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Abstract—We show how exceptional points of degeneracy 
(EPDs), which a coalescence of multiple eigenmodes, emerge in a 
linear time-periodic (LTP) systems. We establish the necessary 
conditions that yield an EPD in a single LTP LC resonator, 
however, the presented theory can be generalized to any kind of 
resonator with a time varying element. Furthermore, we propose 
an application of the EPD in a LTP LC resonator as a sensing 
device and show the ultra-sensitivity of such system to external 
perturbations. 

Keywords—Exceptional point, LC resonator, Linear time variant 

I. INTRODUCTION  
Recent developments on the concept of eexceptional points 

of degeneracy (EPDs) have attracted a surge of interest due to 
their applications in the microwave and optical regimes. An 
EPD is defined as a special point in the parameter space of a 
system at which multiple eigenmodes of the system coalesce in 
both their eigenvalues and eigenvectors. The EPDs are found in 
different structures such as systems with loss and/or gain under 
parity-time symmetry [1]-[4], and lossless spatially periodic 
structures [5]-[8]. In general, such points normally are not found 
in devices and systems, however, systems can be engineered to 
show EPDs which may be suitable in variety of applications. In 
this paper, we show the emergence of EPDs in a linear time 
periodic (LTP) system where we show that EPDs are induced in 
such system systems by simply temporally modulating one or 
more of the system elements. The EPDs found based on the 
concept of periodic time variation are analogous to EPDs found 
in spatially periodic waveguides [6], [7]. At an EPD, the 
eigenmode of the system coalesce, so that the system, when 
described with the evaluation of a state vector via a system 
matrix multiplication, exhibits  a Jordan block degeneracy. 
Hence, the eigenstates of the system are described using 
generalized eigenvectors rather than regular eigenvectors, and 
this leads to an algebraic growth in the system eigenstates [5], 
[7]. Unique features that are associated with the coalescence of 
eigenmodes may contribute to many potential applications, such 
as enhancing the gain of active systems, highly directive 
antennas, and enhanced sensors [9]-[11]. 

II. EPDS IN LINEAR TTIME PERIODIC SYSTEMS 
Generally, a linear time-periodic system may comprise of 

one or more periodic, time-varying elements. Here, we 
specifically consider an example of an LC resonator with a time-
periodic capacitance C(t) as the schematic of the circuit is shown 
in Fig. 1(a), though the presented formalism is general for any 

other time-periodic resonator. The periodic time-varying 
capacitor of the LC resonator is assumed, for simplicity, to be 
modulated by a piece-wise constant time-periodic function.  We 
express the time domain behavior of time-varying LC resonator 
by multidimensional differential equations with 

( ) [ ( ), ( )]Tt q t i t=  being the state vector, where T represents the 
transpose operation. The governing multidimensional first-order 
differential equations which describes the system dynamics read 
as 
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For an LTP system, the translation of the state vector from 
the time instant t to t+Tm is carried out using the state transition 

 
Fig. 1.  (a) A single LC resonator with periodically (piece wise) time 
varying capacitance exhibiting EPDs. (b) The resonant frequency 
dispersion relation of the time-periodic varying LC resonator is plotted 
varying modulation frequency. The real and imaginary parts of the 
resonance frequency f are denoted by black and red colors respectively. (c) 
determinant of the similarity matrix U where the nulls indicate second 
order EPDs. 
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matrix  that is defined by (t+Tm) =  (t) , where Tm =1/ fm 
is the modulation period. Moreover, by enforcing the Floquet 
periodicity as (t+Tm) = exp(−i Tm) (t), the eigenvalue 
problem is constructed as (   I)  (t) = 0 with  = exp( i Tm) 
as the  system eigenvalue. The dispersion plot of the 
eigenfrequencies versus the modulation frequency fm is 
illustrated in Fig. 1(b) when the parameters are set as L0 = 22 

H, and C1 = 5 nF and C2 = 15 nF. Note that the eigenfrequency 
f in this figure, corresponds to harmonics f ± nfm, where n is an 
integer. Furthermore, in this system without gain or loss 
element, the imaginary parts of the eigenvalue solutions are 
symmetric with respect to the center of the Brillouin zone and 
the resonance frequencies are purely real at an EPD (e.g., fm = 
105.5 kHz). 

EPDs occur in this system when the two eigenvalues and 
their corresponding eigenvector solutions coalesce at a specific 
modulation frequency fm and become exactly equal. The 
determinant of the similarity matrix U = [ 1, 2], which 
contains the eigenvectors corresponding to each eigenvalue, can 
be employed as measure of the coalescence of the eigenvectors. 
For instance, in the proximity of an EPD and since the 
eigenvectors of the system are similar and the determinant of U 
approaches zero. Figure 1(c) shows the determinant of the 
similarity matrix where it can be observed that the local 
minimums of the determinant coincide with points in the 
dispersion diagram where two eigenfrequencies coalesce. It is 
worth to note that one can adjust the EPD frequency to any 
desired operating frequency through tuning the system 
parameters such as capacitances, inductor or modulation 
frequency.  

III. ULTRA-SENSITIVITY TO PERTURBATIONS 
The existence of EPDs in LTP systems is associated with 

unique characteristics due to the extreme sensitivity to system 
perturbations. This extreme sensitivity makes such an LTP LC 
resonator promising candidate to conceive ultra-sensitive sensor 
and biosensor. The enormous and desirable sensitivity 
enhancement at EPDs in LPT systems is due to the coalescence 
of eigenvectors of the system. For instance, let us consider a 
small perturbation  introduced in the time varying capacitance 
as Cp(t) = (1+ )C(t). This perturbation leads to a perturbed state 
transition matrix ( ), which consequently results in perturbed 

system eigenvalues. For an LTP resonator near an EPD, the 
perturbed eigenvalues are proportional to p ∝ 1/2. Hence, when 
  1 then 1/2 , which implies much higher sensitivity to a 

small variation  than that of regular sensors where the 
measurable quantities are linearly proportional to the 
perturbation [12], [13]. Such a small perturbation changes the 
complex resonance frequency of the LTP LC resonator 
drastically as shown in Fig. 2.  

IV. CONCLUSION 
We have explored the general and novel principle that a 

linear time-periodic variation in a system induces exceptional 
points of degeneracy (EPDs). As a simple example, we have 
investigated the linear time-periodic LC resonator which 
exhibits EPDs without any time-invariant gain- and loss-circuit 
elements (though time variation can inject energy in the system). 
We also explore how such an EPD concept is used to conceive 
extremely sensitive sensors. 
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Fig. 2. Complex resonance frequencies of a lossy time vaying LC 
resonator slightly away from the EPD. Large variations of resonance 
frequency occur even for small perturbations . 

R
e(

f/f
m

)

Im
(f/

f m
)

 
1073


