron density
 32 are provided along the PFISR beams. The ion convection velocities and neutral winds
 33 at the PFISR location are compared with the PFISR and Scanning Doppler Imager (SDI)
 34 data. The effects of different multi-scale drivers are investigated. The results showed en-
 35 ergy deposited by HIME-driven simulations was locally larger by approximately an or-
 36 der of magnitude compared to the empirical model-driven results.

37 **1 Introduction**

38 Magnetospheric energy is deposited to the high-latitude ionosphere mainly through
 39 Joule heating and particle precipitation processes (Knipp et al., 2004, 2005; Turner et
 40 al., 2009; Schunk & Nagy, 2009). Especially during geomagnetic storms the amount of
 41 electromagnetic energy deposited can reach up to 10¹⁰W (Rodger et al., 2001). Such energy
 42 input significantly alters the I-T conditions by driving from above, generating acoustic-
 43 gravity waves (Williams et al., 1988; Balthazar et al., 1997), causing changes in wind patterns
 44 (Emery et al., 1999), density and temperature profiles (Mikhailov & Foster, 1997; Lei et al.,
 45 2004; Richards et al., 2010; Sydorenko et al., 2015)Therefore, it is necessary to realistically
 46 determine the characteristics of the energy input to understand I-T dynamics.

47 The dissipation of the magnetospheric energy though Joule heating can be quantified
 48 using Pedersen conductivity, electric fields, neutral winds and geomagnetic field (Schunk &
 49 Nagy, 2009). Unfortunately, as explained by Thayer (1998) the simultaneous observation of
 50 these four quantities over the entire high-latitude ionosphere is not possibleThus, the efforts
 51 to understand IT responses to magnetospheric drivers rely mostly on global circulation
 52 models (GCMs). GCMs use empirical relations to estimate the electric field potentials
 53 (Heelis et al., 1982), (Heppner & Maynard, 1987; Iijima & Potemra, 1976; Weimer, 2005),
 54 and particle precipitation (Hardy et al., 1985; Roble & Ridley, 1987; Fuller-Rowell & Evans,
 55 1992; Newell et al., 2002; Y. Zhang & Paxton, 2008; Newell et al., 2009), which result in
 56 spatially binned and statistically averaged inputs. However, as first shown by Codrescu
 57 et al. (1995) the energy deposition can be significantly underestimated when the temporal
 58 and spatial variability of the high-latitude electric fields are ignored. Richmond (2010)
 59 argued that energy dissipated through large-scale structures (>15 minutes and >1000 km)
 60 do not make a large contribution as smaller-scale structures do over a localized region.
 61 Similarly, Brekke and Kamide (1996) demonstrated that the fluctuating electric fields can
 62 dominate the Joule heating rates by affecting the ion neutral interactions at auroral electrojet
 63 locations. The temporal and spatial distributions of the electric field fluctuations at the
 64 ionosphere were studied extensively by Cousins and Shepherd (2012), using Super Dual
 65 Auroral Radar Network (SuperDARN) radars. They have demonstrated that structures
 66 with 45 to 450 km of spatial and 2 to 20 minutes of temporal resolution exhibited changes in

67 magnitude between $\pm 60 \text{ mV/m}$ in magnitude. In addition, they have discussed the effects of
 68 spatial variability on temporal fluctuations and estimated the range for temporal variability
 69 to be between 10 to 16 minutes for the nightside, high-latitude ionosphere. The small-
 70 and meso-scale fluctuations defined by such studies were not resolved by the empirical
 71 models of high-latitude electric fields, contributing to the systematic underestimation of
 72 Joule heating in GCMs (Deng & Ridley, 2007; Deng et al., 2009) In general, spatiotemporal
 73 properties of high-latitude drivers are categorized through Field-Aligned Current systems
 74 (FACs), however there is no widely accepted categorization for electric field properties.
 75 Using Space Technology 5 spacecraft data, Gjerloev et al. (2011) identified the large-scale
 76 as above 200 km for FACs. Forsyth et al. (2017) used Swarm Mission current measurements
 77 and expanded the large-scale definition as above 450 km, citing the limited capabilities of
 78 single-spacecraft techniques. They also commented that the highest correlation among the
 79 spatial and temporal properties were observed above 60 seconds for large-scale currents. In
 80 this paper, we define meso-scale electric field variability as between 100 to 500 km spatially
 81 following the definition in Q. Zhu et al. (2019), and between 2-15 minutes temporally based
 82 on the Forsyth et al. (2017) study for the lower limit, and Cousins and Shepherd (2012) for
 83 the upper limit.

84 Data assimilation models can also be used to incorporate high-latitude drivers to GCMs.
 85 A frequently used technique is the Assimilative Mapping of Ionospheric Electrodynamics
 86 (AMIE) procedure by the National Center for Atmospheric Research (NCAR) (Richmond
 87 & Kamide, 1988; Lu et al., 2001). AMIE uses a combination of spacecraft and ground-based
 88 measurements to obtain the optimal high-latitude ionospheric electric potentials, convection
 89 patterns, conductance profiles, auroral energy flux and characteristic energy self-consistently
 90 (Lu et al., 2014). However, the performance of the AMIE technique is closely related to the
 91 data coverage, quality and resolution. In addition AMIE uses an empirical auroral con-
 92 ductance model to calculate the relation between electric fields and precipitation (Richmond
 93 et al., 1998). These limitations often result in underestimation of electric field variability
 94 (Crowley & Hackert, 2001; Matsuo et al., 2003; Cosgrove et al., 2009), and consequently in
 95 lower Joule heating rates and cross-polar cap potentials (Lu et al., 2001). Verkhoglyadova
 96 et al. (2017) showed that improving driver characterization could improve energy budget
 97 calculation in GCMs.

98 Both empirical and data assimilation models ignore the neutral wind dynamics, which
 99 is another contributing factor to Joule heating. Heelis and Coley (1988) found that there
 100 was a mismatch between the peaks of measured ion temperatures and calculated Joule heat-
 101 ing rates when neutral winds were neglected. Thayer et al. (1995) and Thayer and Semeter
 102 (2004) theoretically showed that 10 to 30% of the electromagnetic energy was transferred
 103 to the neutrals as mechanical energy. In addition, neutrals were able to act as a dynamo
 104 generating electric fields. After the realization of the role of neutral winds, GCMs that
 105 incorporate neutral dynamics became an integral part of studies quantifying storm time
 106 energy input to the I-T system. Crowley et al. (2006) used NCAR's TIEGCM to study the
 107 20 November 2003 magnetic storm and reported neutral wind driven composition changes
 108 from high to mid-latitude regions both in modeled response and Global Ultraviolet Imager
 109 observations. Deng and Ridley (2006) used GITM to understand the coupling between
 110 ion convection patterns and neutral winds and validated the model results with WINDII
 111 observations. Recently, J. Zhu et al. (2016) revisited the ion and electron temperature calcu-
 112 lations in GITM, adding time-dependent energy equations, field-aligned thermal conduction,
 113 heating and cooling rates that consequently improved comparisons of GITM results to ISR
 114 measurements and the International Reference Ionosphere.

115 The magnetospheric magnetohydrodynamic models can provide global and high-resolution
 116 ionospheric electrodynamics input. In these models the ionospheric electric potentials can
 117 be calculated from the closure of FACs (Ahn et al., 1983; Goodman, 1995), whereas the
 118 auroral precipitation and conductance are obtained by using empirical and physical rela-
 119 tions (Knight, 1973; Robinson et al., 1987; Janhunen et al., 1996; Raeder et al., 1998;

120 Ridley et al., 2004; Wiltberger et al., 2009; Khazanov et al., 2017). Many studies demon-
 121 strated that the global MHD models reproduce observed transient perturbations that link
 122 magnetosphere-ionosphere systems ((Fujita et al., 2003a; Kataoka et al., 2004; X. Y. Zhang
 123 et al., 2010; Yu. & Ridley, 2011; Ozturk et al., 2018, 2019). However, the modeled transient
 124 perturbations are mostly in the Pc-5 range with spatial scales of a few Earth radii in the
 125 magnetosphere. Furthermore, these first-principles models can not fully capture the kinetic
 126 processes associated with magnetic reconnection ((Birn et al., 2001) and references therein),
 127 and wave-particle interactions in the equatorial magnetosphere (Wiltberger et al., 2005;
 128 Connor et al., 2016). Combined with the simplifications used for auroral processes MHD
 129 models often tend to mischaracterize the Region-2 FAC systems and precipitation patterns.

130 With funding from the National Science Foundation (NSF), SRI has deployed and
 131 been operating the Poker Flat Incoherent Scatter Radar (PFISR) since 2007. Line-of-sight
 132 measurements from PFISR multi-beam experiments are routinely used to construct two di-
 133 mensional plasma flow and electric fields (Heinselman & Nicolls, 2008; Nicolls et al., 2014;
 134 Clayton et al., 2019). In addition PFISR provides electron density, and electron and ion
 135 temperature profiles measured along the beams. These measurements can be used to drive,
 136 regional (Grubbs et al., 2017), or validate global, numerical models (Liuzzo et al., 2014;
 137 Ozturk et al., 2018). PFISR can also run special modes on request that sample different
 138 regions or provide different resolutions. One such mode is called "isinglass v3.0" which was
 139 designed to aid the ISINGLASS (Ionospheric Structuring: In Situ and ground-based Low
 140 Altitude Studies) mission (NASA 36.303/4, PI Kristina Lynch/Dartmouth College). ISIN-
 141 GLASS consisted of two sounding rockets launched into the auroral form to simultaneously
 142 measure the plasma flow field at different locations. Various ground-based sensors located
 143 in Alaska were also assisting the ISINGLASS measurements during the mission. These sen-
 144 sors consisted of multiple wide angle and limited field of view cameras and Fabry-Perot
 145 interferometers (Clayton et al., 2019). Using PFISR data collected during ISINGLASS, it
 146 was possible to reconstruct the F region plasma flow with a latitudinal step size of 0.25
 147 degree spatial resolution and a temporal resolution of 66 seconds. These resolutions are
 148 sufficient to resolve meso-scale structures and the measurements display significant electric
 149 field variability both spatially and temporally.

150 To investigate driving by meso-scale electric fields on the I-T system, we developed a
 151 new framework, High-latitude Input for Meso-scale Electrodynamics: HIME. With this new
 152 framework we can now account for the local meso-scale electric field variability in a global
 153 I-T model, so that its role during certain intervals and locations can be analyzed. We used
 154 aforementioned local 2D electric field estimates from PFISR, calculated the electric poten-
 155 tials and merged them with a global empirical model to specify upper boundary conditions
 156 for GITM. With HIME-driven GITM simulations, we aim to analyze the energy transferred
 157 to the I-T system through the meso-scale electric fields and determine the fundamental phys-
 158 ical processes that cause the observed and simulated localized changes in plasma parameters.
 159 With PFISR operating continuously since March 2007, there exists more than a solar cycle
 160 of continuous ISR observations that can be used in support of global data assimilation and
 161 global model refinement efforts. Continuous ISR observations also present an opportunity
 162 for use in nowcasting. Thus it is timely and crucial to develop such a framework that can
 163 incorporate meso-scale driving in global models to further understand the dynamics and
 164 energy budget of the high-latitude IT system at multi-scale.

165 This paper discusses the HIME methodology to incorporate the 2D PFISR electric
 166 field vector estimates derived from the special 'isinglassv3.0' mode during 2 March 2017.
 167 The data sets used for driving and validating the model are described in the next section.
 168 The adaptation of upper boundary conditions to incorporate localized 2D electric fields is
 169 detailed in Section 2.2. Section 3 discusses the model validation with PFISR line of sight
 170 measurements and Scanning Doppler Imager (SDI) data. In Section 4, we examine the
 171 implications of data-model comparisons and differences in underlying physical mechanisms
 172 between large- and meso-scale driving. This is followed by a discussion on sources of un-

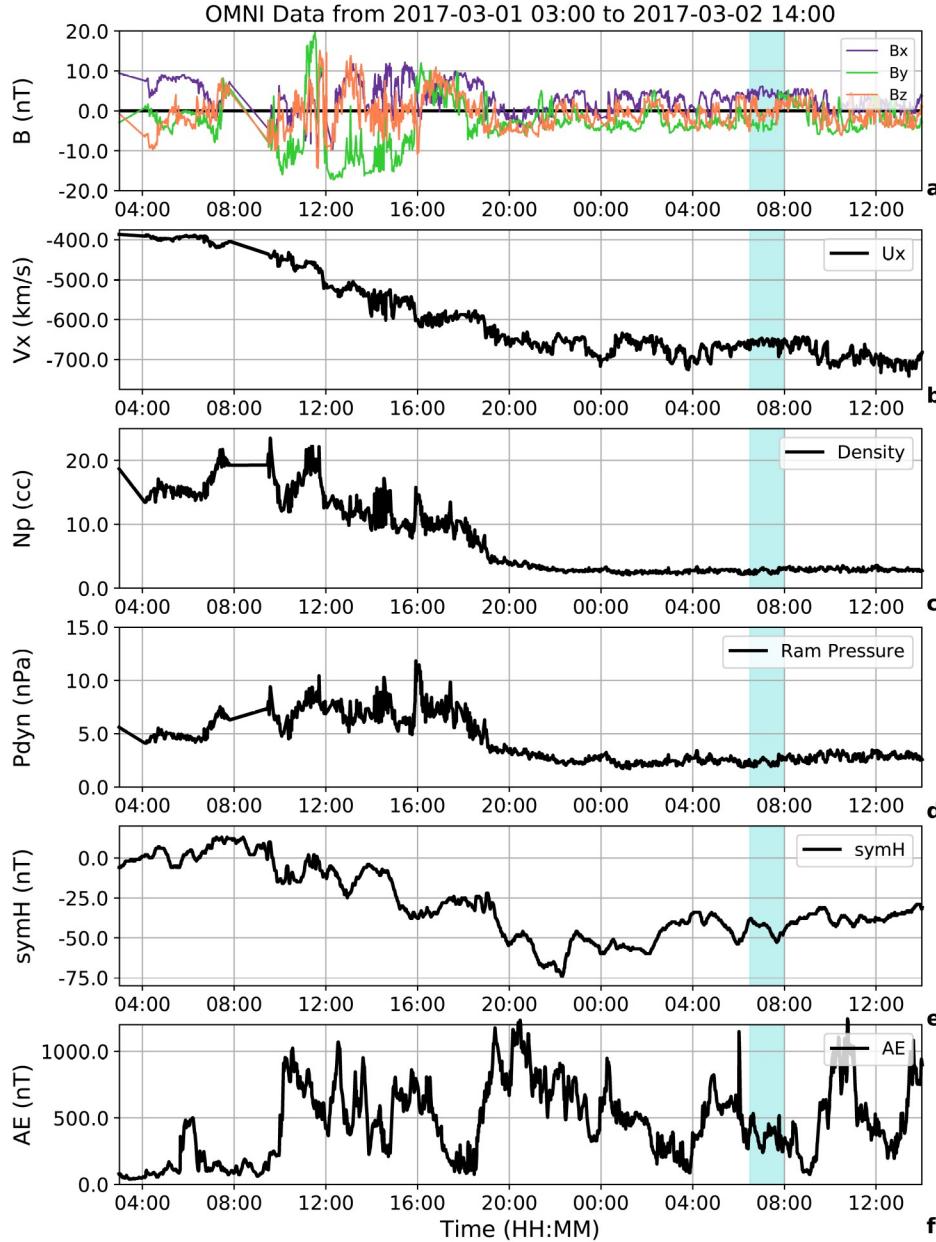
173 certainties, and possible future directions to improve the suggested HIME framework. We
 174 conclude with the summary and key findings of the study in the last section.

175 **2 Methodology**

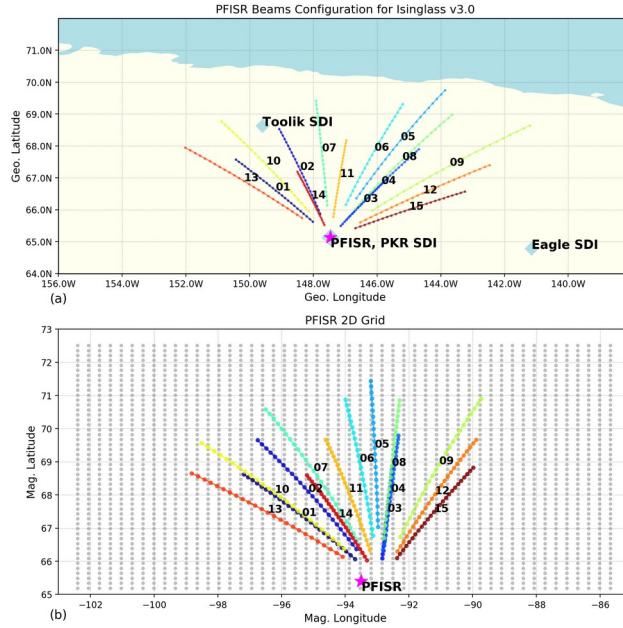
176 **2.1 Data Sets**

177 **2.1.1 Solar wind and IMF Conditions on 2 March, 2017**

178 The 1 minute averages of IMF (a), solar wind velocity (b), density (c), dynamic pressure
 179 (d), symH index (e) and AE (f) data from the OMNI database (https://omniweb.gsfc.nasa.gov/form/omni_min.html) are presented in Figure 1. The storm onset was around
 180 0430 UT on 1 March. The solar wind speed gradually increased from 400 km/s to 700 km/s
 181 over the course of 20 hours as shown in Figure 1b. The solar wind density shown in Figure
 182 1c also increased in the first 8 hours of this period, then started decreasing around 1200 UT
 183 on 1 March. Figure 1d shows the solar wind dynamic pressure, which follows a similar trend
 184 to solar wind density, however the decrease following 1200 UT was not as sharp due to the
 185 drop in solar wind velocity. The symH index presented in Figure 1e showed a gradual drop
 186 following the storm onset. In addition, the AE index in Figure 1f showed an initial short-
 187 lived elevation around 0600 UT on 1 March, followed by a series of stronger enhancements
 188 starting around 1000 UT.


190 The interval selected for study coincides with the the recovery phase of the storm,
 191 between 0630 UT to 0800 UT (blue shaded region) on 2 March. The IMF B_z had multiple
 192 turnings at this interval, but mostly stayed negative between 0648 UT-0732 UT. The solar
 193 wind speed was around 650 km/s indicating high speed stream. The variations in solar wind
 194 density and dynamic pressure were small during this time. The AE index was fluctuating
 195 and had two peaks at 500 nT around 0645 UT and 07220 UT on 2 March. These solar wind
 196 and IMF values were used as input for the empirical convection and precipitation models.

197 **2.1.2 PFISR Measurements**


198 Located at the Poker Flat Research Range (65.13 N and 147.57° W in geographic and
 199 65.4 N and 93.5° W in magnetic coordinates), PFISR is a phased-array radar, which can
 200 be steered on a pulse-to-pulse basis (Heinselman & Nicolls, 2008). The steering allows
 201 for different beam measurements to be combined into a simultaneous measurement when
 202 integrated over time (J. Semeter et al., 2010; Nicolls et al., 2014).

203 This study uses the technique introduced by Nicolls et al. (2014) to estimate the F-
 204 region electric potential on a 2-D grid from the PFISR line-of-sight velocity measurements.
 205 The technique determines F-region electric potential that is consistent with the PFISR line-
 206 of-sight velocities assuming F-region velocities are dominated by the $E \times B$ drift and has
 207 the smoothest electric fields. The formulation in terms of electric potential guarantees the
 208 resulting electric field estimate is curl-free. For a monostatic radar with a modest number
 209 of beam positions the inverse problem is ill-posed and underdetermined. The problem is
 210 regularized by minimizing a measure of the roughness of the electric fields while constraining
 211 the solution with the line-of-sight measurements.

212 The PFISR operation mode was 'isinglassv3.0' which took place between 0626 UT to
 213 1700 UT (2226 to 0900 local time) on March 2, 2017 to support the ISINGLASS sounding
 214 rocket experiment (Clayton et al., 2019). This experiment was designed to provide high
 215 cadence F-region measurements under the expected trajectory of the ISINGLASS sounding
 216 rocket. All pulses are 330 μ s uncoded long pulses which are then input into autocorrelation
 217 functions and fit at 24.5 km range resolution. The experiment interleaves three frequency
 218 channels and 15 beam positions pointed downrange, with the 10 beam positions in the
 219 center under the expected rocket trajectory being revisited three times as frequently as
 220 the 5 beams on the edges. The beam configurations are shown in Figure 2a (geo) and b

Figure 1. The OMNI values of x (purple), y (green), z (orange) components of magnetic field (a), the x component of solar wind velocity (b), solar wind density (c), dynamic pressure (d) and symH index (e) are shown between 1 March 2017 0300 UT to 2 March 2017 1400 UT. The blue shaded region between 0630-0800 UT shows the time interval studied with PFISR driven electric fields.

Figure 2. The PFISR beam configurations shown in geographic coordinates (a) and in magnetic coordinates with the 2D grid points (b). Each beam is shown with a different color. The pink star shows the location of PFISR, the blue diamonds show the locations of SDI sites.

(mag). The pulse sequence repeats once every 0.735 s and each sequence contains 6 or 2 pulses per frequency channel per beam in the center or edges, respectively. The fitted data presented here integrates over 90 sequences (66.15 s) and combines all frequency channels, thus providing 1620 or 540 pulses worth of statistics in the center or edges, respectively. The 2D grid for the estimated electric field values are shown in 2b. The spatial resolution of the estimated electric fields is 0.15° in magnetic latitude and 0.34° in magnetic longitude, on a 7.5° in latitude, 16.5° in longitude domain, which is larger than the area covered by the PFISR data itself.

2.1.3 Scanning Doppler Imagers

The F region neutral wind velocity vectors are obtained from three all-sky scanning Doppler imagers (SDI) located in Alaska (<http://sdi.server.gi.alaska.edu/sdiweb/index.asp>). The SDIs are located at the Eagle [64.78° N, 141.15° W], Poker Flat Research Range [65.12° N, 147.43° W], and Toolik [68.63° N, 149.6° W] sites and are shown with blue diamonds on Figure 2a. SDIs in these sites are wide FOV Fabry-Perot interferometers collecting optical emission profiles at different wavelengths, which are combined with the Doppler shifts to derive LOS velocities (Conde & Smith, 1995). The zonal and meridional winds were then inferred from the LOS winds (Dhadly et al., 2015) and references therein). For this study, the 6300 Å Oxygen red line profiles corresponding to ~250 km altitude (Schunk & Nagy, 2009) were used. The temporal resolution of the data is 2.5 minutes, with Eagle site only covering the interval between 0645 UT to 0733 UT.

2.1.4 All-sky Camera Images

The visible auroral intensity between 0630-0800 UT is studied through the Poker Flat digital all-sky camera (DASC) collocated with PFISR in Alaska, 65.12 N, 147.43 W (Conde et al., 2001). DASC uses an Electron Multiplying Charge-Coupled Device and has three

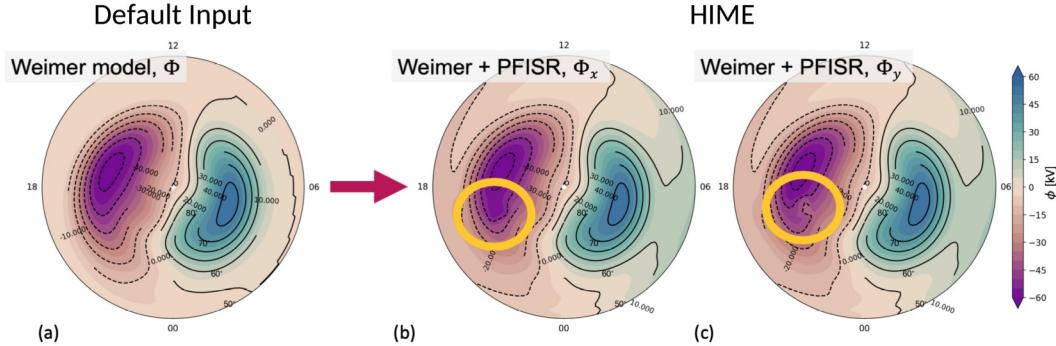
245 filters for 427.8 nm (blue), 557.7 nm (green), and 630.0 nm (red) emissions and it cycles
 246 through these filters with a temporal resolution of 12.5 seconds between consecutive sampling
 247 at the same wavelength (Fernandes et al., 2016). The Poker Flat DASC data is available
 248 through <http://optics.gi.alaska.edu/optics/>. In this study the green and red emission
 249 lines are used, which correspond to ^{c1}[100-150 km interval](#) and 250 km altitudes respectively.

250 2.2 Description of HIME Framework

251 The default high-latitude drivers for GCMs are inherently large-scale. Therefore, the
 252 HIME framework has been developed to incorporate meso-scale drivers as high-latitude
 253 boundary conditions to drive GCMs. In this framework ISR measurements, which carry
 254 information about the local meso-scale drivers, specifically electric fields are incorporated
 255 to a global empirical model of high-latitude electric potentials. With this approach a multi-
 256 scale global potential pattern could be defined which would enable simulating similar local
 257 conditions over measurement sites. We used HIME-driven GITM simulations to further
 258 investigate the effects of meso-scale electric fields on the local I-T system.

259 GITM is a first-principle global ionosphere-thermosphere model developed at the Uni-
 260 versity of Michigan (Ridley et al., 2006). It solves Navier-Stokes equations for neutrals
 261 and transport equations for plasmas on a three-dimensional, geographic longitude, latitude
 262 and altitude based, non-uniform, stretched grid, assuming a non-hydrostatic solution. The
 263 model self-consistently solves for the electron, ion and neutral temperatures (J. Zhu et al.,
 264 2016). The heating terms in GITM are EUV, Joule, auroral, conduction and chemical
 265 heating, whereas the cooling is calculated from NO, CO₂, and O₂ radiative cooling terms.

266 By default GITM uses the Weimer Model (Weimer, 2005) to specify the upper boundary
 267 conditions for the electric potentials (Ridley et al., 2006). Based on 45-minute averaged
 268 measurements from the Dynamics Explorer-2, IMP-8, and ISEE-3 satellites, the Weimer
 269 model provides electric potentials in Altitude Adjusted Corrected Geomagnetic Coordinates;
 270 binned based on solar wind, IMF parameters, and tilt angle (Weimer, 2005). To determine
 271 the auroral precipitation the Oval Variation, Assessment, Tracking, Intensity and Online
 272 Nowcasting (OVATION) model was selected from amongst the models built into GITM.
 273 The OVATION model provides the location and intensity of the auroral oval, taking into
 274 account precipitation from electron and ion diffuse aurora, in addition to the mono-energetic
 275 and broadband precipitations from discrete aurora (Newell et al., 2009). The resolution of
 276 the auroral precipitation output is 0.25h in magnetic local time, 0.25 ° in magnetic latitude
 277 and 15 minutes in time (Newell et al., 2002).


278 The HIME outputs are introduced as upper boundary conditions for the electric poten-
 279 tials through existing AMIE framework into GITM (Yigit & Ridley, 2011; Verkhoglyadova
 280 et al., 2017) through a user defined box region. This procedure does not require a major
 281 modification to the GITM source code and only involved interfacing efforts. The calcula-
 282 tion of the potential patterns and the grid resolution selection procedures to prepare these
 283 high-latitude boundary conditions are described in the following sections.

284 2.2.1 Electric Potential Calculation

285 At high-latitudes, the two most important drivers for the I-T system are the electric
 286 potentials and the auroral precipitation. In order to drive the global system, GITM requires
 287 electric field potentials defined at each grid point. To further investigate the effects of the
 288 meso-scale structures seen in PFISR observations, we first calculate the contribution to
 289 electric potential through these fields.

^{c1} DSO: 150

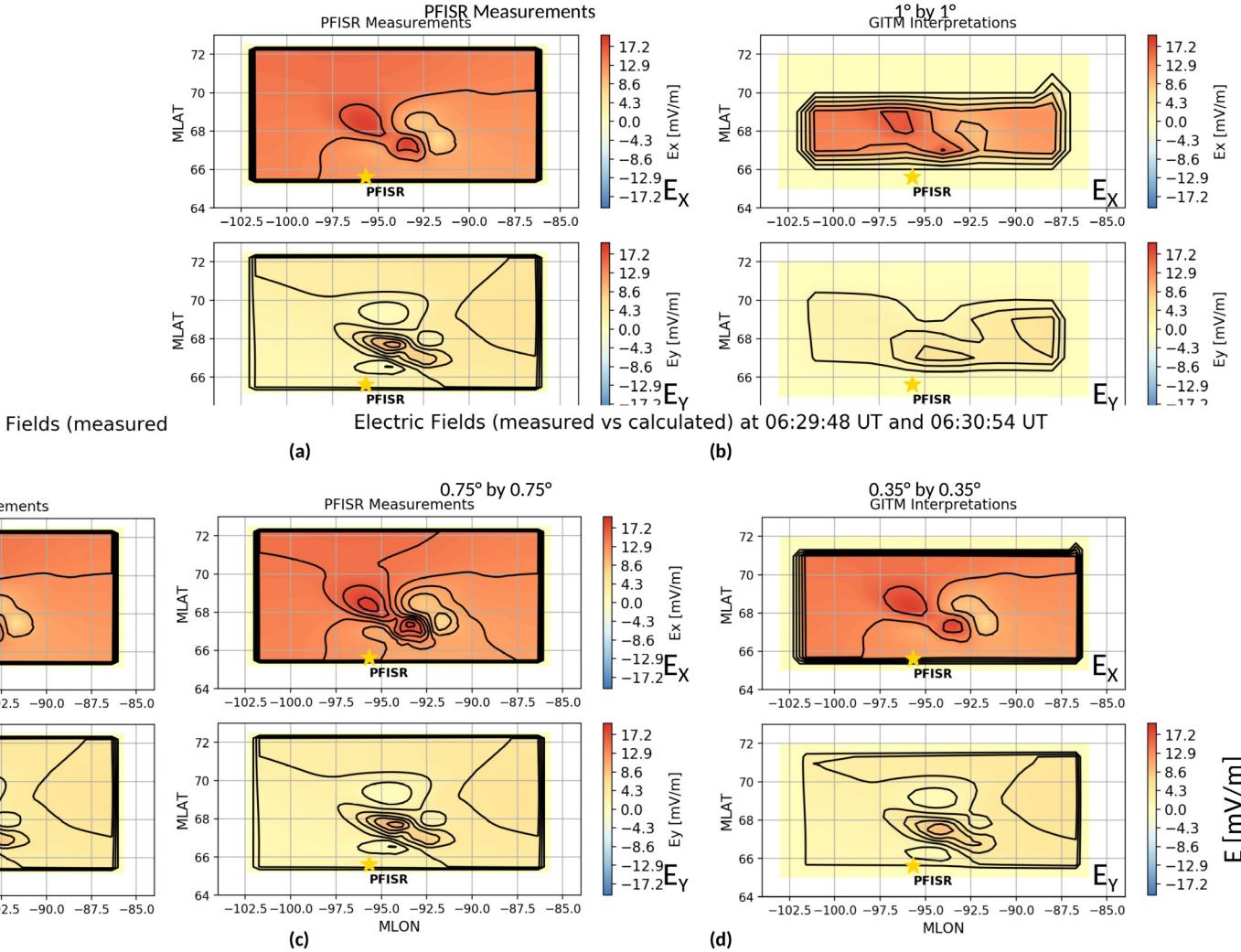
Figure 3. The electric potentials from Weimer model (a), combined with the differences calculated from PFISR measurements in x (b) and y (c) directions at 0630 UT, 02 March 2017.

The PFISR electric field measurements provide x (zonal) and y (meridional) components, which are the gradients of the electric potential in x and y directions as shown in Equation 1.

$$E_x = -\frac{\partial \Phi}{\partial x}, \quad E_y = -\frac{\partial \Phi}{\partial y} \quad (1)$$

Using the forward Euler method to integrate the electric fields, the x and y components of the electric potential can be found as shown in Equations 2 and 3.

$$\Delta \Phi_{x_i} = \Phi_{x_{i+1}} - \Phi_{x_i} = -E_{x,i} \Delta x, \quad (2)$$


$$\Delta \Phi_{y_j} = \Phi_{y_{j+1}} - \Phi_{y_j} = -E_{y,j} \Delta y \quad (3)$$

The potential differences, which will result in measured electric fields on the same grid once derived, can then be added to a baseline potential solution, such as Weimer potentials to drive a global numerical model. Figure 3 summarizes the difference between default input versus the HIME input. Figure 3a shows the Weimer potentials which are combined with $\Delta \Phi_x$ (b) and $\Delta \Phi_y$ (c) at 0630 UT. In order to eliminate the boundary discontinuity between the baseline and the added potentials, the built-in 2D Gaussian filter in the SciPy Library (Jones et al., 2001) was used. The 2D Gaussian filter is a convolution operator that determines the degree of smoothing based on the standard deviation of the fitted distributions.

2.2.2 Determination of the grid size

GITM currently does not have an adaptive mesh refinement implemented, however significant work is ongoing to incorporate nested grids (Deng et al., 2019). For global applications the grid size is typically chosen as 4° in longitude and 1° in latitude. The PFISR 2D electric field estimates for the isinglassv.3 mode, has a spatial resolution of 0.15° in magnetic latitude and 0.34° in magnetic longitude. In order to resolve the meso-scale electric fields, the grid size in the global domain should be smaller than the default values. However, for a global application with uniform grid sizes, the computational cost increases significantly with increased resolution. To determine the optimum grid size, the electric field estimates were first downsampled to uniform grids. Then, the electric potentials were calculated using the Forward Euler formula shown in Equations 2 and 3. Using the central differencing algorithm, which is identical to the one used in GITM, the new electric fields

Electric Fields (measured vs calculated) at 06:29:48 UT and 06:30:54 UT

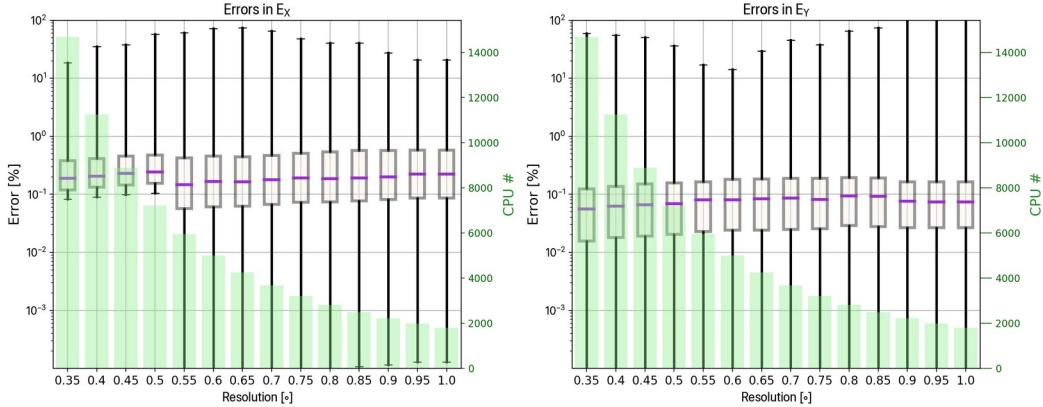


Figure 4. The contours in x (top) and y (bottom) directions at 0629 UT showing PFISR measured (a) and derived electric fields with $1^{\circ} \times 1^{\circ}$ (b), $0.75^{\circ} \times 0.75^{\circ}$ (c), and $0.35^{\circ} \times 0.35^{\circ}$ (d) sampling.^{c2}

in x and y directions were calculated. ^{c1}Figure 4 shows x (top) and y (bottom) components of estimated PFISR electric fields (a) and down sampled electric fields on $1 \times 1^{\circ}$, $0.75 \times 0.75^{\circ}$ (c), and $0.35 \times 0.35^{\circ}$ (d) grids. As the grid size decreases, more of the electric field features were resolved.

The percentage errors between the PFISR estimated and the calculated electric fields, omitting the boundaries, for different grid sizes are shown in Figure 5a and b for x and y components respectively. The boxplot shows the distribution of percentage errors averaged over the entire grid between 0630-0800 UT. The purple lines inside the boxes show the

^{c1} DSO: The PFISR 2D electric field estimates (a), and the electric fields calculated on $1^{\circ} \times 1^{\circ}$ (b), $0.75^{\circ} \times 0.75^{\circ}$ (c), and $0.35^{\circ} \times 0.35^{\circ}$ (d) grids are shown in Figure 4 for x (top) and y (bottom) components.

Figure 5. The electric field percentage errors for different grid resolutions calculated in x and y directions are shown. The box plots display the distribution of the mean error throughout the grid at a given time for a given resolution, purple lines show the median of error values. Green bars show the required amount of CPU nodes for each ^{c2}grid resolution.

median of the distribution. To find the computationally optimum grid, the CPUs needed for each operation are shown with green bars on Figure 5. ^{c3}The relationship between the grid resolution and required nodes is non-linear. Consequently, the computational costs increase significantly as the resolution increases, as well as the memory requirements for each run. Therefore, the 0.75° was chosen as the computationally most effective grid size to resolve meso-scale features as defined in this study. The distance between grids are around 80 km in latitude, and 35 km in longitude close to PFISR. The PFISR electric field estimates were down-sampled to a 0.75° grid to calculate the global HIME potentials.

2.2.3 Simulation Setup

The simulations were driven by 1-minute resolution OMNI solar wind and IMF data, starting from 2 days prior to the event, 28 February 2017 0600 UT, to allow for initialization. The F10.7 flux (available from the NOAA Space Weather Prediction Center, ftp://ftp.swpc.noaa.gov/pub/indices/old_indices/2017_DSD.txt) was used for ionospheric conductance calculations. The electric fields were obtained from Weimer (Weimer, 2005) and the auroral precipitation was obtained from the OVATION Model (Newell et al., 2009). The simulation grid covered the entire globe with a uniform 0.75° grid size in latitude and longitude, and the altitude extended from 100 to 600 km with a resolution of one third of the scale height. ^{c3}

^{c4} The Weimer Model (Weimer, 2005) represents the large-scale electric fields in the ionosphere, however it can still underestimate the magnitude of these fields (Rastatter et al., 2016). Comparing the results from Weimer driven GITM simulations with the HIME-driven GITM simulations will not directly address how the meso-scale electric fields are affecting

^{c3} DSO: Based on these results, 0.75° was chosen as the computationally most effective grid size to resolve meso-scale features and the HIME potentials were calculated using 0.75° grid resolution.

^{c3} DSO: The PFISR electric field estimates can be decomposed into quasi-static (background, large-scale) electric fields and dynamic electric fields.

^{c4} DSO: Even though the Weimer Model (Weimer, 2005) represents the large-scale electric fields in the ionosphere, it can still underestimate the magnitude (Rastatter et al., 2016).

350 the I-T system because of the difference in magnitude of the large-scale electric fields.⁵ The
 351 PFISR electric field estimates can be decomposed into quasi-static (background, large-scale)
 352 electric fields and dynamic electric fields to address this problem.⁶ To calculate the back-
 353 ground electric fields, we take the boxcar average of the PFISR electric field estimates as
 354 shown in Equation 5.

$$E_{background\ x,i} = \langle E_{x,i} \rangle_{30min.} \quad (4)$$

$$E_{background\ y,i} = \langle E_{y,i} \rangle_{30min.} \quad (5)$$

357 ^{c1} Here $E_{x,i}$ and $E_{y,i}$ shows the x and y components of the PFISR electric field estimates.
 358 The chevron brackets, $\langle \rangle$, show the time averaging. The 30 minute duration was selected
 359 for the boxcar averaging since it is twice the period of the temporal upper limit of meso-
 360 scale fields. These background electric fields are then used to calculate background electric
 361 potentials, as was previously shown in Equations 2 and 3.

362 ^{c2} The dynamic electric fields can be calculated by subtracting the background electric
 363 fields from the PFISR estimates.

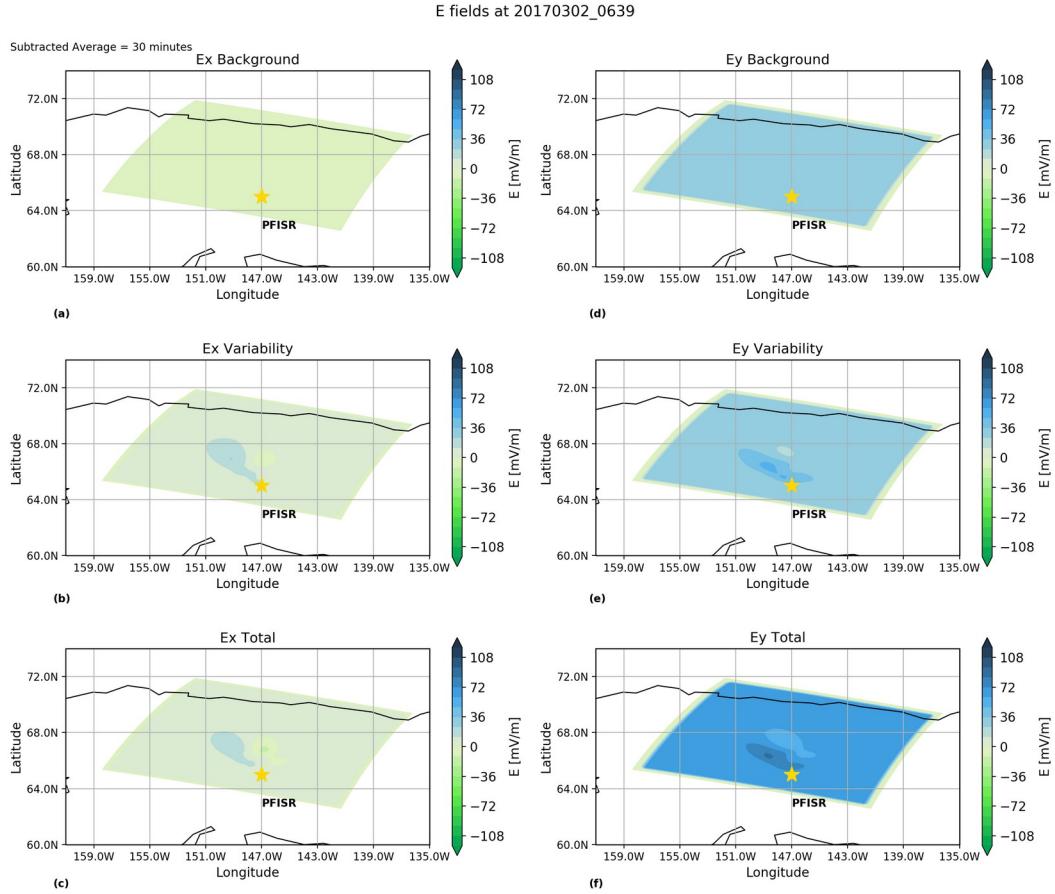
$$E_{variable\ x,i} = E_{x,i} - E_{background\ x,i} \quad (6)$$

$$E_{variable\ y,i} = E_{y,i} - E_{background\ y,i} \quad (7)$$

366 ^{c3} Here $E_{background\ x,i}$ and $E_{background\ y,i}$ are the 30-minute boxcar averages calculated
 367 for the i^{th} time step. Similarly, the variable electric potentials are calculated from these
 368 variable electric fields and combined with the Weimer Model as discussed in Section 2.2.1.

369 The 30 minute boxcar averaged values for the x (a) and y (d) components of the PFISR
 370 electric field estimates at 0639 UT are shown on the top row of Figure 6 to demonstrate the
 371 drivers at a given time step. The background Ex was mostly zero, whereas the background
 372 Ey was around 30 mV/m, indicating the electric fields were mostly northward at this time.
 373 The variable x (b) and y (e) components of the estimated electric fields are shown in the
 374 middle row of Figure 6. The variability seen above the PFISR location, consisted of a positive
 375 cell towards the west and a negative cell towards the east in the longitudinal direction. The
 376 variability seen in the latitudinal component was a stronger field around PFISR with a
 377 weaker cell to the north. The bottom row of Figure 6 shows the estimated x (c) and y
 378 (f) electric fields from PFISR, where both fields show properties from both the background
 379 and variable electric fields. To summarize, four different time dependent drivers were used
 380 throughout the paper which are shown in Table 1. These runs are named as Weimer,
 381 Background, Variable and Total respectively. We will refer to these runs as GITM [W],
 382 GITM-HIME [B], GITM-HIME [V] and GITM-HIME [T] in the following sections to ease
 383 tracking of the corresponding simulation results.

384 We start by investigating how the different electric potential input was conveyed in
 385 GITM. Figure 7 shows data-model comparisons extracted at 210° longitude, 66° latitude
 386 for the two components of electric fields between 0630-0800 UT. The PFISR estimates


^{c5} DSO: Text added.

^{c6} DSO: In order to differentiate the effects of these two components, w

^{c1} DSO: We selected a 30 minute duration for the boxcar averaging since it is twice the period of the temporal upper limit of meso-scale fields. These background electric fields are then used to calculate background electric potentials, as was previously shown in Equations 2 and 3.

^{c2} DSO: Subtracting the background electric fields from the total PFISR electric field estimates results in the variable electric fields as shown in Equations 6 and 7. Similarly, the variable electric potentials are calculated from these electric fields and combined with the Weimer Model as discussed in Section 2.2.1.

^{c3} DSO: Text added.

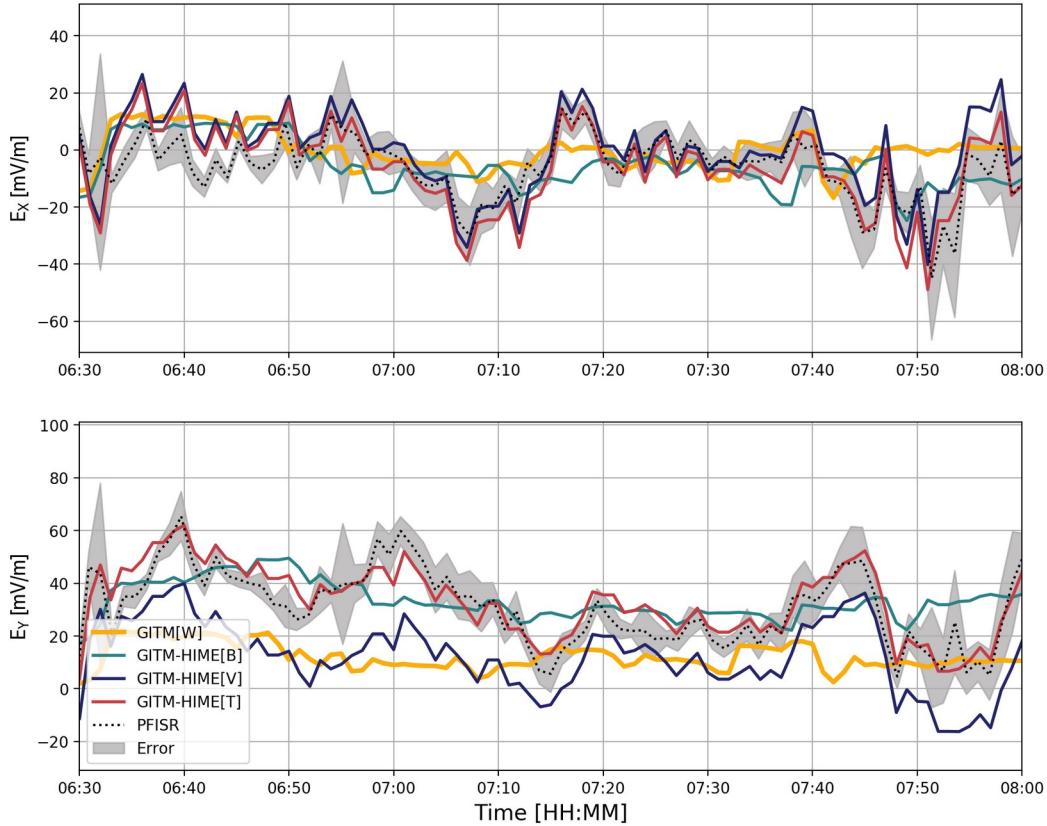


Figure 6. The background x (a), y (d), variable x (b), y (e), total x (c) and y (f) components of the 2D PFISR electric field measurements in geographic coordinates at 0639 UT. The star shows the location of PFISR.

Table 1. Definition of simulations and their drivers

Simulation Name	Potentials Used
<i>GIT M[W]</i>	Weimer Model
<i>GIT M – HIME[B]</i>	Weimer Model + Potentials from PFISR Background Fields
<i>GIT M – HIME[V]</i>	Weimer Model + Potentials from PFISR Variable Fields
<i>GIT M – HIME[T]</i>	Weimer Model + Potentials from Total PFISR Fields

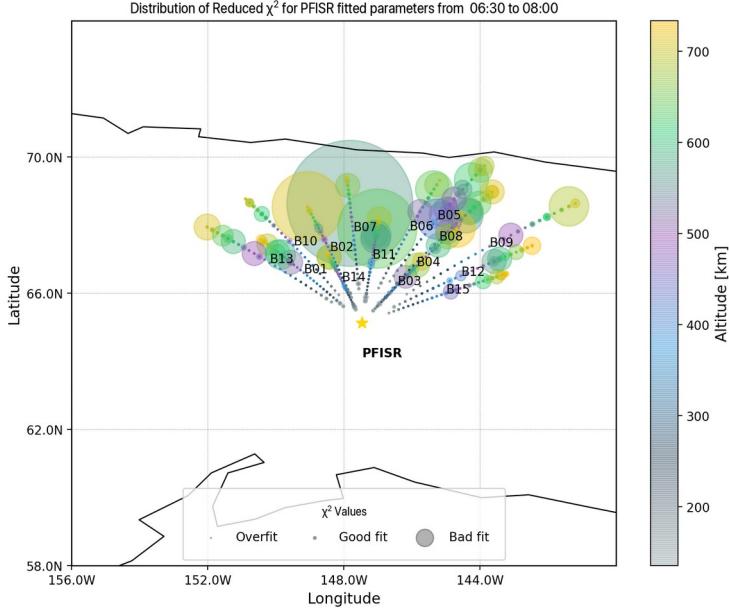

Comparison of PFISR vs Simulated Electric Fields

Figure 7. The temporal variation of the PFISR estimated and modeled electric field components are shown between 0630–0800 UT. The gray lines show PFISR 2D electric field estimates, the yellow (GITM[W]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses. The upper panel shows the east-west and the bottom panel shows the north-south components of electric field values taken at 210° longitude, 66° latitude.

of E_x fluctuated around 0, whereas the average values of E_y during this interval were around 30 mV/m. For both components, Background driven (GITM-HIME[B]) simulation results showed a better trend compared to estimates, as opposed to Weimer driven (GITM[W]) electric field results. Similarly, Variability driven simulation results (GITM-HIME[V]) demonstrated a more dynamic behaviour and overall a better match with the x component. Although, it was successful at capturing the timing of peaks and minimums, GITM-HIME[V] electric fields underestimated the magnitude of the electric field for the y component. For both components, Total electric field driven (GITM-HIME[T]) simulation results performed best by means of capturing both the trend and the variability seen in the PFISR estimates.

For the purpose of analyzing the results of HIME-driven GITM simulations, the quality of the fitting was examined first. The reduced χ^2 values determine the goodness of the fit, and are used in order to assess how well the data is represented by the autocorrelation functions (ACF) (Press et al., 2007). For ACFs with small errors, the reduced χ^2 values are close to 1. Here, we categorized the reduced χ^2 values as Overfit (< 0.1), Good fit

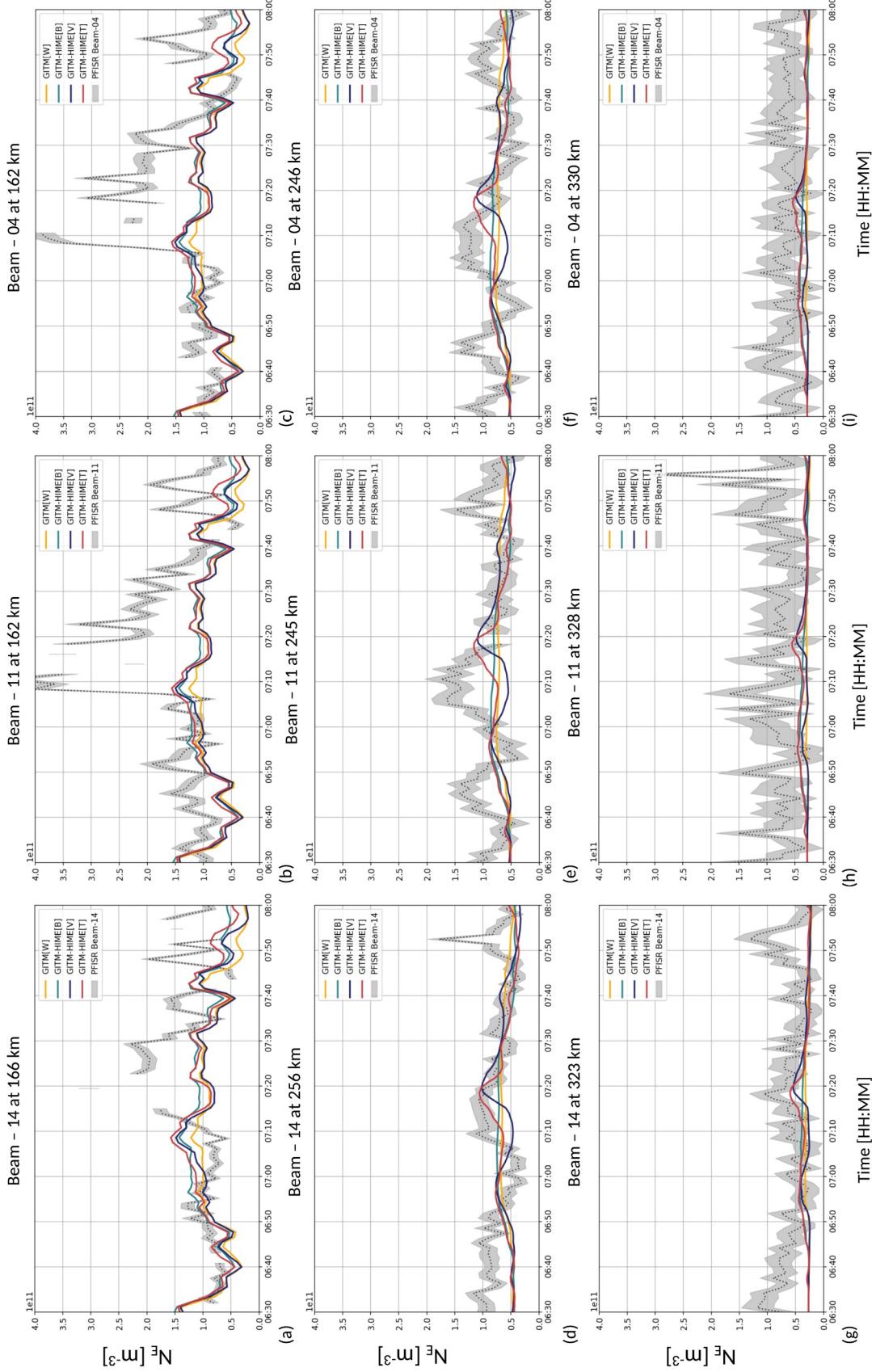
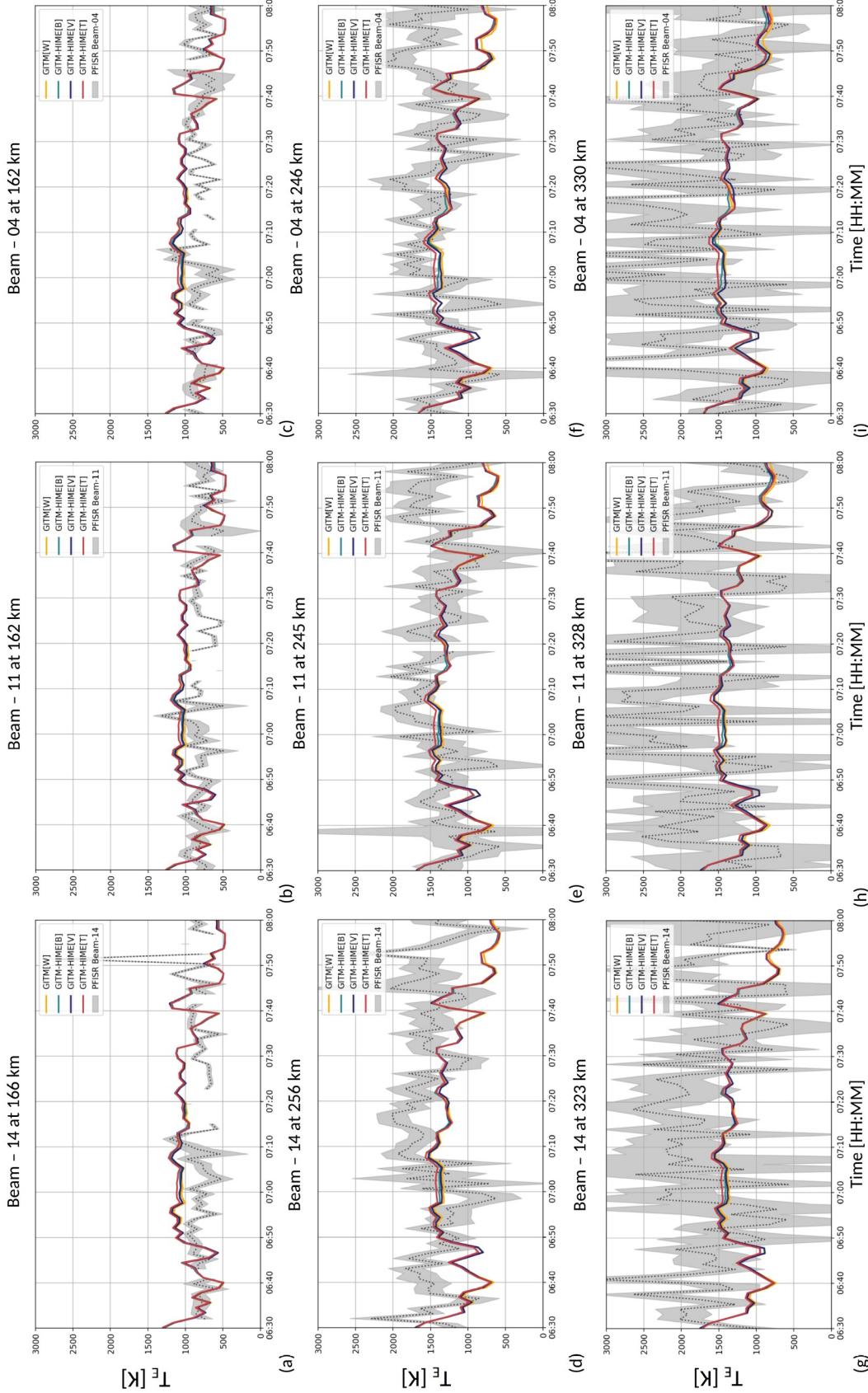


Figure 8. The distribution of the reduced χ^2 values along the PFISR beams between 0630-0800 UT are plotted. The colors denote the altitude where the χ^2 values are shown.

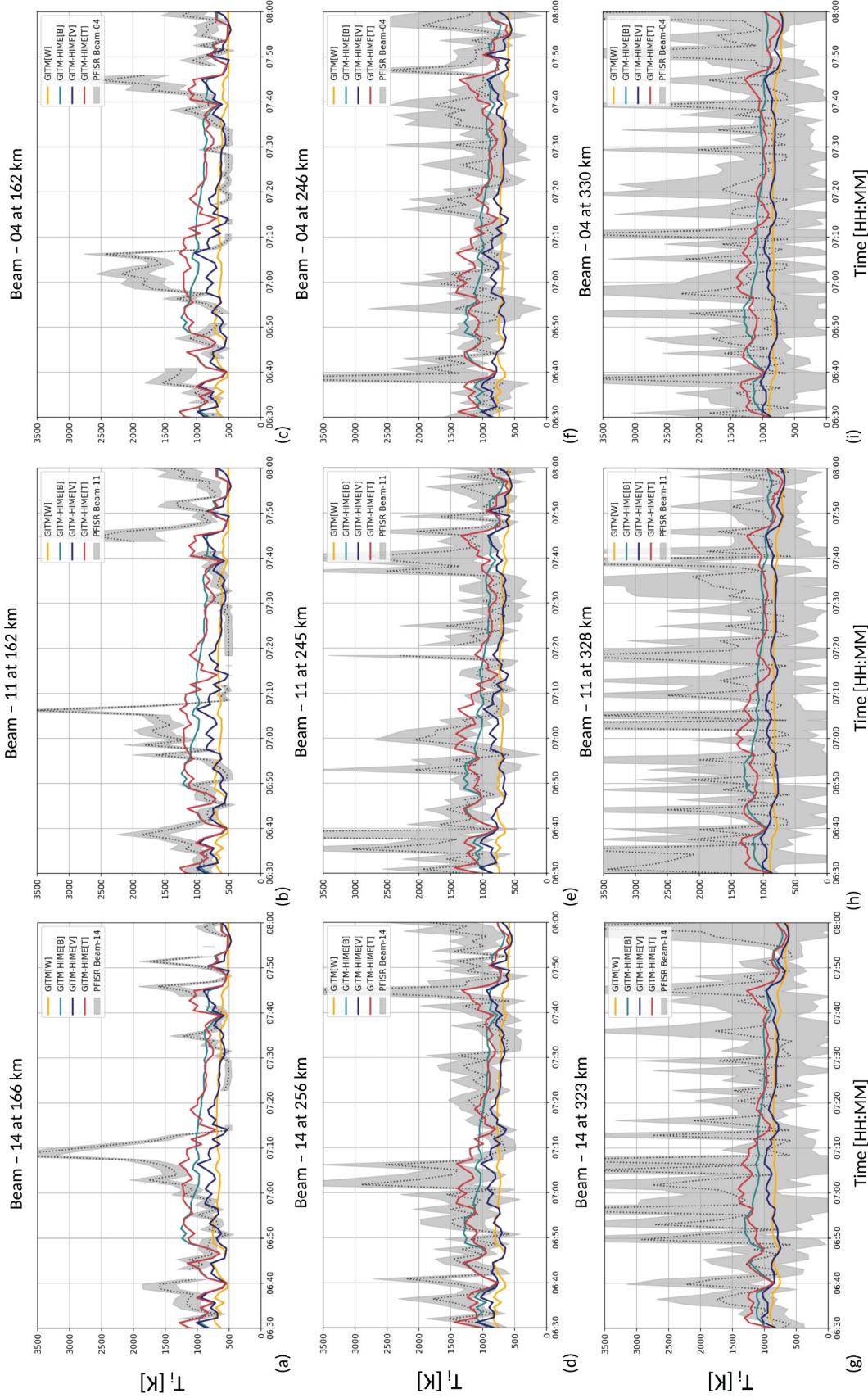
(0.1 – 10), and Bad fit (> 10). As can be seen from the distribution presented in Figure 8, there are certain Beams, i.e: 5, 8, 13, that are more prone to bad estimates, as well as certain altitudes, i.e: above 450 km. Therefore, beams with smaller reduced χ^2 distributions (Beam-04 for east, 14 for west and 11 for center) and the altitude profiles below 450 km are chosen for model validation throughout the paper.

3 Results

Below we discuss modeling results for several I-T parameters (electron density, electron temperature, and ion temperature) and compare them with PFISR measurements along the beams. Figure 9 illustrates the change in electron density between 0630 to 0800 UT along different beams. It is important to note that beams have different geometries, which leads to different sampling altitudes among different beams. In order to compare similar regions, the altitudes closest to 160 km (top), 250 km (middle) and 320 km (bottom) were picked. The gray dotted lines show the PFISR measurements, whereas the gray shaded regions show the range of errors associated with the measurements. The errors increase with the altitude. The simulated electron density profiles are mostly within the measured range showing a tendency for underestimation, especially at altitudes above 150 km. The measurements show rapid changes which are not well captured with the simulation results. Especially the 162 km profile along Beam 11 shows enhancements around 0640 to 0650 UT, 0705 to 0725 UT, and 0740 to 0750 UT with multiple minute-to-minute peaks. At 245 km along Beam 11, the modeled results perform well for capturing the overall trend of electron density, however failed to reproduce the peaks between 0639-0650, 0705-0720 and 0740-0755 UT. The difference between modeled responses are more obvious at 160 km profile. The GITM-HIME[V] and GITM-HIME[T] results showed a drop between 0700 to 0710 UT, followed by an enhancement around $0.5 \cdot 10^4 m^{-3}$ around 0720 UT, whereas the GITM[W] and GITM-HIME[B] results didn't show the drop and the enhancement.


Figure 9. The temporal variation of the PFISR estimated and modeled electron densities are shown between 0630-0800 UT for Beam-14 (left column), Beam-11 (middle column) and Beam-04 (right column). The gray lines show PFISR measurements, the yellow (GITM[W]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses. The panels show responses extracted at ~160 km (a,b,c), at ~250 km (d,e,f), at ~320 km (g,h,i).

427 Figure 10 shows the evolution of the electron temperature between 0630 to 0800 UT,
 428 along Beams 4, 11 and 14 at altitudes close to 160, 250, and 320 km. The electron tempera-
 429 ture does not change significantly between different altitudes or beams. Especially along
 430 Beam 11, the simulated electron temperatures captures the overall trend of the measure-
 431 ments well, except for overestimating the values around 500 K between 0718-07226 UT at
 432 160 km. The electron temperature preserves the same variability but increases in magnitude
 433 with altitude. The variability seen in electron temperature data is around 2 minutes, which
 434 is closer to the lower limit of the meso-scale interval. Overall, the meso-scale drivers do not
 435 alter the simulated electron temperatures considerably.


436 The change in ion temperature between 0630 to 0800 UT, is shown in Figure 11 in a
 437 similar manner to Figures 9 and 10. In general, ion temperature decreases with altitude.
 438 The profiles in Figure 11b demonstrates the key differences between drivers. The GITM-
 439 HIME[B] and GITM-HIME[T] captures the overall trend of the measurements, especially
 440 for the peaks at 0707 UT and 0743 UT, where GITM[W] and GITM-HIME[V] results don't
 441 compare well. All four simulation results fail to capture the peak at 0639 UT. It is important
 442 to note that ion temperature results with GITM-HIME[B] have a higher magnitude, whereas
 443 the GITM-HIME[V] results are more dynamic. Both behaviors, increased magnitude and
 444 variability, can be seen in GITM-HIME[T] ion temperature profiles.

445 Figure 12 illustrates the three components of ion convection velocities, East-West (top),
 446 North-South (middle), and Vertical (bottom), between 0630-0800 UT at three different lat-
 447 itudes, 66° , 68° , 70° along PFISR longitude. The gray lines show the PFISR 2D estimated
 448 velocities extracted at the same locations, and the same color codes are preserved for sim-
 449 ulation results which are extracted at 250 km. Figure 12a shows both the GITM-HIME[V]
 450 and GITM-HIME[T] simulations capture the peaks and variability of the estimated velocity
 451 measurements very well, however there is no clear winner throughout the interval. Simula-
 452 tions driven with GITM[W] potentials do not show significant variations in time, remaining
 453 constant around -500 m/s. Figure 12d shows the North-South component of the velocity.
 454 Both GITM-HIME[V] and GITM-HIME[T] simulations capture the magnitude and vari-
 455 ability of the estimated velocities very well, except for a brief interval between 0655-0710
 456 UT. The North-South component of the velocity tended to be smaller than the East-West
 457 component, however it became larger after 0745 UT. The vertical component of the velocity
 458 shown in Figure 12g is the smallest component of the velocity. Similarly, the GITM-HIME[V]
 459 and GITM-HIME[T] simulations outperformed the GITM-HIME[B] and GITM[W] simula-
 460 tions. Likewise, the simulated East-West velocities compared at 68° demonstrated the
 461 GITM-HIME[V] and GITM-HIME[T] simulations captured the variability and enveloped
 462 the magnitude very well as shown in Figure 12b. Both the North-South and Vertical com-
 463 ponents shown in Figures 12e and h were underestimated around the peaks at 0635, 0655,
 464 0715, and 0725 UT. The Figure 12c shows the East-West velocity extracted at 70° , close to
 465 the upper boundary of the domain. The GITM-HIME[T] simulation results outperform the
 466 others in comparison to estimated velocity. Both the GITM-HIME[V] and GITM-HIME[T]
 467 simulations capture variability but miss the magnitude in North-South component shown in
 468 Figure 12f. As for the vertical velocity in Figure 12i, the GITM-HIME[V] simulation results
 469 had the best agreement with the estimated velocity.

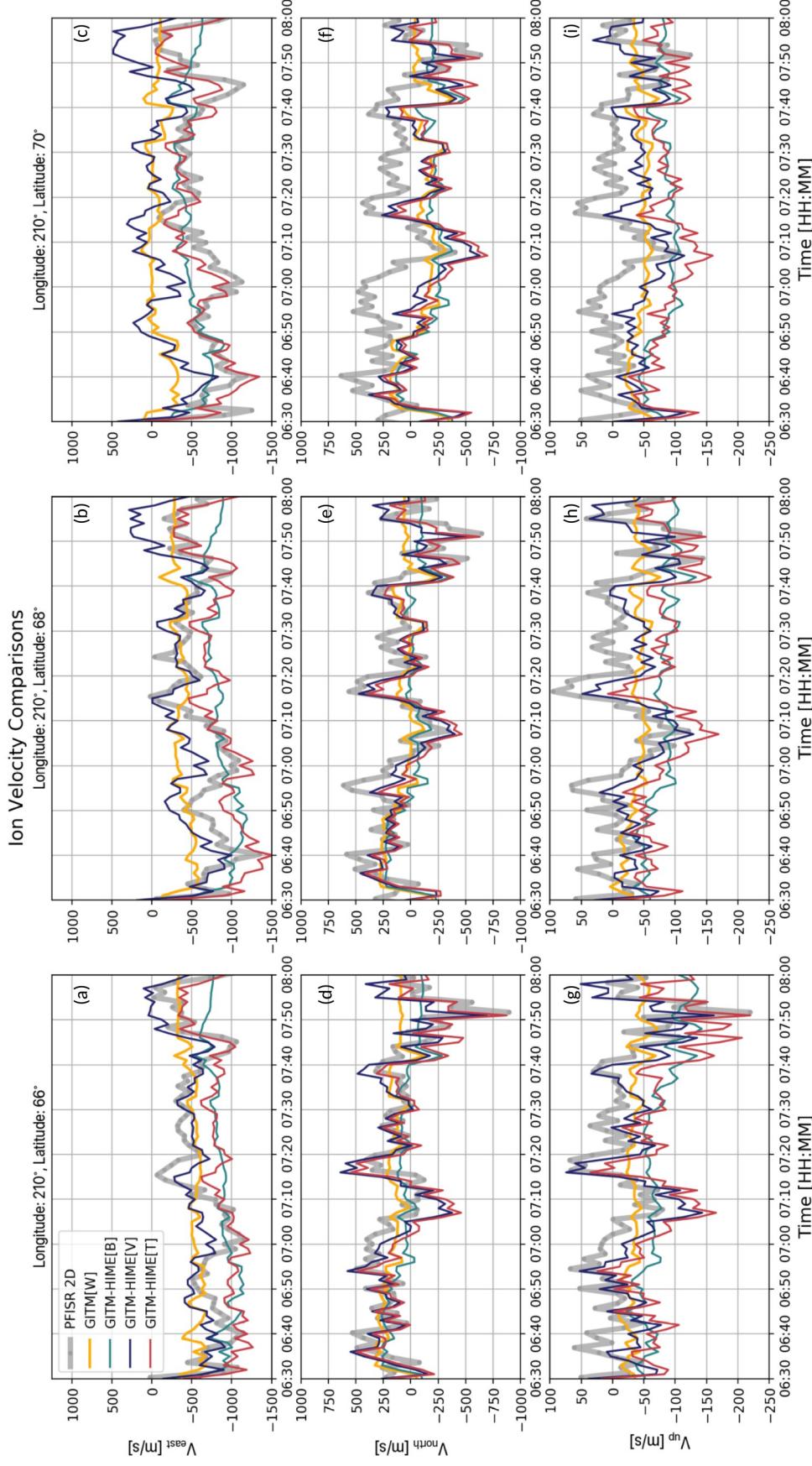

470 To understand how the simulated neutral winds are affected by the meso-scale electric
 471 fields, the neutral wind velocities around 250 km altitude are compared with the measured
 472 neutral winds at the SDI sites, Eagle (left column), Poker Flat (middle column) and Toolik
 473 (right column) as shown in Figure 13. At the Eagle site, measured neutral wind velocities
 474 were around 50 m/s westward (Figure 13a) and around 25 m/s southward (Figure 13d).
 475 The simulated velocities were larger, around 100 m/s westward, but gradually decreased
 476 to 40 m/s towards the end of the interval. However, the simulation results showed initial
 477 northward velocities around 75 m/s dropping to 65 m/s around 0800 UT. At the Poker
 478 site, both the observed and the simulated velocities were westward ranging between 100 to
 479 50 m/s (Figure 13b). Similar to the comparison with the Eagle site observations, the sim-

Figure 10. The temporal variation of the PFISR estimated and modeled electron temperatures are shown between 0630-0800 UT for Beam-14 (left column), Beam-11 (middle column) and Beam-04 (right column). The gray lines show PFISR measurements, the yellow (GITM-HIME[W]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses. The panels show responses extracted at ~160 km (a,b,c), at ~250 km (d,e,f) and ~320 km (g,h,i).

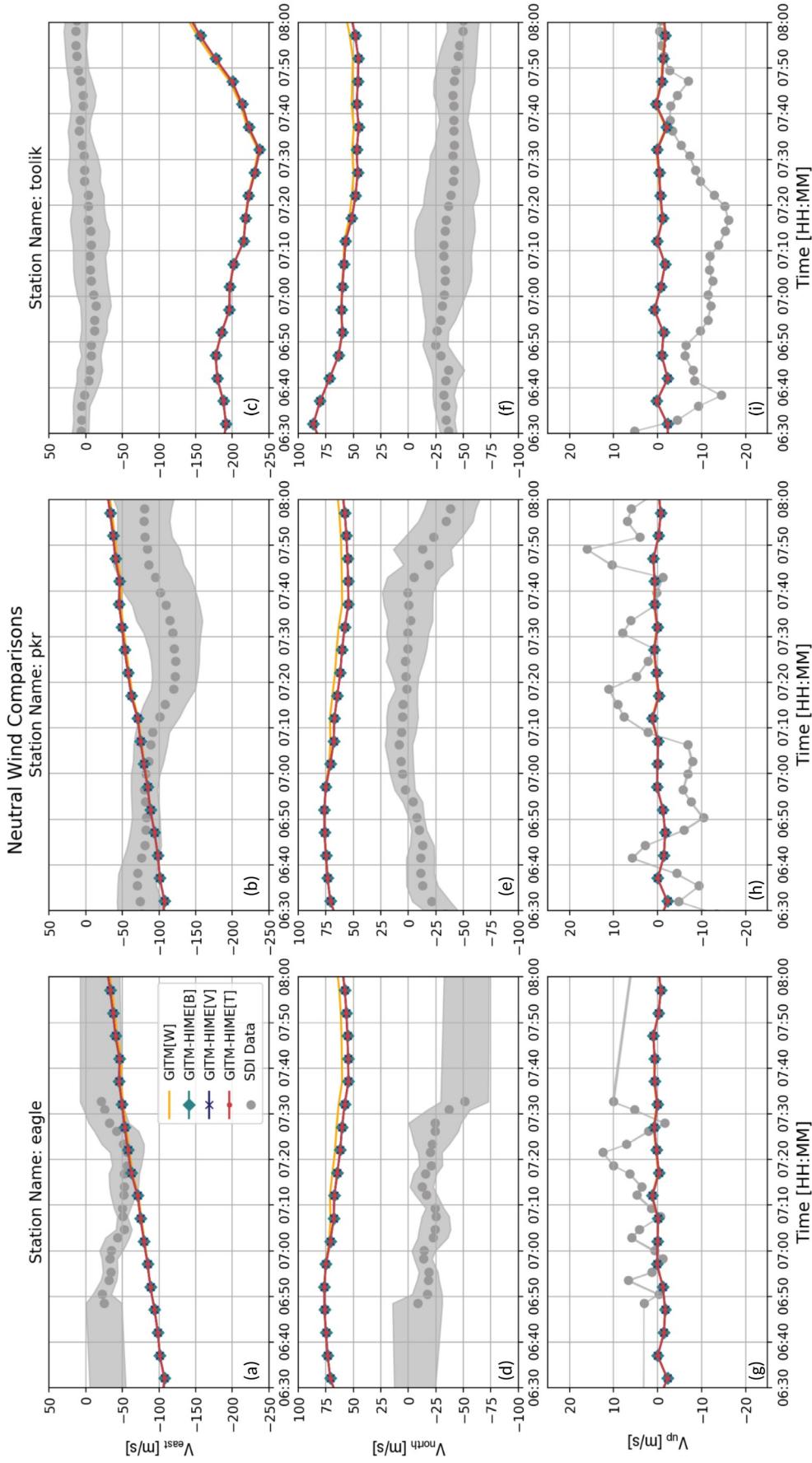
Figure 11. The temporal variation of the PFISR estimated and modeled ion temperatures are shown between 0630-0800 UT for Beam-14 (left column), Beam-11 (middle column) and Beam-04 (right column). The gray lines show PFISR measurements, the yellow (GITM[W]), green (GITM[HME[B]]), blue (GITM-HME[V]), and red (GITM-HME[T]) lines show simulated responses. The panels show responses extracted at ~160 km (a,b,c), at ~250 km (d,e,f) and ~320 km (g,h,i).

Figure 12. The temporal variation of the modeled and estimated ion velocity components are shown between 0630-0800 UT. The gray lines show PFISR 2D velocity estimates, the yellow (GITM[H]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses. The upper panels show east-west (a,b,c), middle panels (d,e,f) show north-south and bottom panels (g,h,i) show upward components of ion velocity. The left column (a,d,g) show velocities taken from 210° longitude, 66° latitude, middle column (b,e,h) values are taken from 210° longitude, 68° latitude, and the values on the right column (c,f,i) are taken from 210° longitude, 68° latitude.

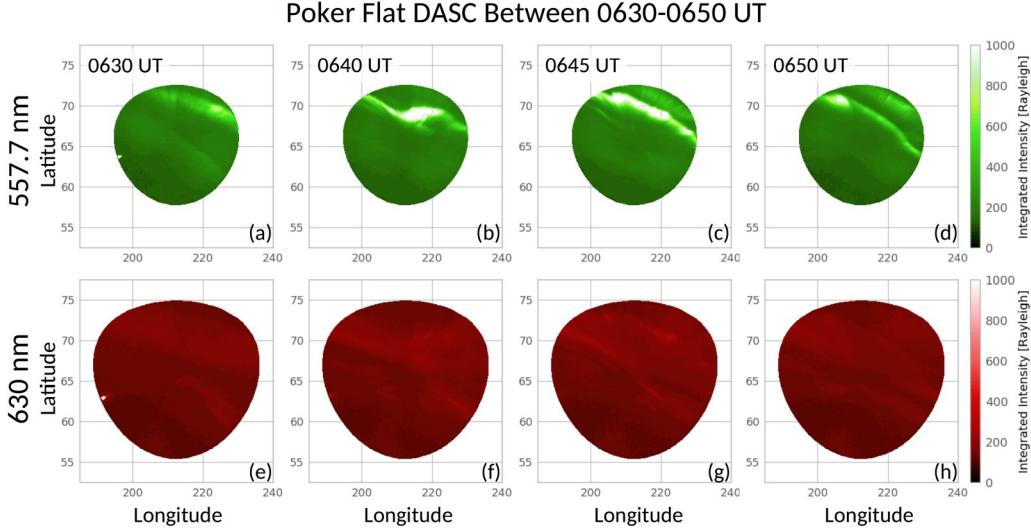
480 simulations mischaracterized the neutral wind as northward whereas measurements indicated
 481 southward flows (Figure 13e). At the Toolik site, neutral wind measurements indicated
 482 mostly southward flows with speeds ranging from -20 to 60 m/s (Figures 13 c and f), how-
 483 ever simulations indicated strong neutral wind in the northwest direction. The vertical
 484 component of the neutral wind was slow and mostly fluctuated around zero in all three sites
 485 (Figures 13g, h, and i). Although, the simulation responses didn't differ much throughout
 486 the period, GITM-HIME results for northward velocity started to diverge from GITM[W]
 487 results around 0639 UT, resulting in an average of 5 m/s difference in magnitude onwards.
 488 Similar behaviour was seen in Toolik and Eagle sites as well. ^{c1}For the studied interval
 489 the east-west components of the neutral winds are aligned with the ion convection profiles
 490 shown in Fig 12. However, the modeled neutral winds do not show the same variability
 491 displayed by ion convection profiles.

492 4 Discussion

493 4.1 Sources of Discrepancies


494 The ion convection comparisons of PFISR estimates with the GITM-HIME[V] and
 495 GITM-HIME[T] simulations demonstrated promising results for the presented meso-scale
 496 electric field variability modeling approach. The data-model comparisons of the electron den-
 497 sity, electron and ion temperatures along the PFISR beams showed some disagreements.
 498 Among compared quantities, the simulated neutral wind profiles showed the most discrep-
 499 ency compared to the observations, in addition to a very small response to the meso-scale
 500 drivers. A detailed study on thermospheric weather simulations was conducted Harding
 501 et al. (2019). Their results demonstrated that GITM simulations of neutral winds only
 502 showed limited spatial variability and had a low correlation factor compared with the ob-
 503 servations. Therefore, we conclude that the poor agreement with the modeled and observed
 504 neutral winds, is not immediately related to the scale of the driving. ^{c1}However, recent
 505 results by Zou et al. (2018) showed that meso-scale F region winds respond to transient
 506 nightside plasma flows, and the responsiveness could be explained with strong ionization
 507 and enhanced electron density associated with auroras. The remainder of this subsection
 508 will focus on the electron density response.

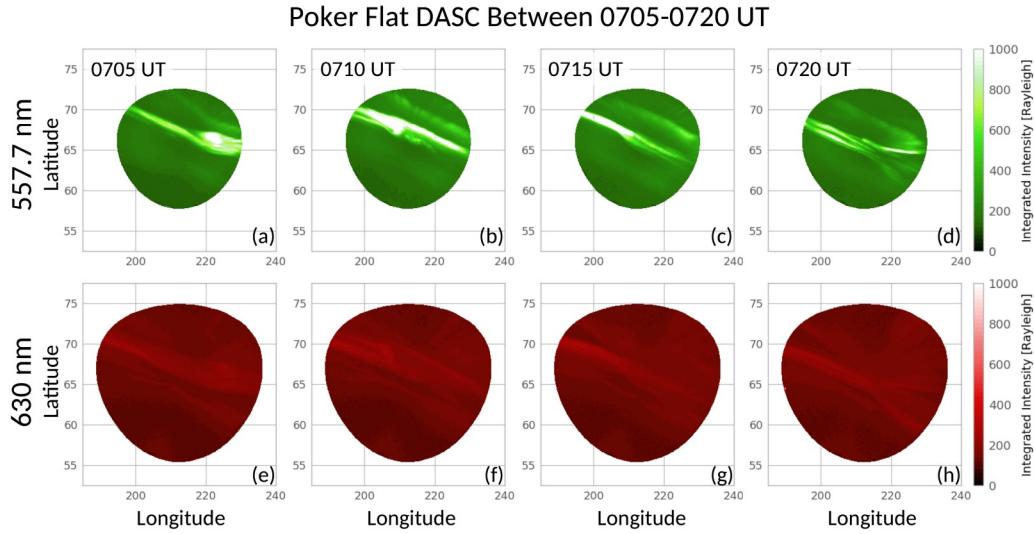
509 To understand the reasons for the disagreement in simulated and observed electron
 510 densities, we will first look at the comparisons illustrated in Figure 9b and e, in which the
 511 time series of data from Beam 11 at 162 km and 245 km altitudes were displayed. The
 512 PFISR electron density measurements showed some minute-to-minute changes, however
 513 there were three intervals of enhancement that was consistent between these two altitudes.
 514 These intervals were between 0640 to 0650 UT, 0705 to 0725 UT, and 0745 to 0755 UT.
 515 One possible explanation for the underestimated electron density is the meso-scale electron
 516 precipitation that might have occurred during these intervals.


517 Figure 14 shows the Poker Flat DASC green (top row) and red (bottom row) line images
 518 between 0630-0650 UT. The green line images shows a significant enhancement in intensity,
 519 exceeding 1000 Rayleighs, between 65° to 70° latitudes and 210° to 220° longitudes at 0640
 520 UT. At 0645 UT, the enhancement is confined in a narrow band located at the northeast
 521 corner and the intensity starts to diminish by 0650 UT. The red line profiles shown in bottom
 522 row does not demonstrate a significant variation. The intensity enhancements seen in red
 523 line images were around 300 Rayleigh. The second interval is displayed in Figure 15. The
 524 green line images showed multiple arc like formations between 0705 to 0720 UT. At 0705
 525 UT, with the peak intensity centered around 66° latitude and 221° longitude. At 0710 UT,
 526 the peak intensity was located around 68° latitude and 210° longitude. At 0715 and 0720

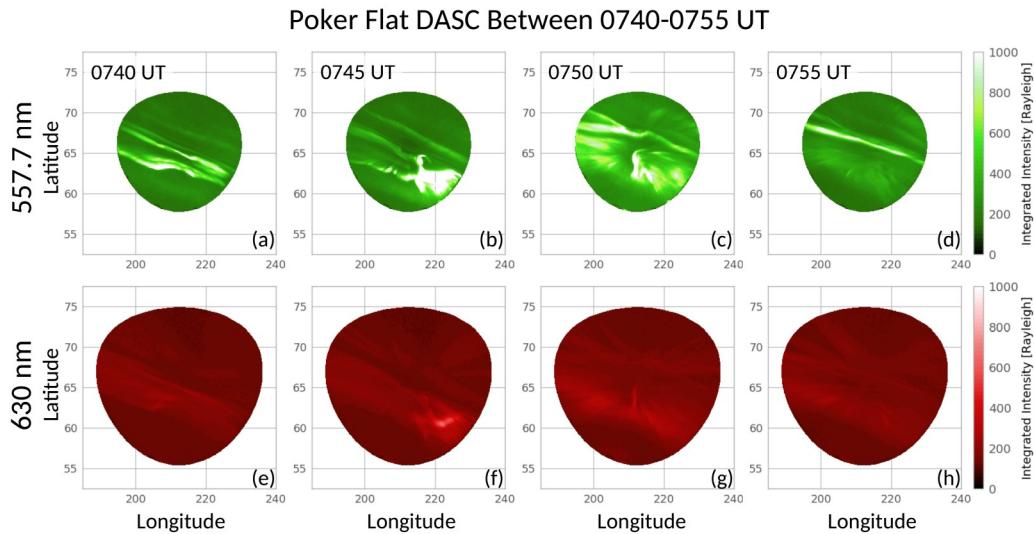
^{c1} DSO: Text added.

^{c1} DSO: Text added.

Figure 13. The temporal variation of the modeled and observed neutral velocity components are shown between 0630-0800 UT. The gray lines show SDI neutral velocity measurements, the yellow (GITM[W]), green (GITM[HIME[B]]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses at 250 km. The upper panels show east-west (a,b,c), middle panels (d,e,f) show north-south and bottom panels (g,h,i) show upward components of neutral velocity. The left column (a,d,g) show velocities taken from Eagle Site, middle column (b,e,h) values are taken from Poker Site, and the values on the right column (c,f,i) are taken from Toolik Site.


Figure 14. The Poker Flat DASC images corresponding to the first peak seen in PFISR Beam-11 data are shown. The images show green and red line emissions at 0630 (a and e), 0640 (b and f), 0645 (c and g), and 0650 UT (d and h).

UT, the main arc started to diminish. The red line images on the bottom row of Figure 15 showed a persistent, narrow arc with a lower intensity around 400 Rayleigh, spanning through 70° to 65° latitude of the DASC FOV. The third interval between 0740 to 0755 UT was very dynamic as displayed in Figure 16. The green line emissions were strong, exceeding 1000 Rayleigh, and peaked at 0745 and 0750 UT, spanning a wide range in latitude and longitude. These peaks were visible in the red line images, with intensity enhancements around 700 Rayleigh. Overall intensity of the auroral features seen in green line images were higher from the red line images. The green line images correspond to [c² 100-150 km altitude](#), whereas the red line images correspond to 250 km altitude. The PFISR electron density measurements for Beam-11 shown in Figure 9b and e also showed differences based on altitude, where the enhancement in the 162 km profile was significantly larger than the enhancement in the 245 km profile. The video showing the temporal evolution of the visible aurora with Poker Flat DASC 427.8 nm is not discussed here, since this line corresponds to lower altitudes (100 km).


The dynamic features shown in Figures 14, 15, and 16 indicate significant electron precipitation at meso-scales (Syräsuo & Donovan, 2002; Nishimura et al., 2010), supported by the rapid changes in time. However, the Ovation model used to drive GITM and GITM-HIME, is a large-scale precipitation model and can not resolve these meso-scale precipitation features. The electric fields and auroral precipitation are known to have an inverse relationship at auroral region (Evans et al., 1977) and their self-consistent treatment is crucial to further understand the meso-scale variability in the I-T system.

Not accounting for the meso-scale precipitation of energetic particles may also result in mischaracterization of the electron temperature profiles shown in Figure 10. The enhanced electron temperature changes the electron density profile through production and transport. Since the electron production due to photoionization remains the same and the meso-scale precipitation is not accounted for in all four simulations, the electron temperature doesn't change between different runs, resulting in similar photoionization, radiative, and dissoci-

[c² DSO: 100-km](#)

Figure 15. The Poker Flat DASC images corresponding to the second peak seen in PFISR Beam-11 data are shown. The images show green and red line emissions at 0705 (a and e), 0710 (b and f), 0715 (c and g), and 0720 UT (d and h).

Figure 16. The Poker Flat DASC images corresponding to the third peak seen in PFISR Beam-11 data are shown. The images show green and red line emissions at 0740 (a and e), 0745 (b and f), 0750 (c and g), and 0755 UT (d and h).

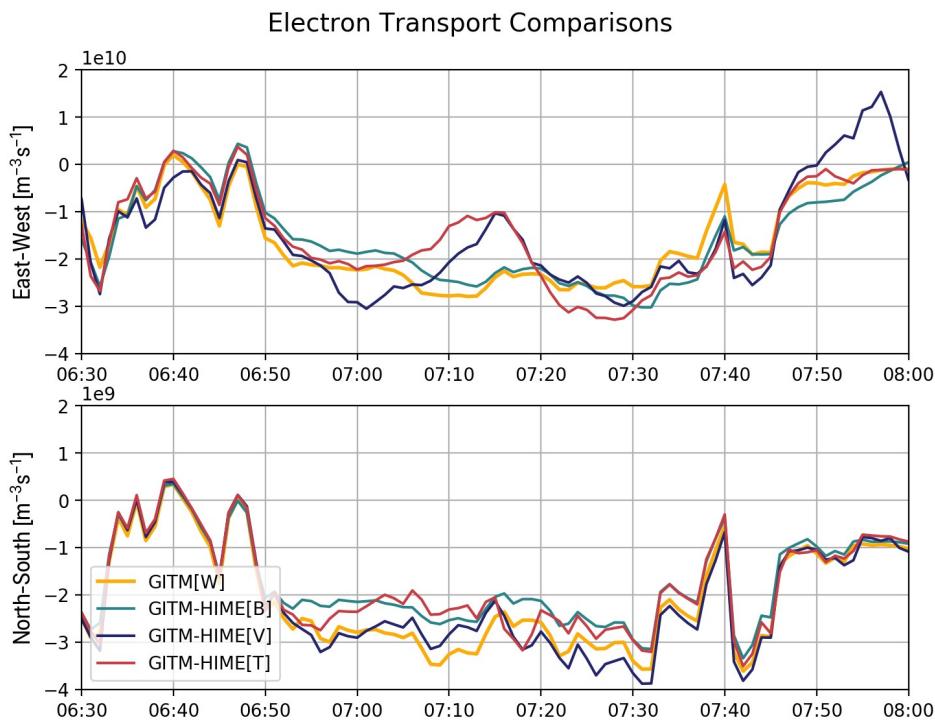
554 tive recombination rates for electrons. Although the change in simulated electron density
 555 can not be attributed solely to chemical production, transport can explain the differences
 556 among HIME-driven responses between 0700-0730 UT shown in Figure 9. We calculate the
 557 electron density change rate at 250 km due to transport in east-west and north-south direc-
 558 tions as discussed in Meng et al. (2016). To account for the east-west transport the change
 559 in electron momentum flux is calculated between the east-west boundaries of the PFISR do-
 560 main where the drivers were altered. Similarly, to calculate the north-south transport rates
 561 the electron momentum flux change between the north-south boundaries of the PFISR do-
 562 main were used. The expressions used in calculating the rate of change in electron density
 563 due to transport terms are shown in Equations 8 and 9.

$$564 \left(\frac{dn_e}{dt} \right)_{ew} = \frac{\langle nV \rangle_{east} - \langle nV \rangle_{west}}{\Delta x} \quad (8)$$

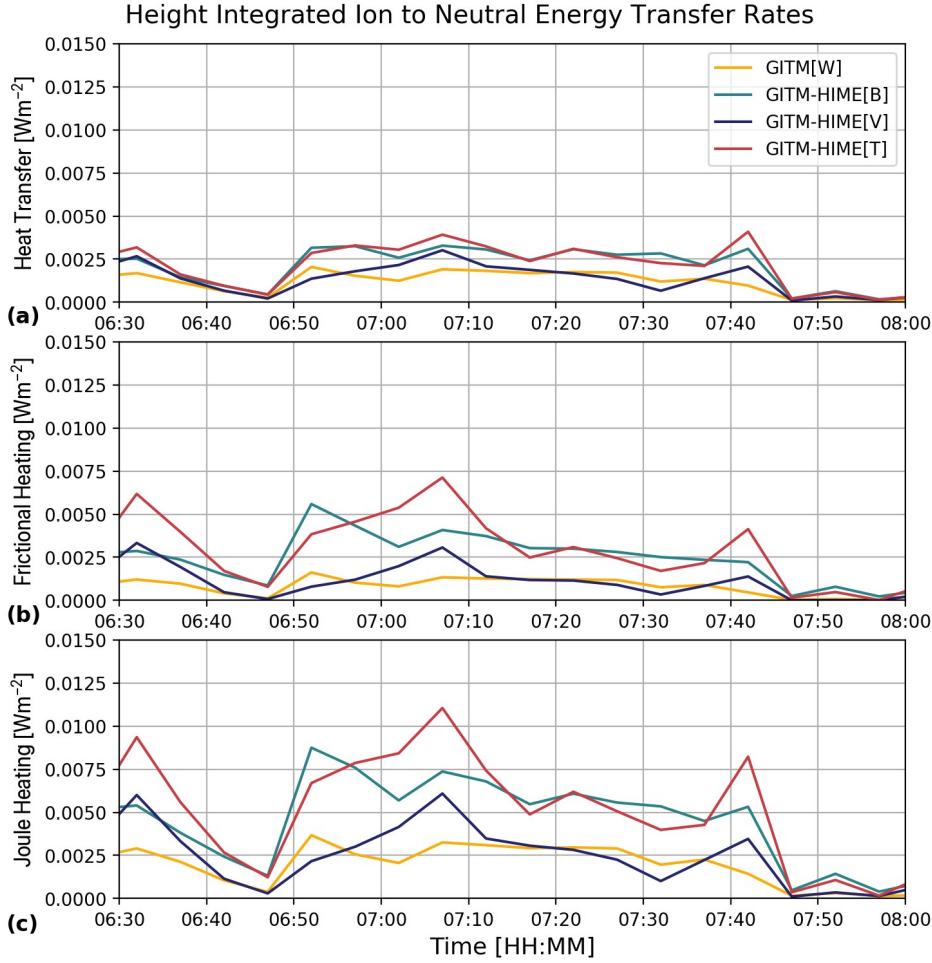
$$565 \left(\frac{dn_e}{dt} \right)_{ns} = \frac{\langle nV \rangle_{north} - \langle nV \rangle_{south}}{\Delta y} \quad (9)$$

566 Here n_e shows the electron density, V was taken as the ion velocity, and $\langle \rangle$ denote
 567 averages along the boundaries. Δx and Δy correspond to the height (maximum latitude-
 568 minimum latitude) and width (maximum longitude-minimum longitude) of the PFISR do-
 569 main.

570 Figure 17 shows the temporal evolution of the east-west (a) and north-south (b) trans-
 571 port rates inside the PFISR domain. The east-west transport rates are an order of magnitude
 572 higher than the north-south transport rates, owing to the strong northward electric fields,
 573 and westward ion convection. Around 0656 UT, the GITM-HIME[V] transport rates start
 574 to increase in the westward direction, followed by a decrease at 0701 UT. This decrease was
 575 also seen in GITM-HIME[T] transport rates until 0716 UT. The increase and decrease in
 576 GITM-HIME[V] westward transport explains the decrease and increase seen in the GITM-
 577 HIME[V] electron density (Figure 9e) profile. Similarly the decrease in GITM-HIME[T]
 578 transport coincides with the increase seen in the corresponding electron density (Figure 9e)
 579 profile.


580 4.2 Evaluation of Ion to Neutral Energy Transport Terms

581 The ion temperature peaks didn't compare well with the observed peaks. Investigating
 582 Figure 11e in detail shows that the addition of variability improves the estimates of ion
 583 temperature peaks, whereas including the background potentials corrects the trend and
 584 magnitude of simulation results. In order to understand the ion temperature behaviour, the
 585 factors contributing to the temporal variation of the ion temperature in GITM should be
 586 considered. The contributions from the collision and frictional terms in the energy transfer
 587 equation are shown in Equation 10.


$$588 \frac{dT_i}{dt} = \sum_i \frac{1}{\rho C_p} \frac{n_i m_i v_{in}}{m_n + m_i} 3k_B (T_n - T_i) + m_n (u_n - v_i)^2 \quad (10)$$

589 Here ρ denotes mass density, C_p is the heat capacity, n is the number density, m is the
 590 mass, v_{in} is the ion-collision frequency, k_B is the Boltzmann coefficient, T is the temperature,
 591 while u_n and v_i denote the neutral and ion velocities. The i and n subscripts refer to ions
 592 and neutrals. In the results section, we have discussed that the missing electron precipitation
 593 may be responsible for the disagreement between the observed and simulated electron den-
 594 sity responses. Neutral wind observations and simulations also showed disparities, further
 595 playing into the mischaracterization of ion temperature.

596 Despite the underestimated ion temperatures the model results are still useful in un-
 597 derstanding the coupling between I-T systems. For large-scale and quasi-static structures at

Figure 17. The east-west (a) and north-south (b) components of the electron transport are plotted in between 0630–0800 UT. The yellow (GITM[W]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses.

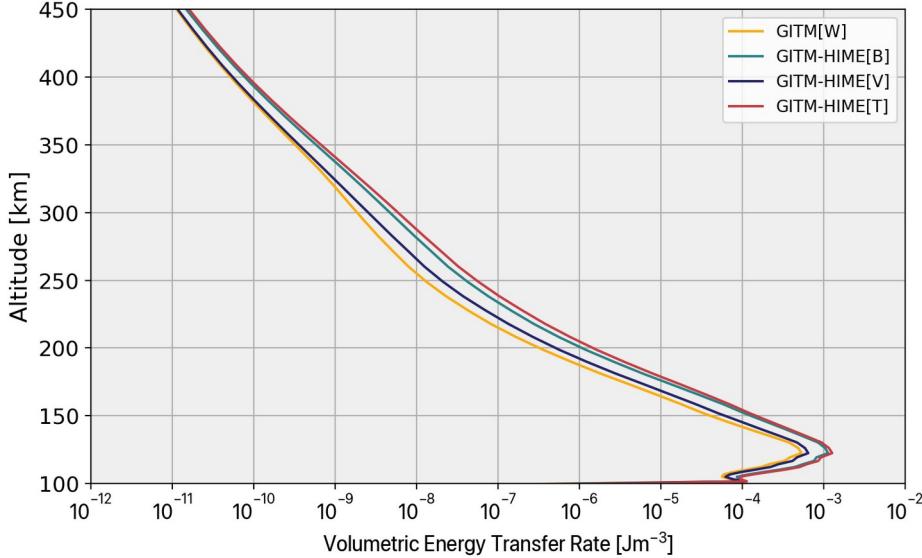


Figure 18. The ion to neutral heat transfer (a), frictional heating (b), and Joule heating (c) rates are plotted in between 0630-0800 UT. The yellow (GITM[W]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses.

high-latitudes, the ion-to-neutral heat transfer rate ($3k_B(T_n - T_i)$ term) and the ion-neutral frictional heating rate ($m_n(u_n - v_i)^2$) can be assumed equal ((Thayer & Semeter, 2004), (Schunk & Nagy, 2009), (J. Zhu et al., 2016)). Following the definition of J. Zhu et al. (2016), the Joule heating rate is treated as the complete neutral to ion collisional energy transfer rate as shown in Equation 11.

$$\frac{dE_i}{dt} = \sum_i \frac{n_i m_i v_{in}}{m_n + m_i} 3k_B(T_n - T_i) + m_n(u_n - v_i)^2 \quad (11)$$

Figure 18 shows height-integrated ion to neutral heat transfer, frictional heating and Joule heating transfer rates calculated at every 5 minutes for four simulations. The heat transfer profile displays a peak around 0632 UT, followed by a drop. The transfer rate increases again around 0647 UT and stays around 0.003 W/m^2 until 0747 UT. The GITM-HIME[B] and GITM-HIME[T] simulations produce heat transfer rates that are around 0.002 W/m^2 higher than GITM[W] simulations between 0647 UT to 0737 UT, followed by a peak of 0.004 W/m^2 that GITM[W] missed. The frictional heating rate (Figure 18b) for

Figure 19. The vertical profile of ion to neutral volumetric energy transfer rates integrated between 0630–0800 UT are demonstrated. The yellow (GITM[W]), green (GITM-HIME[B]), blue (GITM-HIME[V]), and red (GITM-HIME[T]) lines show simulated responses.

611 GITM[W] does not vary significantly compared to the heat transfer rate. On the other hand,
 612 the GITM-HIME[B], GITM-HIME[V] and GITM-HIME[T] simulations all produce higher
 613 frictional heating rates. The Joule heating rate, which is treated as the sum of ion to neutral
 614 heat transfer and frictional heating rates, is shown in Figure 18c. It follows a similar trend to
 615 the frictional heating rate profile. Overall, the GITM-HIME[V] and GITM-HIME[T] rates
 616 produce three peaks at 0632 UT, 0707 UT, and 0742 UT. These enhancements all coincide
 617 with the increased ion temperature shown in Figure 11e. Altogether, both height-integrated
 618 heat transfer, frictional and Joule heating rates significantly differ from the GITM[W] results
 619 when more realistic drivers are employed. It is also important to note that the highest
 620 contribution to the height-integrated energy transfer rates comes from altitudes below 150
 621 km during the entire period.

622 Figure 19 illustrates the altitude profile of the total ion to neutral volumetric energy
 623 transfer (Joule heating) rates obtained from the simulations. It can be seen that the GITM-
 624 HIME[T] and GITM-HIME[B] simulations resulted in higher energy transfer rates starting
 625 from 110 km compared to GITM[W] simulations. This difference became especially more
 626 pronounced between 180–300 km, where the GITM-HIME[V] energy transfer rates were twice
 627 the magnitude of GITM[W] transfer rates. These results yield an average enhancement of
 628 30 nW/m^{-3} in GITM-HIME[V], 110 nW/m^{-3} in GITM-HIME[B], and 140 nW/m^{-3} in
 629 GITM-HIME[T] simulations compared with the GITM[W] results at 120 km. Likewise
 630 the Alfvénic heating study conducted by Lotko and Zhang (2018), found the heating due
 631 to variability (66 mV/m) around 10 nW/m^{-3} , and due to a quasi-static field (similar to
 632 our GITM-HIME[B] approach) around 38 nW/m^{-3} higher than the simulated response
 633 with a Weimer type electric field at the same altitude. The simulated values at F region
 634 altitudes follow a similar trend, however the magnitudes are very low due to nighttime
 635 electron densities to be compared directly. Verkhoglyadova et al. (2018) estimated the
 636 energy deposition to reach about 10% of the overall energy budget calculated with a static
 637 field around 250 km at high-latitudes. In this study we have shown the energy deposited
 638 from ions to neutrals increased by 1.7 times for the GITM-HIME[V], 3.1 for the GITM-

639 HIME[B] and 4.5 for the GITM-HIME[T] simulations compared to GITM[W] at the same
 640 altitude. Ultimately, the meso-scale electric fields deposit more energy locally than the
 641 large-scale electric fields. The overall energy deposited can depend on magnetic local time,
 642 latitude, and magnitude of the fluctuations.

643 4.3 Future work

644 This study makes use of various empirical and physical relations, assumptions, ap-
 645 proximations, numerical methods, observations and fitted data. As detailed in this paper,
 646 there are certain discrepancies that arise between the modeled behaviour and the observa-
 647 tions. We can understand some of these discrepancies better by categorizing them according
 648 to their reducibility as epistemic and aleatory (Choi et al., 2006). Epistemic uncertainties
 649 arise from the lack of or incomplete understanding of the underlying physical processes. The
 650 missing meso-scale particle precipitation in the model is a good example of the epistemic
 651 uncertainty. The Poker Flat DASC images (Figures 14, 15, and 16) have shown a signif-
 652 icantly different auroral structure compared to what the OVATION model can produce.

653 [^{c1}Previous studies on the auroral zone by Brekke et al. \(1974\) and Brekke and Hall \(1988\),](#)
 654 demonstrated that Hall and Pedersen conductivities are significantly altered due to particle
 655 precipitation. Therefore, not accounting for meso-scale particle precipitation can result in
 656 significant mischaracterization of the conductance profiles. As suggested by Cosgrove et al.
 657 (2009), the independent treatment of conductance and electric fields can lead to indefinite
 658 conclusions on whether Joule heating is over or underestimated by numerical models. Fu-
 659 ture work to merge the empirical large-scale precipitation model with the meso-scale particle
 660 precipitation, will significantly elevate the modeling effort presented.

661 Another source of epistemic uncertainty comes from the numerical method used to
 662 calculate and merge new potentials with the Weimer potentials as discussed in Section 2.2.
 663 We provided an error analysis in Figure 5 before the potentials were merged and showed
 664 that the errors we introduce with this method were on the order of 10^{-1} mV/m in x, and
 665 10^{-2} mV/m in y components of the electric field. Even though the Weimer potentials do not
 666 show significant change over the PFISR area that we modified, we still expect the errors to
 667 increase after the two potentials are added as shown in Figure 7. Finally, the Gaussian filter
 668 applied at the boundary of the PFISR domain for a smooth blending alters the potentials
 669 and adds to the electric field errors.

670 In addition to the epistemic uncertainties in the model, there are aleatory uncertain-
 671 ties that can not be immediately remedied. The aleatory uncertainties emerge from the
 672 measurement discrepancies, computation errors, lack of data and coverage. We identified
 673 the sources of these uncertainties as PFISR observations, fitted data, and other numerical
 674 assumptions in GITM. Among these, the PFISR observations and fitted data are the most
 675 prominent sources of uncertainty. Cosgrove and Codrescu (2009) suggested that there were
 676 two kinds of model error with different characteristics, namely the resolved-scale model un-
 677 certainty and the small-scale electric field variability. While the errors introduced by grid
 678 resolution constitute the resolved-scale model uncertainty, the PFISR estimates introduce
 679 further small-scale electric field uncertainties to the study. These measurements were ob-
 680 tained during nighttime at F region altitudes during low electron densities, resulting in low
 681 signal to noise ratios. These measurements were then fitted to a 2D grid (Nicolls et al.,
 682 2014), where the aleatory uncertainties further propagated to the final electric field prod-
 683 uct. The goodness of the fit parameter, which assesses whether or not the fitting model
 684 was appropriate (Press et al., 2007) was shown in Figure 8. These values deviate from the
 685 optimum value of 1 around the top, left and right boundaries, above 450 km altitude, in-
 686 troducing uncertainties to the upper boundary driver of GITM. A recent study by Chen et
 687 al. (2018) on investigating the role of uncertainties in electric field boundary conditions to

^{c1} DSO: Text added.

688 determine cross polar cap potential values revealed that epistemic uncertainties play a bigger
 689 role in the performance of their physical model. Morley et al. (2018) examined how the
 690 uncertainties in the solar wind input affect the ground magnetic perturbations and found
 691 various intervals that can be explained by the propagation of driver uncertainty. As the
 692 uncertainty quantification is becoming an integral part of space weather studies (Knipp et
 693 al., 2018), we plan to further evaluate the model performance with ensemble simulations
 694 accounting for the electric field errors. A future work will be conducted with a set of electric
 695 fields populated through a probability density function within the bounds of measurement
 696 errors using the same covariance matrix used for the fitting to run GITM.

697 The incorporation of the meso-scale electric fields in a global model was the first step of
 698 the HIME framework. As shown by this study, the crucial next development step for HIME
 699 is including the meso-scale particle precipitation information. The isinglassv3 experiment
 700 used in this study was designed to sample F region electric fields, however there are various
 701 PFISR modes, such as Themis36 and WorldDay40, which enable sampling E and F layers
 702 simultaneously using alternating codes and long pulses. With such experiments it is possible
 703 to obtain meso-scale electric field estimates as well as particle precipitation information.
 704 J. L. Semeter and Kamalabadi (2005) has demonstrated a technique for inverting ISR mea-
 705 surements to determine the electron energy spectrum, and later studies successfully applied
 706 the same inversion technique (Sivadas et al., 2017). Further case studies will be conducted
 707 to thoroughly validate the HIME framework using both meso-scale electric field and particle
 708 precipitation information.

709 **5 Conclusions**

710 We have developed and successfully implemented a new framework that can convey local
 711 2D measurements of high-latitude meso-scale electric fields as drivers in a global ionosphere
 712 thermosphere model. In the case study reported in the paper, HIME is constructed by
 713 combining the Weimer empirical model with regional estimates of dynamic electric field
 714 potential inferred from PFISR measurements. This approach was applied to modeling high-
 715 latitude nighttime I-T dynamics during 2 March 2017 with GITM. The choice of event
 716 was motivated by availability of a special multi-beam observational mode of PFISR. We
 717 designed four numerical experiments to understand the effects of multi-scale driving on
 718 the I-T system. The GITM simulations were driven with Weimer, Weimer merged with
 719 background, Weimer merged with variable, and Weimer merged with total electric field
 720 potentials. To validate our modeling effort, we conducted data-model comparisons with
 721 PFISR estimated ion velocity, as well as electron density, electron and ion temperatures
 722 along PFISR beams, and neutral wind data from SDIs. We inter-compared effects of large-
 723 scale and meso-scale driving on the I-T system. The modeling results agree reasonably well
 724 with observations given high levels of noise for several of the observed time series. There
 725 are also several notable discrepancies. We investigated the sources for temporal changes in
 726 plasma properties and quantified the amount of energy transferred from ions to neutrals by
 727 calculating the heat transfer rates. We concluded with a discussion on the limitations of the
 728 new framework and future directions of its development. The key findings of the paper are
 729 summarized below.

- 730 1. With the proposed framework, HIME, local electric field variability can be successfully
 731 conveyed to GITM.
- 732 2. Ion velocity variations are better captured by HIME-driven simulations.
- 733 3. Changes in simulated electron density for the modeled event are likely due to the
 734 horizontal transport mechanism, and the models do not reproduce the variability
 735 observed in the PFISR data.
- 736 4. We suggest the missing meso-scale particle precipitation is likely responsible for the
 737 underestimated electron density variations in the night-time high-latitude ionosphere.

738 5. Electron temperature measurements show rapid changes within 2 minutes. The sim-
 739 ulated responses are somewhat underestimated and are not sensitive to the scale of
 740 ^{c1}[electric field](#) driving.
 741 6. With meso-scale electric field driving, simulated ion temperature increases and be-
 742 comes more dynamic.
 743 7. The neutral wind velocities were not altered significantly through ^{c1}[regional meso-](#)
 744 scale driving.
 745 8. The frictional heating rate is larger than the ion to neutral heat transfer rates when
 746 meso-scale drivers are used.
 747 9. The deposited energy increases locally in HIME-driven simulations compared to Weimer-
 748 driven simulations above 110 km.
 749 10. ^{c2}[The meso-scale particle precipitation variations needs to be included to understand](#)
 750 [the effects of meso-scale variability on the I-T system.](#)

751 **Acknowledgments**

752 This work was performed at the Jet Propulsion Laboratory, California Institute of Technol-
 753 ogy, under a contract with NASA. Sponsorship of the Heliophysics Division of the NASA
 754 Science Mission Directorate is gratefully acknowledged. J. L. Semeter was supported by
 755 NSF grant AGS-1821135. This material is based upon work supported by the Poker Flat
 756 Incoherent Scatter Radar which is a major facility funded by the National Science Foun-
 757 dation through cooperative agreement AGS-1840962 to SRI International. The authors
 758 gratefully acknowledge Aaron J. Ridley (University of Michigan) for providing the source
 759 code of GITM. The authors appreciate discussions with Michael D. Hartinger (Space Sci-
 760 ence Institute), Stephen R. Kaepller (Clemson University), and Kristina A. Lynch (Dart-
 761 mouth College, NH) for helpful references on rocket observations. The resources supporting
 762 this work were provided by the NASA High-End Computing (HEC) Program through the
 763 NASA Advanced Supercomputing (NAS) Division at Ames Research Center. The solar
 764 wind parameters and activity indices were taken from the OMNI database. The authors
 765 gratefully acknowledge Mark Conde for maintaining the SDI data at <http://sdi-server.gi.alaska.edu/sdiweb/index.asp> and ASI data at <http://optics.gi.alaska.edu/optics/>. We thank the developers of Spacepy (<https://github.com/spacepy/spacepy.git>), AACGMV2 (<https://github.com/aburrell/aacgmv2.git>), and Dascutils (<https://github.com/space-physics/dascutils>) libraries, which were used in this study. The
 766 dataset for this study consisting of the PFISR estimates and prepared simulation inputs
 767 can be accessed at NASA Open Data, <https://open.nasa.gov/open-data/>. The dataset
 768 has been cleared for Unlimited Release and we are currently in the process of archiving the
 769 data, which can be found at doi: To Be Assigned.

774 **References**

775 Ahn, B.-J., Robinson, R. M., Kamide, Y., & Akasofu, S.-I. (1983). Electric conductivities,
 776 electric fields and auroral particle energy injection rate in the auroral ionosphere and
 777 their empirical relations to the horizontal magnetic disturbances. *Planetary and Space*
 778 *Science*, 31 (6), 641-653doi: 10.1016/0032-0633(83)90005-3
 779 Balthazar, R. L., Moffett, R. J., & Millward, G. H. (1997). A study of the joule and lorentz
 780 inputs in the production of atmospheric gravity waves in the upper thermosphere.
 781 *Annales Geophysicae*, 15 (6), 779-785.
 782 Birn, J., Drake, J. F., Shay, M. A., Rogers, B. N., Denton, R. E., Hesse, M., ...
 783 Pritchett, P. L. (2001). Geospaceenvironmental modeling (gem) magnetic re-

784 ^{c1}[DSO: Text added.](#)

785 ^{c1}[DSO: Text added.](#)

786 ^{c2}[DSO: Text added.](#)

connection challenge. *Journal of Geophysical Research*, 106 (A3), 3715-3719. doi: 10.1029/1999JA900449

Brekke, A., Doupnik, J. R., & Banks, P. M. (1974). Incoherent scatter measurements of e region conductivities and currents in the auroral zone. *Journal of Geophysical Research*, 79 (25), 3773-3790doi: doi:10.1029/JA079i025p03773

Brekke, A., & Hall, C. (1988). Auroral ionospheric quiet summer time conductances auroral ionospheric quiet summer time conductances. *Annales Geophysicae*. doi: doi:1988AnGeo...6..361B

Brekke, A., & Kamide, Y. (1996). On the relationship between joule and frictional heating in the polar ionosphere. *Journal of Atmospheric and Terrestrial Physics*, 58 , 139-143. doi: 10.1016/0021-9169(95)00025-9

Chen, M. W., O'Brien, T. P., Lemon, C. L., & Guild, T. B. (2018). Effects of uncertainties in electric field boundary conditions for ring current simulations. *Journal of Geophysical Research: Space Physics*, 123 , 638-652doi: 10.1002/2017JA024496

Choi, S.-K., Grandhi, R. V., & Cranfield, R. A. (2006). *Reliability-based structural design*. Springer.

Clayton, R., Lynch, K., Zettergren, M., Burleigh, M., Conde, M., Grubbs, G., . . . Varney, R. (2019). Two-dimensional maps of in situ ionospheric plasma flow data near auroral arcs using auroral imagery. *Journal of Geophysical Research: Space Physics*, 124 , 3036-3056.doi: 10.1029/2018JA026440

Codrescu, M. V., Fuller-Rowell, T. J., & Foster, J. C. (1995). On the importance of e-field variability for joule heating in the high-latitude thermosphere. *Geophysical Research Letters*, 22 (17), 2393-2396.doi: 10.1029/95GL01909

Conde, M., Craven, J. D., Immel, T., Hoch, E., Stenbaek-Nielsen, H., Hallinan, T., . . . Sigwarth, J. (2001). Assimilated observations of thermospheric winds, the aurora, and ionospheric currents over alaska. *Journal of Geophysical Research*, 106 (A6), 10493-10508. doi: 10.1029/2000JA000135

Conde, M., & Smith, R. W. (1995). Mapping thermospheric winds in the auroral zone. *Geophysical Research Letters*. doi: 10.1029/95GL02437

Connor, H. K., Zesta, E., Fedrizzi, M., Shi, Y., Raeder, J., Codrescu, M. V., & Fuller-Rowell, T. J. (2016). Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy inputOpenGCM-ctm results. *Journal of Space Weather and Space Climate*, 6 (A25)doi: 10.1051/swsc/2016019

Cosgrove, R. B., & Codrescu, M. (2009). Electric field variability and model uncertainty: A classification of source terms in estimating the squared electric field from an electric field model. *Journal of Geophysical Research*, 114 (A06301). doi: 10.1029/2008JA013929

Cosgrove, R. B., Lu, G., Bahcivan, H., Matsuo, T., Heinzelman, C. J., & McCready, M. A. (2009). Comparison of amie-modeled and sondrestrom-measured joule heating: A study in model resolution and electric field-conductivity correlation. *Journal of Geophysical Research*, 114 (A04316)doi: 10.1029/2008JA013508

Cousins, E. D. P., & Shepherd, S. G. (2012). Statistical characteristics of small-scale spatial and temporalelectric field variability in the high-latitude ionosphere. *Journal of Geophysical Research*, 117 (A03317)doi: 10.1029/2011JA017383

Crowley, G., & Hackert, C. L. (2001). Quantification of high latitude electric field variability. *Geophysical Research Letters*. doi: 10.1029/2000GL012624

Crowley, G., Hackert, C. L., Meier, R. R., Strickland, D. J., Paxton, L. J., Pi, X., . . . Wene, G. (2006). Global thermosphere-ionosphere response to onset of 20 november 2003 magnetic storm. *Journal of Geophysical Research*, 111 (A10S18)doi: 10.1029/2005JA011518

Deng, Y., Maute, A., Richmond, A. D., & Roble, R. G. (2009). Impact of electric field variability on joule heating and thermospheric temperature and density. *Geophysical Research Letters*, 36 (L08105)doi: 10.1029/2008GL036916

Deng, Y., & Ridley, A. J. (2006). Dependence of neutral winds on convection e-field, solar eu, and auroral particle precipitation at high latitudes. *Journal of Geophysical*

Research, 111 (A09306)doi: 10.1029/2005JA011368

Deng, Y., & Ridley, A. J. (2007). Possible reasons for underestimating joule heating in global models: E field variability, spatial resolution, and vertical velocity. *Journal of Geophysical Research*, 112 doi: 10.1029/2006JA012006

Deng, Y., Zhu, Q., Lin, C. Y., Sheng, C., Zhao, Y., & Tsyka, J. (2019). Influence of meso-scale forcing on the ionosphere-thermosphere system: Gitm simulations. In *Sa51a - multiscale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere-mesosphere system* i. <https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/487717>.

Dhadly, M. S., Meriwether, J., Conde, M., & Hampton, D. (2015). First ever cross comparison of thermospheric wind measured by narrow- and wide-field optical doppler spectroscopy. *Journal of Geophysical Research: Space Physics*, 120, 9683-9705. doi: 10.1002/2015JA021316

Emery, B. A., Lathuillere, C., Richards, P. G., Roble, R. G., Buonsanto, M. J., Knipp, D. J., . . . Niciejewski, R. (1999). Time dependent thermospheric neutral response to the 2-11 november 1993 storm period. *Journal of Atmospheric and Solar-Terrestrial Physics*, 61, 329-350. doi: 10.1016/S1364-6826(98)00137-0

Evans, D. S., Maynard, N. C., Trøim, J., Jacobsen, T., & Egeland, A. (1977). Auroral vector electric field and particle comparisons, 2 electrodynamics of an arc. *Journal of Geophysical Research*, 82 (16), 2235-2249. doi: 10.1029/JA082i016p02235

Fernandes, P. A., Lynch, K. A., Zettergren, M., Hampton, D. L., Bekkeng, T. A., Cohen, I. J., . . . Powell, S. P. (2016). Measuring the seeds of ion outflow: Auroral sounding rocket observations of low-altitude ion heating and circulation. *Journal of Geophysical Research: Space Physics*, 121, 1587-1607. doi: 10.1002/2015JA021536

Forsyth, C., Rae, I. J., Mann, I. R., & Pakhotin, I. P. (2017). Identifying intervals of temporally invariant field-aligned currents from swarm: Assessing the validity of single-spacecraft methods. *Journal of Geophysical Research Space Physics*, 122, 3411-3419. doi: 10.1002/2016JA023708

Fujita, S., Tanaka, T., Kikuchi, T., Fujimoto, K., Hosokawa, K., & Itonaga, M. (2003a). A numerical simulation of the geomagnetic sudden commencement 1. generation of the field-aligned current associated with the preliminary impulse. *Journal of Geophysical Research*. doi: 10.1029/2002JA009407

Fuller-Rowell, T. J., & Evans, D. S. (92). Height-integrated pedersen and hall conductivity patterns inferred from the tiros-noaa satellite data. *Journal of Geophysical Research*, A7 (7606-7618). doi: 10.1029/JA092iA07p07606

Gjerloev, J. W., Ohtani, S., Iijima, T., Anderson, B., Slavin, J. A., & Le, G. (2011). Characteristics of the terrestrial field-aligned current system. *Annales Geophysicae*, 29, 1713-1729. doi: 10.5194/angeo-29-1713-2011

Goodman, M. L. (1995). A three-dimensional, iterative mapping procedure for the implementation of an ionosphere-magnetosphere anisotropic ohm's law boundary condition in global magnetohydrodynamic simulations. *Annales Geophysicae*, 13 (8), 843-853. doi: 10.1007/s00585-995-0843-z

Grubbs, G. A., Zettergren, M. D., Samara, M., Michell, R., Hampton, D. L., Lynch, K. A., . . . Burleigh, M. (2017). Data-driven local-scale modeling of ionospheric responses to auroral forcing using incoherent scatter radar and ground-based imaging measurements. In *American geophysical union, fall meeting*.

Harding, B. J., Ridley, A. J., & Makela, J. J. (2019). Thermospheric weather as observed by ground-based fpis and modeled by gitm. *Journal of Geophysical Research: Space Physics*, 124, 1307-1316. doi: 10.1029/2018JA026032

Hardy, D. A., Gussenhoven, M. S., & Holeman, E. (1985). A statistical model of auroral electron precipitation. *Journal of Geophysical Research*, 90 (A5), 4229-4248. doi: 10.1029/JA090iA05p04229

Heelis, R. A., & Coley, W. R. (1988). Global and local joule heating effects seen by de 2. *Journal of Geophysical Research*, 93 (A7), 7551-7557. doi: 10.1029/JA093iA07p07551

Heelis, R. A., Lowell, J. K., & Spiro, R. W. (1982). A model of the high-latitude ionospheric

894 convection pattern. *Journal of Geophysical Research*, 87, 6339-6345. doi: 10.1029/
 895 JA087iA08p06339

896 Heinselman, C. J., & Nicolls, M. J. (2008). A bayesian approach to electric field and
 897 e-region neutral wind estimation with the poker flat advanced modular incoherent
 898 scatter radar. *Radio Science*, 43. doi: 10.1029/2007RS003805

899 Heppner, J. P., & Maynard, N. C. (1987). Empirical high latitude electric field models.
 900 *Journal of Geophysical Research*, 92, 4467-4489doi: 10.1029/JA092iA05p04467

901 Iijima, T., & Potemra, T. A. (1976). Field-aligned currents in the dayside cusp ob-
 902 served by triad. *Journal of Geophysical Research*, 81 (34), 5971-5979. doi: 10.1029/
 903 JA081i034p05971

904 Janhunen, P., Koskinen, K. E. J., & Pulkinen, T. I. (1996, May). *A new global ionosphere-
 905 magnetosphere coupling simulation utilizing locally varying time step* (No. 205). Paris:
 906 European Space Agency.

907 Jones, E., Oliphant, R., Peterson, P., et al. (2001). *Scipy: Open source scientific tools for
 908 python*. Retrieved 2019-08-22, from <http://www.scipy.org/>

909 Kataoka, R., Fukunishi, H., Fujita, S., Tanaka, T., & Itonaga, M. (2004). Transient response
 910 of the earth's magnetosphere to a localized density pulse in the solar windSimulation
 911 of traveling convection vortices. *Journal of Geophysical Research*. doi: 10.1029/
 912 2003JA010287

913 Khazanov, G. V., Sibeck, D. G., & Zesta, E. (2017). Major pathways to electron distribution
 914 function formation in regions of diffuse aurora. *Journal of Geophysical Research: Space
 915 Physics*, 122, 4251-4265doi: 10.1002/2017JA023956

916 Knight, S. (1973). Parallel electric fields. *Planetary and Space Science*, 21 (5), 741-750doi:
 917 10.1016/0032-0633(73)90093-7

918 Knipp, D. J., Hapgood, M. A., & Welling, D. T. (2018). Communicating uncertainty
 919 and reliability in space weather data, models and applications. *Space Weather*, 16,
 920 1453-1454.doi: 10.1029/2018SW002083

921 Knipp, D. J., Tobiska, W. K., & Emery, B. A. (2004). Direct and indirect thermospheric
 922 heating sources for solar cycles 21-23. *Solar Physics*, 224 (495). doi: 10.1007/s11207
 923 -005-6393-4

924 Knipp, D. J., Welliver, T., McHard, M. G., Chun, F. K., Tobiska, W. K., & and, D. E.
 925 (2005). Climatology of extreme upper atmospheric heating events. *Advances in Space
 926 Research*, 36 (12), 2506-2510doi: 10.1016/j.asr.2004.02.019

927 Lei, J., Liu, L., Wan, W., & Zhang, S.-R. (2004). Modeling the behavior of ionosphere
 928 above millstone hill during the september 21-27, 1998 storm. *Journal of Atmospheric
 929 and Solar-Terrestrial Physics*, 66 (12), 1093-1102doi: 10.1016/j.jastp.2004.04.004

930 Liuzzo, L. R., Ridley, A. J., Perlongo, N. J., Mitchell, E. J., Conde, M., Hampton, D. L.,
 931 . . . Nicolls, M. J. (2014). High-latitude ionospheric drivers and their effects on wind
 932 patterns in the thermosphere. *Journal of Geophysical Research: Space Physics*, 120,
 933 715-735. doi: 10.1002/2014JA020553

934 Lotko, W., & Zhang, B. (2018). Alfvénic heating in the cusp ionosphere-thermosphere.
 935 *Journal of Geophysical Research: Space Physics*, 123, 10368-10383. doi: 10.1029/
 936 2018JA025990

937 Lu, G., Hagan, M. E., Hausler, K., Doornbos, E., Bruinsma, S., Anderson, B. J., & Korth, H.
 938 (2014). Global ionospheric and thermospheric response to the 5 april 2010 geomagnetic
 939 storm: An integrated data-model investigation. *Journal of Geophysical Research:
 940 Space Physics*, 119, 10358-10375doi: 10.1002/2014JA020555

941 Lu, G., Richmond, A. D., Ruohoniemi, J. M., Greenwald, R. A., Hairston, M., Rich, F. J.,
 942 & Evans, D. S. (2001). An investigation of the influence of data and model inputs on
 943 assimilative mapping of ionospheric electrodynamics. *Journal of Geophysical Research*,
 944 106 (A1), 417-433.doi: 10.1029/2000JA000606

945 Matsuo, T., Richmond, A. D., & Hensel, K. (2003). High-latitude ionospheric electric
 946 field variability and electric potential derived from de-2 plasma drift measurements:
 947 Dependence on imf and dipole tilt. *Journal of Geophysical Research: Space Physics*,
 948 108 (A1). doi: 10.1029/2002JA009429

949 Meng, X., Manucci, A. J., Verkhoglyadova, O. P., & Tsuratani, B. T. (2016). On forecasting
 950 ionospheric total electron content responses to high-speed solar wind streams. *Journal*
 951 *of Space Weather and Space Climate*, 6 (A19)doi: 10.1051/swsc/2016014

952 Mikhailov, A. V., & Foster, J. G. (1997). Daytime thermosphere above millstone hill during
 953 severe geomagnetic storms. *Journal of Geophysical Research*, 102 , 17275-17282doi:
 954 10.1029/97JA00879

955 Morley, S. K., Welling, D. T., & Woodroffe, J. R. (2018). Perturbed input ensemble modeling
 956 with the space weather modeling framework. *Space Weather* ,16 , 1330-1347. doi:
 957 10.1029/2018SW002000

958 Newell, P. T., Sotirelis, T., Ruohoniemi, J. M., Carberry, J. F., Liou, K., Skura, J. P., . . .
 959 Rich, F. J. (2002). Ovation: Oval variation, assessment, tracking, intensity, and online
 960 nowcasting. *Annales Geophysicae*, 20 , 1039-1047doi: 10.5194/angeo-20-1039-2002

961 Newell, P. T., Sotirelis, T., & Wing, S. (2009). Diffuse, monoenergetic, and broadband
 962 aurora: The global precipitation budget. *Journal of Geophysical Research*, 114 .doi:
 963 10.1029/2009JA014326

964 Nicolls, M. J., Cosgrove, R., & Bahcivan, H. (2014). Estimating the vector electric field
 965 using monostatic, multibeam incoherent scatter radar measurements. *Radio Science*,
 966 49 , 1124-1139doi: 10.1002/2014RS005519

967 Nishimura, Y., Lyons, L., Zou, S., Angelopoulos, V., & Mende, S. (2010). Substorm
 968 triggering by new plasma intrusion: Themis all-sky imager observations. *Journal of*
 969 *Geophysical Research*, 115 (A07222)doi: 10.1029/2009JA015166

970 Ozturk, D. S., Zou, S., Ridley, A. J., & Slavin, J. A. (2018). Modeling study of the geospace
 971 system response to the solar wind dynamic pressure enhancement on 17 march 2015.
 972 *Journal of Geophysical Research: Space Physics*.doi: 10.1002/2017JA025099

973 Ozturk, D. S., Zou, S., Slavin, J. A., & Ridley, A. J. (2019). Response of the geospace system
 974 to the solar wind dynamic pressure decrease on 11 june 2017:Numerical models and
 975 observations. *Journal of Geophysical Research: Space Physics*, 124 (4), 2613-2627. doi:
 976 10.1029/2018JA026315

977 Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). *Numerical*
 978 *recipes: The art of scientific computing* (Third Edition ed.). Cambridge University
 979 Press.

980 Raeder, J., Berchem, J., & Ashour-Abdalla, M. (1998). The geospace environment mod-
 981 eling grand challenge: Results from a global geospace circulation model. *Journal of*
 982 *Geophysical Research: Space Physics*.doi: 10.1029/98JA00014

983 Rastatter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu,
 984 M., . . . Welling, D. (2016). Gem-cedar challenge:Poynting flux at dmsp and modeled
 985 joule heat. *Space Weather* , 14 , 113-135doi: 10.1002/2015SW001238

986 Richards, P. G., Meier, R. R., & Wilkinson, P. J. (2010). On the consistency of satellite
 987 measurements of thermospheric composition and solar euv irradiance with australian
 988 ionosonde electron density data. *Journal of Geophysical Research*, 115doi: 10.1029/
 989 2010JA015368

990 Richmond, A. D. (2010). On the ionospheric application of poynting's theorem. *Journal of*
 991 *Geophysical Research*, 115 (A10311)doi: 10.1029/2010JA015768

992 Richmond, A. D., & Kamide, Y. (1988). Mapping electrodynamic features of the high-
 993 latitude ionosphere from localized observations: Technique. *Journal of Geophysical*
 994 *Research*, 93 (A6), 5741-5759doi: 10.1029/JA093iA06p05741

995 Richmond, A. D., Lu, G., Emery, B. A., & Knipp, D. J. (1998). The amie procedure:
 996 Prospects for space weather specification and prediction. *Advances in Space Research*,
 997 22 , 103-112.doi: 10.1016/S0273-1177(97)01108-3

998 Ridley, A. J., Deng, Y., & Toth, G. (2006). The global ionosphere-thermosphere model.
 999 *Journal of Atmospheric and Solar-Terrestrial Physics*. doi: 10.1016/j.jastp.2006.01
 1000 .008

1001 Ridley, A. J., Gombosi, T. I., & DeZeeuw, D. L. (2004). Ionospheric control of the
 1002 magnetosphere: conductance. *Annales Geophysicae*,22 (2), 567-584. doi: 10.5194/
 1003 angeo-22-567-2004

1004 Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., & Hardy, D. A. (1987). On calculating ionospheric conductances from the flux and energy of precipitating electrons.
 1005 *Journal of Geophysical Research*, 92 (A3), 2565-2569. doi:10.1029/JA092iA03p02565

1006 Roble, R. G., & Ridley, E. C. (1987). An auroral model for the ncar thermospheric general
 1007 circulation model (tgcm). *Annales Geophysicae*, 5 , 3369-382.

1008 Rodger, A. S., Well, G. D., Moffett, R. J., & Bailey, G. J. (2001). The variability of joule
 1009 heating, and its effects on the ionosphere and thermosphere. *Annales Geophysicae*,
 1010 19 , 773-781.doi: 10.5194/angeo-19-773-2001

1011 Schunk, R., & Nagy, A. (2009). *Ionospheres: Physics, plasma physics, and chemistry*
 1012 (cambridge atmospheric and space science series)Cambridge: Cambridge University
 1013 Press. doi: 10.1017/CBO9780511635342

1014 Semeter, J., Butler, T. W., Zettergren, M., Heinselman, C. J., & Nicolls, M. J. (2010). Composite imaging of auroral forms and convective flows during a substorm cycle.
 1015 *Journal of Geophysical Research*, 115 doi: 10.1029/2009JA014931

1016 Semeter, J. L., & Kamalabadi, F. (2005). Determination of primary electron spectra
 1017 from incoherent scatter radar measurements of the auroral e region. *Radio Science*,
 1018 40 (RS2006).doi: 10.1029/2004RS003042

1019 Sivadas, N., Semeter, J. L., Nishimura, Y., & Kero, A. (2017). Simultaneous measurements
 1020 of substorm-related electron energization in the ionosphere and the plasma sheet.
 1021 *Journal of Geophysical Research: Space Physics*, 122 , 10528-10547. doi: 10.1002/
 1022 2017JA023995

1023 Sydorenko, D., Rankin, R., & Yau, A. W. (2015). Enhanced n2 and o2 densities inferred
 1024 from eiscat observations of pc5 waves and associated electron precipitation. *Journal
 1025 of Geophysical Research: Space Physics*, 121 , 549-566doi: 10.1002/2015JA021508

1026 Syrjäasuo, M. T., & Donovan, E. (2002). Analysis of auroral imagesDetection and tracking.
 1027 *Geophysica*, 38 (1-2), 3-14.

1028 Thayer, J. P. (1998). Height-resolved joule heating rates in the high-latitude e region and
 1029 the influence of neutral winds. *Journal of Geophysical Research*,103 (A1), 471-487.
 1030 doi: 10.11029/97JA02536

1031 Thayer, J. P., & Semeter, J. (2004). The convergence of magnetospheric energy flux in the
 1032 polar atmosphere. *Journal of Atmospheric and Solar-Terrestrial Physics*, 66 , 807-824.
 1033 doi: 10.1016/j.jastp.2004.01.035

1034 Thayer, J. P., Vickrey, J. F., Heelis, R. A., & Gary, J. B. (1995). Interpretation and modeling
 1035 of high-latitude electromagnetic energy flux. *Journal of Geophysical Research*. doi:
 1036 10.1029/95JA01159

1037 Turner, N. E., Cramer, W. D., Earles, S. K., & Emery, B. A. (2009). Geoefficiency and
 1038 energy partitioning in cir-driven and cme-driven storms. *Journal of Atmospheric and
 1039 Solar-Terrestrial Physics*, 71 (10-11), 1023-1031doi: 10.1016/j.jastp.2009.02.005

1040 Verkhoglyadova, O. P., Meng, X., Manucci, A. J., & McGranaghan, R. M. (2018).
 1041 Semianalytical estimation of energy deposition in the ionosphere by monochromatic
 1042 alfvén waves.*Journal of Geophysical Research: Space Physics*,123 ,5210-5222.doi:
 1043 10.1029/2017JA025097

1044 Verkhoglyadova, O. P., Meng, X., Manucci, A. J., Mlynczak, M. G., Hunt, L. A., & Lu, G.
 1045 (2017). Ionosphere-thermosphere energy budgets for the icme storms of march 2013
 1046 and 2015 estimated with gitm and observational proxies. *Space Weather* ,15 . doi:
 1047 10.1002/2017SW001650

1048 Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to
 1049 calculating joule heating rates. *Journal of Geophysical Research*,110 . doi: 10.1029/
 1050 2004JA010884

1051 Williams, P. J. S., Crowley, G., Schlegel, J., Virdi, T. S., McCrea, I., Watking, G., . . .
 1052 Rodger, A. S. (1988). The generation and propagation of atmospheric gravity waves
 1053 observed during the worldwide atmospheric gravity-wave study (wags). *Journal of
 1054 Atmospheric and Terrestrial Physics*, 50 (4-5), 323-338. doi: 10.1016/0021-9169(88)
 1055 90018-9

1056 Wiltberger, M., Elkington, S., Guild, T., Baker, D., & Lyon, J. (2005). Simulations of iso-

1059 lated and storm time substorms. In T. I. Pulkinen, N. A. Tsyganenko, & R. H. Friedel
 1060 (Eds.), (Vol. In The Inner Magnetosphere: Physics and Modeling, p. 271-281).American
 1061 Geophysical Union. doi: 10.1029/155GM29

1062 Wiltberger, M., Weigel, R. S., Lotko, W., & Fedder, J. A. (2009). Modeling seasonal varia-
 1063 tions of auroral particle precipitation in a global-scale magnetosphere-ionosphere sim-
 1064 ulation. *Journal of Geophysical Research*, 114 (A01204). doi:10.1029/2008JA013108

1065 Yigit, E., & Ridley, A. J. (2011). Role of variability in determining the vertical wind
 1066 speeds and structure. *Journal of Geophysical Research*,116 (A12305). doi: 10.1029/
 1067 2011JA016714

1068 Yu., Y., & Ridley, A. J. (2011). Understanding the response of the ionosphere-magnetosphere
 1069 system to sudden solar wind density increases.*Journal of Geophysical Research*.doi:
 1070 10.1029/2010JA015871

1071 Zhang, X. Y., Zong, Q. G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., . . . Pu, Z. Y. (2010).
 1072 Ulf waves excited by negative/positive solar wind dynamic pressure impulses at geosyn-
 1073 chronous orbit. *Journal of Computational Physics*. doi: 10.1029/2009JA015016

1074 Zhang, Y., & Paxton, L. J. (2008). An empirical kp-dependent global auroral model based on
 1075 timed/guvi fuv data. *Journal of Atmospheric and Solar-Terrestrial Physics*, 70 (8-9),
 1076 1231-1242.doi: 10.1016/j.jastp.2008.03.008

1077 Zhu, J., Ridley, A. J., & Deng, Y. (2016). Simulating electron and ion temperature in
 1078 a global ionosphere thermosphere model:Validation and modeling an idealized sub-
 1079 storm. *Journal of Atmospheric and Solar-Terrestrial Physics*, 138-139 , 243-260doi:
 1080 10.1016/j.jastp.2016.01.005

1081 Zhu, Q., Deng, Y., Richmond, A., McGranaghan, R. M., & Maute, A. (2019). Impacts of
 1082 multiscale facets on the ionosphere-thermosphere systemGitm simulation. *Journal of
 1083 Geophysical Research:Space Physics*, 124 , 3532-3542doi: 10.1029/2018JA026082

1084 Zou, Y., Nishimura, Y., Lyons, L., Conde, M., Varney, R., Angelopoulos, V., & Mende, S.
 1085 (2018). Mesoscale f region neutral winds associated with quasi-steady and transient
 1086 nightside auroral forms. *Journal of GeophysicalResearch:Space Physics*, 123 , 7968-
 1087 7984. doi: doi:10.1029/2018JA025457