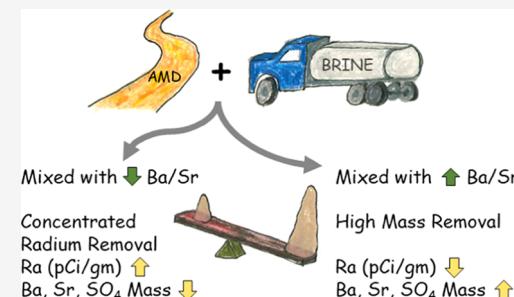


1 Maximum Removal Efficiency of Barium, Strontium, Radium, and 2 Sulfate with Optimum AMD-Marcellus Flowback Mixing Ratios for 3 Beneficial Use in the Northern Appalachian Basin

4 Bonnie McDevitt,* Michael Cavazza, Richard Beam, Eric Cavazza, William D. Burgos, Li Li,
5 and Nathaniel R. Warner

Cite This: <https://dx.doi.org/10.1021/acs.est.9b07072>

Read Online


ACCESS |

Metrics & More

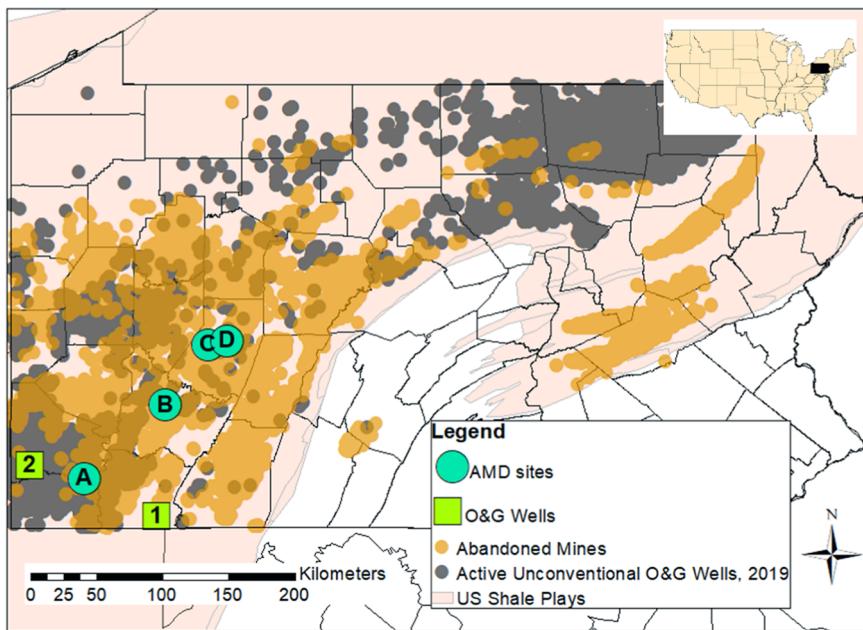
Article Recommendations

Supporting Information

6 ABSTRACT: Mixing of acid mine drainage (AMD) and hydraulic fracturing
7 flowback fluids (HFFF) could represent an efficient management practice to
8 simultaneously manage two complex energy wastewater streams while reducing
9 freshwater resource consumption. AMD discharges offer generally high sulfate
10 concentrations, especially from the bituminous coal region of Pennsylvania;
11 unconventional Marcellus shale gas wells generally yield HFFF enriched in alkali
12 earth metals such as Sr and Ba, known to cause scaling issues in oil and gas
13 (O&G) production. Mixing the two waters can precipitate HFFF-Ba and -Sr with
14 AMD-SO₄, therefore removing them from solution. Four AMD discharges and
15 HFFF from two unconventional Marcellus shale gas wells were characterized and
16 mixed in batch reactors for 14 days. Ba could be completely removed from
17 solution within 1 day of mixing in the form Ba_xSr_{1-x}SO₄ and no further significant precipitation occurred after 2 days. Total removal
18 efficiencies of Ba + Sr + SO₄ and the proportion of Ba and Sr in Ba_xSr_{1-x}SO₄ depended upon the Ba/Sr ratio in the initial HFFF. A
19 geochemical model was calibrated from batch reactor data and used to identify optimum AMD–HFFF mixing ratios that maximize
20 total removal efficiencies (Ba + Sr + SO₄) for reuse in O&G development. Increasing Ba/Sr ratios can enhance total removal
21 efficiency but decrease the efficiency of Ra removal. Thus, treatment objectives and intended beneficial reuse need to be identified
22 prior to optimizing the treatment of HFFF with AMD.

23 ■ INTRODUCTION

24 The Appalachian Basin Marcellus and Utica shales represent
25 two of the largest unconventional natural gas reservoirs in the
26 United States with approximately 906 million m³ per day of
27 natural gas production.¹ Pennsylvania alone accounted for
28 approximately 16% of the United States' natural gas
29 production in 2018.² More than 11 500 active unconventional
30 wells have been drilled in Pennsylvania³ in addition to an
31 estimated 100 000–300 000 conventional wells. While present-
32 ing economic growth opportunities to mainly rural areas, shale
33 gas extraction imposes significant strains on local freshwater
34 resources as each unconventional well consumes between 8000
35 and 100 000 m³ (2–13 million gallons) of water during well
36 stimulation.⁴ On a nationwide scale, approximately 90% of U.S.
37 unconventional produced water, including hydraulic fracturing
38 flowback fluid (HFFF), is disposed by injection, which has led
39 to concerns regarding seismicity, spills, and local water stress in
40 arid, semiarid, and even temperate regions such as
41 Pennsylvania during low-flow or drought conditions.^{5–9} Of
42 the six largest U.S. shale regions, four (Bakken, Niobrara,
43 Permian, and Eagle Ford) exhibit areas with extremely high
44 baseline water stress (defined as >80%), while the Marcellus
45 contains areas with high water stress (40–80%).¹⁰ Of the water
46 injected into the Marcellus or Utica, only 10–40% returns to


the surface as the hydraulic fracturing flowback fluid (HFFF),⁴⁷ here defined as the fluid that returns in the first 30 days of well⁴⁸ production.¹¹ Extraction activities in the Appalachian Basin⁴⁹ produce a complex wastewater brine (10–300 g/L total⁵⁰ dissolved solids (TDS)), which contains high concentrations⁵¹ of hydrocarbons, trace and heavy metals, naturally occurring⁵² radioactive material (NORM), and significantly elevated⁵³ concentrations of other alkaline-earth metals such as Ba and⁵⁴ Sr, posing issues for surface water disposal to streams.^{4,7,8,12–17}⁵⁵

Many of those same Pennsylvania streams have also⁵⁶ experienced decades of acid mine drainage (AMD) due to⁵⁷ abandoned coal mines and coal waste products, making AMD⁵⁸ the second most persistent water quality problem in the state,⁵⁹ second only to agriculture.¹⁸ There are approximately 5600⁶⁰ abandoned coal mine sites in Pennsylvania that have impacted⁶¹ roughly 8850 km of streams, 1.5 km² of freshwater lakes, and in⁶²

Received: November 21, 2019

Revised: March 18, 2020

Accepted: March 20, 2020

Figure 1. Map of abandoned mine sites and active unconventional O&G wells as of 2019 in Pennsylvania overlain by the Marcellus shale formation. AMD sites A–D are within the bituminous coal region. Unconventional Marcellus shale gas wells 1 and 2 were sampled during both early (E) and late (L) flowback periods.

63 2006 cost the state an estimated \$108 million in recreational
 64 fishing losses alone.¹⁸ Pennsylvania's Abandoned Mine Lands
 65 (AML) Program grants, derived from a fee on each ton of coal
 66 mined by the active mining industry to remediate priority sites,
 67 have not been sufficient to remedy the estimated \$5–15 billion
 68 dollars in watershed damages.^{18,19} Based on a recharge
 69 estimate of 0.3 m/year over 10 360 km² of mined land in
 70 Pennsylvania, total AMD discharges would equal 8633 million
 71 liters per day or a rough average of 1.5 million liters per day per
 72 site consistent with ranges of measured discharges.^{20–22} AMD
 73 is typically characterized by low to neutral pH (3–7) due to
 74 sulfuric acid (H₂SO₄) leached from pyritic rocks, high
 75 concentrations of metals including iron, manganese, and
 76 aluminum, high conductivity, and relatively high concen-
 77 trations of sulfate, depending on geologic locations.²⁰ Sulfate
 78 concentrations in bituminous coal mining regions (generally
 79 western Pennsylvania) have been reported to be higher than
 80 those of AMD in the anthracite region (generally eastern) of
 81 Pennsylvania.²⁰

82 Due to the proximity of O&G extraction activities and AMD
 83 discharges in Pennsylvania, the use of AMD in place of local
 84 freshwater withdrawals poses a unique opportunity to
 85 repurpose AMD that otherwise pollutes local waterways.^{23–25}
 86 Coonrod et al. (2020) proposes the closing of the hydraulic
 87 fracturing water cycle by encouraging "fit for purpose," flexible,
 88 and low-cost treatment technologies for industry reuse of
 89 unconventional produced water followed by recycling for
 90 alternative beneficial uses (i.e., agriculture, road deicing, and
 91 dust suppression).²⁶ The U.S. Environmental Protection
 92 Agency (EPA) and Department of Energy (DOE) are
 93 currently seeking alternative uses for O&G produced water
 94 for beneficial use, as commonly practiced in the western
 95 United States.^{27–30} Sequestration of alkaline-earth metals from
 96 O&G wastewater including Ba, Sr, and Ra by sulfate mineral
 97 co-precipitation into barite (BaSO₄) and radiobarite (Ba,Ra)-
 98 SO₄ is widely reported and commonly utilized in produced
 99 water radium treatment prior to surface water dis-

posal.^{4,24,31–37} Less commonly reported but also effective in
 100 Ra and Sr sequestration is celestite (SrSO₄) and radiocelestite 101
 101 (Sr,Ra)SO₄ precipitation.^{12,24,34,38} Direct use of untreated 102
 AMD with high SO₄ concentrations (previously proposed 103
 >100 mg/L SO₄) for hydraulic fracturing has the potential to 104
 promote mineral precipitate scaling downhole, causing 105
 reservoir clogging and decreasing O&G extraction efficiencies,
 106 leading to industry trepidation regarding the process.^{39–41}
 107 However, if AMD and produced water are blended at the 108
 surface prior to injection into the O&G formation, mineral 109
 precipitates would be allowed to form, settle, and be removed 110
 from the bulk fluid, allowing this wastewater recycle stream to 111
 be a viable and sustainable process.²⁵ Previous studies have 112
 focused on the removal of SO₄, Ba, and Ra through the 113
 formation of the thermodynamically favorable (Ba,Ra)SO₄
 with less focus on (SrSO₄) or (Sr,Ra)SO₄ due to slower
 precipitation rates for use in field-scale treatment.^{23,24,42} Those
 same studies confirmed the formation of Ba_xSr_{1-x}SO₄ minerals
 but did not explore in depth the initial mixing conditions and
 volumetric mix ratios that led to varying compositional
 proportions—important for predicting total ion removal
 efficiencies (Ba + Sr + SO₄) for treatment. Additionally,
 previous studies lacked quantitative guidance for optimum
 mixing of various input fluids and proposed future studies with
 longer duration to confirm that significant precipitation does
 not occur beyond a maximum of 48 h of mixing.¹²⁵

This work addresses this knowledge gap by (1) character-
 126 izing the formation of Ba_xSr_{1-x}SO₄ with wide-ranging AMD—
 127 HFFF volumetric mix ratios and 14 day experiments and (2)
 128 developing a geochemical code based on experimental data to
 129 predict the formula of precipitates and extrapolating the data to
 130 wider mixing conditions for any volumetric mix ratio.
 131 Laboratory batch experiments were used to calibrate the
 132 model (CrunchFlow) to identify mixing ratios of AMD–HFFF
 133 that maximize total removal efficiencies of Ba + Sr + SO₄.
 134 Finally, this study fills a knowledge gap by (3) identifying the
 135 importance of the initial AMD–HFFF mix Ba/Sr molar ratio
 136

Table 1. Field Sampling and Laboratory Analysis for Major Ions from the Four AMD Sites (A–D) and Marcellus Shale Gas Wells 1 and 2 during Both Early (E) and Late (L) HFFF Sampling

		A	B	C	D	1 E	1 L	2 E	2 L
Location		Clyde	Crabtree	Ernest	Tanoma	Well 1 (E) ^[a]	Well 1 (L) ^[b]	Well 2 (E)	Well 2 (L)
Flowrate	L/min	3,785	27,959	6,677	11,474	-	-	-	-
pH	s.u.	6.3	5.9	5.4	6.7	6.2	6.4	6.1	6.2
Alkalinity	mg/L	335	142	20	185	256	218	63	86
Na	mg/L	1,860	120	87	85	24,790	25,880	35,400	39,500
Ca	mg/L	301	165	101	81	6,204	8,244	13,300	15,400
Mg	mg/L	108	47	24	20	626	841	1,308	1,616
Ba	mg/L	0.02	0.02	0.03	0.03	3,040	4,590	539	728
Sr	mg/L	ND ^[c]	1.2	1.0	1.3	1,400	1,980	2,630	3,320
Fe	mg/L	0.03	61	12	5	120	198	42	55
Cl	mg/L	836	73	57	10	56,025	60,357	91,939	103,061
SO ₄	mg/L	3,873	614	448	293	262	ND	78	ND
TOC	mgC/L	-	-	-	-	180	87	33	21
²²⁶ Ra	pCi/L	-	-	-	-	-	883	-	1,012
²²⁸ Ra	pCi/L	-	-	-	-	-	31.5	-	15.6

[a] E denotes early HFFF

[b] L denotes late HFFF

[c] Not detected

(-) Not measured

Table 2. Summary of Volumetric Mix Ratios in the 14 Day Batch Experiments^a

mixture	SO ₄ :Ba + Sr	SO ₄ :Ba	AMD	HFFF	barite	celestite	Ba	Sr	SO ₄	total ^[a]	Ra-228	Ra-226
	molar	molar	vol %	vol %	SI	SI	removal (%)	removal (%)	removal (%)	removal (%)	removal (%)	removal (%)
A + IE	0.98	1.69	49	51	3.7	0.0	100	53	74	80	—	—
A + 2E	0.93	8.04	46	54	2.8	0.1	100	46	53	54	—	—
A + 1L ^T	1.24	2.09	60	40	3.9	0.1	100	41	73	78	—	—
A + 2L ^{T*}	4.14	32.84	81	19	3.0	0.2	100	48	4	14	87	100
B + IE	1.05	1.81	86	14	3.0	-0.7	100	32	62	71	—	—
B + 2E	1.00	8.65	84	16	2.1	-0.6	100	18	24	28	—	—
B + 1L ^T	1.43	2.41	91	9	3.1	-0.7	100	14	56	64	100	100
B + 2L ^T	0.20	1.61	54	46	2.3	-0.5	73	0	100	9	—	—
C + IE	1.23	2.13	89	11	3.1	-0.7	100	30	60	69	—	—
C + 2E	1.18	10.24	88	12	2.1	-0.7	99	15	30	30	—	—
C + 1L ^T	1.30	2.19	91	9	3.1	-0.7	100	22	51	63	—	—
C + 2L ^T	0.15	1.21	51	49	2.2	-0.6	70	0	100	15	82	82
D + IE	1.14	1.97	93	7	2.7	-1.1	100	37	62	71	—	—
D + 2E	1.09	9.49	92	8	1.8	-1.0	93	8	19	20	—	—

^aInitial barite and celestite SI were included for mixtures as well as removal efficiencies for Ba, Sr, SO₄, and total (Ba + Sr + SO₄) at the end of the experiment. Ra-226 and -228 removal were only measured in three samples. ^b[a] Ba + Sr + SO₄ removal. ^TTime-course mixtures sampled 0–14 days. * Ratio to achieve 1:1 mol equiv SO₄Ba + (4*Sr). (–) Not analyzed.

with regards to treatment agenda and wastewater management decisions for either optimum Ba + Sr + SO₄ and/or Ra removal.

140 MATERIALS AND METHODS

141 **AMD and HFFF Liquid Characterization.** Water samples 142 were collected and flowrates were measured in Spring and Fall 143 2015 from four AMD discharges in Pennsylvania (identified as 144 A–D; Figure 1).

145 Two unconventional Marcellus shale gas wells located in 146 southwest Pennsylvania were sampled in Fall 2015 during both 147 early (E) (day 1–2) and late (L) (day 30) flowback periods to 148 yield four samples for testing (identified as 1E, 1L, 2E, and 149 2L). The four HFFF samples were stored up to 2 weeks at 150 ambient temperatures until mixing to mimic expected field

conditions (e.g., storage in open ponds or tanks). The four 151 AMD sites were selected because, collectively, their geo- 152 chemical characteristics represent the bituminous coal region 153 of southwest Pennsylvania. Previous sampling data narrowed 154 viable AMD discharges to the bituminous coal region due to 155 higher SO₄ concentrations.^{43,44} Specific conductance, pH, 156 temperature, and ORP were measured in the field at each 157 location. Water samples were field-filtered with 0.45 μ m 158 cellulose acetate membrane filters and preserved with nitric 159 acid (pH \leq 2) for cation and trace metal analyses. Following 160 filtration and preservation, samples were stored in a refrigerator 161 at 4 °C in the laboratory prior to analysis. Raw AMD bulk 162 water samples, like HFFF bulk water samples, were stored for 163 up to 2 weeks at ambient temperatures until mixing. Chloride 164 and sulfate concentrations were analyzed by colorimetry via 165

166 the standard method 4500 Cl-E automated ferricyanide
 167 method and EPA method 375.2, respectively. Alkalinity was
 168 analyzed by titration. Cations and trace metals were analyzed
 169 by inductively coupled plasma mass spectroscopy (ICP-MS).
 170 All sample data analyzed were within 10% charge balance
 171 between cations and anions for quality assurance. Ions of
 172 importance to the study are presented in **Table 1**, while
 173 complete datasets for AMD and HFFF samples are included in
 174 the Supporting Information (**Tables S1 and S2**). Radium 226
 175 and 228 were measured in the HFFF samples 1L and 2L and in
 176 three samples collected after the 14 day batch reaction period.
 177 Radium 226 was analyzed by radon emanation using EPA
 178 method 903.1, and radium 228 was analyzed using the
 179 Brooks–Blanchard method by precipitation of barium and lead
 180 sulfate, purification, and β counting. Total organic carbon
 181 (TOC) was measured on HFFF samples on a Shimadzu TOC-
 182 VCPH TOC analyzer.

183 **Batch Mixing Experiments.** All batch mixing experiments
 184 were conducted by combining different volumetric ratios of
 185 AMD samples with HFFF samples in 5-gallon plastic
 186 containers at 25 °C using raw unfiltered samples ($n = 14$
 187 mix ratios) (**Table 2**). Volumetric mixing ratios of AMD and
 188 HFFF were calculated to achieve specific initial saturation
 189 index (SI) values for barite and celestite (SI = $\log(\text{ion activity}$
 190 $\text{product}[\text{IAP}]/K_{\text{eq},i})$), according to reactions detailed in **Table**
 191 **S3**.

192 The majority of experiments were designed to provide 1:1
 193 molar ratios of sulfate to barium plus strontium ($\text{SO}_4:\text{Ba} + \text{Sr}$),
 194 assuming no other reactions, for stoichiometric removal of
 195 barium and strontium. While some AMD–HFFF mixtures
 196 were slightly enriched in sulfate (e.g., A + 1L), others had only
 197 enough sulfate to form barite but not celestite (e.g., A + 2E).
 198 All barite SI values were higher under each mixing condition
 199 compared to celestite SI values, indicating the favorability of
 200 barite-driven precipitation. Some celestite SI values were near
 201 equilibrium or even <0 . The sulfate concentrations of the
 202 AMD samples and the Ba + Sr concentrations of the HFFF
 203 samples dictated the volumetric mixing ratios used for the
 204 different experiments. A + 1E and A + 1L represented the
 205 highest barite SI values due to the highest sulfate
 206 concentrations, requiring among the least dilutions of HFFF
 207 with AMD (51%:49% and 60%:40%, respectively). In contrast,
 208 the low sulfate concentrations from D led to higher AMD
 209 volumes diluting HFFF so that 1:1 $\text{SO}_4:\text{Ba} + \text{Sr}$ ratios were
 210 achieved (93%:7%). Removal efficiencies were calculated as
 211 the respective ratio of the individual or additive total mass
 212 removal of Ba, Sr, and SO_4 compared to the individual or
 213 additive total initial mass from the AMD–HFFF mixture,
 214 assuming conservative mixing of constituent solutions,
 215 according to

$$\left(1 - \frac{C_f}{C_0}\right) \times 100$$

216 where C_f represents the final concentration of the mixture and
 217 C_0 represents the initial concentration of the mixture.

218 A subset of batch mixing experiments was designed to
 219 provide initial $\text{SO}_4:\text{Ba} + \text{Sr}$ molar ratios that were far from 1:1.
 220 For these cases, $\text{SO}_4:\text{Ba} + \text{Sr}$ molar ratios ranged from 0.15 to
 221 4.14 (**Table 2**). These mixing experiments were used to
 222 calibrate the geochemical model to identify the optimum
 223 mixing ratios that maximize cation and sulfate removal. Three
 224 of the four AMD sites were selected for time-course mixing

225 experiments ($n = 6$) based on high (A, 3873 mg/L), median 225
 226 (B, 614 mg/L), and low (C, 448 mg/L) sulfate concentrations. 226
 227 From these mixing experiments, water samples were collected 227
 228 from the batch reactors each day from 0 to 14 days. These 228
 229 ratios reflect a varying mix of AMD–HFFF to achieve both an 229
 230 approximate 1:1 mol equiv of $\text{SO}_4:\text{Ba} + \text{Sr}$ (A + 1L, B + 1L, C 230
 231 + 1L) and an approximate 1:1 mol equiv of $\text{SO}_4:\text{Ba}$ (B + 2L 231
 232 and C + 2L) to test if Ba or Ba + Sr controls precipitation. 232
 233 Experiment A + 2L mix ratio was targeted to achieve a 1:1 mol 233
 234 equivalent $\text{SO}_4:\text{Ba} + (4^*\text{Sr})$. Mixtures were analyzed for pH, 234
 235 alkalinity, Ba, Sr, Ca, and SO_4 by geochemical testing in 235
 236 Somerset, PA. Ra was measured after 14 days for A + 2L, B + 236
 237 1L, and C + 2L. 237

238 From the time-course mixing experiments, batch reactors 238
 239 were decanted and precipitates were collected for minera- 239
 240 logical analysis ($n = 6$). Precipitates were oven-dried at 60 °C, 240
 241 pulverized for homogeneity, and analyzed on a PANalytical 241
 242 Empyrean X-ray diffractometer (XRD) and Jade software in 242
 243 the Materials Characterization Laboratory (MCL) at The 243
 244 Pennsylvania State University. 244

245 **Geochemical Modeling with CrunchFlow.** The reactive 245
 246 transport code CrunchFlow was set up to run in a reaction 246
 247 only (without transport) mode to simulate the laboratory 247
 248 batch mixing experiments.⁴⁵ In such systems without advective 248
 249 and diffusive transport, the code solves the following governing 249
 250 equation for the concentrations of independent primary 250
 251 species C_i

$$V \frac{\partial}{\partial t} (C_i) = \sum_{j=1}^{nr} r_{i,j} = \sum_{j=1}^{nr} k_{i,j} A_j \left(1 - \frac{\text{IAP}_j}{K_{\text{eq},j}}\right), \quad i = 1, 2, \dots, np \quad (1) \quad 252$$

253 where V is the total water volume of the batch reactor after 253
 254 mixing (L); the reaction rate $r_{i,j}$ (mol/s) is the j th mineral 254
 255 dissolution/precipitation reaction for species i following the 255
 256 transition state theory (TST) rate law; nr is the total number 256
 257 of mineral reactions that species i participates; $k_{i,j}$ is the kinetic 257
 258 rate constant (mol/m²/s) for reaction j ; A_j is the mineral 258
 259 surface area (m²); IAP is the ion activity product (e.g., 259
 260 $a_{\text{Ba}^{2+}} a_{\text{SO}_4^{2-}}$ for barite reaction, where the activity is the product of 260
 261 activity coefficient and concentration); and $K_{\text{eq},j}$ is the 261
 262 equilibrium constant of reaction j . The term $\text{IAP}_j/K_{\text{eq},j}$ 262
 263 quantifies the extent of disequilibrium for reaction j . The 263
 264 saturation index ($\text{SI}_j = \log(\text{IAP}_j/K_{\text{eq},j})$) indicates the direction 264
 265 of mineral reactions, with positive values reflecting precip- 265
 266 itation and negative values indicating dissolution. The code 266
 267 solves **eq 1** for np primary species and $n-np$ secondary species 267
 268 that participate in fast, equilibrium reactions. The primary 268
 269 species in the model were H^+ , Ba^{2+} , Br^- , Ca^{2+} , Fe^{3+} , Mg^{2+} , 269
 270 $\text{SiO}_2(\text{aq})$, Na^+ , Sr^{2+} , Zn^{2+} , SO_4^{2-} , Cl^- , and HCO_3^- . Secondary 270
 271 species were $\text{NaCl}(\text{aq})$, CaCl^+ , MgCl^+ , BaCl^+ , SrCl^+ , CO_3^{2-} , 271
 272 and $\text{CO}_2(\text{aq})$. The code considers mineral precipitation 272
 273 reactions as kinetic-controlled and aqueous complexation 273
 274 reactions as thermodynamic-controlled. Even though the 274
 275 mineral precipitation is considered kinetically controlled, the 275
 276 solubility/thermodynamic limits of $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ precipitation 276
 277 controlled the predicted final concentrations. Although time- 277
 278 course samples were collected daily, this sampling frequency 278
 279 undersampled the reaction kinetic features of these experi- 279
 280 ments. As such, the calibration of the kinetic constant to the 280
 281 data at the end of 2 days may underestimate the reaction rates. 281
 282 Therefore, we focus on thermodynamics relevant to the 282

283 formation of $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ such that we do not overinterpret
284 the inferred kinetic information from the model. Batch reactor
285 volume and the initial chemistry of AMD and HFFF
286 immediately after mixing were used to set up the model; the
287 aqueous data and solid chemistry data from the mixing
288 experiments were used to calibrate the model. Equilibrium
289 constants of tertiary mineral precipitates, with the general
290 formula $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ (Table S3), were included in Crunch-
291 Flow databases based on previous works.^{23,24,46} Comparisons
292 of best fit between laboratory experiments and theoretical total
293 removal efficiencies calibrated the mineral formulas utilized in
294 further modeling.

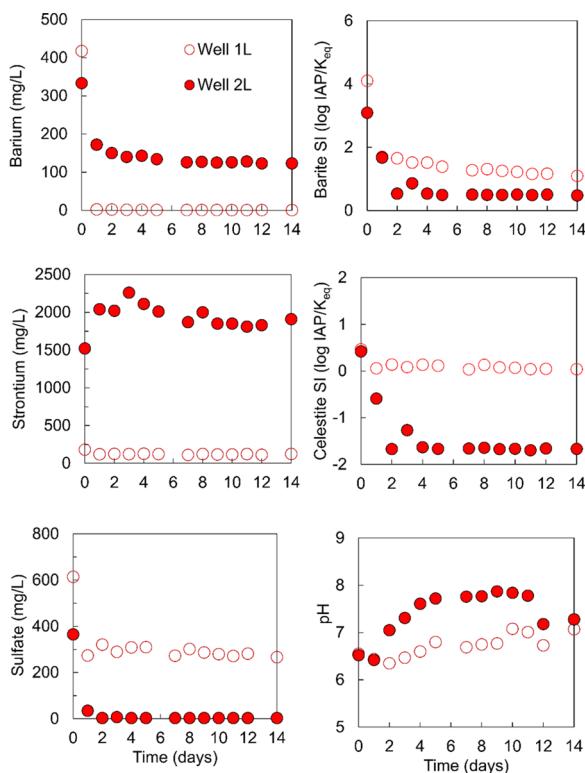
295 Under the constant temperature and pressure conditions in
296 the mixing experiments, the thermodynamic limits of the
297 precipitates (in the form of $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$) ultimately depend on
298 two factors. One is salinity because of the high ion content in
299 AMD and HFFF. The other is the value of x that quantifies the
300 Ba content. Generally, the solubility of barite ($\log K_{\text{eq}} = -8.43$)
301 is more than 2 orders of magnitude lower than that of celestite
302 ($\log K_{\text{eq}} = -5.17$). To calculate the solubility of $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$,
303 we followed the approach outlined in Rushdi et al. (2000),
304 which considers $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ solubility influenced by three
305 factors: temperature, salinity, and Sr content. The salinity
306 effects were included by calculating the activity coefficients (eq
307 7 in Rushdi et al. (2000)), following the Pitzer Formalism and
308 ion-pairing model.^{47–50} These activity coefficients were then
309 used in eq 19 in Rushdi et al. (2000) to estimate equilibrium
310 constants based on the Sr substitution approach (see the
311 Supporting Information). Equilibrium constants estimated by
312 this approach are consistent with those from approaches based
313 on the solid solution theory.^{51–53} Based on these estimations,
314 we used $\log K_{\text{eq}}$ values of -8.42 , -8.13 , -7.53 , -6.93 for
315 $(\text{Ba}_{0.90}\text{Sr}_{0.10})\text{SO}_4$, $(\text{Ba}_{0.75}\text{Sr}_{0.25})\text{SO}_4$, $(\text{Ba}_{0.50}\text{Sr}_{0.50})\text{SO}_4$, and
316 $(\text{Ba}_{0.25}\text{Sr}_{0.75})\text{SO}_4$, respectively.

317 ■ RESULTS AND DISCUSSION

318 **AMD and HFFF Fluid Characterization.** Bituminous
319 AMD sites A–D had wide-ranging SO_4 concentrations from
320 293 to 3873 mg/L (Table 1). From the previous work, four
321 anthracite AMD sites were sampled from northeastern
322 Pennsylvania and had lower SO_4 concentrations ranging
323 from 53 to 175 mg/L.^{43,44} Differences in SO_4 concentrations
324 between anthracite and bituminous regions, important for co-
325 treatment site selection, have been previously reported in
326 Pennsylvania and are a function of season, mine hydrology, and
327 time since mining operations.²⁰

328 Because the four anthracite AMD sites were below, or just
329 above, the industry proposed 100 mg/L SO_4 hydraulic
330 fracturing cutoff limit for water utilization, this study focused
331 only on the bituminous AMD sites with SO_4 concentrations
332 >200 mg/L (Table 1). It should be noted that the proposed
333 100 mg/L SO_4 cutoff limit for hydraulic fracturing water
334 utilization may still lead to some mineral precipitation in the
335 O&G reservoir due to reaction with Ba concentrations in situ.
336 Thus, utilizing AMD with SO_4 concentrations <200 mg/L or
337 treating HFFF with AMD <100 mg/L SO_4 may be worthwhile
338 moving forward if water recycling for use in hydraulic
339 fracturing is the treatment goal.

340 HFFF samples had high TDS concentrations, which slightly
341 increased, for most constituents, from early to late production
342 (Table 1). Sample Well 1L had significantly more Ba than Sr
343 with a Ba/Sr molar ratio of 2.3, whereas sample Well 2L had
344 significantly less Ba than Sr with a Ba/Sr ratio of 0.2.


Comparing the two, Well 1 had six times more Ba than Well 2,
345 while Well 2 had 2 times more Sr. The HFFF compositions fall
346 within ranges reported for produced water from Marcellus
347 shale gas wells and reflect the variability between wells drilled
348 in the same O&G formation within a similar geographic
349 region.⁵⁴ Well 1 had higher Fe concentrations than Well 2
350 HFFF, while Well 2 Ca and Mg concentrations were more
351 than double those in Well 1. The presence of other cations,
352 such as Na and Ca, is important with regards to inhibition of
353 barite and celestite precipitation kinetics through lattice growth
354 poisoning.^{24,55}

For the effects of organics, He et al. (2014) reported that
356 TOC concentrations of 52 mg/L do not impact barite
357 precipitation kinetics, likely increase barite solubility as
358 previous studies also demonstrated, and decrease celestite
359 precipitation kinetics.^{24,56,57} In this study, Well 1E has TOC
360 concentrations 5.4 times higher than Well 2E (180 vs 33 mg/
361 L). We did not explicitly include the effects of organics on
362 mineral precipitation in the model. However, the model was
363 calibrated to actual measurements of Ba and Sr, which
364 implicitly included the effects of TOC upward of 180 mg/L.
365 Additionally, previous studies have indicated increased barite
366 solubility, upward of 3 times, in the presence of organic matter
367 that cannot be sufficiently incorporated in models, which
368 typically overestimate Ba removal.^{24,56,57} Due to the model
369 overestimation of barite precipitation, laboratory data is vital
370 for mixing ratio optimization calibration.
371

Kinetic Mixing Experiments and Mineral Precipitate
372 **Analysis to Calibrate the Model.** From exploratory mixing
373 experiments based on a 1:1 molar ratio of $\text{SO}_4:\text{Ba} + \text{Sr}$, ideal
374 scenarios for the kinetic mixing experiment were selected
375 (Table 2) and major and trace element data are presented in
376 Table S4. Based on time-course samples (Figures 2 and 3,
377 f2f3 Table S5), 100% of Ba was removed for all but two AMD–
378 HFFF mixtures (C + 2L with 70% Ba removal and B + 2L with
379 73% Ba removal) (Table 2). Both mixtures also had among the
380 lowest total removals of Ba + Sr + SO_4 and the lowest $\text{SO}_4:\text{Ba} + \text{Sr}$
381 molar ratios of the time-course experiments (0.15 and 0.20,
382 respectively). The maximum total removal of Ba + Sr +
383 SO_4 in this study was 80%, for mixture A + 1E, which occurred
384 with the highest initial barite SI and approximate 1:1 molar
385 ratios of both $\text{SO}_4:\text{Ba} + \text{Sr}$ and $\text{SO}_4:\text{Ba}$. However, for this same
386 mixture, individual removals of Sr and SO_4 were only 53 and 74%,
387 respectively. Mixture D + 2E, which had the lowest initial
388 barite SI of 1.8 and one of the highest AMD:HFFF mix ratios
389 of 92%:8%, produced among the least total removal of Ba + Sr
390 + SO_4 at 20%. Despite overall low total removal efficiency, Ba
391 removal still remained high at 93%.

Batch mixing experiments indicated that there was little
393 additional precipitation of minerals after 1 day of mixing. While
394 true equilibrium may not have been achieved within 2 days
395 (e.g., Sr increases slightly in some mixtures with longer
396 residence time due to potential isomorphic substitution of Ba
397 into celestite²⁴), total removals were complete within 2 days.
398 These results are promising for industry application of AMD–
399 HFFF co-treatment as shorter residence times would decrease
400 the size of infrastructure and, ultimately, cost.
401

Overall, best Ba (~100%) and Sr (~50%) removal occurred
402 at 1:1 mol equiv $\text{SO}_4:\text{Ba} + \text{Sr}$ mixes. Best SO_4 removal occurred
403 at ratios of 1:1 mol equiv of $\text{SO}_4:\text{Ba}$ due to lack of sulfate
404 precipitation when Ba is completely removed and did not
405 depend on Sr concentrations. These results provide important
406 insight into the reuse of AMD–HFFF mixtures to avoid
407

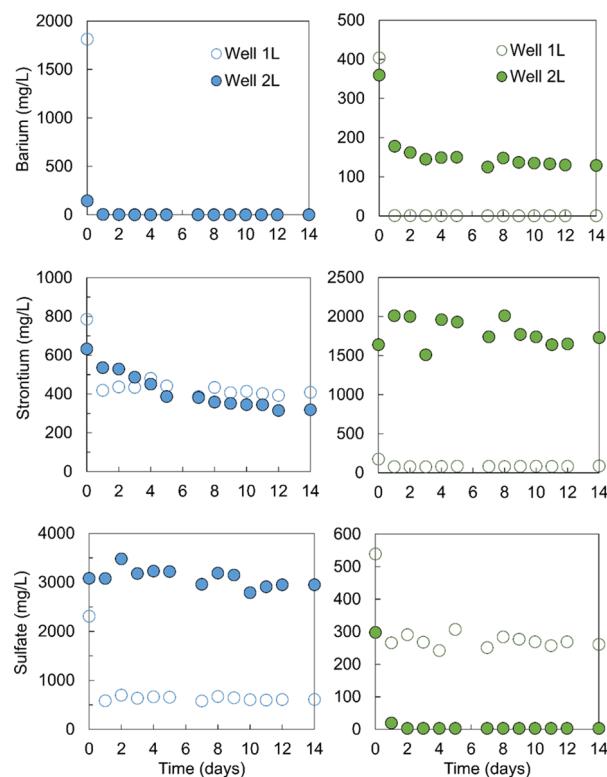


Figure 2. Fourteen day laboratory results for the mixture B + 1L at a 91%:9% AMD/HFFF volumetric ratio to achieve a 1:1 molar ratio of $\text{SO}_4\text{:Ba} + \text{Sr}$. Mixture B + 2L was mixed at a volumetric ratio of 54%:46% to achieve an approximate 1:1 molar ratio of $\text{SO}_4\text{:Ba}$. The results for Ba, Sr, and SO_4 are shown for each experiment. Note that in experiments where Ba has been completely removed from solution, Sr and SO_4 still remain dissolved. However, when SO_4 has been completely removed from solution, both Ba and Sr remain dissolved. Sr is never totally removed from solution. Even though Ba is consistently removed from solution, celestite SI continues to decrease with time.

408 reinjecting residual sulfate into O&G formations where 409 precipitation could occur with resident Ba.

410 XRD analysis of mineral precipitates did not detect celestite 411 (SrSO_4) in samples collected after 14 days, even in the 412 presence of residual SO_4 and Sr concentrations. Instead, XRD- 413 detected Sr co-precipitated with Ba in the form $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$, 414 while the most common minerals detected were 415 $\text{Ba}_{0.75}\text{Sr}_{0.25}\text{SO}_4$, BaSO_4 and NaCl (Table S6). NaCl presence 416 was likely a function of AMD–HFFF fluid in the pore water of 417 the precipitated solids, which precipitated NaCl during drying 418 prior to XRD analysis. No carbonate minerals (SrCO_3 or 419 CaCO_3) were detected by XRD though pH did increase to 7.8 420 in two of the reactors, and SI for both minerals in all mixtures 421 indicated supersaturation (Figure S1). To promote carbonate 422 precipitation of Sr and inhibiting Ca presence, as suggested in 423 previous studies,⁵⁸ use of high alkalinity lime-treated AMD 424 remains a potential option for enhanced alkaline-earth metal 425 removal from HFFF.

426 **Model Extrapolation for Maximum Removal Efficiency AMD–HFFF Mixing Ratios.** From both lab data and 427 XRD analysis of precipitates, the CrunchFlow model was 428 calibrated utilizing varying proportions of x within the 429 $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ formula. An example of the mineral and kinetic 430 calibration can be seen in Figure 4 where removal efficiencies 431 from lab data were best-matched to $(\text{Ba}_{0.75}\text{Sr}_{0.25})\text{SO}_4$,

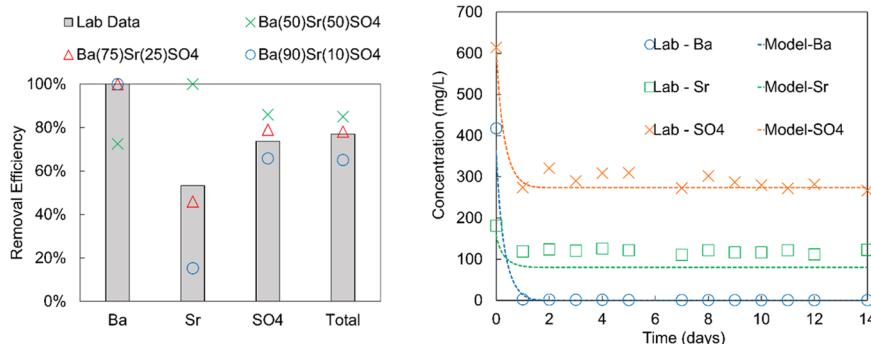


Figure 3. Fourteen day laboratory results for AMD site A (in blue) and AMD site C (in green). A + 1L and C + 1L were mixed at differing volumetric ratios of AMD/HFFF to achieve a 1:1 molar ratio of $\text{SO}_4\text{:Ba} + \text{Sr}$ (60%:40% and 91%:9%, respectively). A + 2L was mixed to achieve a 1:1 molar ratio of $\text{SO}_4\text{:Ba} + (4^*\text{Sr})$. C + 2L was mixed to achieve a 1:1 molar ratio of $\text{SO}_4\text{:Ba}$.

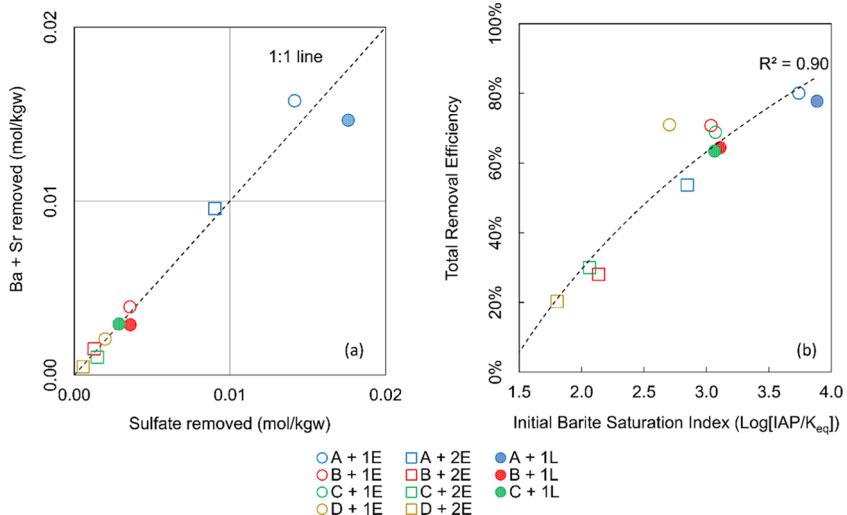

($\text{Ba}_{0.50}\text{Sr}_{0.50}\text{SO}_4$, and $(\text{Ba}_{0.90}\text{Sr}_{0.10})\text{SO}_4$ and then applied to 433 the time series of Ba, Sr, and SO_4 concentrations. Best- 434 matched $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ proportions from the model sweep- 435 represented mixing experiments are presented in Table S7. The 436 proportions of Ba and Sr in the mineral precipitate ultimately 437 depend on the Ba/Sr molar ratio of the initial HFFF. For Ba/ 438 Sr molar ratios >1 , the value of x was 0.75 or greater, while Ba/ 439 Sr molar ratios <1 contained compositions of $x = 0.50$ or less. 440

Figure 5a represents the general 1:1 relationship between Ba 441 + Sr removed as a function of SO_4 removed during AMD– 442 HFFF mixing experiments. All but two of the experiments 443 exhibit stoichiometric removal of all species through the co- 444 precipitation of strontian barite. A + 1E ($\text{SO}_4\text{:Ba} + \text{Sr} = 0.98$) 445 falls above the 1:1 relationship, indicating higher removal of Ba 446 + Sr relative to SO_4 , whereas A + 1L ($\text{SO}_4\text{:Ba} + \text{Sr} = 1.24$) falls 447 below the 1:1 line. The deviations from the 1:1 relationship 448 could indicate minor precipitation (below XRD detection of 449 $<5\%$ composition) of additional sulfate (e.g., CaSO_4) or 450 carbonate (e.g., SrCO_3) minerals. Figure 5b demonstrates a 451 strong positive logarithmic relationship between total removal 452 efficiency ($\text{Ba} + \text{Sr} + \text{SO}_4$) and the initial SI of BaSO_4 in the 453 AMD–HFFF mixtures. Higher values of BaSO_4 SI led to 454 higher total removal efficiencies. 455

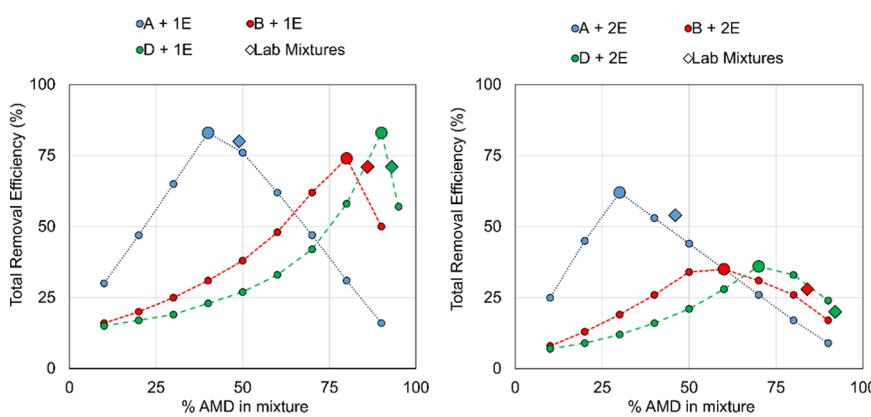

The CrunchFlow code, calibrated with experimental data 456 and end-product $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ formulas (confirmed by XRD), 457 was then used to run simulations for varied volumetric mixing 458 ratios of AMD–HFFF from 10 to 90% (Figure 4). Based on 459 the model results, removal efficiency can be maximized at 460 unique mixing ratios for each pair of AMD + HFFF (Figure 6). 461 f6

Figure 4. Example of calibrating model output removal efficiencies (Ba, Sr, SO_4 , and total ($\text{Ba} + \text{Sr} + \text{SO}_4$)) with laboratory batch reactor-determined removal efficiencies (gray bars) with the optimum compositions of Ba and Sr in $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ (left). 75 and 25%, respectively, were chosen to be the best composition representatives of the final batch mixing test precipitates, confirmed by the XRD results and plotted as concentrations versus time for B + 1L (right).

Figure 5. (a) Ba + Sr removal versus sulfate removal. The 1:1 line denotes stoichiometric removal of strontian barite. Dots below the 1:1 line indicate more removal of sulfate than Ba and Sr. Dots above the 1:1 line indicate more removal of Ba and Sr than SO_4 . (b) Total removal efficiency versus initial BaSO_4 saturation index.

Figure 6. Geochemical model results for total removal efficiency ($\text{Ba} + \text{Sr} + \text{SO}_4$) versus volumetric % AMD in the mixture for (a) AMD sites + Well 1E and (b) AMD sites + Well 2E. The model results shown as lines with small symbols and large circles at the modeled optimum mixing ratio. The experimental results are shown as large diamonds. The modeled results show the percentage of AMD required to achieve the potential maximum total removal efficiencies, which can be applied to any initial solution chemistry to optimize treatment mixtures. Note that AMD mixtures with Well 1 had the highest optimum total removal efficiencies greater than or equal to 75% compared to Well 2 mixtures. Well 1 had a significantly higher initial Ba/Sr ratio than Well 2, which contributes to higher total removal efficiencies.

The AMD–HFFF ratios for optimum removal of Ba + Sr + SO_4 are directly affected by the SO_4 concentration in the AMD and the Ba and Sr concentrations in the HFFF. Because these

concentrations in AMD samples A, B, and C and samples Well 1E and Well 2E (all paired simulations shown in Figure 6) all varied, optimum total removal efficiencies were always

468 achieved as some unique volumetric mixing ratio. Because of
469 the high sulfate concentration of AMD sample A, maximum
470 removal efficiencies for the mixtures A + 1E and A + 2E could
471 be achieved at lower volumetric mixing ratios of AMD–HFFF
472 as compared to AMD samples B and D. Because of the higher
473 concentrations of Ba and Sr in sample Well 1E, maximum
474 removal efficiencies for mixtures with all three AMD samples
475 were always higher with Well 1E as compared to Well 2E.

476 Well 1 HFFF mixing yielded relatively consistent maximum
477 removal efficiencies between 75 and 85% due to higher Ba
478 concentrations compared to Well 2. Thus, high Ba
479 concentrations in HFFF are required initially to efficiently
480 remove Ba, Sr, and SO_4 from solution. Ba concentrations in
481 HFFF ultimately control total removal efficiency, while AMD
482 vol % of mixtures can be adjusted using the model developed
483 in this study to achieve the ideal SO_4 :Ba ratio. It is important
484 to note here that Well 1E HFFF-optimized mixing ratios lead
485 to higher total ion removal than Well 2E HFFF even though
486 TOC concentrations in Well 1 HFFF were 5.4 times higher,
487 further evincing the initial Ba concentrations as a controlling
488 mechanism.

489 **Potential Beneficial Uses of AMD–HFFF-Treated**
490 **Fluids With Regards to Radium Removal.** Consistent
491 with the previous work indicating that AMD–HFFF mixing
492 provides significant Ra removal,^{32,58,59} Ra removals for three
493 AMD–HFFF mixtures were >96% for Ra-226 and >82% for
494 Ra-228, leading to the highest remnant total Ra concentration
495 in a treated fluid of approximately 44 pCi/L (Table 2). This
496 value is less than the 60 pCi/L EPA National Pollutant
497 Discharge Elimination System (NPDES) standard for disposal
498 of treated HFFF to surface water. Ouyang et al. (2019) and
499 Ouyang (2019) analyzed the solid precipitates from this
500 study's mixing experiments and found that 80–97% of the Ra-
501 226 was associated with sulfate minerals and that higher
502 specific Ra-226 sequestration increased with increasing Sr/Ba
503 ratios of the initial AMD–HFFF mixture.^{59,60} This is
504 important with regards to Ra treatment due to the ability to
505 adjust Sr/Ba ratios to concentrate more Ra into a smaller mass
506 of precipitate for subsequent landfill disposal. From previous
507 studies, Ra readily co-precipitates into binary or ternary solid
508 solutions such as $(\text{Ba},\text{Ra})\text{SO}_4$ and $(\text{Ba},\text{Sr},\text{Ra})\text{SO}_4$, which were
509 not modeled in this study.^{12,36–38,61} Zhang et al. (2014) and
510 Rosenberg et al. (2018) found that co-precipitation of
511 $(\text{Ba},\text{Ra})\text{SO}_4$ could also explain Ra removal behavior.^{32,62} The
512 AMD–HFFF mixtures in this study had partition coefficients
513 for Ra incorporation within celestite (250–1700) 2 magni-
514 tudes greater compared to barite (1.7–11.3).⁵⁹ Calculated SI
515 values for celestite either remained steady or decreased with
516 time (Figures 2 and S2) even though the Sr/Ba molar ratio
517 steadily increased as Ba precipitated from the mixture.
518 Furthermore, literature discrepancies exist where decreasing
519 Sr/Ba ratios (in the range of 0–1)^{32,63} and increasing Sr/Ba
520 ratios (in the range of 10–10 000)⁶⁴ increase Ra removal, with
521 no data for Sr/Ba ratios between 1 and 10. In this study, initial
522 Sr/Ba ratios were approximately 0.7 and 7 and resulted in
523 diverging specific Ra activities (Bq/g) in the solids, with the
524 higher initial Sr/Ba ratios of 7 leading to the highest average
525 specific Ra activity and lowest average mass of the
526 precipitate.⁵⁹ This result is significant due to the inverse
527 trend in maximizing the total removal of Ba + Sr + SO_4 with
528 lower Sr/Ba ratios (Figure S3). From charge-balanced
529 Pennsylvania conventional and unconventional USGS Pro-
530 duced Water Database samples,⁶⁵ Sr/Ba ratios range widely

531 from 0.1 to above 1000. Mixing ratios for initial Sr/Ba ratios in
532 AMD–HFFF can be adjusted depending on the ultimate
533 treatment agenda. For example, if AMD–HFFF treatment is
534 intended for reuse in hydraulic fracturing, decreasing the initial
535 mixture Sr/Ba molar ratio is necessary to maximize Ba + Sr +
536 SO_4 removal to avoid remnant SO_4 concentrations reinjected
537 into the formation. If AMD–HFFF treatment (with similar
538 ratios presented in this study) is intended for recycling water
539 for agriculture, dust suppression, or road deicing, increasing
540 the initial Sr/Ba molar ratio maximizes Ra concentration into a
541 smaller mass that is more cost effective to landfill and creates a
542 near Ra-free fluid that can be beneficially used. A hybrid of
543 both treatment agendas can also be defined.

544 At the time of publication, Tasker et al. (2018) identified 13
545 U.S. states that utilized conventional O&G wastewater for dust
546 suppression and deicing, targeting high TDS brines enriched in
547 Ca and Mg.^{66,67} Conventional- and unconventional produced
548 waters share similar inorganic chemistry.⁶⁵ While HFFF
549 samples were utilized in this study, the developed CrunchFlow
550 code can be applied to both conventional and unconventional
551 produced waters. Michigan did not differentiate between the
552 allowable use of unconventional versus conventional produced
553 water on roads until 2012.⁶⁸ In a regulatory survey of a subset
554 of states that allowed road spreading, only oil–water
555 separation was required prior to spreading or no treatment.⁶⁸
556 Ra was not monitored in brines of states surveyed, and New
557 York and North Dakota were the only states to monitor lead
558 and arsenic concentrations. Over 60 million liters of conven-
559 tional produced water were road spread for dust suppression in
560 2012 in Pennsylvania.⁶⁶ If road maintenance is the desired
561 treatment outcome for produced waters, operators can utilize
562 the malleable Sr/Ba ratios for secondary treatment that
563 maximizes Ra removal and, from this study, reduces arsenic
564 concentrations between 4 and 20 times and reduces lead
565 concentrations between 33 and 100 times. Ca concentrations
566 remained high throughout batch experiments (Figure S1),
567 indicating fluids with good potential for dust suppression. In
568 some O&G regions, such as Wyoming, produced water with
569 high sulfate concentrations and relatively low Ba and Sr
570 concentrations is recycled for agriculture.^{28,30,69} Our results
571 suggest that adding preformed barite mineral seed to existing
572 infrastructure could decrease the Sr/Ba ratio and induce
573 maximum mass removals of Ba + Sr + SO_4 , creating a recycled
574 fluid more appropriate for agricultural end-use.

575 **Environmental Implications of Optimizing Energy**
576 **Waste Stream Mixing for Beneficial Use.** AMD discharges
577 from the bituminous coal region of Pennsylvania remain a
578 viable treatment candidate when mixed with HFFF prior to
579 water recycling for stimulation of shale gas wells or other
580 beneficial reuses. While Ba can be removed completely at
581 molar ratios of 1:1 (SO_4 :Ba + Sr) within 1 day of mixing, Sr
582 and SO_4 concentrations remaining after 14 days appear
583 dependent on the Ba/Sr ratio of the initial HFFF. When Ba
584 is depleted, Sr will not be removed without the potential
585 addition of alkalinity for alternative mineral precipitation
586 (beyond the scope of this study). XRD analysis confirmed that
587 celestite did not form; rather, Sr co-precipitated with Ba in the
588 form of $\text{Ba}_x\text{Sr}_{1-x}\text{SO}_4$ where x depends on the Ba/Sr ratio of the
589 HFFF. With data obtained in this study, an open-source
590 geochemical code predicts optimal mix ratios to remove Ba
591 and SO_4 in the mix and is now available in the SI for regulators
592 and operators. This optimum volumetric mix ratio depends on
593 the initial HFFF-Ba concentration, whereas the maximum

removal efficiency is a function of initial Ba and SO_4^{2-} concentrations, or BaSO_4 SI. AMD- SO_4^{2-} concentrations, ranging from low to high, could achieve the same total maximum removal efficiencies when Ba concentrations from initial HFFF were high at AMD-HFFF mix ratios determined from the model. Further, this study sheds light on the diverging potential process flow pathway for management decisions regarding beneficial uses of AMD-HFFF co-treated fluids. High initial fluid Sr/Ba molar ratios (approximately >10) can lead to optimized treatment for Ra removal, generating a small mass of highly concentrated radioactive precipitates that would be more cost effective to landfill and a nearly Ra-free fluid. Low initial Sr/Ba molar ratios (approximately <1) can lead to optimized treatment for the total removal of $\text{Ba} + \text{Sr} + \text{SO}_4^{2-}$, generating a large mass of precipitates, including Ra, and a fluid that would be more applicable for use in hydraulic fracturing water recycling.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.est.9b07072>.

Reaction modeling with CrunchFlow; 14 day batch mixing experiment results are presented for AMD sites A, B, and C ([PDF](#))

AMD major and trace element chemistry full dataset; HFFF major and trace element chemistry dataset; exploratory fourteen day AMD-HFFF mixtures major and trace element chemistry ([PDF](#))

CrunchFlow code example and database ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Bonnie McDevitt — Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0001-8390-0028; Email: bum49@psu.edu

Authors

Michael Cavazza — Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Richard Beam — Pennsylvania Department of Environmental Protection, Bureau of Abandoned Mine Reclamation, Ebensburg, Pennsylvania 15931, United States

Eric Cavazza — Pennsylvania Department of Environmental Protection, Bureau of Abandoned Mine Reclamation, Harrisburg, Pennsylvania 17106, United States

William D. Burgos — Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0003-3269-2921

Li Li — Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-1641-3710

Nathaniel R. Warner — Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-6434-5118

Complete contact information is available at: <https://pubs.acs.org/doi/10.1021/acs.est.9b07072>

Author Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

A special thanks to the Pennsylvania Department of Environmental Protection for their time and effort in ensuring the completion of this project. This project was partially funded by the National Energy Technology Laboratory (NETL), U.S. Department of Energy, an agency of the United States Government, through a support contract through Project RES1000026 with URS Energy and Construction, Inc. Funding for B.M. came from The Pennsylvania State University and NSF grant 1703412. Dr. Radisav Vidic of the University of Pittsburgh deserves recognition for the foundation of this research and should be acknowledged for his help in the creation of this project. M.C. would also thank Tom Gray and Terry Smith, of TetraTech, for their instrumental role in pursuing this research topic.

REFERENCES

- (1) EIA. Appalachia Region Drilling Productivity Report; 2019.
- (2) U.S. Energy Information Administration. Natural Gas. <https://www.eia.gov/naturalgas/reports.php#/T202,T1075> (accessed Oct 9, 2019).
- (3) PASDA. Pennsylvania Spatial Data Access. <https://www.pasda.psu.edu/>.
- (4) Vengosh, A.; Jackson, R. B.; Warner, N.; Darrah, T. H.; Kondash, A. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States. *Environ. Sci. Technol.* **2014**, *48*, 8334–8348.
- (5) Scanlon, B. R.; Reedy, R. C.; Nicot, J. P. Will Water Scarcity in Semiarid Regions Limit Hydraulic Fracturing of Shale Plays? *Environ. Res. Lett.* **2014**, *9*, No. 124011.
- (6) Lauer, N.; Vengosh, A. Age Dating Oil and Gas Wastewater Spills Using Radium Isotopes and Their Decay Products in Impacted Soil and Sediment. *Environ. Sci. Technol. Lett.* **2016**, *3*, 205–209.
- (7) Lauer, N. E.; Warner, N. R.; Vengosh, A. Sources of Radium Accumulation in Stream Sediments near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater. *Environ. Sci. Technol.* **2018**, *52*, 955–962.
- (8) Cozzarelli, I. M.; Skalak, K. J.; Kent, D. B.; Engle, M. A.; Benthem, A.; Mumford, A. C.; Haase, K.; Farag, A.; Harper, D.; Nagel, S. C.; Iwanowicz, L. R.; Orem, W. H.; Akob, D. M.; Jaeschke, J. B.; Galloway, J.; Kohler, M.; Stoliker, D. L.; Jolly, G. D. Environmental Signatures and Effects of an Oil and Gas Wastewater Spill in the Williston Basin, North Dakota. *Sci. Total Environ.* **2017**, *599*, 579, 1781–1793.
- (9) Shrestha, N.; Chilkoor, G.; Wilder, J.; Gadhamshetty, V.; Stone, J. J. Potential Water Resource Impacts of Hydraulic Fracturing from Unconventional Oil Production in the Bakken Shale. *Water Res.* **2017**, *108*, 1–24.
- (10) Kondash, A. J.; Lauer, N. E.; Vengosh, A. The Intensification of the Water Footprint of Hydraulic Fracturing. *Sci. Adv.* **2018**, *4*, eaar5982.
- (11) Gregory, K. B.; Vidic, R. D.; Dzombak, D. A. Water Management Challenges Associated with the Production of Shale Gas by Hydraulic Fracturing. *Elements* **2011**, *7*, 181–186.
- (12) Van Sice, K.; Cravotta, C. A.; McDevitt, B.; Tasker, T. L.; Landis, J. D.; Puhr, J.; Warner, N. R. Radium Attenuation and Mobilization in Stream Sediments Following Oil and Gas Wastewater Disposal in Western Pennsylvania. *Appl. Geochem.* **2018**, *98*, 393–403.

716 (13) Geeza, T. J.; Gillikin, D. P.; McDevitt, B.; Van Sice, K.; Warner, 784
717 N. R. Accumulation of Marcellus Formation Oil and Gas Wastewater 785
718 Metals in Freshwater Mussel Shells. *Environ. Sci. Technol.* **2018**, *52*, 786
719 10883–10892.

720 (14) Burgos, W. D.; Castillo-Meza, L.; Tasker, T. L.; Geeza, T. J.; 787
721 Drohan, P. J.; Liu, X.; Landis, J. D.; Blotevogel, J.; McLaughlin, M.; 788
722 Borch, T.; Warner, N. R. Watershed-Scale Impacts from Surface 789
723 Water Disposal of Oil and Gas Wastewater in Western Pennsylvania. 790
724 *Environ. Sci. Technol.* **2017**, *51*, 8851–8860.

725 (15) Wilson, J. M.; Vanbriesen, J. M. Oil and Gas Produced Water 791
726 Management and Surface Pennsylvania. *Environ. Pract.* **2012**, *14*, 792
727 288–301.

728 (16) Akob, D. M.; Mumford, A. C.; Orem, W.; Engle, M. A.; Klings, 793
729 J. G.; Kent, D. B.; Cozzarelli, I. M. Wastewater Disposal from 794
730 Unconventional Oil and Gas Development Degrades Stream Quality 795
731 at a West Virginia Injection Facility. *Environ. Sci. Technol.* **2016**, *50*, 796
732 5517–5525.

733 (17) Kassotis, C. D.; Iwanowicz, L. R.; Akob, D. M.; Cozzarelli, I. 797
734 M.; Mumford, A. C.; Orem, W. H.; Nagel, S. C. Endocrine Disrupting 798
735 Activities of Surface Water Associated with a West Virginia Oil and 799
736 Gas Industry Wastewater Disposal Site. *Sci. Total Environ.* **2016**, *557*– 800
737 558, 901–910.

738 (18) Pennsylvania Department of Environmental Protection. 2014 801
739 Pennsylvania Integrated Water Quality Monitoring and Assessment 802
740 Report, 2014, Vol. 2014.

741 (19) Pennsylvania Department of Environmental Protection. Acid 803
742 Mine Drainage Set-Aside Program Implementation Guidelines, 2015.

743 (20) Cravotta, C. A. Dissolved Metals and Associated Constituents 804
744 in Abandoned Coal-Mine Discharges, Pennsylvania, USA. Part 1: 805
745 Constituent Quantities and Correlations. *Appl. Geochem.* **2008**, *23*, 806
746 166–202.

747 (21) Growitz, B. D. J.; Reed, L. A.; Beard, M. M. Survey, U. S. G. 807
748 Reconnaissance of Mine Drainage in the Coal Fields of East- 808
749 ernPennsylvania; Harrisburg, 1985. <https://doi.org/10.3133/wri834274>.

750 (22) Curtright, A. E.; Giglio, K. Coal Mine Drainage for Marcellus 809
752 Shale Natural Gas Extraction, 2012.

753 (23) Kondash, A. J.; Warner, N. R.; Lahav, O.; Vengosh, A. Radium 810
754 and Barium Removal through Blending Hydraulic Fracturing Fluids 811
755 with Acid Mine Drainage. *Environ. Sci. Technol.* **2014**, *48*, 1334–1342.

756 (24) He, C.; Li, M.; Liu, W.; Barbot, E.; Vidic, R. D. Kinetics and 812
757 Equilibrium of Barium and Strontium Sulfate Formation in Marcellus 813
758 Shale Flowback Water. *J. Environ. Eng.* **2014**, *140*, B4014001-1– 814
759 B4014001-9.

760 (25) Wang, Y.; Tavakkoli, S.; Khanna, V.; Vidic, R. D.; Gilbertson, L. 815
761 M. Life Cycle Impact and Benefit Trade-Offs of a Produced Water 816
762 and Abandoned Mine Drainage Cotreatment Process. *Environ. Sci. 817*
763 *Technol.* **2018**, *52*, 13995–14005.

764 (26) Coonrod, C. L.; Yin, Y. B.; Hanna, T.; Atkinson, A.; Alvarez, P. 818
765 J. J.; Tekavec, T. N.; Reynolds, M. A.; Wong, M. S. Fit-for-Purpose 819
766 Treatment Goals for Produced Waters in Shale Oil and Gas Fields. 820
767 *Water Res.* **2020**, *173*, No. 115467.

768 (27) EPA. Study of Oil and Gas Extraction Wastewater Manage- 821
769 ment. [https://www.epa.gov/eg/study-oil-and-gas-extraction- 823
770 wastewater-management](https://www.epa.gov/eg/study-oil-and-gas-extraction- 822
770 wastewater-management).

771 (28) McDevitt, B.; McLaughlin, M.; Cravotta, C. A.; Ajemigbitse, M. 824
772 A.; Van Sice, K. J.; Blotevogel, J.; Borch, T.; Warner, N. R. Emerging 825
773 Investigator Series: Radium Accumulation in Carbonate River 826
774 Sediments at Oil and Gas Produced Water Discharges: Implications 827
775 for Beneficial Use as Disposal Management. *Environ. Sci.: Processes 828*
776 *Impacts* **2019**, *21*, 324–338.

777 (29) McLaughlin, M.; Borch, T.; McDevitt, B.; Warner, N. R.; 829
778 Blotevogel, J. Water Quality Assessment Downstream of Oil and Gas 830
779 Produced Water Discharges Intended for Beneficial Reuse in Arid 831
780 Regions. *Sci. Total Environ.* **2020**, *713*, No. 136607.

781 (30) McDevitt, B.; McLaughlin, M.; Vinson, D. S.; Geeza, T. J.; 832
782 Blotevogel, J.; Borch, T.; Warner, N. R. Isotopic and Element Ratios 833
783 Fingerprint Salinization Impact from Beneficial Use of Oil and Gas 834

Produced Water in the Western U.S. *Sci. Total Environ.* **716**, 137006. 784
DOI: [10.1016/j.scitotenv.2020.137006](https://doi.org/10.1016/j.scitotenv.2020.137006). 785

(31) Zhang, T.; Hammack, R. W.; Vidic, R. D. Fate of Radium in 786
Marcellus Shale Flowback Water Impoundments and Assessment of 787
Associated Health Risks. *Environ. Sci. Technol.* **2015**, *49*, 9347–9354. 788

(32) Zhang, T.; Gregory, K.; Hammack, R. W.; Vidic, R. D. Co- 789
Precipitation of Radium with Barium and Strontium Sulfate and Its 790
Impact on the Fate of Radium during Treatment of Produced Water 791
from Unconventional Gas Extraction. *Environ. Sci. Technol.* **2014**, *48*, 792
4596–4603. 793

(33) Grandia, F.; Merino, J.; Bruno, J. Assessment of the Radium- 794
Barium Co-Precipitation and Its Potentialinfluence on the Solubility 795
of Ra in the near-Field. Technical Report TR-08-07, 2008, p 52. 796

(34) Langmuir, D.; Melchior, D. The Geochemistry of Ca, Sr, Ba 797
and Ra Sulfates in Some Deep Brines from the Palo Duro Basin, 798
Texas. *Geochim. Cosmochim. Acta* **1985**, *49*, 2423–2432. 799

(35) Brandt, F.; Curti, E.; Klinkenberg, M.; Rozov, K.; Bosbach, D. 800
Replacement of Barite by a (Ba,Ra)SO₄ Solid Solution at Close-to- 801
Equilibrium Conditions: A Combined Experimental and Theoretical 802
Study. *Geochim. Cosmochim. Acta* **2015**, *155*, 1–15. 803

(36) Vinograd, V. L.; Brandt, F.; Rozov, K.; Klinkenberg, M.; 804
Refson, K.; Winkler, B.; Bosbach, D. Solid-Aqueous Equilibrium in 805
the BaSO₄-RaSO₄-H₂O System: First-Principles Calculations and a 806
Thermodynamic Assessment. *Geochim. Cosmochim. Acta* **2013**, *122*, 807
398–417. 808

(37) Vinograd, V. L.; Kulik, D. A.; Brandt, F.; Klinkenberg, M.; 809
Weber, J.; Winkler, B.; Bosbach, D. Thermodynamics of the Solid 810
Solution - Aqueous Solution System (Ba,Sr,Ra)SO₄ + H₂O: II. 811
Radium Retention in Barite-Type Minerals at Elevated Temper- 812
atures. *Appl. Geochem.* **2018**, *93*, 190–208. 813

(38) Vinograd, V. L.; Kulik, D. A.; Brandt, F.; Klinkenberg, M.; 814
Weber, J.; Winkler, B.; Bosbach, D. Thermodynamics of the Solid 815
Solution - Aqueous Solution System (Ba,Sr,Ra)SO₄ + H₂O: I. The 816
Effect of Strontium Content on Radium Uptake by Barite. *Appl. 817
Geochem.* **2018**, *89*, 59–74. 818

(39) Paukert Vankeuren, A. N.; Hakala, J. A.; Jarvis, K.; Moore, J. E. 819
Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation 820
from Reusing Produced Water As Hydraulic Fracturing Fluid. *Environ. 821
Sci. Technol.* **2017**, *51*, 9391–9402. 822

(40) PA DEP. WhitePaper: Utilization of AMD in Well Develop- 823
ment for Natural Gas ExtractionEstablishment of a Process for the Oil 824
and Gas Industry to Utilize AMD, 2011. 825

(41) Zhang, L.; Tice, M.; Hascakir, B. The Impact of Re-Injecting 826
Flowback Fluids on Formation Damage. Case Study: Marcellus Shale. 827
SPE West. Reg. Meet. Proc. **2019**, *2019*, 23–26. 828

(42) He, C.; Zhang, T.; Vidic, R. D. Co-Treatment of Abandoned 829
Mine Drainage and Marcellus Shale Flowback Water for Use in 830
Hydraulic Fracturing. *Water Res.* **2016**, *104*, 425–431. 831

(43) Cavazza, M. In Reducing Freshwater Consumption in the 832
Marcellus Shale Play by Recycling Flowback with Acid Mine 833
Drainage, Proceedings of the SPE Annual Technical Conference 834
and Exhibition, January, Vol 2016, 2016. 835

(44) Cavazza, M. Reducing Freshwater Consumption in the 836
Marcellus Shale Play by Recycling Flowback with Abandoned Mine 837
Drainage. Ph.D. Thesis, The Pennsylvania State University, 2016. 838

(45) Steefel, C. I. CrunchFlow Software for Modeling Multi- 839
component Reactive Flow and Transport User's Manual, 2009, p 91. 840

(46) He, C.; Zhang, T.; Vidic, R. D. Use of Abandoned Mine 841
Drainage for the Development of Unconventional Gas Resources. 842
Disruptive Sci. Technol. **2013**, *1*, 169–176. 843

(47) Millero, F. J. Chemical Speciation of Ionic Compounds in 844
Estuarine Systems. *River Inputs to Ocean Systems*; UNEP/SCOR, 845
1981; pp 116–131. 846

(48) Millero, F. J. *The Physical Chemistry of Natural Waters*; Wiley- 847
Interscience: New York, 2001. 848

(49) Millero, F. J.; Schreiber, D. R. Use of the Ion Pairing Model to 849
Estimate Activity Coefficients of the Ionic Components of Natural 850
Waters. *Am. J. Sci.* **1982**, *282*, 1508–1540. 851

852 (50) Rushdi, A. I.; McManus, J.; Collier, R. W. Marine Barite and
853 Celestite Saturation in Seawater. *Mar. Chem.* **2000**, *69*, 19–31.

854 (51) Glynn, P. Solid-Solution Solubilities and Thermodynamics:
855 Sulfates, Carbonates and Halides. *Rev. Mineral. Geochem.* **2000**, *40*,
856 481–511.

857 (52) Glynn, P.; Reardon, E. J. Solid-Solution Aqueous-Solution
858 Equilibria: Thermodynamic Theory and Representation. *Am. J. Sci.*
859 **1990**, *290*, 164–201.

860 (53) Prieto, M. Thermodynamics of Solid Solution Aqueous
861 Solution Systems. *Rev. Mineral. Geochem.* **2009**, *70*, 47–85.

862 (54) Barbot, E.; Vidic, N. S.; Gregory, K. B.; Vidic, R. D. Spatial and
863 Temporal Correlation of Water Quality Parameters of Produced
864 Waters from Devonian-Age Shale Following Hydraulic Fracturing.
865 *Environ. Sci. Technol.* **2013**, *47*, 2562–2569.

866 (55) Jones, F.; Oliveira, A.; Parkinson, G. M.; Rohl, A. L.; Stanley,
867 A.; Upson, T. The Effect of Calcium Cations on the Precipitation of
868 Barium Sulfate 2: Calcium Ions in the Presence of Organic Additives.
869 *J. Cryst. Growth* **2004**, *270*, 593–603.

870 (56) Church, T. M.; Wolgemuth, K. Marine Barite Saturation. *Earth*
871 *Planet. Sci. Lett.* **1972**, *15*, 35–44.

872 (57) Desai, M. V. M.; Koshy, E.; Ganguly, A. K. Solubility of Barium
873 in Seawater in Presence of Dissolved Organic Matter. *Curr. Sci.* **1969**,
874 *38*, 107–108.

875 (58) Kondash, A. J.; Warner, N. R.; Lahav, O.; Vengosh, A. Radium
876 and Barium Removal through Blending Hydraulic Fracturing Fluids
877 with Acid Mine Drainage. *Environ. Sci. Technol.* **2014**, *48*, 1334–1342.

878 (59) Ouyang, B.; Renock, D. J.; Ajemigbitse, M. A.; Van Sice, K.;
879 Warner, N. R.; Landis, J. D.; Feng, X. Radium in Hydraulic Fracturing
880 Wastewater: Distribution in Suspended Solids and Implications to Its
881 Treatment by Sulfate Co-Precipitation. *Environ. Sci.: Processes Impacts*
882 **2019**, *21*, 339–351.

883 (60) Ouyang, B. Radium, Strontium and Barium in Hydraulic
884 Fracturing Wastewater – Distribution, Dissolution, and Co-Precip-
885 itation. Dartmouth College, 2019.

886 (61) Rodríguez-Galán, R. M.; Prieto, M. Interaction of Nonideal,
887 Multicomponent Solid Solutions With Water: A Simple Algorithm to
888 Estimate Final Equilibrium States. *Geochem., Geophys., Geosyst.* **2018**,
889 *19*, 1348–1359.

890 (62) Rosenberg, Y. O.; Sade, Z.; Ganor, J. The Precipitation of
891 Gypsum, Celestine, and Barite and Coprecipitation of Radium during
892 Seawater Evaporation. *Geochim. Cosmochim. Acta* **2018**, *233*, 50–65.

893 (63) Ceccarello, S.; Black, S.; Read, D.; Hodson, M. E. Industrial
894 Radioactive Barite Scale: Suppression of Radium Uptake by
895 Introduction of Competing Ions. *Miner. Eng.* **2004**, *17*, 323–330.

896 (64) Goldschmidt, B. On Mixed Precipitation of Sulphates of
897 Barium and Strontium. *C. R. Hebd. Séances Acad. Sci.* **1938**, *206*,
898 1110–1113.

899 (65) Blondes, M. S.; Gans, K. D.; Engle, M. A.; Kharaka, Y. K.;
900 Reidy, M. E.; Saraswathula, V.; Thordsen, J. J.; Rowan, E. L.;
901 Morrissey, E. A. U.S. Geological Survey National Produced Waters
902 Geochemical Database (ver. 2.3, January 2018). <https://doi.org/doi.org/10.5066/F7J964W8>.

904 (66) Tasker, T. L.; Burgos, W. D.; Piotrowski, P.; Castillo-Meza, L.;
905 Blewett, T. A.; Ganow, K. B.; Stallworth, A.; Delompré, P. L. M.;
906 Goss, G. G.; Fowler, L. B.; Vanden Heuvel, J. P.; Dorman, F.; Warner,
907 N. R. Environmental and Human Health Impacts of Spreading Oil
908 and Gas Wastewater on Roads. *Environ. Sci. Technol.* **2018**, *52*, 7081–
909 7091.

910 (67) Stallworth, A. M.; Chase, E. H.; Burgos, W. D.; Warner, N. R.
911 *Laboratory Method to Assess Efficacy of Dust Suppressants for Dirt and*
912 *Gravel Roads*; Transportation Research Board, 2019.

913 (68) Goodman, C. Beneficial Use of Produced Water for Road-
914 spreading: Perspectives for Colorado Policymakers; Denver, 2017.
915 <https://doi.org/10.1017/CBO9781107415324.004>.

916 (69) McLaughlin, M. C.; Borch, T.; McDevitt, B.; Warner, N. R.;
917 Blotevogel, J. Water Quality Assessment Downstream of Oil and Gas
918 Produced Water Discharges Intended for Beneficial Reuse in Arid
919 Regions. *Sci. Total Environ.* **2020**, *713*, No. 136607.