
Reinforcement Learning for Safety-Critical Control

under Model Uncertainty, using Control Lyapunov

Functions and Control Barrier Functions

Jason Choi∗1, Fernando Castañeda∗1, Claire J. Tomlin2, Koushil Sreenath1

1Department of Mechanical Engineering, 2Department of Electrical Engineering and Computer Sciences, UC Berkeley

Email: {jason.choi, fcastaneda, tomlin, koushils}@berkeley.edu

Abstract—In this paper, the issue of model uncertainty in
safety-critical control is addressed with a data-driven approach.
For this purpose, we utilize the structure of an input-ouput
linearization controller based on a nominal model along with a
Control Barrier Function and Control Lyapunov Function based
Quadratic Program (CBF-CLF-QP). Specifically, we propose a
novel reinforcement learning framework which learns the model
uncertainty present in the CBF and CLF constraints, as well
as other control-affine dynamic constraints in the quadratic
program. The trained policy is combined with the nominal model-
based CBF-CLF-QP, resulting in the Reinforcement Learning-
based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the
problem of model uncertainty in the safety constraints. The
performance of the proposed method is validated by testing it on
an underactuated nonlinear bipedal robot walking on randomly
spaced stepping stones with one step preview, obtaining stable
and safe walking under model uncertainty.

I. INTRODUCTION

In this work, we address the issue of model uncertainty

in safety-critical control using a data-driven machine learning

approach. Our goal is to benefit from the recent successes of

learning-based control in highly uncertain dynamical systems,

such as in Hwangbo et al. [11] and Levine et al. [12], yet

to also account for safety in a formal way. We seek to

combine the benefits of these data-driven approaches with the

benefits of classical model-based control methods which have

theoretical guarantees on stability and safety. Towards this

end, we use Control Lyapunov Function- and Control Barrier

Function-based controllers designed on nominal systems that

are then trained through reinforcement learning (RL) to work

on systems with uncertainty.

A. Related Work

In the field of controls, Control Lyapunov Function (CLF)-

based and Control Barrier Function (CBF)-based control meth-

ods have been shown to be successful for safety-critical con-

trol. Galloway et al. [9] and Ames and Powell [1] have shown

that CLF-based quadratic programs (CLF-QP) with constraints

∗ Indicates equal contribution.
The work of Jason Choi received the support of a fellowship from

Kwanjeong Educational Foundation, Korea. The work of Fernando Castañeda
received the support of a fellowship (code LCF/BQ/AA17/11610009) from
”la Caixa” Foundation (ID 100010434). This work was partially supported
through National Science Foundation Grant CMMI-1931853.

can be solved online in order to perform locomotion and

manipulation tasks. In Ames et al. [3], CBFs are incorporated

with the CLF-QP, namely CBF-CLF-QP, to handle safety

constraints effectively in real time.

These CLF-based and CBF-based methods heavily rely on

accurate knowledge of the system model. When the model

is uncertain, we must consider adaptive or robust versions.

In Nguyen and Sreenath [13], an L1 adaptive controller is

incorporated with the CLF-QP in order to adapt to model

uncertainty, and is shown to work effectively for bipedal

walking. In Nguyen and Sreenath [15], a robust version of the

CBF-CLF-QP is proposed, that solves the quadratic program

for the worst case effect of model uncertainty. While these

methods can tackle model uncertainty to some degree, they

may often fail to account for the correct magnitudes of

adaptation and uncertainty.

Recently, several methods addressing the issue of model un-

certainty in the control problem using a data-driven approach

have been proposed. Westenbroek et al. [22] proposes an RL-

based method to learn the model uncertainty compensation for

input-output linearization control. In Castañeda et al. [6] the

former method is extended to underactuated bipedal walking

on a flat terrain. Taylor et al. [19] and Taylor et al. [20] each

addresses how to learn the uncertainty in CLF and CBF con-

straints respectively, using empirical risk minimization. Our

methodologies most closely align with these works in that we

are also using learning methods to reduce model uncertainty

explicitly in input-output linearization, CLF, and CBF-based

control. However, the main novelty in our approach is that

we have devised a unified RL-based framework for learning

model uncertainty in CLF, CBF, and other dynamic control-

affine constraints altogether in a single learning process. In

addition to the aforementioned papers, there are also a few

approaches [4, 5, 8] that learn model uncertainty through

probabilistic models such as Gaussian Processes. Although

these approaches allow for an insightful analysis of the learned

model or policy, they can scale poorly with state dimension.

B. Contributions

In this paper, we present a novel RL-based framework which

combines two key components: 1) an RL agent which learns

model uncertainty in multiple general dynamic constraints

represented as a linear time-invariant system on the transverse

coordinates η, and the zero-dynamics:

{
η̇ = Fη +Gµ,

ż = p(η, z),
(6)

where

F =




0 Im . . 0
0 0 Im . 0
. . .

0 . . . Im
0 . . . 0




and G =




0
.

.

0
Im



, (7)

with F ∈ Rmr×mr and G ∈ Rmr×m.

B. Control Lyapunov Function Based Quadratic Programs

In Ames et al. [2] a control method that guarantees ex-

ponential stability of the transverse dynamics η with a rapid

enough convergence rate is presented. It introduces the con-

cept of a rapidly exponentially stabilizing control Lyapunov

function (RES-CLF). Specifically, a one-parameter family of

continuously differentiable functions Vε : R
mr → R is said to

be an RES-CLF for system (1) if ∃ γ, c1, c2 > 0 such that ∀
0 < ε < 1 and ∀ η ∈ Rmr, the following holds:

c1‖η‖
2 ≤ Vε(η) ≤

c2

ε2
‖η‖2, (8)

V̇ε(η, µ) +
λ

ε
Vε(η) ≤ 0. (9)

If we define a control input µ that makes η exponentially

stable, of the form

µ =

[
−

1

εr
Kr, ..., −

1

ε2
K2, −

1

ε
K1

]
η = Kη, (10)

where K ∈ Rm×mr, then we can choose a quadratic CLF

candidate Vε(η) = ηTPεη, where Pε is the solution of the

Lyapunov equation ATPε + PεA = −Q, with A being the

closed-loop dynamics matrix A = F + GK and Q any

symmetric positive-definite matrix. Defining f̄ = Fη, ḡ = G,

we can write the derivative of the RES-CLF as:

V̇ε(η, µ) = Lf̄Vε(η) + LḡVε(η)µ, (11)

with

Lf̄Vε(η) = η
T
(

F
T
Pε + PεF

)

η, LḡVε(η) = 2ηT
PεG.

(12)

We can then define for every time step an optimization

problem in which condition (9) becomes a linear constraint

on the auxiliary input µ. The objective function can be set to

minimize the norm of the control inputs, in which case the

optimization problem is a quadratic program (QP):

CLF-QP:

µ∗(x) = argmin
µ

µTµ (13)

s.t. V̇ε(η, µ) +
λ

ε
Vε(η) ≤ 0 (CLF)

C. Control Barrier Function and Control Lyapunov Function

Based Quadratic Programs

In Nguyen and Sreenath [14] the concept of an Exponential

Control Barrier Function (ECBF) is defined. Specifically, a

function B : Rm → R is an ECBF of relative degree rb for

the system (1) if there exists Kb ∈ R1×rb such that

sup
u

[
Lrb
f B(x) + LgL

rb−1
f B(x)u+Kbηb(x)

]
≥ 0 (14)

for ∀x ∈ {x ∈ Rn| B(x) ≥ 0} with

ηb(x) =















B(x)

Ḃ(x)

B̈(x)
...

B(rb−1)(x)















=















B(x)
LfB(x)
L2

fB(x)
...

L
rb−1
f B(x)















, (15)

that guarantees B(x0) ≥ 0 =⇒ B(x(t)) ≥ 0, ∀t ≥ 0.

We can then choose a virtual input µb that input-output

linearizes the ECBF dynamics:

B(rb)(x, µ) = Lrb
f B(x) + LgL

rb−1
f B(x)u(x, µ) =: µb, (16)

with u defined in (3). We refer readers to Nguyen and Sreenath

[14] for more details. The condition in (14) then translates to

choosing a µb such that

µb +Kbηb ≥ 0, (17)

which is added to the following QP, where safety is prioritized

over stability by relaxing the CLF constraint:

CBF-CLF-QP:

µ∗(x) = argmin
µ, µb, d

µTµ+ p d2 (18)

s.t. V̇ε(η, µ) +
λ

ε
Vε(η) ≤ d (CLF)

µb +Kb ηb ≥ 0 (CBF)

µb = B(rb)(x, µ)

Ac(x)µ+ bc(x) ≤ 0 (Constraints)

Formulating a QP allows us to incorporate additional

control-affine constraints (last line in (18)). These could be in-

put saturation constraints or other state-dependent constraints

such as contact-force constraints.

III. REINFORCEMENT LEARNING FOR CLF-QP BASED

CONTROLLERS UNDER UNCERTAIN DYNAMICS

In this section, we address the issue of having a mismatch

between the model and the plant dynamics when the true

plant vector fields f, g are not precisely known. Specifically,

between this and the next sections we analytically examine

the effects of model uncertainty on the dynamics of the CLF,

CBF and other control-affine dynamic constraints. For each of

these cases we will define the goal of the RL agent and the

policy to be learned.

A. Reinforcement Learning for CLF-QP Based Controllers:

First Approach

Let the nominal model used in the controller be

ẋ = f̃(x) + g̃(x)u. (19)

We assume: 1) the vector fields f̃ : Rn → Rn, g̃ : Rn →
Rn×m are Lipschitz continuous and 2) the vector relative

degrees of the model and plant dynamics are the same (r).

These are the standard assumptions that have been made in

most of the literature [15, 19, 20, 22] to tackle the mismatch

terms analytically.

The pre-control law (3) of input-output linearization com-

puted based on the nominal model f̃ , g̃ has the following form

ũ(x, µ) = ũ∗(x) +
(
Lg̃L

r−1

f̃
h(x)

)−1

µ, (20)

with a feedforward term

ũ∗(x) := −
(
Lg̃L

r−1

f̃
h(x)

)−1

Lr

f̃
h(x). (21)

Using this ũ in (2) yields

y(r) = µ+∆1 (x) +∆2 (x)µ, (22)

where

∆1 (x) :=L
r
fh(x)− LgL

r−1
f h(x)

(

Lg̃L
r−1

f̃
h(x)

)

−1

L
r

f̃
h(x),

∆2 (x) :=LgL
r−1
f h(x)

(

Lg̃L
r−1

f̃
h(x)

)

−1

− Im.

(23)

The dynamics of η from (6) now take the form:

η̇ = (Fη +G∆1 (η, z)) +G (Im +∆2 (η, z))µ. (24)

Note that this equation is the same as (6) if the uncertainty

terms are zero, i.e. ∆1 = ∆2 = 0. Thus, (6) can be considered

a nominal model for the true transverse dynamics (24).

For this first approach we use RL to define an additional

input whose goal is to cancel out the uncertainty terms present

in the transverse dynamics (24), and therefore manipulate the

transverse dynamics to behave like (6), as done in Castañeda

et al. [6] and Westenbroek et al. [22]. If this is achieved

exactly, there will not be any uncertain terms in the CLF

dynamics, since V̇ε only depends on the matrices F and G

of the input-output linearized dynamics.

Applying the following input to (2)

u(x, µ) = ũ(x, µ) + uθ(x, µ), (25)

with ũ as defined in (20) and with

uθ(x, µ) :=
(
Lg̃L

r−1

f̃
h(x)

)−1

(αθ(x)µ+ βθ(x)), (26)

yields

y
(r) = µ+ (∆1 (x) +∆3 (x)βθ(x)) + (∆2 (x) +∆3 (x)αθ(x))µ,

(27)

where ∆3 (x) := ∆2 (x) + Im, and θ ∈ Θ ⊂ RN are

parameters of a neural network to be learned. We can now

clearly see the goal of the RL agent for this approach: design

a policy αθ, βθ such that y(r) is as close as possible to µ.

Thus, the time-wise reward function can be defined as

R(x, µ) = −||y(r) − µ||22 (28)

where y(r) is numerically estimated. After training, the µ

present in the final control input (25) is obtained by solving

the CLF-QP of (13) in real time. We call this first approach

IO-RL + CLF-QP.

B. Reinforcement Learning for CLF-QP Based Controllers:

Second Approach

In the second approach, we do not directly correct the

uncertain terms of the transverse dynamics (24) as we did

in the first approach. Instead, we directly analyze the impact

of this uncertainty on the dynamics of the CLF.

For this approach, we assume that the CLF designed for

the nominal model’s transverse dynamics is also a CLF for

the true plant’s transverse dynamics (24).

In the presence of uncertainty, V̇ε becomes

V̇ε(η, z, µ) = Lf̄Vε(η, z) + LḡVε(η, z)µ, (29)

where

Lf̄Vε(η, z) = L ˜̄f
Vε(η) + 2ηᵀPεG∆1 (η, z)︸ ︷︷ ︸

=: ∆v

1
(η, z)

,

LḡVε(η, z) = L˜̄gVε(η) + 2ηᵀPεG∆2 (η, z)︸ ︷︷ ︸
=: ∆v

2
(η, z)

.
(30)

Here, ˜̄f and ˜̄g are the nominal model input-output linearized

dynamics: namely,
˜̇
V ε(η, µ) = L ˜̄f

Vε(η) + L˜̄gVε(η)µ. There-

fore, under uncertainty:

V̇ε(η, z, µ) =
˜̇
V ε(η, µ) +∆

v

1 (η, z) +∆
v

2 (η, z)µ. (31)

In this second approach we use RL to estimate the uncer-

tainty terms in V̇ε: ∆v
1 and ∆v

2 . For this purpose, we construct

an estimate

̂̇
V ε,θ(η, z, µ) =

˜̇
V ε(η, µ) + βV

θ (η, z) + αV
θ (η, z)µ, (32)

where θ ∈ Θ ⊂ RN are again the neural network parameters to

be learned. The goal of RL is then obvious: learn a policy αV
θ ,

βV
θ such that

̂̇
V ε,θ is as close as possible to V̇ε. Any reward

function that penalizes the absolute value of the difference

between the two terms can be used. More details on the

specific RL implementation are discussed in Section V.

Remark 1: For convenience, it is assumed here that αV
θ , βV

θ

share the same network parameters θ, but this does not need

to be the case. In this paper, we will assume that all the policy

functions to be learned are sharing the same parameters.

The estimate
ˆ̇
Vε,θ in (32) is then used as our best guess of

V̇ε for the optimization problem:

RL-CLF-QP:

µ∗
θ(x) = argmin

µ
µTµ (33)

s.t.
̂̇
V ε,θ(η, z, µ) +

λ

ε
Vε(η) ≤ 0 (RL-CLF)

Remark 2: We have illustrated the case in which the CLF

is applied to the input-output linearized dynamics. The reason

why we use a CLF on the input-output linearized dynamics

instead of the full dynamics is that in this way we have a

systematic way of computing a CLF candidate, whereas on the

original nonlinear system this process could be challenging.

However, this approach is not confined to the input-output

linearization structure and is also applicable to any general

nonlinear control-affine system.

IV. REINFORCEMENT LEARNING FOR CBF-CLF-QP

BASED CONTROLLERS UNDER UNCERTAIN DYNAMICS

Having studied how to compensate for the effects of model

uncertainty on CLF-based min-norm controllers, we will now

extend our framework to the safety-critical CBF-CLF-QP by

following a similar approach.

A. Reinforcement Learning for CBFs

In the presence of uncertainty, (16) becomes

B̃(rb)(x, µ) = Lrb

f̃
B(x) + Lg̃L

rb−1

f̃
B(x)ũ(x, µ), (34)

and the actual CBF’s rthb derivative can be written as:

B(rb)(x, µ) = B̃(rb)(x, µ) +∆
b

1 (x) +∆
b

2 (x)µ, (35)

where ∆b
1 and ∆b

2 are the uncertain terms that arise from

the model-plant mismatch. We omit analytic expressions of

∆b
1 ,∆

b
2 for conciseness, but they can be derived similarly to

(23).

Remark 3: When the state of the system can be represented

as x = [q, q̇]T , as in most robotic systems, even for high

relative degree CBFs model uncertainty only affects the rthb
time derivative of B, since B(rb) is the only term that depends

on the plant dynamics through the vector fields f and g.

Next, we present how to estimate the uncertainty terms for

the CBF and for other dynamic constraints using RL. The

approach presented in Section III-A cannot be used here since

the CBF functions depend on the full dynamics of the system,

and not the transverse dynamics.

We build an estimator of B(rb):

B̂(rb)
θ(x, µ) = B̃(rb)(x, µ) + βB

θ (x) + αB
θ (x)µ, (36)

and the goal of RL is to learn a policy αB
θ , βB

θ such that

B̂(rb)
θ is as close as possible to B(rb).

In order to integrate everything in a new QP we define the

new virtual input of the CBF dynamics as

µb := B̂(rb)
θ. (37)

In cases where the CBF also depends on a set of parameters

ψ ∈ Rq , then we need to define the CBF as B : Rn×q →
R. The neural-network policy will now need to take ψ as

additional inputs αB
θ : Rn×q → Rm, βB

θ : Rn×q → R and the

proposed estimate of the rthb time derivative of B becomes:

B̂(rb)
θ(x, µ, ψ) = B̃(rb)(x, µ, ψ) + βB

θ (x, ψ) + αB
θ (x, ψ)µ.

(38)

B. Reinforcement Learning for Additional Control-Affine Dy-

namic Constraints

Now we study the effects of uncertainty on other linear

constraints that depend on the dynamics of the system:

Ac(x, f, g)µ+ bc(x, f, g)︸ ︷︷ ︸
=: ζ(x, µ)

≤ 0. (39)

In the presence of model mismatch we have

bc(x, f, g) = bc(x, f̃ , g̃) +∆
c

1 (x),

Ac(x, f, g) = Ac(x, f̃ , g̃) +∆
c

2 (x),
(40)

where ∆c
1 and ∆c

2 represent the uncertainty terms. We can

then define the nominal constraint

ζ̃(x, µ) = bc(x, f̃ , g̃) +Ac(x, f̃ , g̃)µ. (41)

And the real value of the constraint can be expressed as

ζ(x, µ) = ζ̃(x, µ) +∆
c

1 (x) +∆
c

2 (x)µ. (42)

We can build an estimator of the form

ζ̂θ(x, µ) = ζ̃(x, µ) + βC
θ (x) + αC

θ (x)µ, (43)

with a learned policy αC
θ , βC

θ . The goal of the RL agent is

again in this case to make the estimator ζ̂θ as close as possible

to ζ. Expanding ζ̃ we can rewrite the estimator as

ζ̂θ(x, µ) =
(
bc(x, f̃ , g̃) + βC

θ (x)
)

︸ ︷︷ ︸
=: bcθ(x)

+
(
Ac(x, f̃ , g̃) + αC

θ (x)
)

︸ ︷︷ ︸
=: Ac

θ(x)

µ.

(44)

So far, we have explained our method of constructing an

estimator of a single B(rb) and a single ζ(x, µ). This can be

applied to nb multiple CBFs and nc multiple control-affine

constraints. The final optimization problem, which includes

all the learned estimates of the uncertain terms is:

RL-CBF-CLF-QP:

µ∗
θ(x) =argmin

µ, µb, d

µTµ+ p d2 (45)

s.t.
̂̇
V ε,θ(η, z, µ) +

λ

ε
Vε(η) ≤ d (RL-CLF)

for i = 1 · · ·nb µb,i +Kb,i ηb,i ≥ 0 (RL-CBF)

µb,i = B̂(rb)
i,θ(x, µ)

for j = 1 · · ·nc Ac
j,θ(x)µ+ bcj,θ(x) ≤ 0 (RL-Constraints)

V. REINFORCEMENT LEARNING-BASED FRAMEWORK

In this section, we present a unified RL framework that

can learn the uncertainty terms in the CLF, CBF, and other

dynamic constraints by building the terms specified in the

earlier sections as αV
θ , α

B
θ , α

C
θ , β

V
θ , β

B
θ , β

C
θ .

A diagram of this framework is illustrated in Fig. 1. The RL

agent learns a policy, which is a combination of uncertainty

terms in CLF, CBF and other dynamic constraints. These terms

are then added to the QP constraints derived from the nominal

model, resulting in the estimates of the true plant constraints.

Using these estimates, the RL-CBF-CLF-QP optimization

problem, in which model uncertainty is addressed, is solved

point-wise in time to obtain the control input.

The reward function of the learning problem is designed

such that it minimizes each of the estimation errors. Thus, the

time-wise loss functions are defined as:

lV,θ : = ||V̇ε −
̂̇
V ε,θ(x, µ)||

2

lB,θ : = ||B(rb) − B̂(rb)
θ(x, µ)||

2

lC,θ : = ||ζ − ζ̂θ(x, µ)||
2

(46)

It is important to note that the true plant’s dynamics

information is not used for computing the values of these

loss functions. We use explicit expressions for Vε, B and ζ

and compute the time-derivatives V̇ε, B(rb) using numerical

differentiation. For the CBF, it is important to note that

regardless of the value of rb we only need to do numerical

differentiation once, as follows from Remark 3.

A canonical RL problem can be formulated, with the reward

for a given state x defined as the weighted sum of the negative

loss functions in (46), in addition to a user-specific failure-case

penalty −le : R
n → R:

R(x, θ) = −wvlV,θ −
nb∑

i=1

wb,ilBi,θ −
nc∑

j=1

wc,j lCj ,θ − le(x).

(47)

The learning problem is then defined as:

max
θ

Ex0∼X0,w∼N (0,σ2)

∫ T

0

R (x(τ), θ) dτ,

s.t. ẋ = f(x) + g(x)ũ(x, µ∗
θ(x) + ω),

(48)

where µ∗
θ(x) is the solution of (45), X0 is the initial state

distribution, and w ∼ N (0, σ2) is white noise added to

encourage exploration. A discretized version of this problem

can be solved using conventional RL algorithms.

Remark 4: While running training experiments or simula-

tions, it is assumed that the robot operates under the true plant

dynamics. We will later show in Section VII that the trained

policy works well even when the true plant in the evaluation

differs from the plant of the training environment.

VI. APPLICATION TO BIPEDAL ROBOTS

The goal of this section is to validate that the RL-CBF-

CLF-QP framework enables safety-critical control when model

uncertainty is present. We test our method on RABBIT [7], a

planar five-link bipedal robot, walking on a discrete terrain of

stepping stones with one step preview.

A. Simulation Settings

We run two simulation scenarios with our method and offer

comparisons with the previous methods. The first simulation

consists of RABBIT simply walking on a flat terrain. We

evaluate the CLF based methods in Section III in this scenario.

This is to verify only the stabilizing capacity of our proposed

method under model uncertainty. In the second simulation, we

put the robot on a discrete terrain of randomly spaced stepping

stones (Fig. 4). The robot’s task here is to always place the

foot on the next stepping stone, while managing the stability

and not violating the contact-force constraint. The full RL-

CBF-CLF-QP is tested in this simulation scenario.

The main model uncertainty in both demonstrations is

introduced by scaling all mass and inertia parameters of each

link by a constant scale factor = 2, i.e. the nominal model’s

mass and inertia terms are half of those of the actual plant.

A single periodic walking gait trajectory is generated of-

fline by the Fast Robot Optimization and Simulation Toolkit

(FROST) [10]. The output function h(x) is defined as the

difference between the actuated joint angles and the desired

trajectory’s joint angles from the obtained periodic orbit. The

gait’s nominal step length is 0.35m. Finally, a torque saturation

of 200Nm is applied to the control inputs of all simulations,

including training and evaluation.

B. Reinforcement Learning Settings

We train our agent using a standard Deep Deterministic

Policy Gradient Algorithm (DDPG) [18]. The input for the

actor neural network is 14 observations, which is RABBIT’s

full state x, in addition to the CBF parameter ψ = lmin,k

corresponding to the minimum step length of the kth stepping

stone (Fig. 4) in the second simulation. We use two CBFs

B1 and B2 to constrain the position of the swing foot so that

it lands on the stepping stone, as shown in Fig. 4. We use

two dynamic constraints C1 and C2 which correspond to the

unilateral normal force and friction cone constraints respec-

tively. The output dimension is 25, corresponding to the 4×1

αV
θ , α

B1

θ , αB2

θ , αC1

θ , αC2

θ and the 1×1 βV
θ , β

B1

θ , βB2

θ , βC1

θ , βC2

θ .

Both actor and critic neural networks have two hidden layers

of widths 400 and 300. This agent is trained on the simulation

of ten walking steps per episode, and a discrete time step

Ts = 0.01sec is used. The failure cases are determined by

the robot’s pose. Training on six multiple cores of Intel(R)

Core(TM) i5-9400F CPU (2.90GHz) without the use of GPU

took about 34 seconds per episode. The final agent in use is

obtained after 110, 79 and 133 episodes for IO-RL + CLF-QP,

RL-CLF-QP and RL-CBF-CLF-QP respectively.

VII. RESULTS

During the evaluation, the robot is tested not only on the

uncertainty that is introduced in the training, but in addition

to it, two other kinds of uncertainty are also introduced. First,

the robot’s motor dynamics that restricts the rate of change of

joint torques is applied in every evaluation. The time constant

of motors used in the simulation is 0.004 seconds. Second, the

robot is also tested on an alternative kind of uncertainty, which

consists of an added weight to the torso of the robot, instead of

scaling the links masses and inertias. This weight can represent

the robot carrying a payload, and it is deliberately introduced

to evaluate the trained policy’s robustness to an unfamiliar

kind of uncertainty that it was not trained on.

A. Simulation 1: Bipedal Walking on Flat Ground

For the first simulation, we evaluate the two RL approaches

for CLF explained in Section III, and compare them with

REFERENCES

[1] A. D. Ames and M. Powell. Towards the unification of

locomotion and manipulation through control lyapunov

functions and quadratic programs. In Control of Cyber-

Physical Systems, pages 219–240. Springer, 2013.

[2] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Griz-

zle. Rapidly exponentially stabilizing control lyapunov

functions and hybrid zero dynamics. IEEE Transactions

on Automatic Control, 59(4):876–891, Apr 2014.

[3] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control bar-

rier function based quadratic programs with application

to adaptive cruise control. In 53rd IEEE Conference on

Decision and Control, pages 6271–6278, Dec 2014.

[4] S. Bansal, R. Calandra, T. Xiao, S. Levine, and C. J.

Tomiin. Goal-driven dynamics learning via bayesian

optimization. In 2017 IEEE 56th Annual Conference

on Decision and Control (CDC), pages 5168–5173, Dec

2017.

[5] F. Berkenkamp, M. Turchetta, A. Schoellig, and

A. Krause. Safe model-based reinforcement learning with

stability guarantees. In Advances in neural information

processing systems, pages 908–918, 2017.

[6] F. Castañeda, M. Wulfman, A. Agrawal, T. Westen-

broek, S. S. Sastry, C. J. Tomlin, and K. Sreenath.

Improving input-output linearizing controllers for bipedal

robots via reinforcement learning. arXiv preprint

arXiv:2004.07276, 2020.

[7] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R.

Westervelt, C. Canudas-De-Wit, and J. W. Grizzle. Rab-

bit: a testbed for advanced control theory. IEEE Control

Systems Magazine, 23(5):57–79, 2003.

[8] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kay-

nama, J. Gillula, and C. J. Tomlin. A general safety

framework for learning-based control in uncertain robotic

systems. IEEE Transactions on Automatic Control, 64(7):

2737–2752, July 2019.

[9] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle.

Torque saturation in bipedal robotic walking through con-

trol lyapunov function-based quadratic programs. IEEE

Access, 3:323–332, 2015.

[10] A. Hereid and A. D. Ames. Frost: Fast robot optimization

and simulation toolkit. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

pages 719–726. IEEE, 2017.

[11] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso,

V. Tsounis, V. Koltun, and M. Hutter. Learning agile and

dynamic motor skills for legged robots. Science Robotics,

4(26), 2019.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end

training of deep visuomotor policies. Journal of Machine

Learning Research, 17(1):1334–1373, Jan 2016.

[13] Q. Nguyen and K. Sreenath. L1 adaptive control for

bipedal robots with control lyapunov function based

quadratic programs. In 2015 American Control Confer-

ence (ACC), pages 862–867, July 2015.
[14] Q. Nguyen and K. Sreenath. Exponential control bar-

rier functions for enforcing high relative-degree safety-

critical constraints. In 2016 American Control Confer-

ence (ACC), pages 322–328, July 2016.

[15] Q. Nguyen and K. Sreenath. Optimal robust time-varying

safety-critical control with application to dynamic walk-

ing on moving stepping stones. In ASME Dynamic

Systems and Control Conference, 2016.

[16] S. M. Richards, F. Berkenkamp, and A. Krause. The

lyapunov neural network: Adaptive stability certification

for safe learning of dynamical systems. In Proceedings

of The 2nd Conference on Robot Learning, volume 87 of

Proceedings of Machine Learning Research, pages 466–

476, Oct 2018.

[17] S. Sastry. Nonlinear systems: analysis, stability, and

control. Vol. 10. Springer Science and Business Media,

1999.

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and

M. Riedmiller. Deterministic policy gradient algorithms.

In Proceedings of the 31st International Conference on

Machine Learning (ICML) - Volume 32, pages I–387–

395, 2014.

[19] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and

A. D. Ames. Episodic learning with control lyapunov

functions for uncertain robotic systems. arXiv preprint

arXiv:1903.01577, 2019.

[20] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames.

Learning for safety-critical control with control barrier

functions. arXiv preprint arXiv:1912.10099, 2019.

[21] J. Umlauft, L. Pöhler, and S. Hirche. An uncertainty-

based control lyapunov approach for control-affine sys-

tems modeled by gaussian process. IEEE Control Sys-

tems Letters, 2(3):483–488, 2018.

[22] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar,

S. Arora, V. Prabhu, S. S. Sastry, and C. J. Tomlin.

Feedback linearization for unknown systems via rein-

forcement learning. arXiv preprint arXiv:1910.13272,

2019.

	Introduction
	Related Work
	Contributions
	Organization

	Background
	Input-Output Linearization
	Control Lyapunov Function Based Quadratic Programs
	Control Barrier Function and Control Lyapunov Function Based Quadratic Programs

	Reinforcement Learning for CLF-QP Based Controllers under Uncertain Dynamics
	Reinforcement Learning for CLF-QP Based Controllers: First Approach
	Reinforcement Learning for CLF-QP Based Controllers: Second Approach

	Reinforcement Learning for CBF-CLF-QP Based Controllers under Uncertain Dynamics
	Reinforcement Learning for CBFs
	Reinforcement Learning for Additional Control-Affine Dynamic Constraints

	Reinforcement Learning-based Framework
	Application to Bipedal Robots
	Simulation Settings
	Reinforcement Learning Settings

	Results
	Simulation 1: Bipedal Walking on Flat Ground
	Simulation 2: Bipedal Walking on Stepping Stones with One Step Preview

	Discussion
	Conclusion

