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Abstract—Computing systems inspired by the architecture of
the human brain is poised to revolutionize the engines for
information processing and data analytics. However, the efficiency
and performance of these platforms pale in comparison with the
human brain, especially when benchmarked in terms of metrics
such as intelligence per Watt per square mm. In this paper, we
review some recent progress and future prospects of building
artificial intelligence systems that target the efficiency of the
brain, leveraging the unique properties of nanoscale memristive
device technologies.

Index Terms—Spiking neural network, memristive devices,
crossbar array, in-memory computing, on-chip learning

I. INTRODUCTION

The past decade has seen significant advances in the ability
of algorithms powered by deep learning techniques to execute
complex cognitive tasks, often rivaling human performance
[1], [2]. These learning models employ large artificial neural
networks, with several layers of local compute units (neurons)
that interact with each other through dedicated connections
with adjustable weights (synaptic memory). Since each com-
pute node connects to hundreds or thousands of other nodes,
the number of synaptic parameters far exceeds the number
of neuronal parameters. Neurons in adjacent layers in these
networks can have all-to-all, convolutional, or recurrent con-
nectivity and can be employed for supervised, unsupervised,
and reinforcement learning tasks.

The optimization of these networks for supervised learning
proceeds in three phases (Fig. 1): (i) During the forward
pass, the neuronal activation values of a layer are propagated
to the next layer through the synaptic weights, which is
mathematically equivalent to the multiplication of the vector of
neuronal activations with the connectivity matrix representing
the synaptic conductances, in a layer-by-layer fashion. At the
final layer, the generated output can then be compared with the
desired network response and an error signal can be calculated.
(ii) During the back-propagation phase, the error from a layer
is propagated back to the previous layer through the same
synaptic weights. This is mathematically equivalent to the
multiplication of the vector of errors with the transpose of the
connectivity matrix representing the synaptic conductances.
Finally, in step (iii), the synaptic weight wij between two
neurons i and j in adjacent layers is updated by an amount,

∆wij = ηxiδj , where η is an appropriately chosen learning
rate, xi is the activation of the of neuron i in the pre-synaptic
layer, and δj is the back-propagated error of the neuron j
in the post-synaptic layer. While the above description of
the back-propagation algorithm is based on fully-connected
networks, the implementation is conceptually similar and can
be extended to convolutional networks and recurrent networks
in a straightforward manner.

Fig. 1: The three steps used in supervised learning in deep
learning networks based on the back-propagation algorithm.

The reasons why today’s computational systems based on
the traditional von Neumann architecture are ill-suited for
implementing large multi-layered deep networks should be
now evident. The real-valued signals that propagate through
the network have to be represented using floating point or fixed
point numbers, unlike the binary action potentials (spikes) that
are used exclusively in the brain for communication. Further,
the synaptic parameters have to be fetched from memory to the
processor at each of these steps and stored back after weight
update, which significantly impacts overall performance due
to the limitations imposed by the von Neumann bottleneck.
This analysis also reveals the potential solutions to the

problem. First, instead of memory-less real-valued neuronal
models used in deep learning, third generation Spiking Neural
Networks (SNNs) that mimic the asynchronous signaling and
information processing capabilities of the brain can signifi-
cantly reduce the communication requirements of the network,
provided efficient event-driven learning algorithms can be
devised [3]. This is a major challenge, as the traditional
methods of back-propagation which are based on gradient
descent of continuous-valued cost functions in deep networks
do not carry over to spiking networks whose dynamics involve
discontinuities due to the abrupt reset in membrane potential
during spike events. Moreover, it is also crucial that new
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learning algorithms that are developed for artificial SNNs
mimic the low spike probabilities and sparse signaling nature
of their biological counterparts. We will discuss some recent
efforts in this direction in section II.

The second avenue for improvement is at the device level.
Digital CMOS circuits, as well as nanoscale emerging de-
vices, are optimized to operate at relatively large currents
and voltages (typically exceeding 10µA and 1V), at switch-
ing time scales below 1 − 100 ns. In comparison, neurons
and synapses in the brain compute using nano-ampere scale
currents and spike signals of 100mV amplitude, which are
communicated to 1000s of other nodes in the network, at slow
signaling rates (10 − 100Hz). No semiconductor device has
managed to demonstrate reliable operating characteristics at
these power/energy budgets and is hence an important research
direction to build systems approaching the efficiency of the
brain. We will discuss some of the features of nanoscale
emerging memories that are leading candidates for implement-
ing neuronal and synaptic dynamics, and the ongoing efforts
in improving their efficiency in section III.

In addition to algorithms and devices, system-level archi-
tectures that efficiently implement the required functions also
need to be devised. In-memory computing architectures based
on cross-bar arrays with programmable analog memory de-
vices is promising to realize large learning networks. With this
architecture, vector-matrix multiplication operations could be
executed in place and in parallel, leveraging Kirchhoff’s laws.
This would avoid the need to constantly shuttle synaptic data
stored in memory to the processor units, resulting in significant
improvements in performance and energy efficiency. However,
in order to reap the associated benefits of efficient algorithms
and devices, the underlying system architecture should be
developed and optimized based on the limitations imposed
by the building blocks. We discuss some recent advances in
system architectures for on-chip learning and inference using
nanoscale memories in section IV, before concluding the paper
by laying out the future outlook for the field in section V.

II. SPIKE BASED LEARNING ALGORITHMS

While there is a large body of research aimed at improving
the capabilities of deep learning algorithms [1], we focus
here on recent developments on the algorithms for spiking
networks due to the potential advantages of event-triggered
learning. Despite the great promise of SNNs in terms of
efficient implementation, rich dynamics and learning capabil-
ities, it has been unclear how to effectively train large deep
networks of spiking neurons to reach the accuracy of Deep
Neural Networks (DNNs) for common machine learning tasks.
The various SNN training or learning approaches that have
been developed over the past few years can be classified
into five main categories, as described in [4]. The simplest
method is the so-called binarization of ANNs, where standard
deep ANNs are trained with binary activations maintaining
their synchronous mode of information processing [5]. The
second category relies on converting fully trained ANNs using
traditional backpropagation algorithms into SNNs, i.e., the

analog neurons are converted into spiking neurons [6]. This
conversion has been traditionally based on rate codes, but
recently researchers have investigated the use of temporal
coding including rank order coding. A third approach is based
on the notion of constrain-then-train developed in [7], i.e.,
prior to conversion, conventional ANN training rules (such as
backpropagation) are used, taking into account the constraints
arising from the spiking neuron models. For example, one such
constraint is the need to transform the spiking neuronal dynam-
ics into a differentiable form and then apply backpropagation.
Another category is based on supervised learning with spikes,
in which gradient descent approaches are employed on cost-
functions written in terms of spike-rate or spike times, and
learning rules derived using approximate dynamics of spiking
neurons [8] or probabilistic formulations [9]. Finally, the last
category includes the use of biologically-inspired unsuper-
vised Hebbian learning rules, such as Spike-Timing-Dependent
Plasticity (STDP) for learning algorithms [10]. Recently, it
was shown that recurrent SNNs with adapting neurons can
achieve classification performance comparable to state-of-the-
art LSTM networks by using backpropagation through time
(BPTT) [11]. So to summarize, even though SNNs have
not yet found widespread acceptance for machine learning
applications, recent developments in building the fundamental
algorithms and training approaches have buoyed the hope for
their adoption for many applications, and especially those that
have stringent memory and power constraints.

III. NANOSCALE MEMRISTIVE DEVICES

Significant research efforts have been directed at developing
post-CMOS nanoscale non-volatile memory (NVM) devices,
targeting the replacement of flash memory and DRAM in
the traditional compute stack as well as for certain compute
applications [12]. These devices have a two-terminal structure,
with an active material (usually a dielectric) with certain
specific properties sandwiched between two metal electrodes.
Many of these devices, based on the characteristics of the
applied programming pulses, can also have stable internal
states corresponding to intermediary values, in between the
standard 0 and 1 states, which offers an excellent medium to
store the synaptic weights of a network (See [13] for a review).
The most prominent examples of devices with the above men-
tioned memristive programmability are phase change memory
(PCM) [14], and resistive random access memories (RRAM)
[15]. Spin-transfer torque RAM (STTRAM) devices, though
traditionally used as binary storage devices, have recently been
optimized as stochastic or memristive switches, as well as mi-
crowave oscillators, which provides an alternate computational
element for learning systems [16].
These nanoscale devices offer the ability to store synaptic

conductance values in a compact form factor - typically 20F2,
but potentially as low as 4F2, where F is the smallest pattern-
able feature size in a lithography node; note that SRAM cell
size typically exceed 150F2. However, the conductance modu-
lation characteristics of these devices are non-linear, stochas-
tic, and asymmetric, which introduces several challenges in
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Fig. 2: Schematic of PCM, RRAM, and STTRAM devices.

using them for learning applications [17]. Furthermore, several
reliability issues are common to all these devices, including
drift in the programmed conductance state, read disturb, and
device-to-device variability. Hence, using these devices to im-
plement synaptic weights without architectural or algorithmic
optimization leads to drastic reductions in accuracy compared
to what is attainable in software. For instance, as demonstrated
in [18], the accuracy of a 3-layered artificial neural network
implemented using PCM synapses drops to about 83% for the
MNIST hand-written digit recognition problem, compared to
the software baseline of 97%.
In addition to using the conductance of memristive devices

to represent synaptic weights, it is also possible to leverage
other internal device operating mechanisms to implement more
complex neuronal and synaptic functions. We highlight two
approaches here: (a) By the careful design of programming
waveforms, inspired, for instance, by the shape of the action
potential observed in biology, it is possible to implement
more complex learning rules such as spike-timing-dependent
plasticity in these devices, where the conductivity of the device
changes in a natural fashion as a function of the time of
spikes of the pre- and post-synaptic neurons [19]; and (b) it
has been recently demonstrated that the dynamical behavior of
spiking neurons can be mimicked leveraging the accumulative
behavior of conductance change in PCM [20] and metal-
insulator transitions in phase-transition oxides [21].

While most of the above mentioned emerging memory
technologies operate above 1V and 100µA, there are also
several proof-of-concept experiments that aim to build devices
at lower energy and power budgets. For instance, memristive
devices based on the movement of ionic species such as Cu2+

have been demonstrated to exhibit quantized conductance
states at room temperature and below 300mV, and could
be used for synaptic learning [22]. Similarly, nanoscale two-
dimensional materials also hold great promise for achieving
sub-femtojoule energy operations as demonstrated in [23],
although these scaled devices require further optimization for
meeting other required specifications on reliability such as
endurance and retention.

IV. SYSTEM ARCHITECTURE

A fundamental aspect of learning networks is the large
fan-out of the compute nodes - each neuron transmits its
output to more than 100 other neurons in most networks;
fan-outs of 1000 is not uncommon. Hence, the hardware

architecture needs to support mechanisms for large and flexible
high fan-out connectivity between the neurons in the different
layers. A tiled array of cross-bars is an excellent approach
to achieve this high fanout connectivity; a digital CMOS
implementation of this scheme was used in the TrueNorth chip
from IBM [24]. Computational memories which use emerging
memories at the cross-point can also be used to execute the
various steps needed for network emulation such as neuronal
communication, backpropagation, and weight update, although
such architectures can also be used for other applications such
as solving systems of linear equations using Kirchhoff’s laws
[25]. The peripheral real-valued signals for deep networks can
be implemented as stochastic pulse streams for communication
and weight-update [26], while signals for communication in
SNNs can be binary pulses that read the cells in the array.
Local computation within the core can be hence analog or
digital, while communications between the core are based on
digital routing networks with packets containing information
about spikes or other neuronal parameters.

Fig. 3: Mixed-precision architecture proposed to meet the
weight-update requirements of learning algorithms using low-
precision nanoscale devices, adapted from [27].

However, one of the crucial aspects that the architecture
should support is the mapping of synaptic weights and con-
ductance modulations required by the algorithm faithfully into
the nanoscale devices in the cross-bar. This is a significant
challenge: for instance, most deep learning algorithms require
∆w/w < 10−3 (i.e., 10-bit resolution for the weight update),
while most nanoscale devices only have a bit capacity of
3−5 bits. The recently proposed mixed precision architecture
addresses this issue by using a high precision digital memory
block to accumulate the small weight-updates, and transferring
the accumulated value to the nanoscale device only when
it exceeds the update granularity [27]. The matrix-vector
multiplications needed for neuronal communication and error
back-propagation is implemented using nanoscale cross-bars
in a parallel fashion; it has been projected that this architecture
can mitigate the issues due to the non-ideal behaviors of
nanoscale devices and deliver software-equivalent performance
at higher efficiency (Fig.3). The recently demonstrated analog
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memory architecture which uses a 3 Transistor - 1 Capacitor
cell to accumulate the required updates before transferring it to
a memristive device is another noteworthy example analogous
to the digital approach described above [28].

V. FUTURE OUTLOOK

Most of the efforts today for building neuromorphic hard-
ware are based on digital CMOS technologies - IBM’s
TrueNorth [24], Intel’s Loihi [29], and Google’s Tensor Pro-
cessing Unit [30] are notable examples. These chips, fab-
ricated at advanced technology nodes, can achieve between
1010−1012 operations per second per Watt. Though impressive
for Silicon, it is approximately three orders of magnitude
below the estimates for the performance of the human brain.

We described three high-level research directions that are
being pursued today to bridge this gap. These research ef-
forts have seen a convergence of ideas from neuroscience,
nanotechnology, and computer architecture, and the joint co-
optimization of algorithms, architectures, and nanoscale de-
vices which efficiently enable the parallel computation of
complex functions have buoyed the hopes for realizing large-
scale AI systems that approach the efficiency of the brain in
the not too distant future.
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