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LEARNING ALGORITHMS AND SIGNAL PROCESSING 
FOR BRAIN-INSPIRED COMPUTING

Spiking neural networks (SNNs) are distributed trainable sys-
tems whose computing elements, or neurons, are character-
ized by internal analog dynamics and by digital and sparse 

synaptic communications. The sparsity of the synaptic spiking 
inputs and the corresponding event-driven nature of neural pro-
cessing can be leveraged by energy-efficient hardware imple-
mentations, which can offer significant energy reductions as 
compared to conventional artificial neural networks (ANNs). The 
design of training algorithms for SNNs, however, lags behind 
hardware implementations: most existing training algorithms 
for SNNs have been designed either for biological plausibility or 
through conversion from pretrained ANNs via rate encoding. 

This article provides an introduction to SNNs by focusing 
on a probabilistic signal processing methodology that enables 
the direct derivation of learning rules that leverage the unique 
time-encoding capabilities of SNNs. We adopt discrete-time 
probabilistic models for networked spiking neurons and derive 
supervised and unsupervised learning rules from first prin-
ciples via variational inference. Examples and open research 
problems are also provided.

Introduction
ANNs have become the de facto standard tool to carry out su-
pervised, unsupervised, and reinforcement learning tasks. Their 
recent successes range from image classifiers that outperform 
human experts in medical diagnosis to machines that defeat pro-
fessional players at complex games, such as Go. These break-
throughs have built upon various algorithmic advances but have 
also heavily relied on the unprecedented availability of com-
puting power and memory in data centers and cloud comput-
ing platforms. The resulting considerable energy requirements 
run counter to the constraints imposed by implementations on 
low-power mobile or embedded devices for such applications as 
personal health monitoring or neural prosthetics [1].

ANNs versus SNNs
Various new hardware solutions have recently emerged that at-
tempt to improve the energy efficiency of ANNs as inference 
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machines by trading complexity for accuracy in the implemen-
tation of matrix operations. A different line of research, which 
is the subject of this article, seeks an alternative framework 
that enables efficient online inference and learning by taking 
inspiration from the working of the human brain.

The human brain is capable of performing general and 
complex tasks via continuous adaptation at a minute fraction 
of the power required by state-of-the-art supercomputers and 
ANN-based models [2]. Neurons in the human brain are quali-
tatively different from those in an ANN: they are dynamic 
devices featuring recurrent behavior, rather than static nonlin-
earities, and they process and communicate using sparse spik-
ing signals over time, rather than real numbers. Inspired by this 
observation, as illustrated in Figure 1, SNNs have been intro-
duced in the theoretical neuroscience literature as networks 
of dynamic spiking neurons [3]. SNNs have the unique capa-
bility to process information encoded in the timing of events, 
or spikes. Spikes are also used for synaptic communications, 
with synapses delaying and filtering signals before they reach 
the postsynaptic neuron. Because of the presence of synaptic 
delays, neurons in an SNN can be naturally connected via arbi-
trary recurrent topologies, unlike standard multilayer ANNs or 
chain-like recurrent neural networks. 

Proof-of-concept and commercial hardware implementations 
of SNNs have demonstrated orders-of-magnitude improvements 
in terms of energy efficiency over ANNs [4]. Given the extreme-
ly low idle energy consumption, the energy spent by SNNs for 
learning and inference is essentially proportional to the number 
of spikes processed and communicated by the neurons, with the 
energy per spike being as low as a few picojoules [5].

Deterministic versus probabilistic SNN models
The most common SNN model consists of a network of neu-
rons with deterministic dynamics whereby a spike is emitted 
as soon as an internal state variable, known as the membrane 
potential, crosses a given threshold value. A typical example 
is the leaky integrate-and-fire model, in which the membrane 
potential increases with each spike recorded in the incoming 
synapses while decreasing in the absence of inputs. When in-
formation is encoded in the rate of spiking of the neurons, an 
SNN can approximate the behavior of a conventional ANN 
with the same topology. This has motivated a popular line 
of work that aims at converting a pretrained ANN into a po-
tentially more efficient SNN implementation (see [6] and the 
“Models” section for further details).

To make full use of the temporal processing capabilities of 
SNNs, learning problems should be formulated as the mini-
mization of a loss function that directly accounts for the tim-
ing of the spikes emitted by the neurons. As for ANNs, this 
minimization can, in principle, be done using stochastic gradi-
ent descent (SGD). Unlike ANNs, however, this conventional 
approach is made challenging by the nondifferentiability of the 
output of the SNN with respect to the synaptic weights due 
to the threshold crossing-triggered behavior of spiking neu-
rons. The potentially complex recurrent topology of SNNs also 
makes it difficult to implement the standard backpropagation 

procedure used in multilayer ANNs to compute gradients. 
To obviate this problem, a number of existing learning rules 
approximate the derivative by smoothing out the membrane 
potential as a function of the weights [7]–[9].

In contrast to deterministic models for SNNs, a probabilistic 
model defines the outputs of all spiking neurons as jointly distrib-
uted binary random processes. The joint distribution is differen-
tiable in the synaptic weights, and, as a result, so are principled 
learning criteria from statistics and information theory, such as 
likelihood function and mutual information. The maximization 
of such criteria can apply to arbitrary topologies and does not 
require the implementation of backpropagation mechanisms. 
Hence, a stochastic viewpoint has significant analytic advantag-
es, which translate into the derivation of flexible learning rules 
from first principles. These rules recover as special cases many 
known algorithms proposed for SNNs in the theoretical neurosci-
ence literature as biologically plausible algorithms [10].

Scope and overview
This article aims to provide a review on the topic of probabi-
listic SNNs with a specific focus on the most commonly used 
generalized linear models (GLMs). We cover models, learning 
rules, and applications, highlighting principles and tools. The 
main goal is to make key ideas in this emerging field accessible 
to researchers in signal processing, who may otherwise find it 
difficult to navigate the theoretical neuroscience literature on 
the subject, given its focus on biological plausibility rather than 
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FIGURE 1. Illustrations of neural network models: (a) an ANN, where each 
neuron i  processes real numbers , ,s sn1 f  to output and communicates 
a real number si  as a static nonlinearity, and (b) an SNN, where dynamic 
spiking neurons process and communicate sparse spiking signals over time 
t  in a causal manner to output and communicate a binary spiking signal .s ,i t  
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theoretical and algorithmic principles [10]. At the end of the 
article, we also review alternative probabilistic formulations of 
SNNs, extensions, and open problems.

Learning tasks
An SNN is a network of spiking neurons. As seen in Figure 2, 
the input and output interfaces of an SNN typically transfer 
spiking signals. Input spiking signals can either be recorded 
directly from neuromorphic sensors, such as silicon cochleas 
and retinas [Figure 2(a)], or be converted from a natural signal 
to a set of spiking signals [Figure 2(b)]. Conversion can be done 
by following different rules, including rate encoding, whereby 
amplitudes are converted into the (instantaneous) spiking rate 
of a neuron; time encoding, in which amplitudes are translated 
into spike timings; and population coding, whereby amplitudes 
are encoded into the (instantaneous) firing rates [11] or relative 
firing times of a subset of neurons (see [10] for a review). In a 
similar manner, output spiking signals can either be fed directly 
to a neuromorphic actuator, such as neuromorphic controllers 
or prosthetic systems [Figure 2(a)], or be converted from spik-
ing signals to natural signals [Figure 2(b)]. This can be done by 
following rate, time, or population decoding principles.

The SNN generally acts as a dynamic mapping between 
inputs and outputs that is defined by the model parameters, 
including, most notably, the interneuron synaptic weights. This 
mapping can be designed or trained to carry out inference or 
control tasks. When training is enabled, the model parameters 
are automatically adapted based on data fed to the network, 
with the goal of maximizing a given performance criterion. 
Training can be carried out in a supervised, unsupervised, or 
reinforcement learning manner, depending on the availability 
of data and feedback signals, as further discussed subsequent-
ly. For both inference/control and training, data can be present-
ed to the SNN in a batch mode (also known as a frame-based 
mode) or in an online mode (see the “Training SNNs” section).

With supervised learning, the training data specify both the 
input and desired output. Input and output pairs are either in 
the form of a number of separate examples, in the case of batch 

learning, or presented over time in a streaming fashion for 
online learning. As an example, the training set may include 
a number of spike-encoded images and corresponding correct 
labels, or a single time sequence to be used to extrapolate pre-
dictions (see also the “Batch Learning Examples” and “Online 
Learning Examples” sections). Under unsupervised learning, 
the training data specify only the desired input or output to 
the SNN, which can again be presented in a batch or online 
fashion. Examples of applications include representation learn-
ing, which aims to translate the input into a more compact, 
interpretable, or useful representation, and generative model-
ing, which seeks to generate outputs with statistics akin to the 
training data (see, e.g., [12]). Finally, with reinforcement learn-
ing, the SNN is used to control an agent on the basis of input 
observations from the environment to accomplish a given goal. 
To this end, the SNN is provided with feedback on the selected 
outputs that guides the SNN in updating its parameters in a 
batch or online manner [13].

Models
Here, we describe the standard discrete-time GLM for SNNs, 
also known as the spike response model with escape noise 
(see, e.g., [14] and [15]). Discrete-time models reflect the op-
eration of a number of neuromorphic chips, including Intel’s 
Loihi [4], while continuous-time models are more commonly 
encountered in the computer neuroscience literature [10].

Graphical representation 
As illustrated in Figure 3, an SNN consists of a network of 
N  spiking neurons. At any time ,  ,  , ,t 0 1 2 f=  each neuron 
i  outputs a binary signal , ,s 0 1,i t ! " ,  with value s 1,i t =  cor-
responding to a spike emitted at time .t  We collect in vector 

( : )s s i V,t i t !=  the binary signals emitted by all neurons at 
time ,t  where V  is the set of all neurons. Each neuron i V!  
receives the signals emitted by a subset Pi  of neurons through 
directed links, known as synapses. Neurons in set Pi  are re-
ferred to as presynaptic for postsynaptic neuron .i

Membrane potential and filtered traces 
The internal, analog state of each spiking neuron i V!  at 
time t  is defined by its membrane potential u ,i t  (and possibly 
also by other secondary variables to be discussed) [15]. The 
value of the membrane potential indicates the probability of 
neuron i  to spike. As illustrated in Figure 4, the membrane po-
tential is the sum of the contributions from the incoming spikes 
of the presynaptic neurons and from the past spiking behavior 
of the neuron itself, where both contributions are filtered by 
the respective kernels at  and .bt  To elaborate, we denote as 

( , , )s s s, , ,i t i i t0 f=#  the spike signal emitted by neuron i  up 
to time .t  Given past input spike signals from the presynaptic 
neurons Pi, denoted as { }s s ,, t j t j11P Pi i= # !# -- , and the local 
spiking history ,s ,i t 1# -  the membrane potential of postsynap-
tic neuron i  at time t  can be written as [15]

	 ,u w s w s, , , ,i t j i
j

j t i i t i1 1
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!
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FIGURE 2. Depictions of the input/output interfaces of an SNN: (a) a direct 
interface with a neuromorphic sensor and actuator and (b) an indirect 
interface through encoding and decoding. 
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where the quantities w ,j i  for j Pi!  are synaptic (feedforward) 
weights, wi  is a feedback weight, ic  is a bias parameter, and 
the quantities

	 s a s s b s  and  , , , ,i t t i t i t t i t) )= =v w � (2)

are known as filtered feedforward and feedback traces of neu-
ron ,i  respectively, where * denotes the convolution operator 

.f g f gt t t0) R= $d d d-

Kernels and model weights 
In (1) and (2), the filter at  defines the synaptic response to a 
spike from a presynaptic neuron at the postsynaptic neuron. 
This filter is known as the feedforward, or synaptic, kernel. 
The filtered contribution of a spike from the presynaptic neu-
ron j Pi!  is multiplied by a learnable weight w ,j i  for the syn-
apse from neuron j  to neuron .i V!  When the filter is of 
finite duration ,x  computing the feedforward trace s ,i tv  requires 
keeping track of the window { , , , }s s s, , , ( )i t i t i t1 1f x- - -  of prior 
synaptic inputs as part of the neuron’s state [16]. An example is 
given by the “alpha” function ( ( / ) ( / ))exp expa t tt 1 2x x= - - -  
for , ,t 0 1f x= -  and zero otherwise, with time constants 1x  
and 2x  and duration ,x  as illustrated in Figure 5(a). When the 
kernel is chosen as an infinitely long decaying exponential, i.e., 
as  / ,expa tt 1x= -^ h  the feedforward trace s ,i tv  can be directly 
computed using an autoregressive update that requires the stor-
age of only  a single scalar variable in the neuron’s state [16], 
i.e., .( / ) ( )exps s s1, , ,i t i t i t1 1x= - +-v v  In general, the time con-
stants and kernel shapes determine the synaptic memory and 
synaptic delays.

The filter bt  describes the response of a neuron to a local 
output spike and is known as a feedback kernel. A negative 
feedback kernel, such as  / ,expb tt mx= - -^ h  with time con-
stant mx  [see Figure 5(b)], models the refractory period upon 
the emission of a spike, with the time constant of the feed-
back kernel determining the duration of the refractory period. 

As per (1), the filtered contribution of a local output spike is 
weighted by a learnable parameter .wi  Similar considerations 
as for the feedforward traces apply regarding the computation 
of the feedback trace.
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FIGURE 3. (a) An architecture of an SNN with N 4=  spiking neurons. The 
directed links between two neurons represent causal feedforward, or synap-
tic, dependencies, while the self-loop links represent feedback dependencies. 
The directed graph may have loops, including self-loops, indicating recurrent 
behavior. (b) A time-expanded view of the temporal dependencies implied by 
(a) with synaptic and feedback memories equal to one time step. 
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FIGURE 4. An illustration of the membrane potential model, with exponential feedforward and feedback kernels (see also Figure 5). 
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Generalizing the model described previously, a synapse can 
be associated with Ka  learnable synaptic weights .{ }w , ,j i k k

K
1

a
=  

In this case, the contribution from presynaptic neuron j in (1) 
can be written as [14]

	 ,w a s, . , ,j i k
k

K

k t j t
1

a

)
=

e o/ � (3)

where we have defined Ka  fixed basis functions { } ,a ,k t k
K

1
a
=  

with learnable weights { } .w , ,j i k k
K

1
a
=  The feedback kernel can 

be similarly parameterized as the weighted sum of fixed Kb  
basis functions. Parameterization (3) makes it possible to adapt 
the shape of the filter applied by the synapse by learning the 
weights .{ }w , ,j i k k

K
1

a
=  Typical examples of basis functions are the 

raised cosine functions shown in Figure 5(c). With this choice, 
the system can learn the sensitivity of each synapse to different 
synaptic delays, each corresponding to a different basis func-
tion, by adapting the weights .{ }w , ,j i k k

K
1

a
=  In the rest of this ar-

ticle, with the exception of the “Batch Learning Examples” and 
“Online Learning Examples” sections, we focus on the simpler 
model of (1) and (2).

Practical implementations of the membrane potential 
model (1) can leverage the fact that linear filtering of binary 
spiking signals requires only carrying out sums while doing 
away with the need to compute expensive floating-point 
multiplications [5].

GLM 
As discussed, a probabilistic model defines the joint probability 
distribution of the spike signals emitted by all neurons. In gen-
eral, with the notation ( , , )s s st t0 f=#  using the chain rule, the 
log probability of the spike signals ( , , )s s sT T0 f=#  emitted 
by all neurons in the SNN up to time T  can be written as

	

( ) ( )
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where { }i i Vi i= !  is the learnable parameter vector, with ii  
being the local parameters of neuron .i  The decomposition (4) 

is in terms of the conditional probabilities ( ),sp s , { },i t i t 1Pi i, #i -|  
which represent the spiking probability of neuron i  at time ,t  
given its past spike timings and the past behaviors of its pre-
synaptic neurons .Pi

Under the GLM, the dependency of the spiking behavior 
of neuron i V!  on the history s { },i t 1Pi, # -  is mediated by the 
neuron’s membrane potential ui,t. Specifically, the instanta-
neous firing probability of neuron i  at time t  is equal to

	 ( | ) ( | ) ( ),sp s p s u u1 1, , , ,{ },i t i t i t i t i t1Pi i v= = = =, #i - � (5)

with ( )$v  being the sigmoid function, i.e., / .expx x1 1v = + -^ ^ ^h hh  
According to (5), a larger potential u ,i t  increases the probabil-
ity that neuron i  spikes. The model (5) is parameterized by 
the local learnable vector { , { } , }w w,i i j i j iPii c= !  of neuron .i  
SNNs modeled according to the described GLM framework 
can be thought of as a generalization of dynamic models of 
belief networks [17], and they can also be interpreted as a dis-
crete-time version of Hawkes processes [18].

In a variant of this model, probability (5) can be written as 
/ ,u u,i tv D^ h  where uD  is a bandwidth parameter that dictates 

the smoothness of the firing rate about the threshold. When 
taking the limit ,u 0"D  we obtain the deterministic integrate-
and-fire model [19].

Relationship with ANNs 
Under rate encoding, as long as the duration T  is large enough, 
the deterministic integrate-and-fire model can mimic the op-
eration of a conventional feedforward ANN with a nonnega-
tive activation function. To this end, consider an ANN with 
an arbitrary topology defined by an acyclic directed graph. 
The corresponding SNN has the same topology, a feedforward 
kernel defined by a single basis function implementing a per-
fect integrator (i.e., a filter with a constant impulse response), 
the same synaptic weights of the ANN, and no feedback ker-
nel. In this way, the value of the filtered feedforward trace for 
each synapse approximates the spiking rate of the presynaptic 
neuron as T increases. The challenge in enabling a conversion 
from ANN to SNN is to choose the thresholds ic  and possibly 
a renormalization of the weights, so that the spiking rates of all 
neurons in the SNN approximate the outputs of the neurons in 
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FIGURE 5. Examples of feedforward/feedback kernels: (a) an exponentially decaying feedforward kernel ,at  (b) an exponentially decaying feedback kernel 
,bt  (c) raised cosine basis functions a ,k t  in [14], and (d) spike-timing-dependent plasticity basis functions a ,k t  for long-term potentiation (LTP) and long-

term depression (LTD), where the synaptic conduction delay equals d  [16]. 
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the ANN [6]. When including loops, deterministic SNNs can 
also implement recurrent NNs [20].

Gradient of the log-likelihood 
The gradient of the log probability, or log-likelihood, ( )Ls T i =#  

( )log sp T#i  in (4), with respect to the learnable parameters ,i  
plays a key role in the problem of training a probabilistic SNN. 
Focusing on any neuron ,i V!  from (1) to (5), the gradient of 
the log-likelihood with respect to the local parameters ii  for 
neuron i  is given as

	 ( ) ( ),log sp sL , { },s
t

T

i t i t
0

1Pi T i i id di = , #i i i

=

-# |/ � (6)

where the individual entries of the gradient of time t  can be 
obtained as

	 ( ) ( ),log sp s s u, , ,{ },i t i t i t i t1Pi i id v= -, #ic -| � (7a)

	 ( ) ( ( )),log sp s s s u, , , ,{ },w i t i t j t i t i t11P,j i i id v= -, #i --| v � (7b)

and

	 ( ) ( ( )) .log sp s s s u, , , ,{ },w i t i t i t i t i t11Pi i id v= -, #i --| � (7c)

The gradients (7) depend on the difference between the desired 
spiking behavior and its average behavior under the model dis-
tribution (5). The implications of this result for learning will be 
discussed in the next sections.

Training SNNs
SNNs can be trained using supervised, unsupervised, and 
reinforcement learning. To this end, the network follows a 
learning rule, which defines how the model parameters i  
are updated on the basis of the available observations. As 
we will detail, learning rules can be applied in a batch mode 
at the end of a full period T  of use of the SNN, based on 
multiple observations of duration ,T  or in an online fash-
ion, i.e., after each time instant t, based on an arbitrarily 
long observation.

Locality 
A learning rule is local if its operation can be decomposed into 
atomic steps that can be carried out in parallel at distributed 
processors based only on locally available information and lim-
ited communication on the connectivity graph (see Figure 3). 
Local information at a neuron includes the membrane potential, 
the feedforward filtered traces for the incoming synapses, the 
local feedback filtered trace, and the local model parameters. 
The processors will be considered here to be conventionally 
implemented at the level of individual neurons. Besides local 
signals, learning rules may also require global feedback signals, 
as discussed next.

Three-factor rule 
While the details differ for each learning rule and task, a 
general form of the learning rule for the synaptic weights fol-

lows the three-factor rule [21], [22]. Accordingly, the synaptic 
weight w ,j i  from presynaptic neuron j Pi!  to a postsynaptic 
neuron i V!  is updated as

	 ,w w pre post, ,j i j i j i! # # #,h+ � (8)

where h  is a learning rate, ,  is a scalar global learning signal 
that determines the sign and magnitude of the update, pre j  is 
a function of the activity of the presynaptic neuron ,j Pi!  and 
posti depends on the activity of the postsynaptic neuron .i V!  
For most learning rules, pre- and postsynaptic terms are local 
to each neuron, while the learning signal ,,  if present, plays the 
role of a global feedback signal. As a special case, the rule (8) 
can implement Hebb’s hypothesis that “neurons that spike to-
gether wire together.” This is indeed the case if the product of 
the pre j  and posti  terms is large when the two neurons spike 
at nearly the same time, resulting in a large change of the syn-
aptic weight w ,j i  [10].

In the next two sections, we will see how learning rules 
of the form (8) can be derived in a principled manner as 
SGD updates obtained under the described probabilistic 
SNN models.

Training SNNs: Fully observed models

Fully observed versus partially observed models 
Neurons in an SNN can be divided into the subsets of visible, 
or observed, neurons, which encode inputs and outputs, and 
hidden, or latent, neurons, whose role is to facilitate the de-
sired behavior of the SNN. During training, the behavior of 
visible neurons is specified by the training data. For example, 
under supervised learning, input neurons are clamped to the 
input data, while the spiking signals of output neurons are de-
termined by the desired output. Another related example is a 
reinforcement learning task in which the SNN models a policy, 
with input neurons encoding the state and output neurons en-
coding the action previously taken by the learner in response 
to the given input [23].

In the case of fully observed models, the SNN contains 
only visible neurons while, in the case of partially observed 
models, the SNN also includes hidden neurons. We first con-
sider the simpler former case and then extend the discussion to 
partially observed models.

Maximum likelihood learning via SGD
The standard training criterion for probabilistic models for 
both supervised and unsupervised learning is maximum like-
lihood (ML). ML selects model parameters that maximize the 
probability of the observed data and, hence, of the desired in-
put/output behavior under the model. To elaborate, we consider 
an example x T#  consisting of fully observed spike signals 
for all neurons in the SNN, including both input and output 
neurons. Using the notation in the “Models” section, we hence 
have .s xT T=# #  During training, the spike signals for all neu-
rons are thus clamped to the values assumed in the data point 
x ,T#  and the log-likelihood is given as ( ) ( )log xpLx TT i = #i#  
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in (4), with .s xT T=# #  As we will see next, for batch learning, 
there are multiple such examples x T#  in the training set while, 
for online learning, we have a single arbitrary long example 
x T#  for large .T

Batch SGD 
In the batch training mode, a training set { }xD T

m
m
M

1= # =  of 
M  fully observed examples is available to enable the learning 
of the model parameters. The batch SGD-based rule proceeds 
iteratively by selecting an example x T#  from the training set 
D  at each iteration (see, e.g., [24]). The model parameters i  
are then updated in the direction of the gradient (6) and (7), 
with ,s xT T=# #  as

	 ( ),Lx T! di i ih+ i # � (9)

where the learning rate h  is assumed to be fixed here for sim-
plicity of notation. Note that the update (9) is applied at the 
end of the observation period .T  The batch algorithm can be 
generalized by summing over a minibatch of examples at each 
iteration [24].

Online SGD 
In the online training mode, an arbitrary long example 
x T#  is available, and the model parameters i  are up-
dated at each time t  (or, more generally, periodically ev-
ery few time instants). This can be done by introducing an 
eligibility trace e ,i t  for each neuron i  [19], [22]. As sum-
marized in Algorithm 1, the eligibility trace e ,i t  in (A1), 
with ,11l  computes a weighted average of current and 
past gradient updates. In this update, the current gradient 

( )log x xp t t 1d #i i -|  is weighted by a factor ,1 l-^ h  and the 
gradient that is evaluated l  steps in the past is multiplied 
by the exponentially decaying coefficient .1 ll l- $^ h  The 
eligibility trace captures the impact of past updates on the 
current spiking behavior, and it can help stabilize the online 
training by reducing the variance of the updates (for suf-
ficiently large )l  [13].

Interpretation 
The online gradient update for any synaptic weight w ,j i  can be 
interpreted in light of the general form of rule (8). In fact, the 
gradient (7b) has a two-factor form, whereby the global learn-
ing signal is absent; the presynaptic term is given by the filtered 
feedforward trace x ,j t 1-v  of the presynaptic neuron ,j Pi!  and 
the postsynaptic term is given by the error term .x u, ,i t i tv- ^ h  
This error measures the difference between the desired spik-
ing behavior of the postsynaptic neuron i  at any time t  and its 
average behavior under the model distribution (5).

This update can be related to the standard spike-timing-
dependent plasticity (STDP) rule [10], [16], [25]. In fact, STDP 
stipulates that the long-term potentiation (LTP) of a synapse 
occurs when the presynaptic neuron spikes right before a post-
synaptic neuron, while long-term depression (LTD) of a synapse 
takes place when the presynaptic neuron spikes right after a 
postsynaptic neuron. With the basis functions depicted in Fig-
ure 5(d), if a presynaptic spike occurs more than d  steps prior 
to the postsynaptic spike at time ,t  an increase in the synaptic 
weight, or LTP, occurs, while a decrease in the synaptic weight, 
or LTD, takes place otherwise [16]. The parameter d  can hence 
be interpreted as synaptic delay.

As for the synaptic weights, all other gradients (7) also 
depend on an error signal measuring the gap between the 
desired and average model behavior. In (7a)–(7c), the desired 
behavior is given by samples s x, ,i t i t=  in the training exam-
ple. The contribution of this error signal can be interpreted 
as a form of (task-specific) homeostatic plasticity, in that it 
regulates the neuronal firing rates around desirable set-point 
values [10], [26].

Locality and implementation 
Given the absence of a global learning signal, the online SGD 
rule in Algorithm 1 and the batch SGD rule can be implement-
ed locally, so that each neuron i  updates its own local param-
eters .ii  Each neuron i  uses information about the local spike 
signal ,x ,i t  the feedforward filtered traces x ,j t 1-v  for all pre-
synaptic neurons ,j Pi!  and the local feedback filtered trace 
x ,i t 1-  to compute the first terms in (7a)–(7c), while the second 
terms in (7a)–(7c) are obtained from (5) by using the neuron’s 
membrane potential .u ,i t

Training SNNs: Partially observed models

Latent neurons 
As mentioned previously, the set V  of neurons can be parti-
tioned into the disjoint subsets of observed (input and output) 
and hidden neurons. The NX  neurons in the subset X  are ob-
served, and the NH neurons in the subset H  are hidden, or la-
tent, and we have .V X H,=  We write as ( : )x x i X,t i t !=  
and ( : ),h h i H,t i t !=  the binary signals emitted by the ob-
served and hidden neurons at time ,t  respectively. Therefore, 
using the notation in the “Models” section, we have s x, ,i t i t=  
for any observed neuron i X!  and s h, ,i t i t=  for any latent 
neuron i H!  as well as ( , )s x ht t t=  for the overall set of spike 
signals at time .t  During training, the spike signals x T#  of the 

Algorithm 1. ML training via online SGD.

Input: Training example x T#  and learning rates h  and l
Output: Learned model parameters i

1:  initialize parameters i
2:  repeat
3:    for each , , ,t T0 1f=  
4:    for each neuron i V!  do
5:    �  compute the gradient ( )xlogp x , { },i t i t 1Pi i id ; , #i i -  with respect  

  to the local parameters ii  from (7)
6:      compute the eligibility trace e ,i t

	 ( ) ( )e e xlogp x1, , , { },i t i t i t i t1 1Pi i id ;l l= + - , #i i- - � (A1)

7:    �  update the local model parameters

	 e ,i i i t!i i h+ � (A2)

8:    end
9:  until stopping criterion is satisfied.
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observed neurons are clamped to the examples in the train-
ing set while the probability distribution of the signals h T#  of 
the hidden neurons can be adapted to ensure the desired input/
output behavior. Mathematically, the probabilistic model is de-
fined as in (4) and (5), with .( , )s x hT T T=# # #

ML via SGD and variational learning
Here, we review a standard learning rule that tackles the 
ML problem by using SGD. Unlike in the fully observed 
case, as we will see, variational inference is needed to cope 
with the complexity of computing the gradient of the log-
likelihood of the observed spike signals in the presence of 
hidden neurons [12].

Log-likelihood
The log-likelihood of an example of observed spike signals x T#  
is obtained via marginalization by summing over all possible val-
ues of the latent spike signals h T#  as ( ) ( )log xpLx TT i = =#i#  

/ ( , ).log x hph T TT # #i#  Let us denote as p$G H  the expectation 
over a distribution ,p  as in /( ) ( ) ( ),f x f x p x( )p x xG H =  for some 
function ( ).f x  The gradient of the log-likelihood with respect 
to the model parameters i  can be expressed as (see, e.g., [12, 
Ch. 6])

	 ,( ) ( , )log x hpL ( )x h xT T pT T Td dG Hi = # # ;i i i# # #i � (10)

where the expectation is with respect to the posterior distribu-
tion ( )h xp T T# #i |  of the latent variables ,h T#  given the ob-
servation .x T#  Note that the gradient ( , )log x hp T Td =# #i i  
/ ( , , )log x h x hpT

t t t t t0 1 1d ; # #i i= - -  is obtained from (7), with 
( , ) .s x hT T T=# # #  Computing the posterior ( )h xp T T# #i |  

amounts to the Bayesian inference of the hidden spike sig-
nals for the observed values .x T#  Given that we have the 
equality /( ) ( , ) ( ),h x x h xp p pT T T T T=# # # # #i i i|  this task re-
quires the evaluation of the marginal distribution ( )xp T =#i   

.( , )x hph T TTR # #i#  For problems of practical size, this  
computation is intractable, and, hence, so is evaluating the 
gradient (10).

Variational learning 
Variational inference, or variational Bayes, approximates the 
true posterior distribution ( )h xp T T# #i |  by means of any ar-
bitrary variational posterior distribution ( )h xq T T# #z |  param-
eterized by a vector z of learnable parameters. For any varia-
tional distribution ( ),h xq T T# #z |  using Jensen’s inequality, the 
log-likelihood ( )Lx T i#  can be lower-bounded as (see, e.g., [12, 
Ch. 6 and Ch. 8])
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where we have defined the learning signal as

	 .( , ) : ( , ) ( )log logx h x h h xp q, T T T T T T, ;= -# # # # # #i iz z � (12)

A baseline variational learning rule, also known as the 
variational expectation maximization algorithm, is based 
on the maximization of the evidence lower bound (ELBO) 

( , )Lx T i z#  in (11) with respect to both the model parame-
ters i  and the variational parameters .z  Accordingly, for 
a given observed example ,x DT !#  the learning rule is 
given by gradient ascent updates, where the gradients can 
be computed as

	 ( , ) ( , ) ,log x hL p ( )x h xT T qT T Td dG Hi z = # #i i i# # #z | � (13a)

and

	
,

( , )

( , ) ( )logx h h x

L

q, ( )

x

h xT T T T q

T

T T$

d

, d ;G H
i z =

# # # # ;i

z

z z z

#

# #z

�
(13b)

respectively. The gradient (13a) is derived in a manner analo-
gous to (10), and the gradient (13b) is obtained from the stan-
dard REINFORCE, or score function, gradient [12, Ch. 8], 
[27]. Importantly, the gradients (13) require expectations 
with respect to the known variational posterior ( )h xq T T# #z |  
evaluated at the current value of variational parameters z  
rather than with respect to the hard-to-compute posterior 

.( )h xp T T# #i |  An alternative to the computation of the gradi-
ent over the variational parameters z as in (13b) is given by the 
so-called reparameterization trick [28], as briefly discussed in 
the “Conclusions and Open Problems” section.

In practice, computing the averages in (13) is still intrac-
table because of the large domain of the hidden variables .h T#  
Therefore, the expectations over the variational posterior are 
typically approximated by means of Monte Carlo empirical 
averages. This is possible as long as sampling from the varia-
tional posterior ( )h xq T T# #z |  is feasible. As an example, if a 
single spike signal h T#  is sampled from ( ),h xq T T# #z |  we 
obtain the Monte Carlo approximations of (13) as

	 ( , ) ( , ),log x hL px T TTd di z = # #i i i#
t � (14a)

and

	 ( , ) ( , ) ( ) .logx h h xL q,x T T T TT $d , di z = # # # #iz z z z# |t � (14b)

Batch doubly SGD 
In a batch training formulation, at each iteration, an example 
x T#  is selected from the training set .D  At the end of the ob-
servation period ,T  both model and variational parameters can 
be updated in the direction of the gradients ( , )Lx Td i zi #

t  and 
( , )Lx Td i zz #

t  in (14) as

	 ( , ),Lx T! di i ih z+ i i #
t � (15a)

and

	 ( , ),Lx T! d iz z h z+ z z #
t � (15b)

respectively, where the learning rates hi  and hz  are assumed 
to be fixed for simplicity. Rule (15) is known as doubly SGD 

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on August 03,2020 at 18:59:18 UTC from IEEE Xplore.  Restrictions apply. 



72 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2019   |

since sampling is carried out over both the observed examples 
x T#  in the training set and the hidden spike signals .h T#

The doubly stochastic gradient estimator (14b) typically 
exhibits a high variance. To reduce the variance, a common 
approach is to subtract a baseline control variate from the learn-
ing signal. This can be done by replacing the learning signal 
in (14b) with the centered learning signal ( , ) ,x h, T T, ,-# #i z r  
where the baseline ,r  is calculated as a moving average of learn-
ing signals computed at previous iterations [22], [27], [29].

Online doubly SGD 
The batch doubly SGD rule (15) applies with any choice of 
variational distribution ( ),h xq T T;# #z  as long as it is feasible 
to sample from it and to compute the gradient in (14b). How-
ever, the locality properties and complexity of the learning 
rule are strongly dependent on the choice of the variational 
distribution. We now discuss a specific choice considered in 
[16], [22], and [29]–[31] that yields an online rule, summarized 
in Algorithm 2.

The approach approximates the true posterior ( )h xp T T;# #i  
with a feedforward distribution that ignores the stochastic 
dependence of the hidden spike signals ht  at time t  on the 
future values of the observed spike signals .x T#  The corre-
sponding variational distribution can be written as

( ) ( , ) ( ),h x h x hq p p h u, ,T T
t

T

t t t
it

T

i t i t
0

1 1
0 H

H H; ; ;= =# # # #

!

i i

=

- -

=

% %%
� (16)

where we denote as { }i i
H

Hi i= !  the collection of the model 
parameters for hidden neurons, and ( ) ( )p h u u1, , ,i t i t i t; v= =  
by (5), with .s h, ,i t i t=  We note that (16) is an approximation 
of the true posterior ( ) ( , )h x h x hp p

T
T T t T tt 10
; ;=# # # #i i -=

%  
since it neglects the correlation between variables ht  and the 
future observed samples .x t$  In (16), we have emphasized that 
the variational parameters z are tied to a subset of the model 
parameters, as per the equality .Hiz=  As a result, this choice 
of variational distribution does not include additional learnable 
parameters apart from the model parameters .i  The learning 
signal (12) with the feedforward distribution (16) reads
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(17)

where { }i i
X

Xi i= !  is the collection of the model parameters 
for observed neurons.

With the choice of (16) for the variational posterior, the batch 
doubly SGD update rule (15) can be turned into an online rule 
by generalizing Algorithm 1, as detailed in Algorithm 2. At each 
step of the online procedure, each hidden neuron i H!  emits a 
spike, i.e., ,h 1,i t =  at any time t  by following the current model 
distribution (16), i.e., with probability ( ).u ,i tv  Note that the mem-
brane potential u ,i t  of any neuron i  at time t  is obtained from (1), 
with observed neurons clamped to the training example x t 1# -  
and hidden neurons clamped to the samples .h t 1# -  Then, a cen-
tral processor collects the log probabilities ( )p x u, ,i t i t;  under the 
current model from all observed neurons i X!  to compute the 
eligibility trace of the learning signal ,t,  as in (A3) and feeds back 
the global learning signal to all latent neurons. 

Intuitively, this learning signal indicates to the hidden neu-
rons how effective their current signaling is in ensuring the 
desired input/output behavior with high probability. Finally, 
each observed and hidden neuron i  computes the eligibility 
trace e ,i t  of the gradient, i.e., ( , )log x hp x ,i t t t1 1i id ; # #i i - -  and 

( , ),log x hp h ,i t t t1 1i id ; # #i i - -  respectively, as in (A4). The local 
parameters ii  of each observed neuron i X!  are updated in 
the direction of the eligibility trace ,e ,i t  while each hidden neu-
ron i H!  updates the parameter using e ,i t  and the learning 
signal t,  in (A3).

Sparsity and regularization 
As discussed, the energy consumption of SNNs depends on 
the number of spikes emitted by the neurons. Since the ML 
criterion does not enforce any sparsity constraint, an SNN 
trained using the methods discussed so far may present dense 
spiking signals [18]. This is especially the case for the hid-
den neurons, whose behavior is not tied to the training data. 
To obviate this problem, it is possible to add a regularization 
term ( ( ) ( ))h x hq rKL T T T$ ; <a- # # #z  to the learning objective 

( , )Lx T i z#  in (11), where /( ) ( ) ( ( ) / ( ))logp q p x p x q xKL x< =  is 
the Kullback–Leibler divergence between distributions p and 

,q  ( )hr T#  represents a baseline distribution with the desired 

Algorithm 2. ML training via online doubly SGD.

Input: Training data x T#  and learning rates h  and l
Output: Learned model parameters i

  1:  initialize parameters i
  2:  repeat
  3:    feedforward sampling:
  4:    for each hidden neuron i H!  do
  5:    �  emit a spike h 1,i t =  with probability ( )u ,i tv
  6:    end
  7:    global feedback:
  8:    �  a central processor collects the log probabilities ( )p x u, ,i t i t;  in 

(5) from all observed neurons ,i X!  computes an eligibility 
trace from the learning signal (17) as

	 ( ) ( ),logp x u1 , ,t t
i

i t i t1
X

, , ;l l= + -
!

- / � (A3)

	 and feeds back the global learning signal t,  to all latent neurons
  9:    parameter update:
10:    for each neuron i V!  do
11:      evaluate the eligibility trace e ,i t  as

	 ( ) ( ),e e x hlogp s1, , ,i t i t i t t t1 1 1i id ;l l= + - # #i i- - - � (A4)

	 with s x, ,i t i t=  if i X!  and s h, ,i t i t=  if i H!
12:      update the local model parameters as

	 ·
,

,
e
e

i
i

if
if

X
H

,

,
i i

i t

t i t
!

,

!

!
i i h+ ) � (A5)

13:    end
14:  until stopping criterion is satisfied.
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level of sparsity, and 02a  is a parameter adjusting the amount 
of regularization. This regularizing term, which penalizes 
variational distributions far from the baseline distribution, can 
also act as a regularizer to minimize overfitting by enforcing a 
bounded rationality constraint [32]. The learning rule in Algo-
rithm 2 can be modified accordingly.

Interpretation 
The update (A5) for the synaptic weight w ,j i  of any observed 
neuron i X!  follows the local two-factor rule, as described in 
the “Interpretation” section. In contrast, for any hidden neu-
ron ,i H!  the update applies a three-factor nonlocal learning 
rule (8). Accordingly, the postsynaptic error signal of hidden 
neuron i  and the filtered feedforward trace of presynaptic 
neuron j  are multiplied by the global learning signal (17). As 
anticipated, the global learning signal can be interpreted as an 
internal reward signal. To see this more generally, we can 
rewrite (17) as

	 ( , ) ( )
( )

( )
.log logx h x h h

h x
p

p
q

T T T T
T

T T
X

H

, ;
;

= -# # # #
#

# #
i i

i

i 	(18)

According to (18), the learning signal rewards hidden spike 
signals ,h T#  producing observations x T#  that yield a large 
likelihood ( )log x hp T T;# #i  for the desired behavior. Further-
more, it penalizes values of hidden spike signals h T#  that have 
large variational probability ( )h xq T TH ;# #i  while having a low 
prior probability ( )hp T#i  under the model.

As discussed in the “Learning Tasks” section, SNNs can 
be trained in a batch or online mode. In the next sections, 
we provide a representative, simple, and reproducible example 
for each case.

Batch learning examples
As an example of batch learning, we consider the standard 
handwritten digit classification task on the USPS data set 
[35]. We adopt an SNN with two layers, the first encod-
ing the input and the second the output, with directed syn-
aptic links existing from all neurons in the input layer to 
all neurons in the output layer. No hidden neurons exist, 
and, hence, training can be done as described in the section 
“Training SNNs: Fully Observed Models.” Each 16 16#  in-
put image, representing either a one or a seven handwritten 
digit, is encoded in the spike domain by using rate encod-
ing. Each gray pixel is converted into an input spiking signal 
by generating an independent identically distributed (i.i.d.) 
Bernoulli vector of T  samples, with the spiking probability 
proportional to the pixel intensity and limited to between 
zero and 0.5. As a result, we have 256 input neurons, with 
one per pixel of the input image. The digit labels {1, 7} are 
also rate encoded using each one of the two output neurons. 
The neuron corresponding to the correct label index emits 
spikes with a frequency of one every three samples, while 
the other output neurons are silent. We refer the reader to 
[33] and the supplementary material [34] for further details 
on the numerical setup. 

Figure 6 shows the classification accuracy in the test set 
versus the duration T  of the operation of the SNN after the 
convergence of the training process. The classification accu-
racy of a conventional ANN with the same topology and a soft-
max output layer is added for comparison. Note that, unlike 
the SNN, the ANN outputs real values, namely, the logits for 
each class processed by the soft-max layer. From the figure, 
the SNN is seen to provide a graceful tradeoff between accu-
racy and complexity of learning: as T  increases, the number 
of spikes that are processed and the output by the SNN grow 
larger, entailing a larger inference complexity but also an 
improved accuracy that tends to that of the baseline ANN.

Online learning examples
We now consider an online prediction task in which the SNN se-
quentially observes a time sequence { }al  and the SNN is trained 
to predict, in an online manner, the next value of sequence ,al  
given the observation of the previous values .a l 1# -  The time se-
quence { }al  is encoded in the spike domain, producing a spike 
signal { },xt  consisting of NX  spiking signals ( , , )x x x, ,t t N t1 Xf=  
with T 1T $  samples for each sample .al  We refer to TD  as a 
time expansion factor. Each of the spiking signals x ,i t  is associ-
ated with one of NX visible neurons. 

We adopt a fully connected SNN topology that also includes 
NH hidden neurons. In this online prediction task, we trained 
the SNN using Algorithm 2, with the addition of a sparsity regu-
larization term. This is obtained by assuming an i.i.d. reference 
Bernoulli distribution with a desired spiking rate [ , ],r 0 1!  i.e., 

/ /( ) ( ) ( )log log loghr h r h r1 1, ,t
T

T i i t i t0 H= + - -# !=  (see 
the supplementary material [34] for details). The source sequence 
is randomly generated as follows: at every  T 25s =  time steps, 
one of three possible sequences of duration Ts  is selected, name-
ly, an all-zero sequence with probability 0.7, a sequence of class 
1 from the SwedishLeaf data set of the UCR archive [36], or a 
sequence of class 6 from the same archive, with equal probability 
[see Figure 7(a) for an illustration].

Encoding and decoding 
Each value al  of the time sequence is converted into TT  sam-
ples , , ,x x x( )l T l T l T1 2 1fT T T+ + +  of the NX spike signals { }xt  
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FIGURE 6. Performance of classification based on a two-layer SNN trained 
via batch ML learning in terms of accuracy versus the duration T  of the 
operation of the SNN. The accuracy of an ANN with the same topology 
is also shown as a baseline (see [33] and [34] for details). 
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via rate or time coding, as illustrated in Figure 8. With rate 
coding, the value al  is first discretized into N 1X +  uniform 
quantization levels using rounding to the largest lower value. 
The lowest, silent level is converted to all-zero signals ,xl T 1T +  

, , .x x( )l T l T2 1fT T+ +  Each of the other NX levels is assigned to 
a visible neuron, so that the neuron associated with the quan-
tization level corresponding to value al  emits TT  consecutive 
spikes while the other neurons are silent. Rate decoding predicts 
value al 1+  by generating the samples , ,x x( ) ( )l T l T1 1 2fT T+ + +  
from the trained model and then selecting the neuron with the 
largest number of spikes in this window.

For time coding, each of the NX  visible neurons is 
associated with a different shifted, truncated Gaussian 
receptive field [37]. Accordingly, as seen in Figure 8(b), 
for each value ,al  each visible neuron i  emits a signal 

, , ,x x x, , ,( )i l T i l T i l T1 2 1fT T T+ + +  that contains no spike if the 
value al  is outside the receptive field and, otherwise, con-
tains one spike, with the timing determined by the value 
of the corresponding truncated Gaussian receptive field 
quantized to values { , , }T1 f T  using rounding to the near-
est value. Time decoding considers the first spike timing of 
the samples , ,x x,( ) ,( )i l T i l T1 1 2fT T+ + +  for each visible neuron 
i  and predicts a value al 1+  using a least-squares criterion 
on the values of the receptive fields (see [11] and [37]). We 
refer to the supplementary material [34] for further details 
on the numerical setup.

Rate coding 
First, assuming rate encoding with  ,T 5T =  we train an SNN 
with N 9X =  visible neurons and N 2H =  hidden neurons using 
Algorithm 2. In the top portion of Figure 7(a), we see a segment 

FIGURE 7. An online prediction task based on an SNN with N 9X =  visible 
neurons and N 2H =  hidden neurons trained via Algorithm 2. (a) A real 
analog time signal and a predicted decoded signal (top), and the total 
number of spikes emitted by the SNN (bottom). (b) A spike raster plot of 
visible neurons (top) and a spike raster plot of hidden neurons (bottom). 
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of the signal and of the prediction for a time window after the 
observation of the 23,700 plus training samples of the sequence. 
The corresponding spikes emitted by the SNN [Figure 7(b)] are 
also shown (top), along with the total number of spikes per time in-
stant [Figure 7(a, bottom)]. The SNN is seen to be able to provide 
an accurate prediction. Furthermore, the number of spikes, and, 
hence, the operating energy, depend on the level of activity of the 
input signal. This demonstrates the potential of SNNs for always-
on event-driven applications. As a final note, in this particular 
example, the hidden neurons are observed to act as a detector of 
activity versus silence, which facilitates the correct behavior of the 
visible neurons.

The role of the number NH of hidden neurons is further 
investigated in Figure 9, which shows the prediction error as a 
function of the number of observed training samples for differ-
ent values of .NH  Increasing the number of hidden neurons is 
seen to improve the prediction accuracy as long as training is 
carried out for a sufficiently long time. The prediction error is 
measured in terms of average mean absolute error (MAE). For 
reference, we also compare the prediction performance with a 
persistent baseline (dashed line) that outputs the previous sam-
ple, upon quantization to NX levels for fairness.

Rate versus time encoding 
We now discuss the impact of the coding schemes on the online 
prediction task. We train an SNN with N 2X =  visible neurons 
and N 5H =  hidden neurons. Figure 10(a) shows the prediction 
error and Figure 10(b) the number of spikes in a window of 
2,500 samples of the input sequence, after the observation of 
the 17,500 training samples, versus the time expansion factor 

.TT  From the figure, rate encoding is seen to be preferable 
for smaller values of ,TT  while time encoding achieves better 
prediction error for larger TT  with fewer spikes and, hence, 
energy consumption. 

This result is a consequence of the different use that the 
two schemes make of the time expansion .TT  With rate 
encoding, a larger TT  entails a large number of spikes for 
the neuron encoding the correct quantization level, which 
provides increased robustness to noise. In contrast, with 
time encoding, the value TT  controls the resolution of the 
mapping between input value al  and the spiking times of 
the visible neurons. This demonstrates the efficiency ben-
efits of SNNs that may arise from their unique time encod-
ing capabilities.

Conclusions and open problems
As illustrated by the examples in the previous section, SNNs 
provide a promising alternative solution to conventional 
ANNs for the implementation of low-power learning and 
inference. When using rate encoding, they can approximate 
the performance of any ANN while also providing a grace-
ful tradeoff between accuracy, on the one hand, and energy 
consumption and delay, on the other. Most importantly, they 
have the unique capacity to process time-encoded informa-
tion, yielding sparse, event-driven, and low-complexity infer-
ence and learning solutions.

The recent advances in hardware design reviewed in [5] are 
motivating renewed efforts to tackle the current lack of well-
established direct training algorithms that are able to harness 
the potential efficiency gains of SNNs. This article has argued 
that this gap is, at least in part, a consequence of the insistence 
on the use of deterministic models, which is in turn due to 
their dominance in the context of ANNs. As discussed, not 
only can probabilistic models allow the recovery of learn-
ing rules that are well known in theoretical neuroscience, but 
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they can also provide a principled framework for the deriva-
tion of more general training algorithms. Notably, these algo-
rithms differ significantly from the standard backpropagation 
approach used for ANNs, owing to their locality coupled with 
global feedback signaling.

With the main aim of inspiring more research on 
the topic, this article has presented a review of models 
and training methods for probabilistic SNNs within a 
probabilistic signal processing framework. We focused 
on GLM spiking neuron models, given their f lexibility 
and tractability, and on ML-based training methods. 
We conclude this article with some discussion on exten-
sions in terms of models and algorithms as well as on 
open problems.

The SNN models and algorithms we have considered 
can be extended and modified along various directions. In 
terms of models, while randomness is defined here at the 
level of neurons’ outputs, alternative models introduce ran-
domness at the level of synapses or thresholds [38], [39]. 
Furthermore, while the models studied in this article encode 
information in the temporal behavior of the network within 
a given interval of time, information can also be retrieved 
from the asymptotic steady-state spiking rates, which define 
a joint probability distribution [4], [40], [41]. Specifically, 
when the GLM (4), (5) has symmetric synaptic weights, i.e., 

,w w, ,j i i j=  the memory of the synaptic filter is ,1x =  and 
there is no feedback filter, the conditional probabilities (5) 
for all neurons define a Gibbs sampling procedure for a 
Boltzmann machine that can be used for this purpose. As 
another extension, more general connections among neurons 
can be defined, including instantaneous firing correlations, 
and more information, such as a sign, can be encoded in a 
spike [33]. Finally, while here we focus on signal processing 
aspects, at a semantic level, SNNs can process logical infor-
mation by following different principles [11].

In terms of algorithms, the doubly stochastic SGD 
approach reviewed here for ML training can be extended 
and improved by leveraging an alternative estimator of 
the ELBO and its gradients with respect to the variational 
parameters that is known as the reparameterization trick 
[28]. Furthermore, similar techniques can be developed 
to tackle other training criteria, such as Bayesian opti-
mal inference [31], reward maximization in reinforcement 
learning [23], and mutual information maximization for 
representation learning (see [12] for a discussion in the con-
text of general probabilistic models).

Interesting open problems include the development of 
metalearning algorithms, whereby the goal is learning how to 
train or adapt a network to a new task (see, e.g., [41]); the design 
of distributed learning techniques; and the definition of clear 
use cases and applications with the quantification of advantag-
es in terms of power efficiency [42]. Another important prob-
lem is the design of efficient input/output interfaces between 
information sources and the SNN, at one end, and between the 
SNN and actuators or end users, on the other. In the absence of 
such efficient mechanisms, SNNs risk replacing the so-called 

memory wall of standard computing architectures with an 
input/output wall.
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