
64 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 | 1053-5888/19©2019IEEE

Hyeryung Jang, Osvaldo Simeone,
Brian Gardner, and André Grüning

LEARNING ALGORITHMS AND SIGNAL PROCESSING
FOR BRAIN-INSPIRED COMPUTING

Spiking neural networks (SNNs) are distributed trainable sys-
tems whose computing elements, or neurons, are character-
ized by internal analog dynamics and by digital and sparse

synaptic communications. The sparsity of the synaptic spiking
inputs and the corresponding event-driven nature of neural pro-
cessing can be leveraged by energy-efficient hardware imple-
mentations, which can offer significant energy reductions as
compared to conventional artificial neural networks (ANNs). The
design of training algorithms for SNNs, however, lags behind
hardware implementations: most existing training algorithms
for SNNs have been designed either for biological plausibility or
through conversion from pretrained ANNs via rate encoding.

This article provides an introduction to SNNs by focusing
on a probabilistic signal processing methodology that enables
the direct derivation of learning rules that leverage the unique
time-encoding capabilities of SNNs. We adopt discrete-time
probabilistic models for networked spiking neurons and derive
supervised and unsupervised learning rules from first prin-
ciples via variational inference. Examples and open research
problems are also provided.

Introduction
ANNs have become the de facto standard tool to carry out su-
pervised, unsupervised, and reinforcement learning tasks. Their
recent successes range from image classifiers that outperform
human experts in medical diagnosis to machines that defeat pro-
fessional players at complex games, such as Go. These break-
throughs have built upon various algorithmic advances but have
also heavily relied on the unprecedented availability of com-
puting power and memory in data centers and cloud comput-
ing platforms. The resulting considerable energy requirements
run counter to the constraints imposed by implementations on
low-power mobile or embedded devices for such applications as
personal health monitoring or neural prosthetics [1].

ANNs versus SNNs
Various new hardware solutions have recently emerged that at-
tempt to improve the energy efficiency of ANNs as inference

Digital Object Identifier 10.1109/MSP.2019.2935234
Date of current version: 29 October 2019

An Introduction to Probabilistic Spiking Neural Networks
Probabilistic models, learning rules, and applications

©ISTOCKPHOTO.COM/JUST_SUPER

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

65IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

machines by trading complexity for accuracy in the implemen-
tation of matrix operations. A different line of research, which
is the subject of this article, seeks an alternative framework
that enables efficient online inference and learning by taking
inspiration from the working of the human brain.

The human brain is capable of performing general and
complex tasks via continuous adaptation at a minute fraction
of the power required by state-of-the-art supercomputers and
ANN-based models [2]. Neurons in the human brain are quali-
tatively different from those in an ANN: they are dynamic
devices featuring recurrent behavior, rather than static nonlin-
earities, and they process and communicate using sparse spik-
ing signals over time, rather than real numbers. Inspired by this
observation, as illustrated in Figure 1, SNNs have been intro-
duced in the theoretical neuroscience literature as networks
of dynamic spiking neurons [3]. SNNs have the unique capa-
bility to process information encoded in the timing of events,
or spikes. Spikes are also used for synaptic communications,
with synapses delaying and filtering signals before they reach
the postsynaptic neuron. Because of the presence of synaptic
delays, neurons in an SNN can be naturally connected via arbi-
trary recurrent topologies, unlike standard multilayer ANNs or
chain-like recurrent neural networks.

Proof-of-concept and commercial hardware implementations
of SNNs have demonstrated orders-of-magnitude improvements
in terms of energy efficiency over ANNs [4]. Given the extreme-
ly low idle energy consumption, the energy spent by SNNs for
learning and inference is essentially proportional to the number
of spikes processed and communicated by the neurons, with the
energy per spike being as low as a few picojoules [5].

Deterministic versus probabilistic SNN models
The most common SNN model consists of a network of neu-
rons with deterministic dynamics whereby a spike is emitted
as soon as an internal state variable, known as the membrane
potential, crosses a given threshold value. A typical example
is the leaky integrate-and-fire model, in which the membrane
potential increases with each spike recorded in the incoming
synapses while decreasing in the absence of inputs. When in-
formation is encoded in the rate of spiking of the neurons, an
SNN can approximate the behavior of a conventional ANN
with the same topology. This has motivated a popular line
of work that aims at converting a pretrained ANN into a po-
tentially more efficient SNN implementation (see [6] and the
“Models” section for further details).

To make full use of the temporal processing capabilities of
SNNs, learning problems should be formulated as the mini-
mization of a loss function that directly accounts for the tim-
ing of the spikes emitted by the neurons. As for ANNs, this
minimization can, in principle, be done using stochastic gradi-
ent descent (SGD). Unlike ANNs, however, this conventional
approach is made challenging by the nondifferentiability of the
output of the SNN with respect to the synaptic weights due
to the threshold crossing-triggered behavior of spiking neu-
rons. The potentially complex recurrent topology of SNNs also
makes it difficult to implement the standard backpropagation

procedure used in multilayer ANNs to compute gradients.
To obviate this problem, a number of existing learning rules
approximate the derivative by smoothing out the membrane
potential as a function of the weights [7]–[9].

In contrast to deterministic models for SNNs, a probabilistic
model defines the outputs of all spiking neurons as jointly distrib-
uted binary random processes. The joint distribution is differen-
tiable in the synaptic weights, and, as a result, so are principled
learning criteria from statistics and information theory, such as
likelihood function and mutual information. The maximization
of such criteria can apply to arbitrary topologies and does not
require the implementation of backpropagation mechanisms.
Hence, a stochastic viewpoint has significant analytic advantag-
es, which translate into the derivation of flexible learning rules
from first principles. These rules recover as special cases many
known algorithms proposed for SNNs in the theoretical neurosci-
ence literature as biologically plausible algorithms [10].

Scope and overview
This article aims to provide a review on the topic of probabi-
listic SNNs with a specific focus on the most commonly used
generalized linear models (GLMs). We cover models, learning
rules, and applications, highlighting principles and tools. The
main goal is to make key ideas in this emerging field accessible
to researchers in signal processing, who may otherwise find it
difficult to navigate the theoretical neuroscience literature on
the subject, given its focus on biological plausibility rather than

s1

s2

sn

si
.
.
.

w1,i

s1, ≤t–1

s2, ≤t–1

sn, ≤t–1

w2,i

wn,i

si,t

w1,i

w2,i

wn,i

(a)

(b)

FIGURE 1. Illustrations of neural network models: (a) an ANN, where each
neuron i processes real numbers , ,s sn1 f to output and communicates
a real number si as a static nonlinearity, and (b) an SNN, where dynamic
spiking neurons process and communicate sparse spiking signals over time
t in a causal manner to output and communicate a binary spiking signal .s ,i t

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

66 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

theoretical and algorithmic principles [10]. At the end of the
article, we also review alternative probabilistic formulations of
SNNs, extensions, and open problems.

Learning tasks
An SNN is a network of spiking neurons. As seen in Figure 2,
the input and output interfaces of an SNN typically transfer
spiking signals. Input spiking signals can either be recorded
directly from neuromorphic sensors, such as silicon cochleas
and retinas [Figure 2(a)], or be converted from a natural signal
to a set of spiking signals [Figure 2(b)]. Conversion can be done
by following different rules, including rate encoding, whereby
amplitudes are converted into the (instantaneous) spiking rate
of a neuron; time encoding, in which amplitudes are translated
into spike timings; and population coding, whereby amplitudes
are encoded into the (instantaneous) firing rates [11] or relative
firing times of a subset of neurons (see [10] for a review). In a
similar manner, output spiking signals can either be fed directly
to a neuromorphic actuator, such as neuromorphic controllers
or prosthetic systems [Figure 2(a)], or be converted from spik-
ing signals to natural signals [Figure 2(b)]. This can be done by
following rate, time, or population decoding principles.

The SNN generally acts as a dynamic mapping between
inputs and outputs that is defined by the model parameters,
including, most notably, the interneuron synaptic weights. This
mapping can be designed or trained to carry out inference or
control tasks. When training is enabled, the model parameters
are automatically adapted based on data fed to the network,
with the goal of maximizing a given performance criterion.
Training can be carried out in a supervised, unsupervised, or
reinforcement learning manner, depending on the availability
of data and feedback signals, as further discussed subsequent-
ly. For both inference/control and training, data can be present-
ed to the SNN in a batch mode (also known as a frame-based
mode) or in an online mode (see the “Training SNNs” section).

With supervised learning, the training data specify both the
input and desired output. Input and output pairs are either in
the form of a number of separate examples, in the case of batch

learning, or presented over time in a streaming fashion for
online learning. As an example, the training set may include
a number of spike-encoded images and corresponding correct
labels, or a single time sequence to be used to extrapolate pre-
dictions (see also the “Batch Learning Examples” and “Online
Learning Examples” sections). Under unsupervised learning,
the training data specify only the desired input or output to
the SNN, which can again be presented in a batch or online
fashion. Examples of applications include representation learn-
ing, which aims to translate the input into a more compact,
interpretable, or useful representation, and generative model-
ing, which seeks to generate outputs with statistics akin to the
training data (see, e.g., [12]). Finally, with reinforcement learn-
ing, the SNN is used to control an agent on the basis of input
observations from the environment to accomplish a given goal.
To this end, the SNN is provided with feedback on the selected
outputs that guides the SNN in updating its parameters in a
batch or online manner [13].

Models
Here, we describe the standard discrete-time GLM for SNNs,
also known as the spike response model with escape noise
(see, e.g., [14] and [15]). Discrete-time models reflect the op-
eration of a number of neuromorphic chips, including Intel’s
Loihi [4], while continuous-time models are more commonly
encountered in the computer neuroscience literature [10].

Graphical representation
As illustrated in Figure 3, an SNN consists of a network of
N spiking neurons. At any time , , , ,t 0 1 2 f= each neuron
i outputs a binary signal , ,s 0 1,i t ! " , with value s 1,i t = cor-
responding to a spike emitted at time .t We collect in vector

(:)s s i V,t i t != the binary signals emitted by all neurons at
time ,t where V is the set of all neurons. Each neuron i V!
receives the signals emitted by a subset Pi of neurons through
directed links, known as synapses. Neurons in set Pi are re-
ferred to as presynaptic for postsynaptic neuron .i

Membrane potential and filtered traces
The internal, analog state of each spiking neuron i V! at
time t is defined by its membrane potential u ,i t (and possibly
also by other secondary variables to be discussed) [15]. The
value of the membrane potential indicates the probability of
neuron i to spike. As illustrated in Figure 4, the membrane po-
tential is the sum of the contributions from the incoming spikes
of the presynaptic neurons and from the past spiking behavior
of the neuron itself, where both contributions are filtered by
the respective kernels at and .bt To elaborate, we denote as

(, ,)s s s, , ,i t i i t0 f=# the spike signal emitted by neuron i up
to time .t Given past input spike signals from the presynaptic
neurons Pi, denoted as { }s s ,, t j t j11P Pi i= # !# -- , and the local
spiking history ,s ,i t 1# - the membrane potential of postsynap-
tic neuron i at time t can be written as [15]

	 ,u w s w s, , , ,i t j i
j

j t i i t i1 1
Pi

c= + +
!

- -v w/ � (1)

SNNNeuromorphic
Sensor

Neuromorphic
Actuator

SNNEncoder Decoder

Source Actuator

5

(a)

(b)

FIGURE 2. Depictions of the input/output interfaces of an SNN: (a) a direct
interface with a neuromorphic sensor and actuator and (b) an indirect
interface through encoding and decoding.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

67IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

where the quantities w ,j i for j Pi! are synaptic (feedforward)
weights, wi is a feedback weight, ic is a bias parameter, and
the quantities

	 s a s s b s and , , , ,i t t i t i t t i t))= =v w � (2)

are known as filtered feedforward and feedback traces of neu-
ron ,i respectively, where * denotes the convolution operator

.f g f gt t t0) R= $d d d-

Kernels and model weights
In (1) and (2), the filter at defines the synaptic response to a
spike from a presynaptic neuron at the postsynaptic neuron.
This filter is known as the feedforward, or synaptic, kernel.
The filtered contribution of a spike from the presynaptic neu-
ron j Pi! is multiplied by a learnable weight w ,j i for the syn-
apse from neuron j to neuron .i V! When the filter is of
finite duration ,x computing the feedforward trace s ,i tv requires
keeping track of the window { , , , }s s s, , , ()i t i t i t1 1f x- - - of prior
synaptic inputs as part of the neuron’s state [16]. An example is
given by the “alpha” function ((/) (/))exp expa t tt 1 2x x= - - -
for , ,t 0 1f x= - and zero otherwise, with time constants 1x
and 2x and duration ,x as illustrated in Figure 5(a). When the
kernel is chosen as an infinitely long decaying exponential, i.e.,
as / ,expa tt 1x= -^ h the feedforward trace s ,i tv can be directly
computed using an autoregressive update that requires the stor-
age of only a single scalar variable in the neuron’s state [16],
i.e., .(/) ()exps s s1, , ,i t i t i t1 1x= - +-v v In general, the time con-
stants and kernel shapes determine the synaptic memory and
synaptic delays.

The filter bt describes the response of a neuron to a local
output spike and is known as a feedback kernel. A negative
feedback kernel, such as / ,expb tt mx= - -^ h with time con-
stant mx [see Figure 5(b)], models the refractory period upon
the emission of a spike, with the time constant of the feed-
back kernel determining the duration of the refractory period.

As per (1), the filtered contribution of a local output spike is
weighted by a learnable parameter .wi Similar considerations
as for the feedforward traces apply regarding the computation
of the feedback trace.

s1 s2

s3 s4

s4

s3

s2

s1

P2

P3

P4

t – 2 t – 1 t + 1t

(a)

(b)

FIGURE 3. (a) An architecture of an SNN with N 4= spiking neurons. The
directed links between two neurons represent causal feedforward, or synap-
tic, dependencies, while the self-loop links represent feedback dependencies.
The directed graph may have loops, including self-loops, indicating recurrent
behavior. (b) A time-expanded view of the temporal dependencies implied by
(a) with synaptic and feedback memories equal to one time step.

×

×

× ×

+

s1, ≤t–1

s2, ≤t–1

sj, ≤t–1

si, ≤t–1

.

.

.

at

w1,i

wi

w2,i

wj,i

ui,t

si,t

bt

γi

Postsynaptic i

Presynaptic Pi

Random
Spike Generator

FIGURE 4. An illustration of the membrane potential model, with exponential feedforward and feedback kernels (see also Figure 5).

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

68 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

Generalizing the model described previously, a synapse can
be associated with Ka learnable synaptic weights .{ }w , ,j i k k

K
1

a
=

In this case, the contribution from presynaptic neuron j in (1)
can be written as [14]

	 ,w a s, . , ,j i k
k

K

k t j t
1

a

)
=

e o/ � (3)

where we have defined Ka fixed basis functions { } ,a ,k t k
K

1
a
=

with learnable weights { } .w , ,j i k k
K

1
a
= The feedback kernel can

be similarly parameterized as the weighted sum of fixed Kb
basis functions. Parameterization (3) makes it possible to adapt
the shape of the filter applied by the synapse by learning the
weights .{ }w , ,j i k k

K
1

a
= Typical examples of basis functions are the

raised cosine functions shown in Figure 5(c). With this choice,
the system can learn the sensitivity of each synapse to different
synaptic delays, each corresponding to a different basis func-
tion, by adapting the weights .{ }w , ,j i k k

K
1

a
= In the rest of this ar-

ticle, with the exception of the “Batch Learning Examples” and
“Online Learning Examples” sections, we focus on the simpler
model of (1) and (2).

Practical implementations of the membrane potential
model (1) can leverage the fact that linear filtering of binary
spiking signals requires only carrying out sums while doing
away with the need to compute expensive floating-point
multiplications [5].

GLM
As discussed, a probabilistic model defines the joint probability
distribution of the spike signals emitted by all neurons. In gen-
eral, with the notation (, ,)s s st t0 f=# using the chain rule, the
log probability of the spike signals (, ,)s s sT T0 f=# emitted
by all neurons in the SNN up to time T can be written as

	

() ()

(),

log log

log

s s s

s

p p

p s , { },

T
t

T

t t

it

T

i t i t

0
1

0
1

V
Pi i

=

= ,

#

!

#

i i

i

=

-

=

-

|

|

/

//
�

(4)

where { }i i Vi i= ! is the learnable parameter vector, with ii
being the local parameters of neuron .i The decomposition (4)

is in terms of the conditional probabilities (),sp s , { },i t i t 1Pi i, #i -|
which represent the spiking probability of neuron i at time ,t
given its past spike timings and the past behaviors of its pre-
synaptic neurons .Pi

Under the GLM, the dependency of the spiking behavior
of neuron i V! on the history s { },i t 1Pi, # - is mediated by the
neuron’s membrane potential ui,t. Specifically, the instanta-
neous firing probability of neuron i at time t is equal to

	 (|) (|) (),sp s p s u u1 1, , , ,{ },i t i t i t i t i t1Pi i v= = = =, #i - � (5)

with ()$v being the sigmoid function, i.e., / .expx x1 1v = + -^ ^ ^h hh
According to (5), a larger potential u ,i t increases the probabil-
ity that neuron i spikes. The model (5) is parameterized by
the local learnable vector { , { } , }w w,i i j i j iPii c= ! of neuron .i
SNNs modeled according to the described GLM framework
can be thought of as a generalization of dynamic models of
belief networks [17], and they can also be interpreted as a dis-
crete-time version of Hawkes processes [18].

In a variant of this model, probability (5) can be written as
/ ,u u,i tv D^ h where uD is a bandwidth parameter that dictates

the smoothness of the firing rate about the threshold. When
taking the limit ,u 0"D we obtain the deterministic integrate-
and-fire model [19].

Relationship with ANNs
Under rate encoding, as long as the duration T is large enough,
the deterministic integrate-and-fire model can mimic the op-
eration of a conventional feedforward ANN with a nonnega-
tive activation function. To this end, consider an ANN with
an arbitrary topology defined by an acyclic directed graph.
The corresponding SNN has the same topology, a feedforward
kernel defined by a single basis function implementing a per-
fect integrator (i.e., a filter with a constant impulse response),
the same synaptic weights of the ANN, and no feedback ker-
nel. In this way, the value of the filtered feedforward trace for
each synapse approximates the spiking rate of the presynaptic
neuron as T increases. The challenge in enabling a conversion
from ANN to SNN is to choose the thresholds ic and possibly
a renormalization of the weights, so that the spiking rates of all
neurons in the SNN approximate the outputs of the neurons in

at ak,t
ak,t

bt

0 0t tτ – 1

t

t

τ – 1

k = 1 2 3 4 5 6
1 1

–10

0

LTD

LTP

d

(a) (c) (d)(b)

FIGURE 5. Examples of feedforward/feedback kernels: (a) an exponentially decaying feedforward kernel ,at (b) an exponentially decaying feedback kernel
,bt (c) raised cosine basis functions a ,k t in [14], and (d) spike-timing-dependent plasticity basis functions a ,k t for long-term potentiation (LTP) and long-

term depression (LTD), where the synaptic conduction delay equals d [16].

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

69IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

the ANN [6]. When including loops, deterministic SNNs can
also implement recurrent NNs [20].

Gradient of the log-likelihood
The gradient of the log probability, or log-likelihood, ()Ls T i =#

()log sp T#i in (4), with respect to the learnable parameters ,i
plays a key role in the problem of training a probabilistic SNN.
Focusing on any neuron ,i V! from (1) to (5), the gradient of
the log-likelihood with respect to the local parameters ii for
neuron i is given as

	 () (),log sp sL , { },s
t

T

i t i t
0

1Pi T i i id di = , #i i i

=

-# |/ � (6)

where the individual entries of the gradient of time t can be
obtained as

	 () (),log sp s s u, , ,{ },i t i t i t i t1Pi i id v= -, #ic -| � (7a)

	 () (()),log sp s s s u, , , ,{ },w i t i t j t i t i t11P,j i i id v= -, #i --| v � (7b)

and

	 () (()) .log sp s s s u, , , ,{ },w i t i t i t i t i t11Pi i id v= -, #i --| � (7c)

The gradients (7) depend on the difference between the desired
spiking behavior and its average behavior under the model dis-
tribution (5). The implications of this result for learning will be
discussed in the next sections.

Training SNNs
SNNs can be trained using supervised, unsupervised, and
reinforcement learning. To this end, the network follows a
learning rule, which defines how the model parameters i
are updated on the basis of the available observations. As
we will detail, learning rules can be applied in a batch mode
at the end of a full period T of use of the SNN, based on
multiple observations of duration ,T or in an online fash-
ion, i.e., after each time instant t, based on an arbitrarily
long observation.

Locality
A learning rule is local if its operation can be decomposed into
atomic steps that can be carried out in parallel at distributed
processors based only on locally available information and lim-
ited communication on the connectivity graph (see Figure 3).
Local information at a neuron includes the membrane potential,
the feedforward filtered traces for the incoming synapses, the
local feedback filtered trace, and the local model parameters.
The processors will be considered here to be conventionally
implemented at the level of individual neurons. Besides local
signals, learning rules may also require global feedback signals,
as discussed next.

Three-factor rule
While the details differ for each learning rule and task, a
general form of the learning rule for the synaptic weights fol-

lows the three-factor rule [21], [22]. Accordingly, the synaptic
weight w ,j i from presynaptic neuron j Pi! to a postsynaptic
neuron i V! is updated as

	 ,w w pre post, ,j i j i j i! # # #,h+ � (8)

where h is a learning rate, , is a scalar global learning signal
that determines the sign and magnitude of the update, pre j is
a function of the activity of the presynaptic neuron ,j Pi! and
posti depends on the activity of the postsynaptic neuron .i V!
For most learning rules, pre- and postsynaptic terms are local
to each neuron, while the learning signal ,, if present, plays the
role of a global feedback signal. As a special case, the rule (8)
can implement Hebb’s hypothesis that “neurons that spike to-
gether wire together.” This is indeed the case if the product of
the pre j and posti terms is large when the two neurons spike
at nearly the same time, resulting in a large change of the syn-
aptic weight w ,j i [10].

In the next two sections, we will see how learning rules
of the form (8) can be derived in a principled manner as
SGD updates obtained under the described probabilistic
SNN models.

Training SNNs: Fully observed models

Fully observed versus partially observed models
Neurons in an SNN can be divided into the subsets of visible,
or observed, neurons, which encode inputs and outputs, and
hidden, or latent, neurons, whose role is to facilitate the de-
sired behavior of the SNN. During training, the behavior of
visible neurons is specified by the training data. For example,
under supervised learning, input neurons are clamped to the
input data, while the spiking signals of output neurons are de-
termined by the desired output. Another related example is a
reinforcement learning task in which the SNN models a policy,
with input neurons encoding the state and output neurons en-
coding the action previously taken by the learner in response
to the given input [23].

In the case of fully observed models, the SNN contains
only visible neurons while, in the case of partially observed
models, the SNN also includes hidden neurons. We first con-
sider the simpler former case and then extend the discussion to
partially observed models.

Maximum likelihood learning via SGD
The standard training criterion for probabilistic models for
both supervised and unsupervised learning is maximum like-
lihood (ML). ML selects model parameters that maximize the
probability of the observed data and, hence, of the desired in-
put/output behavior under the model. To elaborate, we consider
an example x T# consisting of fully observed spike signals
for all neurons in the SNN, including both input and output
neurons. Using the notation in the “Models” section, we hence
have .s xT T=# # During training, the spike signals for all neu-
rons are thus clamped to the values assumed in the data point
x ,T# and the log-likelihood is given as () ()log xpLx TT i = #i#

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

70 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

in (4), with .s xT T=# # As we will see next, for batch learning,
there are multiple such examples x T# in the training set while,
for online learning, we have a single arbitrary long example
x T# for large .T

Batch SGD
In the batch training mode, a training set { }xD T

m
m
M

1= # = of
M fully observed examples is available to enable the learning
of the model parameters. The batch SGD-based rule proceeds
iteratively by selecting an example x T# from the training set
D at each iteration (see, e.g., [24]). The model parameters i
are then updated in the direction of the gradient (6) and (7),
with ,s xT T=# # as

	 (),Lx T! di i ih+ i # � (9)

where the learning rate h is assumed to be fixed here for sim-
plicity of notation. Note that the update (9) is applied at the
end of the observation period .T The batch algorithm can be
generalized by summing over a minibatch of examples at each
iteration [24].

Online SGD
In the online training mode, an arbitrary long example
x T# is available, and the model parameters i are up-
dated at each time t (or, more generally, periodically ev-
ery few time instants). This can be done by introducing an
eligibility trace e ,i t for each neuron i [19], [22]. As sum-
marized in Algorithm 1, the eligibility trace e ,i t in (A1),
with ,11l computes a weighted average of current and
past gradient updates. In this update, the current gradient

()log x xp t t 1d #i i -| is weighted by a factor ,1 l-^ h and the
gradient that is evaluated l steps in the past is multiplied
by the exponentially decaying coefficient .1 ll l- $^ h The
eligibility trace captures the impact of past updates on the
current spiking behavior, and it can help stabilize the online
training by reducing the variance of the updates (for suf-
ficiently large)l [13].

Interpretation
The online gradient update for any synaptic weight w ,j i can be
interpreted in light of the general form of rule (8). In fact, the
gradient (7b) has a two-factor form, whereby the global learn-
ing signal is absent; the presynaptic term is given by the filtered
feedforward trace x ,j t 1-v of the presynaptic neuron ,j Pi! and
the postsynaptic term is given by the error term .x u, ,i t i tv- ^ h
This error measures the difference between the desired spik-
ing behavior of the postsynaptic neuron i at any time t and its
average behavior under the model distribution (5).

This update can be related to the standard spike-timing-
dependent plasticity (STDP) rule [10], [16], [25]. In fact, STDP
stipulates that the long-term potentiation (LTP) of a synapse
occurs when the presynaptic neuron spikes right before a post-
synaptic neuron, while long-term depression (LTD) of a synapse
takes place when the presynaptic neuron spikes right after a
postsynaptic neuron. With the basis functions depicted in Fig-
ure 5(d), if a presynaptic spike occurs more than d steps prior
to the postsynaptic spike at time ,t an increase in the synaptic
weight, or LTP, occurs, while a decrease in the synaptic weight,
or LTD, takes place otherwise [16]. The parameter d can hence
be interpreted as synaptic delay.

As for the synaptic weights, all other gradients (7) also
depend on an error signal measuring the gap between the
desired and average model behavior. In (7a)–(7c), the desired
behavior is given by samples s x, ,i t i t= in the training exam-
ple. The contribution of this error signal can be interpreted
as a form of (task-specific) homeostatic plasticity, in that it
regulates the neuronal firing rates around desirable set-point
values [10], [26].

Locality and implementation
Given the absence of a global learning signal, the online SGD
rule in Algorithm 1 and the batch SGD rule can be implement-
ed locally, so that each neuron i updates its own local param-
eters .ii Each neuron i uses information about the local spike
signal ,x ,i t the feedforward filtered traces x ,j t 1-v for all pre-
synaptic neurons ,j Pi! and the local feedback filtered trace
x ,i t 1- to compute the first terms in (7a)–(7c), while the second
terms in (7a)–(7c) are obtained from (5) by using the neuron’s
membrane potential .u ,i t

Training SNNs: Partially observed models

Latent neurons
As mentioned previously, the set V of neurons can be parti-
tioned into the disjoint subsets of observed (input and output)
and hidden neurons. The NX neurons in the subset X are ob-
served, and the NH neurons in the subset H are hidden, or la-
tent, and we have .V X H,= We write as (:)x x i X,t i t !=
and (:),h h i H,t i t != the binary signals emitted by the ob-
served and hidden neurons at time ,t respectively. Therefore,
using the notation in the “Models” section, we have s x, ,i t i t=
for any observed neuron i X! and s h, ,i t i t= for any latent
neuron i H! as well as (,)s x ht t t= for the overall set of spike
signals at time .t During training, the spike signals x T# of the

Algorithm 1. ML training via online SGD.

Input: Training example x T# and learning rates h and l
Output: Learned model parameters i

1:  initialize parameters i
2:  repeat
3:   for each , , ,t T0 1f=
4:   for each neuron i V! do
5:    � compute the gradient ()xlogp x , { },i t i t 1Pi i id ; , #i i - with respect

  to the local parameters ii from (7)
6:     compute the eligibility trace e ,i t

	 () ()e e xlogp x1, , , { },i t i t i t i t1 1Pi i id ;l l= + - , #i i- - � (A1)

7:    � update the local model parameters

	 e ,i i i t!i i h+ � (A2)

8:   end
9:  until stopping criterion is satisfied.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

71IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

observed neurons are clamped to the examples in the train-
ing set while the probability distribution of the signals h T# of
the hidden neurons can be adapted to ensure the desired input/
output behavior. Mathematically, the probabilistic model is de-
fined as in (4) and (5), with .(,)s x hT T T=# # #

ML via SGD and variational learning
Here, we review a standard learning rule that tackles the
ML problem by using SGD. Unlike in the fully observed
case, as we will see, variational inference is needed to cope
with the complexity of computing the gradient of the log-
likelihood of the observed spike signals in the presence of
hidden neurons [12].

Log-likelihood
The log-likelihood of an example of observed spike signals x T#
is obtained via marginalization by summing over all possible val-
ues of the latent spike signals h T# as () ()log xpLx TT i = =#i#

/ (,).log x hph T TT # #i# Let us denote as p$G H the expectation
over a distribution ,p as in /() () (),f x f x p x()p x xG H = for some
function ().f x The gradient of the log-likelihood with respect
to the model parameters i can be expressed as (see, e.g., [12,
Ch. 6])

	 ,() (,)log x hpL ()x h xT T pT T Td dG Hi = # # ;i i i# # #i � (10)

where the expectation is with respect to the posterior distribu-
tion ()h xp T T# #i | of the latent variables ,h T# given the ob-
servation .x T# Note that the gradient (,)log x hp T Td =# #i i
/ (, ,)log x h x hpT

t t t t t0 1 1d ; # #i i= - - is obtained from (7), with
(,) .s x hT T T=# # # Computing the posterior ()h xp T T# #i |

amounts to the Bayesian inference of the hidden spike sig-
nals for the observed values .x T# Given that we have the
equality /() (,) (),h x x h xp p pT T T T T=# # # # #i i i| this task re-
quires the evaluation of the marginal distribution ()xp T =#i

.(,)x hph T TTR # #i# For problems of practical size, this
computation is intractable, and, hence, so is evaluating the
gradient (10).

Variational learning
Variational inference, or variational Bayes, approximates the
true posterior distribution ()h xp T T# #i | by means of any ar-
bitrary variational posterior distribution ()h xq T T# #z | param-
eterized by a vector z of learnable parameters. For any varia-
tional distribution (),h xq T T# #z | using Jensen’s inequality, the
log-likelihood ()Lx T i# can be lower-bounded as (see, e.g., [12,
Ch. 6 and Ch. 8])

	

(,) : (,),

() (,)

()
()
(,)

log

log

x h

x h

h x h x
x h

p

q
q
p

L

L

, ()h x x

x
h

h

T T

T T
T T

T T

T T q

T

T

T

T T T,

$;
;

G H

i

i z= =

=

;

#

#
#

#

i

i

i z

z
z

#

#

#

#

z

/

/ 	

(11)

where we have defined the learning signal as

	 .(,) : (,) ()log logx h x h h xp q, T T T T T T, ;= -# # # # # #i iz z � (12)

A baseline variational learning rule, also known as the
variational expectation maximization algorithm, is based
on the maximization of the evidence lower bound (ELBO)

(,)Lx T i z# in (11) with respect to both the model parame-
ters i and the variational parameters .z Accordingly, for
a given observed example ,x DT !# the learning rule is
given by gradient ascent updates, where the gradients can
be computed as

	 (,) (,) ,log x hL p ()x h xT T qT T Td dG Hi z = # #i i i# # #z | � (13a)

and

	
,

(,)

(,) ()logx h h x

L

q, ()

x

h xT T T T q

T

T T$

d

, d ;G H
i z =

;i

z

z z z

#

#z

�
(13b)

respectively. The gradient (13a) is derived in a manner analo-
gous to (10), and the gradient (13b) is obtained from the stan-
dard REINFORCE, or score function, gradient [12, Ch. 8],
[27]. Importantly, the gradients (13) require expectations
with respect to the known variational posterior ()h xq T T# #z |
evaluated at the current value of variational parameters z
rather than with respect to the hard-to-compute posterior

.()h xp T T# #i | An alternative to the computation of the gradi-
ent over the variational parameters z as in (13b) is given by the
so-called reparameterization trick [28], as briefly discussed in
the “Conclusions and Open Problems” section.

In practice, computing the averages in (13) is still intrac-
table because of the large domain of the hidden variables .h T#
Therefore, the expectations over the variational posterior are
typically approximated by means of Monte Carlo empirical
averages. This is possible as long as sampling from the varia-
tional posterior ()h xq T T# #z | is feasible. As an example, if a
single spike signal h T# is sampled from (),h xq T T# #z | we
obtain the Monte Carlo approximations of (13) as

	 (,) (,),log x hL px T TTd di z = # #i i i#
t � (14a)

and

	 (,) (,) () .logx h h xL q,x T T T TT $d , di z = # # # #iz z z z# |t � (14b)

Batch doubly SGD
In a batch training formulation, at each iteration, an example
x T# is selected from the training set .D At the end of the ob-
servation period ,T both model and variational parameters can
be updated in the direction of the gradients (,)Lx Td i zi #

t and
(,)Lx Td i zz #

t in (14) as

	 (,),Lx T! di i ih z+ i i #
t � (15a)

and

	 (,),Lx T! d iz z h z+ z z #
t � (15b)

respectively, where the learning rates hi and hz are assumed
to be fixed for simplicity. Rule (15) is known as doubly SGD

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

72 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

since sampling is carried out over both the observed examples
x T# in the training set and the hidden spike signals .h T#

The doubly stochastic gradient estimator (14b) typically
exhibits a high variance. To reduce the variance, a common
approach is to subtract a baseline control variate from the learn-
ing signal. This can be done by replacing the learning signal
in (14b) with the centered learning signal (,) ,x h, T T, ,-# #i z r
where the baseline ,r is calculated as a moving average of learn-
ing signals computed at previous iterations [22], [27], [29].

Online doubly SGD
The batch doubly SGD rule (15) applies with any choice of
variational distribution (),h xq T T;# #z as long as it is feasible
to sample from it and to compute the gradient in (14b). How-
ever, the locality properties and complexity of the learning
rule are strongly dependent on the choice of the variational
distribution. We now discuss a specific choice considered in
[16], [22], and [29]–[31] that yields an online rule, summarized
in Algorithm 2.

The approach approximates the true posterior ()h xp T T;# #i
with a feedforward distribution that ignores the stochastic
dependence of the hidden spike signals ht at time t on the
future values of the observed spike signals .x T# The corre-
sponding variational distribution can be written as

() (,) (),h x h x hq p p h u, ,T T
t

T

t t t
it

T

i t i t
0

1 1
0 H

H H; ; ;= =# # # #

!

i i

=

- -

=

% %%
� (16)

where we denote as { }i i
H

Hi i= ! the collection of the model
parameters for hidden neurons, and () ()p h u u1, , ,i t i t i t; v= =
by (5), with .s h, ,i t i t= We note that (16) is an approximation
of the true posterior () (,)h x h x hp p

T
T T t T tt 10
; ;=# # # #i i -=

%
since it neglects the correlation between variables ht and the
future observed samples .x t$ In (16), we have emphasized that
the variational parameters z are tied to a subset of the model
parameters, as per the equality .Hiz= As a result, this choice
of variational distribution does not include additional learnable
parameters apart from the model parameters .i The learning
signal (12) with the feedforward distribution (16) reads

	

(,) (,)

(),

log

log

x h x x hp

p x u, ,

T T
t

T

t t t

it

T

i t i t

0
1 1

0 X

X X, ;

;

=

=

#

!

i i

=

- -

=

/

//
	

(17)

where { }i i
X

Xi i= ! is the collection of the model parameters
for observed neurons.

With the choice of (16) for the variational posterior, the batch
doubly SGD update rule (15) can be turned into an online rule
by generalizing Algorithm 1, as detailed in Algorithm 2. At each
step of the online procedure, each hidden neuron i H! emits a
spike, i.e., ,h 1,i t = at any time t by following the current model
distribution (16), i.e., with probability ().u ,i tv Note that the mem-
brane potential u ,i t of any neuron i at time t is obtained from (1),
with observed neurons clamped to the training example x t 1# -
and hidden neurons clamped to the samples .h t 1# - Then, a cen-
tral processor collects the log probabilities ()p x u, ,i t i t; under the
current model from all observed neurons i X! to compute the
eligibility trace of the learning signal ,t, as in (A3) and feeds back
the global learning signal to all latent neurons.

Intuitively, this learning signal indicates to the hidden neu-
rons how effective their current signaling is in ensuring the
desired input/output behavior with high probability. Finally,
each observed and hidden neuron i computes the eligibility
trace e ,i t of the gradient, i.e., (,)log x hp x ,i t t t1 1i id ; # #i i - - and

(,),log x hp h ,i t t t1 1i id ; # #i i - - respectively, as in (A4). The local
parameters ii of each observed neuron i X! are updated in
the direction of the eligibility trace ,e ,i t while each hidden neu-
ron i H! updates the parameter using e ,i t and the learning
signal t, in (A3).

Sparsity and regularization
As discussed, the energy consumption of SNNs depends on
the number of spikes emitted by the neurons. Since the ML
criterion does not enforce any sparsity constraint, an SNN
trained using the methods discussed so far may present dense
spiking signals [18]. This is especially the case for the hid-
den neurons, whose behavior is not tied to the training data.
To obviate this problem, it is possible to add a regularization
term (() ())h x hq rKL T T T$; <a- # # #z to the learning objective

(,)Lx T i z# in (11), where /() () (() / ())logp q p x p x q xKL x< = is
the Kullback–Leibler divergence between distributions p and

,q ()hr T# represents a baseline distribution with the desired

Algorithm 2. ML training via online doubly SGD.

Input: Training data x T# and learning rates h and l
Output: Learned model parameters i

  1:  initialize parameters i
  2:  repeat
  3:   feedforward sampling:
  4:   for each hidden neuron i H! do
  5:    � emit a spike h 1,i t = with probability ()u ,i tv
  6:   end
  7:   global feedback:
  8:    � a central processor collects the log probabilities ()p x u, ,i t i t; in

(5) from all observed neurons ,i X! computes an eligibility
trace from the learning signal (17) as

	 () (),logp x u1 , ,t t
i

i t i t1
X

, , ;l l= + -
!

- / � (A3)

	 and feeds back the global learning signal t, to all latent neurons
  9:   parameter update:
10:   for each neuron i V! do
11:     evaluate the eligibility trace e ,i t as

	 () (),e e x hlogp s1, , ,i t i t i t t t1 1 1i id ;l l= + - # #i i- - - � (A4)

	 with s x, ,i t i t= if i X! and s h, ,i t i t= if i H!
12:     update the local model parameters as

	 ·
,

,
e
e

i
i

if
if

X
H

,

,
i i

i t

t i t
!

,

!

!
i i h+) � (A5)

13:   end
14:  until stopping criterion is satisfied.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

73IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

level of sparsity, and 02a is a parameter adjusting the amount
of regularization. This regularizing term, which penalizes
variational distributions far from the baseline distribution, can
also act as a regularizer to minimize overfitting by enforcing a
bounded rationality constraint [32]. The learning rule in Algo-
rithm 2 can be modified accordingly.

Interpretation
The update (A5) for the synaptic weight w ,j i of any observed
neuron i X! follows the local two-factor rule, as described in
the “Interpretation” section. In contrast, for any hidden neu-
ron ,i H! the update applies a three-factor nonlocal learning
rule (8). Accordingly, the postsynaptic error signal of hidden
neuron i and the filtered feedforward trace of presynaptic
neuron j are multiplied by the global learning signal (17). As
anticipated, the global learning signal can be interpreted as an
internal reward signal. To see this more generally, we can
rewrite (17) as

	 (,) ()
()

()
.log logx h x h h

h x
p

p
q

T T T T
T

T T
X

H

, ;
;

= -# # # #
#

#
i i

i

i 	(18)

According to (18), the learning signal rewards hidden spike
signals ,h T# producing observations x T# that yield a large
likelihood ()log x hp T T;# #i for the desired behavior. Further-
more, it penalizes values of hidden spike signals h T# that have
large variational probability ()h xq T TH ;# #i while having a low
prior probability ()hp T#i under the model.

As discussed in the “Learning Tasks” section, SNNs can
be trained in a batch or online mode. In the next sections,
we provide a representative, simple, and reproducible example
for each case.

Batch learning examples
As an example of batch learning, we consider the standard
handwritten digit classification task on the USPS data set
[35]. We adopt an SNN with two layers, the first encod-
ing the input and the second the output, with directed syn-
aptic links existing from all neurons in the input layer to
all neurons in the output layer. No hidden neurons exist,
and, hence, training can be done as described in the section
“Training SNNs: Fully Observed Models.” Each 16 16# in-
put image, representing either a one or a seven handwritten
digit, is encoded in the spike domain by using rate encod-
ing. Each gray pixel is converted into an input spiking signal
by generating an independent identically distributed (i.i.d.)
Bernoulli vector of T samples, with the spiking probability
proportional to the pixel intensity and limited to between
zero and 0.5. As a result, we have 256 input neurons, with
one per pixel of the input image. The digit labels {1, 7} are
also rate encoded using each one of the two output neurons.
The neuron corresponding to the correct label index emits
spikes with a frequency of one every three samples, while
the other output neurons are silent. We refer the reader to
[33] and the supplementary material [34] for further details
on the numerical setup.

Figure 6 shows the classification accuracy in the test set
versus the duration T of the operation of the SNN after the
convergence of the training process. The classification accu-
racy of a conventional ANN with the same topology and a soft-
max output layer is added for comparison. Note that, unlike
the SNN, the ANN outputs real values, namely, the logits for
each class processed by the soft-max layer. From the figure,
the SNN is seen to provide a graceful tradeoff between accu-
racy and complexity of learning: as T increases, the number
of spikes that are processed and the output by the SNN grow
larger, entailing a larger inference complexity but also an
improved accuracy that tends to that of the baseline ANN.

Online learning examples
We now consider an online prediction task in which the SNN se-
quentially observes a time sequence { }al and the SNN is trained
to predict, in an online manner, the next value of sequence ,al
given the observation of the previous values .a l 1# - The time se-
quence { }al is encoded in the spike domain, producing a spike
signal { },xt consisting of NX spiking signals (, ,)x x x, ,t t N t1 Xf=
with T 1T $ samples for each sample .al We refer to TD as a
time expansion factor. Each of the spiking signals x ,i t is associ-
ated with one of NX visible neurons.

We adopt a fully connected SNN topology that also includes
NH hidden neurons. In this online prediction task, we trained
the SNN using Algorithm 2, with the addition of a sparsity regu-
larization term. This is obtained by assuming an i.i.d. reference
Bernoulli distribution with a desired spiking rate [,],r 0 1! i.e.,

/ /() () ()log log loghr h r h r1 1, ,t
T

T i i t i t0 H= + - -# != (see
the supplementary material [34] for details). The source sequence
is randomly generated as follows: at every T 25s = time steps,
one of three possible sequences of duration Ts is selected, name-
ly, an all-zero sequence with probability 0.7, a sequence of class
1 from the SwedishLeaf data set of the UCR archive [36], or a
sequence of class 6 from the same archive, with equal probability
[see Figure 7(a) for an illustration].

Encoding and decoding
Each value al of the time sequence is converted into TT sam-
ples , , ,x x x()l T l T l T1 2 1fT T T+ + + of the NX spike signals { }xt

99

95

90

Te
st

 A
cc

ur
ac

y
(%

)

5 10 15 20 25 30
Spike Signal Duration (T)

ANN
SNN

FIGURE 6. Performance of classification based on a two-layer SNN trained
via batch ML learning in terms of accuracy versus the duration T of the
operation of the SNN. The accuracy of an ANN with the same topology
is also shown as a baseline (see [33] and [34] for details).

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

74 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

via rate or time coding, as illustrated in Figure 8. With rate
coding, the value al is first discretized into N 1X + uniform
quantization levels using rounding to the largest lower value.
The lowest, silent level is converted to all-zero signals ,xl T 1T +

, , .x x()l T l T2 1fT T+ + Each of the other NX levels is assigned to
a visible neuron, so that the neuron associated with the quan-
tization level corresponding to value al emits TT consecutive
spikes while the other neurons are silent. Rate decoding predicts
value al 1+ by generating the samples , ,x x() ()l T l T1 1 2fT T+ + +
from the trained model and then selecting the neuron with the
largest number of spikes in this window.

For time coding, each of the NX visible neurons is
associated with a different shifted, truncated Gaussian
receptive field [37]. Accordingly, as seen in Figure 8(b),
for each value ,al each visible neuron i emits a signal

, , ,x x x, , ,()i l T i l T i l T1 2 1fT T T+ + + that contains no spike if the
value al is outside the receptive field and, otherwise, con-
tains one spike, with the timing determined by the value
of the corresponding truncated Gaussian receptive field
quantized to values { , , }T1 f T using rounding to the near-
est value. Time decoding considers the first spike timing of
the samples , ,x x,() ,()i l T i l T1 1 2fT T+ + + for each visible neuron
i and predicts a value al 1+ using a least-squares criterion
on the values of the receptive fields (see [11] and [37]). We
refer to the supplementary material [34] for further details
on the numerical setup.

Rate coding
First, assuming rate encoding with ,T 5T = we train an SNN
with N 9X = visible neurons and N 2H = hidden neurons using
Algorithm 2. In the top portion of Figure 7(a), we see a segment

FIGURE 7. An online prediction task based on an SNN with N 9X = visible
neurons and N 2H = hidden neurons trained via Algorithm 2. (a) A real
analog time signal and a predicted decoded signal (top), and the total
number of spikes emitted by the SNN (bottom). (b) A spike raster plot of
visible neurons (top) and a spike raster plot of hidden neurons (bottom).

1

0.5

0

6

3

0

0 23,725 23,775 23,825
Time/∆T (l)

0 23,725 23,775 23,825
Time/∆T (l)

N
um

be
r o

f S
pi

ke
s

9
7
5
3
1

1
2

N
eu

ro
n

In
de

x

0 118,625 118,875 119,125
Time (t)

(b)

(a)

Hidden

Visible

Real Signal
Predicted Signal

Visible Neuron Index Visible Neuron Index

Neuron 1Neuron 2
al al

Level 2

Level 1

Level 0
l l

1 2 3 4 5 6 1 2 3 4 5 6

2

1

2

1

1 2 3 4 5 6 7 8 9 12 15 18 1 2 3 4 5 6 7 8 9 12 15 18
t t

∆T ∆T

∆T

1 2 3

(a) (b)

FIGURE 8. Examples of coding schemes with N 2X = visible neurons and time expansion factor .T 3T = (a) With rate coding, each value ai is discretized into
N 1 3X + = levels (top), and T 3T = consecutive spikes are assigned to input neuron i for level , ,i 1 2= and no spikes are assigned otherwise (bottom).
(b) With time coding, value ai is encoded for each visible neuron into zero or one spike, whose timing is given by the value of the corresponding Gaussian
receptive field [37].

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

75IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

of the signal and of the prediction for a time window after the
observation of the 23,700 plus training samples of the sequence.
The corresponding spikes emitted by the SNN [Figure 7(b)] are
also shown (top), along with the total number of spikes per time in-
stant [Figure 7(a, bottom)]. The SNN is seen to be able to provide
an accurate prediction. Furthermore, the number of spikes, and,
hence, the operating energy, depend on the level of activity of the
input signal. This demonstrates the potential of SNNs for always-
on event-driven applications. As a final note, in this particular
example, the hidden neurons are observed to act as a detector of
activity versus silence, which facilitates the correct behavior of the
visible neurons.

The role of the number NH of hidden neurons is further
investigated in Figure 9, which shows the prediction error as a
function of the number of observed training samples for differ-
ent values of .NH Increasing the number of hidden neurons is
seen to improve the prediction accuracy as long as training is
carried out for a sufficiently long time. The prediction error is
measured in terms of average mean absolute error (MAE). For
reference, we also compare the prediction performance with a
persistent baseline (dashed line) that outputs the previous sam-
ple, upon quantization to NX levels for fairness.

Rate versus time encoding
We now discuss the impact of the coding schemes on the online
prediction task. We train an SNN with N 2X = visible neurons
and N 5H = hidden neurons. Figure 10(a) shows the prediction
error and Figure 10(b) the number of spikes in a window of
2,500 samples of the input sequence, after the observation of
the 17,500 training samples, versus the time expansion factor

.TT From the figure, rate encoding is seen to be preferable
for smaller values of ,TT while time encoding achieves better
prediction error for larger TT with fewer spikes and, hence,
energy consumption.

This result is a consequence of the different use that the
two schemes make of the time expansion .TT With rate
encoding, a larger TT entails a large number of spikes for
the neuron encoding the correct quantization level, which
provides increased robustness to noise. In contrast, with
time encoding, the value TT controls the resolution of the
mapping between input value al and the spiking times of
the visible neurons. This demonstrates the efficiency ben-
efits of SNNs that may arise from their unique time encod-
ing capabilities.

Conclusions and open problems
As illustrated by the examples in the previous section, SNNs
provide a promising alternative solution to conventional
ANNs for the implementation of low-power learning and
inference. When using rate encoding, they can approximate
the performance of any ANN while also providing a grace-
ful tradeoff between accuracy, on the one hand, and energy
consumption and delay, on the other. Most importantly, they
have the unique capacity to process time-encoded informa-
tion, yielding sparse, event-driven, and low-complexity infer-
ence and learning solutions.

The recent advances in hardware design reviewed in [5] are
motivating renewed efforts to tackle the current lack of well-
established direct training algorithms that are able to harness
the potential efficiency gains of SNNs. This article has argued
that this gap is, at least in part, a consequence of the insistence
on the use of deterministic models, which is in turn due to
their dominance in the context of ANNs. As discussed, not
only can probabilistic models allow the recovery of learn-
ing rules that are well known in theoretical neuroscience, but

0.08

0.06

0.04

0.02

E
rr

or
 (M

A
E

)

5,000 10,000 15,000 20,000
Time/∆T (l)

NH = 1
NH = 2
NH = 5

FIGURE 9. Prediction error versus training time for SNNs with N 9X =
visible neurons and , ,N 1 2H = and 5 hidden neurons trained via ML
learning using Algorithm 2. The dashed line indicates the performance of
a baseline persistent predictor that outputs the previous sample (quan-
tized to NX levels, as described in the text).

0.1

0.08

0.06

0.04

E
rr

or
 (M

A
E

)
N

um
be

r o
f S

pi
ke

s

3 5 7 10 15
∆T

3 5 7 10 15
∆T

4

3

2

1

0

Rate Coding/Decoding Time Coding/Decoding

(a)

(b)

FIGURE 10. An online prediction task based on an SNN consisting of
N 2X = visible neurons and N 5H = hidden neurons, with rate and time
coding schemes: (a) prediction error and (b) number of spikes emitted
by the SNN versus the time expansion factor .TT

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

76 IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

they can also provide a principled framework for the deriva-
tion of more general training algorithms. Notably, these algo-
rithms differ significantly from the standard backpropagation
approach used for ANNs, owing to their locality coupled with
global feedback signaling.

With the main aim of inspiring more research on
the topic, this article has presented a review of models
and training methods for probabilistic SNNs within a
probabilistic signal processing framework. We focused
on GLM spiking neuron models, given their f lexibility
and tractability, and on ML-based training methods.
We conclude this article with some discussion on exten-
sions in terms of models and algorithms as well as on
open problems.

The SNN models and algorithms we have considered
can be extended and modified along various directions. In
terms of models, while randomness is defined here at the
level of neurons’ outputs, alternative models introduce ran-
domness at the level of synapses or thresholds [38], [39].
Furthermore, while the models studied in this article encode
information in the temporal behavior of the network within
a given interval of time, information can also be retrieved
from the asymptotic steady-state spiking rates, which define
a joint probability distribution [4], [40], [41]. Specifically,
when the GLM (4), (5) has symmetric synaptic weights, i.e.,

,w w, ,j i i j= the memory of the synaptic filter is ,1x = and
there is no feedback filter, the conditional probabilities (5)
for all neurons define a Gibbs sampling procedure for a
Boltzmann machine that can be used for this purpose. As
another extension, more general connections among neurons
can be defined, including instantaneous firing correlations,
and more information, such as a sign, can be encoded in a
spike [33]. Finally, while here we focus on signal processing
aspects, at a semantic level, SNNs can process logical infor-
mation by following different principles [11].

In terms of algorithms, the doubly stochastic SGD
approach reviewed here for ML training can be extended
and improved by leveraging an alternative estimator of
the ELBO and its gradients with respect to the variational
parameters that is known as the reparameterization trick
[28]. Furthermore, similar techniques can be developed
to tackle other training criteria, such as Bayesian opti-
mal inference [31], reward maximization in reinforcement
learning [23], and mutual information maximization for
representation learning (see [12] for a discussion in the con-
text of general probabilistic models).

Interesting open problems include the development of
metalearning algorithms, whereby the goal is learning how to
train or adapt a network to a new task (see, e.g., [41]); the design
of distributed learning techniques; and the definition of clear
use cases and applications with the quantification of advantag-
es in terms of power efficiency [42]. Another important prob-
lem is the design of efficient input/output interfaces between
information sources and the SNN, at one end, and between the
SNN and actuators or end users, on the other. In the absence of
such efficient mechanisms, SNNs risk replacing the so-called

memory wall of standard computing architectures with an
input/output wall.

Acknowledgments
This work was supported in part by the European Research
Council under the European Union’s Horizon 2020 research
and innovation program under grant 725731 and by the U.S.
National Science Foundation under grant ECCS 1710009.
André Grüning (partly) and Brian Gardner (fully) are support-
ed by the European Union’s Horizon 2020 Framework Pro-
gramme for Research and Innovation under the specific grant
agreement 785907 (Human Brain Project SGA2).

Authors
Hyeryung Jang (hyeryung.jang@kcl.ac.uk) received her
B.S., M.S., and Ph.D. degrees in electrical engineering from
the Korea Advanced Institute of Science and Technology, in
2010, 2012, and 2017, respectively. She is currently a
research associate in the Department of Informatics, King’s
College London, United Kingdom. Her recent research
interests lie in the mathematical modeling, learning, and
inference of probabilistic graphical models, with a specific
focus on spiking neural networks and communication sys-
tems. Her past research works also include network eco-
nomics, game theory, and distributed algorithms in
communication networks.

Osvaldo Simeone (osvaldo.simeone@kcl.ac.uk) received
his M.Sc. degree (with honors) and Ph.D. degree in informa-
tion engineering from Politecnico di Milano, Italy, in 2001
and 2005, respectively. He is a professor of information engi-
neering with the Centre for Telecommunications Research,
Department of Informatics, King’s College London,
United Kingdom. He is a corecipient of the 2019 IEEE
Communication Society Best Tutorial Paper Award, the 2018
IEEE Signal Processing Society Best Paper Award, the 2017
Best Paper by Journal of Communications and Networks, the
2015 IEEE Communication Society Best Tutorial Paper
Award, and the IEEE International Workshop on Signal
Processing Advances in Wireless Communications 2007 and
IEEE Wireless Rural and Emergency Communications
Conference 2007 Best Paper Awards. He currently serves on
the editorial board of IEEE Signal Processing Magazine and
is a Distinguished Lecturer of the IEEE Information Theory
Society. He is a Fellow of the Institution of Engineering and
Technology and of the IEEE.

Brian Gardner (b.gardner@surrey.ac.uk) received his
M.Phys. degree from the University of Exeter, United
Kingdom, in 2011 and his Ph.D. degree in computational neu-
roscience from the University of Surrey, Guildford, United
Kingdom, in 2016. He is a research fellow in the Department
of Computer Science, University of Surrey. Currently, his
research focuses on the theoretical aspects of learning in spik-
ing neural networks. He is also working as a part of the
Human Brain Project and is involved with the implementation
of spike-based learning algorithms in neuromorphic systems
for embedded applications.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

77IEEE SIGNAL PROCESSING MAGAZINE | November 2019 |

André Grüning (andre.gruening@hochschule-stralsund.de)
received his undergraduate degree in theoretical physics from
the University of Göttingen, Germany, and his Ph.D. degree in
computer science from the University of Leipzig, Germany.
He is a professor of mathematics and computational intel-
ligence at the University of Applied Sciences, Stralsund,
Germany. He is a visiting member of the European Institute
for Theoretical Neuroscience, Paris, France. Previously, he
was a senior lecturer (associate professor) in the Department
of Computer Science, University of Surrey, Guildford, United
Kingdom. He held research posts in computational neuro-
science at the Scuola Internazionale Superiore di Studi
Avanzati, Trieste, Italy, and in cognitive neuroscience at the
University of Warwick, Coventry, United Kingdom. His re
search concentrates on computational and cognitive neurosci-
ence, especially learning algorithms for spiking neural networks.
He is a partner in the Human Brain Project, a European Union
Horizon 2020 Flagship Project.

References
[1] M. Welling, “Intelligence per kilowatt-hour,” YouTube, 2018. [Online].
Available: https://youtu.be/7QhkvG4MUbk

[2] H. Paugam-Moisy and S. Bohte, “Computing with spiking neuron networks,” in
Handbook of Natural Computing. Springer-Verlag, 2012, pp. 335–376.

[3] W. Maass, “Networks of spiking neurons: The third generation of neural network
models,” Neural Netw., vol. 10, no. 9, pp. 1659–1671, 1997.

[4] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip
learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[5] B. Rajendran, A. Sebastian, M. Schmuker, N. Srinivasa, and E. Eleftheriou,
Low-power neuromorphic hardware for signal processing applications. 2019.
[Online]. Available: https://arxiv.org/abs/1901.03690

[6] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural networks
using sparse temporal coding,” in Proc. IEEE Int. Symp. Circuits and Systems,
Florence, Italy, 2018, pp. 1–5. doi: 10.1109/ISCAS.2018.8351295.

[7] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks
using backpropagation,” Front. Neurosci., vol. 10, Nov. 2016. doi: 10.3389/
fnins.2016.00508.

[8] P. O’Connor and M. Welling, Deep spiking networks. 2016. [Online]. Available:
https://arxiv.org/abs/1602.08323

[9] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for
training high-performance spiking neural networks,” Front. Neurosci., vol. 12, May
2018. doi: 10.3389/fnins.2018.00331.

[10] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press,
2001.

[11] C. Eliasmith and C. H. Anderson, Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge, MA: MIT
Press, 2004.

[12] O. Simeone, “A brief introduction to machine learning for engineers,” Found.
Trends Signal Process., vol. 12, no. 3-4, pp. 200–431, 2018.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 2018.

[14] J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky,
and E. P. Simoncelli, “Spatio-temporal correlations and visual signalling in a com-
plete neuronal population,” Nature, vol. 454, no. 7207, Aug. 2008.

[15] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, United Kingdom: Cambridge Univ. Press,
2002.

[16] T. Osogami, Boltzmann machines for time-series. 2017. [Online]. Available:
https://arxiv.org/abs/1708.06004

[17] R. M. Neal, “Connectionist learning of belief networks,” Artif. Intell., vol. 56,
no. 1, pp. 71–113, 1992.

[18] F. Gerhard, M. Deger, and W. Truccolo, “On the stability and dynamics of sto-
chastic spiking neuron models: Nonlinear Hawkes process and point process

GLMs,” PLoS Comput. Biol., vol. 13, no. 2, 2017. doi: 10.1371/journal.
pcbi.1005390.

[19] B. Gardner, I. Sporea, and A. Grüning, “Learning spatiotemporally encoded
pattern transformations in structured spiking neural networks,” Neural Comput.,
vol. 27, no. 12, pp. 2548–2586, 2015.

[20] E. O. Neftci, H. Mostafa, and F. Zenke, Surrogate gradient learning in spiking
neural networks. 2019. [Online]. Available: https://arxiv.org/abs/1901.09948

[21] N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent plas-
ticity, and theory of three-factor learning rules,” Front. Neural Circuits, vol. 9, Jan.
2016. doi: 10.3389/fncir.2015.00085.

[22] J. Brea, W. Senn, and J.-P. Pfister, “Matching recall and storage in sequence
learning with spiking neural networks,” J. Neurosci., vol. 33, no. 23, pp. 9565–9575,
2013.

[23] B. Rosenfeld, O. Simeone, and B. Rajendran, “Learning first-to-spike policies
for neuromorphic control using policy gradients,” in Proc. IEEE Int. Workshop
Signal Processing Advances Wireless Communications (SPAWC), Cannes, France,
2019. doi: 10.1109/SPAWC.2019.8815546.

[24] I. Goodfellow, Y. Bengio, and, and A. Courville, Deep Learning. Cambridge,
MA: MIT Press, 2016.

[25] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the develop-
ment of neuron selectivity: Orientation specificity and binocular interaction in visual
cortex,” J. Neurosci., vol. 2, no. 1, pp. 32–48, 1982.

[26] A. J. Watt and N. S. Desai, “Homeostatic plasticity and STDP: Keeping a neu-
rons cool in a fluctuating world,” Front. Synaptic Neurosci., vol. 2, June 2010. doi:
10.3389/fnsyn.2010.00005.

[27] A. Mnih and K. Gregor, “Neural variational inference and learning in belief
networks,” in Proc. Int. Conf. Machine Learning (ICML), Beijing, 2014, pp. 1791–
1799.

[28] D. P. Kingma and M. Welling, Auto-encoding variational Bayes. 2013.
[Online]. Available: arXiv:1312.6114

[29] D. J. Rezende and W. Gerstner, “Stochastic variational learning in recurrent
spiking networks,” Front. Comput. Neurosci., vol. 8, Apr. 2014. doi: 10.3389/
fncom.2014.00038.

[30] G. E. Hinton and A. D. Brown, “Spiking Boltzmann machines,” in Proc.
Advances Neural Information Processing Systems (NIPS), Denver, CO, 2000,
pp. 122–128.

[31] D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass, “Network plasticity
as Bayesian inference,” PLoS Comput. Biol., vol. 11, no. 11, 2015. doi: 10.1371/
journal.pcbi.1004485.

[32] F. Leibfried and D. A. Braun, “A reward-maximizing spiking neuron as a
bounded rational decision maker,” Neural Comput., vol. 27, no. 8, pp. 1686–1720,
2015.

[33] H. Jang and O. Simeone, “Training dynamic exponential family models with
causal and lateral dependencies for generalized neuromorphic computing,” in Proc.
IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Brighton,
U.K., 2019, pp. 3382–3386.

[34] H. Jang, O. Simeone, B. Gardner, and A. Grüning, “An introduction to spiking
neural networks: Probabilistic models, learning rules, and applications [supplemen-
tary material],” 2019. [Online]. Available: https://nms.kcl.ac.uk/osvaldo.simeone/
spm-supp.pdf

[35] J. J. Hull, “A database for handwritten text recognition research,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 16, no. 5, pp. 550–554, 1994.

[36] H. A. Dau et al., “The UCR time series classification archive,” Oct. 2018.
[Online]. Available: https://www.cs.ucr.edu/~eamonn/time_series_data_2018

[37] S. M. Bohte, H. La Poutré, and J. N. Kok, “Unsupervised clustering with spik-
ing neurons by sparse temporal coding and multilayer RBF networks,” IEEE Trans.
Neural Netw., vol. 13, no. 2, pp. 426–435, 2002.

[38] N. Kasabov, “To spike or not to spike: A probabilistic spiking neuron model,”
Neural Netw., vol. 23, no. 1, pp. 16–19, 2010.

[39] H. Mostafa and G. Cauwenberghs, “A learning framework for winner-take-all
networks with stochastic synapses,” Neural Comput., vol. 30, no. 6, pp. 1542–1572,
2018.

[40] W. Maass, “Noise as a resource for computation and learning in networks of
spiking neurons,” Proc. IEEE, vol. 102, no. 5, pp. 860–880, 2014.

[41] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long
short-term memory and learning-to-learn in networks of spiking neurons,” in Proc.
Advances Neural Information Processing Systems (NIPS), Montreal, 2018, pp.
787–797.

[42] P. Blouw, X. Choo, E. Hunsberger, and C. Eliasmith, Benchmarking keyword
spotting efficiency on neuromorphic hardware. 2018. [Online]. Available: https://
arxiv.org/abs/1812.01739

�
SP

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore. Restrictions apply.

