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Abstract—We show how exceptional points of degeneracy
(EPDs), which a coalescence of multiple eigenmodes, emerge in a
linear time-periodic (LTP) systems. We establish the necessary
conditions that yield an EPD in a single LTP LC resonator,
however, the presented theory can be generalized to any kind of
resonator with a time varying element. Furthermore, we propose
an application of the EPD in a LTP LC resonator as a sensing
device and show the ultra-sensitivity of such system to external
perturbations.
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1. INTRODUCTION

Recent developments on the concept of eexceptional points
of degeneracy (EPDs) have attracted a surge of interest due to
their applications in the microwave and optical regimes. An
EPD is defined as a special point in the parameter space of a
system at which multiple eigenmodes of the system coalesce in
both their eigenvalues and eigenvectors. The EPDs are found in
different structures such as systems with loss and/or gain under
parity-time symmetry [1]-[4], and lossless spatially periodic
structures [5]-[8]. In general, such points normally are not found
in devices and systems, however, systems can be engineered to
show EPDs which may be suitable in variety of applications. In
this paper, we show the emergence of EPDs in a linear time
periodic (LTP) system where we show that EPDs are induced in
such system systems by simply temporally modulating one or
more of the system elements. The EPDs found based on the
concept of periodic time variation are analogous to EPDs found
in spatially periodic waveguides [6], [7]. At an EPD, the
eigenmode of the system coalesce, so that the system, when
described with the evaluation of a state vector via a system
matrix multiplication, exhibits a Jordan block degeneracy.
Hence, the eigenstates of the system are described using
generalized eigenvectors rather than regular eigenvectors, and
this leads to an algebraic growth in the system eigenstates [5],
[7]. Unique features that are associated with the coalescence of
eigenmodes may contribute to many potential applications, such
as enhancing the gain of active systems, highly directive
antennas, and enhanced sensors [9]-[11].

II. EPDS IN LINEAR TTIME PERIODIC SYSTEMS

Generally, a linear time-periodic system may comprise of
one or more periodic, time-varying elements. Here, we
specifically consider an example of an LC resonator with a time-
periodic capacitance C(¢) as the schematic of the circuit is shown
in Fig. 1(a), though the presented formalism is general for any
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Fig. 1. (a) A single LC resonator with periodically (piece wise) time
varying capacitance exhibiting EPDs. (b) The resonant frequency
dispersion relation of the time-periodic varying LC resonator is plotted
varying modulation frequency. The real and imaginary parts of the
resonance frequency fare denoted by black and red colors respectively. (c)
determinant of the similarity matrix U where the nulls indicate second
order EPDs.

other time-periodic resonator. The periodic time-varying
capacitor of the LC resonator is assumed, for simplicity, to be
modulated by a piece-wise constant time-periodic function. We
express the time domain behavior of time-varying LC resonator
by  multidimensional differential equations  with

(1) :[q(t),i(t)]T being the state vector, where T represents the
transpose operation. The governing multidimensional first-order

differential equations which describes the system dynamics read
as

-1

d
0= L /(LyC(1)) O }\1’(:) M

For an LTP system, the translation of the state vector from
the time instant ¢ to #+7,, is carried out using the state transition
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Fig. 2. Complex resonance frequencies of a lossy time vaying LC
resonator slightly away from the EPD. Large variations of resonance
frequency occur even for small perturbations d.

matrix @ that is defined by Y(t+7,,) = ® Y(¢) , where T, =1/ f,
is the modulation period. Moreover, by enforcing the Floquet
periodicity as W(++T,) = exp(—wT,)¥(f), the eigenvalue
problem is constructed as (® —4 I) ¥ (¢) = 0 with 1 = exp(—icwT)
as the system eigenvalue. The dispersion plot of the
eigenfrequencies versus the modulation frequency f, is
illustrated in Fig. 1(b) when the parameters are set as Lo = 22
#H, and C; = 5 nF and C; = 15 nF. Note that the eigenfrequency
fin this figure, corresponds to harmonics f'+ nf,,, where n is an
integer. Furthermore, in this system without gain or loss
element, the imaginary parts of the eigenvalue solutions are
symmetric with respect to the center of the Brillouin zone and
the resonance frequencies are purely real at an EPD (e.g., /i =
105.5 kHz).

EPDs occur in this system when the two eigenvalues and
their corresponding eigenvector solutions coalesce at a specific
modulation frequency f, and become exactly equal. The
determinant of the similarity matrix U = [W¥i, W], which
contains the eigenvectors corresponding to each eigenvalue, can
be employed as measure of the coalescence of the eigenvectors.
For instance, in the proximity of an EPD and since the
eigenvectors of the system are similar and the determinant of U
approaches zero. Figure 1(c) shows the determinant of the
similarity matrix where it can be observed that the local
minimums of the determinant coincide with points in the
dispersion diagram where two eigenfrequencies coalesce. It is
worth to note that one can adjust the EPD frequency to any
desired operating frequency through tuning the system
parameters such as capacitances, inductor or modulation
frequency.

III. ULTRA-SENSITIVITY TO PERTURBATIONS

The existence of EPDs in LTP systems is associated with
unique characteristics due to the extreme sensitivity to system
perturbations. This extreme sensitivity makes such an LTP LC
resonator promising candidate to conceive ultra-sensitive sensor
and biosensor. The enormous and desirable sensitivity
enhancement at EPDs in LPT systems is due to the coalescence
of eigenvectors of the system. For instance, let us consider a
small perturbation ¢ introduced in the time varying capacitance
as Cy(f) = (1+0)C(¥). This perturbation leads to a perturbed state
transition matrix ®(d), which consequently results in perturbed

system eigenvalues. For an LTP resonator near an EPD, the
perturbed eigenvalues are proportional to 4, o< 5. Hence, when
6 < 1 then 52> 6, which implies much higher sensitivity to a
small variation ¢ than that of regular sensors where the
measurable quantities are linearly proportional to the
perturbation [12], [13]. Such a small perturbation changes the
complex resonance frequency of the LTP LC resonator
drastically as shown in Fig. 2.

IV. CONCLUSION

We have explored the general and novel principle that a
linear time-periodic variation in a system induces exceptional
points of degeneracy (EPDs). As a simple example, we have
investigated the linear time-periodic LC resonator which
exhibits EPDs without any time-invariant gain- and loss-circuit
elements (though time variation can inject energy in the system).
We also explore how such an EPD concept is used to conceive
extremely sensitive sensors.
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