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Abstract—Artificial Neural Networks (ANNs) are currently
being used as function approximators in many state-of-the-
art Reinforcement Learning (RL) algorithms. Spiking Neural
Networks (SNNs) have been shown to drastically reduce the
energy consumption of ANNs by encoding information in sparse
temporal binary spike streams, hence emulating the communi-
cation mechanism of biological neurons. Due to their low energy
consumption, SNNs are considered to be important candidates as
co-processors to be implemented in mobile devices. In this work,
the use of SNNs as stochastic policies is explored under an energy-
efficient first-to-spike action rule, whereby the action taken by
the RL agent is determined by the occurrence of the first spike
among the output neurons. A policy gradient-based algorithm
is derived considering a Generalized Linear Model (GLM) for
spiking neurons. Experimental results demonstrate the capability
of online trained SNNs as stochastic policies to gracefully trade
energy consumption, as measured by the number of spikes, and
control performance. Significant gains are shown as compared
to the standard approach of converting an offline trained ANN
into an SNN.

Index Terms—Spiking Neural Network, Reinforcement Learn-
ing, Policy Gradient, Neuromorphic Computing.

I. INTRODUCTION

Artificial neural networks (ANNs) are used as parameterized
non-linear models that serve as inductive bias for a large
number of machine learning tasks, including notable appli-
cations of Reinforcement Learning (RL) to control problems
[1]. While ANNs rely on clocked floating- or fixed-point
operations on real numbers, Spiking Neural Networks (SNNs)
operate in an event-driven fashion on spiking synaptic signals
(see Fig. 1). Due to their lower energy consumption when
implemented on specialized hardware, SNNs are emerging as
an important alternative to ANNs that is backed by major
technology companies, including IBM and Intel [2], [3].
Specifically, SNNs are considered to be important candidates
as co-processors to be implemented in battery-limited mobile
devices (see, e.g., [4]). Applications of SNNs, and of associ-
ated neuromorphic hardware, to supervised, unsupervised, and
RL problems have been reported in a number of works, first
in the computational neuroscience literature and more recently
in the context of machine learning [5], [6], [7].
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Fig. 1. (a) SNN first-to-spike policy with action selected (R in the illustration)
among Up, Down, Left, and Right marked with a bold line and decision time
marked with a dashed vertical line; (b) An example of a realization of an
action sequence in a windy grid-world problem.

SNN models can be broadly classified as deterministic, such
as the leaky integrate-and-fire (LIF) model [8] or probabilistic,
such as the generalized linear model (GLM) [9]. Prior work
on RL using SNNs has by and large adopted deterministic
SNN models to define action-value function approximators.
This is typically done by leveraging rate decoding and either
rate encoding [10], [11], or time encoding [12]. Under rate
encoding and decoding, the spiking rates of input and output
neurons represent the information being processed and pro-
duced, respectively, by the SNN. A standard approach, to be
considered here as baseline, is to train an ANN offline and
to then convert the resulting policy into a deterministic SNN
with the aim of ensuring that the output spiking rates are close
to the numerical output values of the trained ANN [13], [11].
There is also significant work in the theoretical neuroscience
literature concerning the definition of biologically plausible
online learning rules [14], [15], [16].

In all of the reviewed studies, exploration is made pos-
sible by a range of mechanisms such as e-greedy in [15]
and stochasticity introduced at the synaptic level [11], [16],
requiring the addition of some external source of randomness.
As a related work, reference [10] discusses the addition of
noise to a deterministic SNN model to induce exploration of
the state space from a hardware perspective. In contrast, in this
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paper, we investigate the use of probabilistic SNN policies that
naturally enable exploration thanks to the inherent randomness
of their decisions, hence making it possible to learn while
acting in an on-policy fashion.

Algorithm 1: Policy Gradient Rule for First-to-Spike (FtS)

SNNs
Input: randomly initialized parameter 6, learning rate
MNiy 1= 1,2,

11=1

2 repeat

3 while S, # S¢ do

4 encode S; in spike domain

5 run SNN and set A; < index of FtS neuron
6 observe next state and reward Sy 1, R41

7 end

8 ‘/tG+1 =0

9 | fort=t%:—1:1do
10 Vi = Rev1 + Vi
11 0 + 0+ n;Vologm(As|St, 0)V;
12 end
13 14—1+1

14 until convergence

Due to an SNN’s event-driven activity, its energy consump-
tion depends mostly on the number of spikes that are output
by its neurons. This is because the idle energy consumption of
neuromorphic chips is generally extremely low (see, e.g., [2],
[3]). With this observation in mind, this work proposes the
use of a probabilistic SNN, based on GLM spiking neurons,
as a stochastic policy that operates according to a first-to-spike
decoding rule. The rule outputs a decision as soon as one of
the output neurons generates a spike, as illustrated in Fig. 1(a),
hence potentially reducing energy consumption. A gradient-
based updating rule is derived that leverages the analytical
tractability of the first-to-spike decision criterion under the
GLM model. We refer to [17] for an application of the first-
to-spike rule to a supervised learning classification algorithm.

The rest of the paper is organized as follows. Sec. II
describes the problem formulation and the GLM-based SNN
model. Sec. IIT introduces the proposed policy gradient on-
policy learning rule. Sec. IV reviews the baseline approach of
converting an offline trained ANN into an SNN. Experiments
and discussions are reported in Sec. V.

II. PROBLEM DEFINITION AND MODELS

Problem definition. We consider a standard RL single-
agent problem formulated on the basis of discrete-time Markov
Decision Processes (MDPs). Accordingly, at every time-step
t=1,2,..., the RL agent takes an action A; from a finite set
of options based on its knowledge of the current environment
state S; with the aim of maximizing a long-term performance
criterion. The agent’s policy w(A|S,#) is a parameterized
probabilistic mapping from the state space to the action space,
where 6 is the vector of trainable parameters. After the agent

takes an action A;, the environment transitions to a new state
St+1 which is observed by the agent along with an associated
numeric reward signal R;.;, where both S;;; and R;;; are
generally random functions of the state .Sy and action A; with
unknown conditional probability distributions.

An episode, starting at time ¢ = 0 in some state Sy, ends
at time t9, when the agent reaches a goal state S©. The
performance of the agent’s policy 7 is measured by the long-
term discounted average reward

oo
Va(So) = Y v'Ex[Ry, (1)
t=0
where 0 < v < 1 is a discount factor. The reward R; is
assumed to be zero for all times ¢ > tS. With a proper
definition of the reward signal R, this formulation ensures
that the agent is incentivized to reach the terminal state in as
few time-steps as possible.

While the approach proposed in this work can apply to
arbitrary RL problems with discrete finite action space, we
will focus on a standard windy grid-world environment [18].
Accordingly, as seen in Fig. 1(b), the state space is an M x N
grid of positions and the action space is the set of allowed
horizontal and vertical single-position moves, i.e., Up, Down,
Left, or Right. The start state Sy and the terminal state SC are
fixed but unknown to the agent. Each column n = 1,.., N in
the grid is subject to some unknown degree of ‘wind’, which
pushes the agent upward by w,, spaces when it moves from
a location in that column. The reward signal is defined as
Riy1 >0if Spypq = SC and, otherwise, we have Ry =0.

Probabilistic SNN model. In order to model the policy
7w(A|S,0), as we will detail in the next section, we adopt a
probabilistic SNN model. Here we briefly review the operation
of GLM spiking neurons [9]. Spiking neurons operate over
discrete time 7 = 1, ..., 7" and output either a “0” or a “1” value
at each time, where the latter represents a spike. We emphasize
that, as it will be further discussed in the next section, the
notion of time 7 for a spiking neuron is distinct from the time
axis ¢t over which the agent operates. Consider a GLM neuron
7 connected to N, pre-synaptic (input) neurons. At each time
instant 7 = 1, ..., T of the neuron’s operation, the probability
of an output spike at neuron j is given as o(u; ), where
o(z) = 1/(1 + exp(—=z)) is the sigmoid function and w; . is
the neuron’s membrane potential

N
uj,T == Z a:'r7jxi,7'—rs:7'—1 + bj~ (2)
i=1
In (2), the 7, x 1 vector «y ; is the so called synaptic kernel
which describes the operation of the synapse from neuron 7 to
neuron j with 1 defined as the transpose operator here; b; is a
bias parameter; and x; - .,—1 collects the past 7, samples of
the ¢th input neuron. As in [9], we model the synaptic kernel
as a linear combination «; ; = Bw;; of K, basis functions,
described by the columns of 7, X K¢ matrix B, with the K x 1
weight vector w; ;. We specifically adopt the raised cosine
basis functions in [9].
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III. POLICY-GRADIENT LEARNING USING
FIRST-TO-SPIKE SNN RULE

In this section, we propose an on-policy learning algorithm
for RL that uses a first-to-spike SNN as a stochastic random
policy. Although the approach can be generalized, we focus
here on the fully connected two-layer SNN shown in Fig. 1(a).
In the SNN, the first layer of N, neurons encodes the current
state of the agent S;, as detailed below, while there is one
output GLM neuron for every possible action A; of the agent,
with Ny = N, inputs each. For example, in the grid world of
Fig. 1(b), there are four output neurons. The policy 7w (A|S, 0)
is parameterized by the vector 6 of synaptic weights {w; ;}
and biases {b;} for all the output neurons as defined in (2).
We now describe encoding, decoding, and learning rule.

Encoding. A position S; is encoded into IV, spike trains,
i.e., binary sequences, with duration 7" samples, each of which
is assigned to one of the neurons in the input layer of the
SNN. We emphasize that the time duration 7' is internal to
the operation of the SNN, and the agent remains at time-step
t while waiting for the outcome of the SNN. In order to explore
the trade-off between encoding complexity and accuracy, we
partition the grid into N, sections, or windows, each of size
W x W. Each section is encoded by one input neuron, so that
increasing W yields a smaller SNN at the cost of a reduced
resolution of state encoding. Each position S; on the grid can
be described in terms of the index s(S;) € {1,...,N,} of
the section it belongs to, and the index w(S;) € {1,..., W2}
indicating the location within the section using left-to-right and
top-to-bottom ordering. Accordingly, using rate encoding, the
input to the ith neuron is an i.i.d. spike train with probability
of a spike given by

_ {pmin+(w) (w(s) = 1), ifi=s(5)

' 0, otherwise

for given parameters pmin, Pmax € [0, 1] and pmax > Pmin-

Decoding. We adopt a first-to-spike decoding protocol, so
that the output of the SNN directly acts as a stochastic policy,
inherently sampling from the distribution 7(A[S, 6) induced
by the first-to-spike rule. If no output neuron spikes during the
input presentation time 7, no action is taken, while if multiple
output neurons spike concurrently, an action is chosen from
among them at random.

Given the synaptic weights and biases in vector 6, the
probability that the jth output neuron spikes first, and thus the
probability that the network chooses action A = j, is given as

Pr(A = j) = 37, pr(j), where

p-() =] IT (0 —olur))o(u;z) [T (1 —o(ur))
k#j T'=1 =1

“4)

is the probability that the jth output neuron spikes first at time
7, while the other neurons do not spike until time 7 included.

Policy-gradient learning. After an episode is generated by
following the first-to-spike policy, the parameters 6 are updated

using the policy gradient method [18]. The gradient of the
objective function (1) equals

VoVx(So) = Ex[ViVglog m(A]S¢, )], (5)

where V; = 300, 4" Ry is the discounted return from
the current time-step until the end of the episode and the
expectation is taken with respect to the distribution of states
and actions under policy 7 (see [19, Ch. 13]). The gradient in
(5) can be computed as [17]

Vo, Jogmg(As =j|S¢, 0) =

_Z:zlj:lhTU(uk,T)BTxi,Tf‘rs:Tfl k#] (6)
_ZZ:I(hTU(U.%T) - qT)BTxi,T—TSZT—l k=3,
and
: —Y i heo(uky) kA
Vi, logmg(Ay=j|Si.0)= o ’ (D
* ' ' 7277—“:1}17'0'(“]‘,7')*(]7 k:.]
where
- p
he =" g, and g = —F"—.
T’Z:-r Zf:1 br

The first-to-spike policy gradient algorithm is summarized in
Algorithm 1, where the gradient (5) is approximated using
Monte-Carlo sampling in each episode [19 Ch. 5].

IV. BASELINE SNN SOLUTION

As a baseline solution, we consider the standard approach
of converting an offline trained ANN into a deterministic IF
SNN. Conversion aims at ensuring that the output spiking rates
of the neurons in the SNN are proportional to the numerical
values output by the corresponding neurons in the ANN [13].

IF neuron. The spiking behavior of an IF neuron is deter-
mined by an internal membrane potential defined as in (2) with
the key differences that: (i) the synaptic kernels are perfect
integrators, that is, they are written as «;; = w;;1, where
w; ; 18 a trainable synaptic weight and 1 is an all-one vector
of T elements; and (ii) the neuron spikes deterministically
when the membrane potential is positive, so that parameter b
plays the role of negative threshold.

Training of the ANN and Conversion into an IF SNN.
A two-layer ANN with four ReLL.U output units is trained by
using the SARSA learning rule with e-greedy action selection
in order to approximate the action-value function of the
optimal policy [18]. The input to each neuron ¢ in the first
layer of the ANN during training is given by the probability
value, or spiking rate, p; defined in (3), which encodes the
environment state. Each output neuron of the ANN encodes
the estimated value, i.e., the estimated long-term discounted
average reward, of one of the four actions for the given input
state and the action with the maximum value is chosen (under
e-greedy action choices) with probability e. The ANN can
then be directly converted into a two-layer IF SNN with the
same architecture using the state-of-the-art methods proposed
in [13], to which we refer for details. The converted SNN is
used by means of rate decoding: the number of spikes output
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by each neuron in the second layer is used as a measure of the
value of the corresponding action. We emphasize that, unlike
in the proposed solution, the resulting (deterministic) IF SNN
does not provide a random policy but rather a deterministic
action-value function approximator.

V. RESULTS AND DISCUSSION

In this section, we provide numerical results for the grid
world example described in Sec. Il with M =7, N = 10, Sy
and SO at positions (4,1) and (4,8) on the grid respectively,
‘wind’ level per columns defined by the values w,, indicated
in Fig. 1(b), and K = 7, for all simulations. Throughout, we
set pmin = 0.5 and ppax = 1 for encoding in the spike domain
and a learning schedule, 7, = (n;-1)/(1 — k(i — 1)) with
no = 1072, Training is done for 25 epochs of 1000 iterations
each, with 500 test episodes to evaluate the performance of
the policy after each epoch. Hyper-parameters for the SARSA
algorithm to be used as described in the previous section are
selected as recommended in [19], [20].
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Fig. 2. Number of time-steps needed to reach the goal state as a function
of the training episodes for the proposed GLM SNN and the reference ANN
strategies.
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Fig. 3. Average spike frequency over the training episodes for the GLM SNN
policy.

Apart from the IF SNN solution described in the previous
section, we also use as reference, the performance of an
ANN trained using the same policy gradient approach as in
Algorithm 1 and having the same two-layer architecture as the

proposed SNN. In particular, the input to each input neuron
i of the ANN is again given by the probability p; defined
in (3), while the output is given by a softmax non-linearity.
The output hence encodes the probability of selecting each
action. It is noted that, despite having the same architecture,
the ANN has fewer parameters than the proposed first-to-spike
SNN: while the SNN has K, parameters for each synapse
given its capability to carry out temporal processing, the ANN
has conventionally a single synaptic weight per synapse. This
reference method is labeled as “ANN” in the figures.

We start by considering the convergence of the learning
process along the training episodes in terms of number of
time-steps to reach the goal state. To this end, in Fig. 2, we
plot the performance, averaged over the 25 training epochs,
of the first-to-spike SNN policy with different values of input
presentation duration 7' and GLM parameters K, = 75 = 4,
as well as that of the reference ANN introduced above, both
using encoding window size W = 1, and hence N, = 70 input
neurons. We do not show the performance of the IF SNN since
this solution carries out offline learning (see Sec. IV). The
probabilistic SNN policy is seen to learn more quickly how
to reach the goal point in fewer time-steps as 7' is increased.
This improvement stems from the proportional increase in the
number of input spikes that can be processed by the SNN,
enhancing the accuracy of input encoding. It is also interesting
to observe that the ANN strategy is outperformed by the first-
to-spike SNN policy. As discussed, this is due to the capability
of the SNN to learn synaptic kernels via its additional weights.

We further investigate the behavior of the first-to-spike SNN
during training in Fig. 3, which plots the spike frequency as a
function of the training episodes. The initially very low spike
frequency can be interpreted as an exploration phase, where
the network makes mostly random action choices by largely
neglecting the input spikes. The spike frequency then increases
as the SNN learns while exploring effective actions dictated
by the first-to-spike rule. Finally, after the first one hundred
episodes, the SNN learns to exploit optimal actions, hence
reducing the number of observed spikes necessary to fire the
neuron corresponding to the optimized action.

We now turn to the performance evaluated after training.
Here we consider also the performance of the conventional IF
SNN trained offline as described in Sec. IV. We first analyze
the impact of using coarser state encodings as defined by the
encoding window size W. Considering only test episodes, Fig.
4 plots the number of time-steps to reach the goal (top) and
the total number of spikes per episode across the network
(bottom), as a function of the number of input neurons, or
equivalently of W. For all schemes, it is seen that, as long
as the window size is no larger than W = 4 and T is large
enough for the SNN-based strategies, no significant increase
of time-steps to reach the goal is incurred. Importantly, the
IF SNN is observed to require 10x the presentation time and
more than 10x the number of spikes per episode of the first-
to-spike SNN to achieve the same performance.

The test performance comparison between first-to-spike
SNN and IF SNN is further studied in Fig. 5, which varies
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the presentation time 7. In order to discount the advantages
of the first-to-spike SNN due to its larger number of synaptic
parameters, we set here K, = 1, thus reducing the number of
synaptic parameters to 1 as for the IF SNN. Fig. 5 shows that
the gains of the proposed policy are to be largely ascribed to
its decision rule learned based on first-to-spike decoding. In
contrast, the IF SNN uses conventional rate decoding, which
requires a larger value of 7T in order to obtain a sufficiently
good estimate of the value of each state via the spiking rates
of the corresponding output neurons.

VI. CONCLUSIONS

This paper has proposed a policy gradient-based online
learning strategy for a first-to-spike spiking neural network
(SNN). As compared to a conventional approach based on

offline learning and conversion of a second generation artificial
neural network (ANN) to an integrate-and-fire (IF) SNN with
rate decoding, the proposed approach was seen to yield a
reduction in presentation time and number of spikes by more
than 10x in a standard windy grid world example. Thanks
to the larger number of trainable parameters associated with
each synapse, which enables optimization of the synaptic
kernels, performance gains were also observed with respect
to a conventional ANN with the same architecture that was
trained online using policy gradient.
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