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Abstract—Code changes are performed differently in the
mobile and non-mobile platforms. Prior work has investigated
the differences in specific platforms. However, we still lack a
deeper understanding of how code changes evolve across different
software platforms. In this paper, we present a study aiming
at investigating the frequency of changes and how source code,
build and test changes co-evolve in mobile and non-mobile
platforms. We developed regression models to explain which
factors influence the frequency of changes and applied the Apriori
algorithm to find types of changes that frequently co-occur. Our
findings show that non-mobile repositories have a higher number
of commits per month and our regression models suggest that
being mobile significantly impacts on the number of commits
in a negative direction when controlling for confound factors,
such as code size. We also found that developers do not usually
change source code files together with build or test files. We argue
that our results can provide valuable information for developers
on how changes are performed in different platforms so that
practices adopted in successful software systems can be followed.

Index Terms—Software evolution, code changes, platforms.

I. INTRODUCTION

Software systems developed in different platforms have
different practices due to their specific needs [1]. Software
platform (e.g., mobile and desktop) refers to the underlying
"structure" upon which software is built and it has specific
characteristics [2]. For instance, the mobile platform, differ-
ently from desktop and Web applications, is usually used to
develop sensor-, gesture-, and event-driven applications and
it has memory and power consumption constraints [2]. Also,
in desktop, the most frequent high-severity bugs occur due to
build issues, while in Android, the cause of most problematic
bugs is concurrency [3].

Ignoring differences from software platforms may be prob-
lematic. Shedding light on software evolution of specific plat-
forms may improve the development of platform-specific tools.
It may also strongly benefit developers as they can be aware
of how that platform works and behaves before getting into it,
mainly those professionals who are looking for a new job. For
instance, if a professional is looking for a mobile developer
position, a previous understanding of common patterns of
changes (e.g., types of code changes usually made together)
may prepare the developer for an interview.

Revealing how code changes are performed may also sup-
port newcomers who intend to contribute to Open Source

Software (OSS) projects, given their important role in the
survival and long-term success of community-based OSS [4].
Due to the quite independent and self-organized characteristics
of working in OSS projects [4], newcomers should be provided
with insights and technical support of how current contributors
in fact work so that they can be prepared. Prior work has
addressed this issue [4], but it has not identified significant
ways to support newcomers with technical barriers.

For instance, understanding how changes are performed in
a repository before sending pull requests or joining an OSS
project may provide the newcomer with valuable information
to support this initial phase of contribution and avoid rework or
contribution rejection, which could demotivate the developer to
keep contributing. We argue that providing insights at platform
level is an additional useful information to the newcomer,
besides other library and framework-related information.

Another important aspect of understanding changes is con-
cerning the specific behavior of the development team depend-
ing on the platform. Few works have studied the differences
in desktop and mobile platforms [2, 5]. Desktop system
developers usually are not involved in reporting bugs and the
bug-fixing process takes a longer period of time compared to
Android and iOS [2, 5, 6]. On the other hand, bug fixers of
mobile applications are more involved in reporting bugs to
be discussed and the main causes of bugs are concurrency
(in Android) and application logic (in iOS) [2]. We believe
companies should provide targeted training for their employees
to focus on specific platform’ characteristics and needs, and on
how developers from those platforms usually work (behavior
and practices adopted).

This paper presents a study aiming at understanding how
code changes evolve in mobile and non-mobile platforms.
At this stage, we focus on Android projects (mobile)
and Java-based desktop/Web projects (non-mobile). We
hypothesize the mobile platform has different evolution
patterns compared to non-mobile platforms. The analyses
are performed on a dataset composed of 363 popular OSS
systems from GitHub: 181 Android applications and 182
desktop and Web applications. We investigate the frequency
of commits, whether being mobile significantly impacts on
the frequency, and the co-evolution of three different sorts of
changes: source code changes, build changes, and test changes.
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Our findings, while preliminary, show that non-mobile
repositories have a higher number of commits per month
compared to mobile. The trend graphs for both platforms are
not similar, but both have a peculiar behavior in the holiday
season (period from November to January): the number of
commits sharply decreases. Our regression models suggest that
being mobile significantly impacts on the number of commits
in a negative direction when controlling for confound factors.

II. METHODOLOGICAL PROCEDURES

Our goal in this study is to understand how code changes
evolve in mobile and non-mobile platforms. Regarding the
mobile platform, we consider only Android applications since
they are largely present in GitHub and we were able to find
several repositories. For the non-mobile platform, we consider
desktop and Web applications as we intend to compare mobile
platform against other platforms. That is, we do not aim at
comparing all platforms against each other. We address the
following initial research questions:

• RQ1: How frequent are code changes in mobile and non-
mobile platforms?

• RQ2: How is the co-evolution of source code changes,
build changes and test changes in mobile and non-mobile
platforms?

A. Study Phases

To answer RQ1, we rely on statistical modelling (linear
regression) to understand the frequency of commit activity in
repositories from mobile and non-mobile platforms. To address
RQ2, we make use of Apriori to analyze the co-evolution of
code changes made to three types of files: source code, build,
and test files. The study is composed of three main phases,
detailed next.
Phase 1 - Software Repository Mining. We initially selected
the 1000 most popular Java repositories in GitHub based on
their number of stars, which is considered a reliable proxy
to the repository popularity [7]. Aiming at retrieving the
most relevant repositories, we filtered out repositories with
less than 1000 SLOC (toy samples) and we consider only
repositories with at least 24 commits in the last 2 years (active
projects). This filtering process resulted in 363 repositories.
We automatically classified these systems as mobile (if it con-
tains AndroidManifest.xml) or non-mobile. Our final dataset
contains 181 mobile systems and 182 non-mobile systems.
Table I presents the aggregate statistics of our dataset. We
can see the number of stars, SLOC, number of contributors,
number of pull requests, and number of issues. The systems
in our dataset are relevant as indicated the mean number of
starts (i.e., more than 6,000 for both platforms). Furthermore,
regarding SLOC, we can see that systems in non-mobile
platforms are larger than systems in mobile, with means of
152K SLOC and 40K SLOC, respectively.
Phase 2 - Data Collection. Through the GitHub REST API1,
we collected the following data at repository-level: number of

1https://developer.github.com/v3/

TABLE I
AGGREGATE STATISTICS OF THE 363 REPOSITORIES

Mean St. Dev. Min Median Max

Mobile

Stars 6308.32 4573.52 2451 4710 24975
SLOC 40706.21 191940.8 1003 7807 2367689
Contribut. 43.73 64.65 1 21 351
Pull
Req.

9.54 16.69 0 3 84

Issues 125.98 193.72 0 65 1640

Non-Mobile

Stars 6490.28 6426.73 2443 4548 41653
SLOC 152319.4 295851.9 1418 48158.5 2729887
Contribut. 96.69 94.05 1 64 400
Pull
Req.

30.06 62.73 0 9 521

Issues 231.83 304.37 0 120 1730

contributors, number of pull requests, number of issues, and
SLOC. Furthermore, we collected commit-level data by the
mining algorithm to perform the code change co-evolution
analysis: commit date and type(s) of file(s) changed by the
commit (source code, build or/and test files). In addition,
we retrieved additional information (number of changed files,
added lines of code, deleted lines of code, and total changed
lines of code) to be used in next steps of our work.
Phase 3 - Data Analysis. We have two main parts in the
data analysis. First, we use statistical modelling to address the
first research question. Second, we apply the Apriori algorithm
to check whether different types of code changes co-occur in
commits. Next, we detail how we proceed when building linear
regression models and applying the mining algorithm.

B. Statistical Modelling

Our hypothesis is that mobile systems have a higher fre-
quency of commits since users from that platform (in our case,
Android users) expect fast bug fixes and rapid availability of
new features [8, 9]. To provide evidence on whether being
mobile influences the frequency of commits, we build two
successive regression models: a model that contains only
the control variables; and a model with the addition of the
experimental (indicator) variable. We then use Cohen’s f2

measure to gauge the effect size of the indicator variable.
We consider model coefficients important if they are statis-
tically significant at a 0.05 level. In our models, the response
(dependent) variable is the number of commits per month
- nCommMonth. Based on variables that can influence the
number of commits, we consider the following repository-level
control (independent) variables: size of the system in terms of
number of source lines of code - sloc, number of contributors
- nCont, number of pull requests - nPR, and number of issues
- nIssues. We also have an indicator (experimental) variable,
isMobile, which is a binary variable that indicates whether a
repository is mobile (1) or not (0).

Before building our models, we log-transformed variables
aiming at stabilizing their variance and reduce heteroscedastic-
ity [2, 10]. To compare the distribution of our raw data regard-
ing number of commits per month for both groups (mobile and
non-mobile), we adopt the non-parametric Wilcoxon Signed-
Rank Test. We also report the Cliff’s delta to indicate the size



of the difference of distributions. Finally, to tackle possible
problems related to multicollinearity [11] in our regression
analysis, we check for multicollinearity using the variance
inflation factor (VIF) [12]. If it is below 3, which is a safe
and conservative threshold, we confirm that our models do
not suffer from multicollinearity [2, 13].

C. Mining frequent code changes and association rules

To find co-occurrences of different code changes file types
along the last 2 years, we apply Apriori [14, 15]. We analyze
whether there are co-occurrences of source code changes, build
changes, and test changes. After obtaining the co-occurrences
of code changes, we are able to find association rules also
using the Apriori algorithm. Therefore, based on a change the
developer performs, we can suggest other types of changes
according to the learned association rules.

We rely on heuristics to identify build and test changes. For
build changes, we look for files with names as recommended
by the build automation tools we use. For Apache Maven
build files, we search for pom.xml; for Apache Ant files, we
look for build.xml; finally, for Graddle files, we search for
build.graddle. Regarding changes on test files, we adapt an
heuristic adopted by previous works [16, 17]. We classify a
change as a test change if the name of the class begins with
the word "Test" or ends with the word "Test", or "Tests", or
"TestCase". We also consider a test change if the modified
class is contained in a directory with the word "Test", "Tests",
or "TestCase". Note that all situations in which the word is
lower case are considered in the same way.

III. RESULTS AND DISCUSSION

A. Frequency of Commits

We analyzed 465,500 commits from 363 repositories hosted
in GitHub. Figure 1 presents the frequency of commits (aver-
age number of commits per month per repository) in mobile
and non-mobile platforms in 2 years. We double checked the
data to confirm the sharp drop in the end of the plot, which
may be caused by discontinuation of mobile applications.
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Fig. 1. Frequency of commits in a 2-year time period.

Surprisingly, the number of commits is always higher in
non-mobile platform compared to mobile. For the mobile
platform, we can note a regular pattern in some periods,
specially in the holiday season (November to January). For
instance, in the period from nov-16 to apr-17, the number of
commits increased about 54%. The curve behaves similarly
in the period from nov-17 to mar-18, with an increase of
approximately 67%. This may suggest that some factors influ-
ence this behavior and contributions to OSS mobile projects in
that period of the year. Regarding those periods in non-mobile
platforms, the increase in the number of commits was much
smaller, with 4.8% for nov-16 to apr-17 and 2.7% for nov-17
to mar-18. However, we can observe that non-mobile platforms
had a very low average number of commits in December 2017
(56 commits), which suggests that holiday season may also
influence the work activity in non-mobile projects.

This kind of temporal picture helps us to see the general
trends, and how both platforms behave along these 2 years.
However, we still lack an explanation regarding what factors
are impacting the frequency. We then developed multiple linear
regression models to understand the impact of the platforms
on the frequency when controlling for confound variables.
Distribution comparison. Figure 2 presents the boxplots cor-
responding to the distribution of commits per month (response
variable) for both platforms: mobile and non-mobile. We can
see that the two distributions are different. In fact, the median
number of commits per month for mobile is approximately 63,
while for non-mobile is 84. In addition, we obtained a Cliff’s
Delta of -0.2181 (small), with a 95% confidence interval,
indicating a small but statistically significant difference.
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Fig. 2. Distributions of response variable for mobile and non-mobile.

Additional explanatory power. Table II presents our model
coefficients along with their p-values. From the model with
only control variables, we observe that most coefficients are
in the positive direction (positive T value), as expected. For
instance, we expect that more contributors result in more
commits per month. The same is valid for number of pull
requests and number of issues. The unexpected results occur
for sloc coefficient, as its signal is negative. By inspecting
the significance, apart from the intercept coefficient, all co-



efficients are not significant. We checked for correlation of
control variables with the response variable and in fact they
are not highly correlated. The highest correlation value occurs
for number of contributors and number of commits per month
(pearson coefficient of 0.1992).

TABLE II
MULTIPLE LINEAR REGRESSION COEFFICIENTS FOR OUR TWO MODELS.

Variable T value P value (significance)
(Intercept) 61.02 <2e-16 ***
nCont 1.283 0.2
sloc -0.224 0.823
nPR 0.235 0.814

Control variables
only

nIssues 1.233 0.218
(Intercept) 66.194 <2e-16 ***
isMobile -15.246 <2e-16 ***
nCont -1.19 0.235
sloc -1.525 0.128
nPR -0.117 0.907

Full model,
including indicator

variable

nIssues 0.751 0.453
***p <0.001, **p <0.01, *p <0.05

To gauge the effect of the indicator variable (isMobile),
we build a successive regression model including the binary
variable. In Table II, we can also see the coefficients of the
full model. In fact, the indicator variable has a statistically
significant impact on the frequency of commits in repositories
(p-value <2e-16). The indicator variable also increased the ex-
planatory power of the model, as suggested by a proportional
change in R2 of 1,900% (from 0.02 to 0.4). We adopted the
Cohen’s f2 measure to estimate the effect size of the indicator
variable. We computed the R2 for both models (controls and
indicator, and only controls) and obtained a Cohen’s f2 of
0.19. The following thresholds are suggested to indicate the
effect size: 0.02 (small), 0.15 (medium), and 0.35 (large).
We can therefore conclude that the effect of being a mobile
repository on the frequency of commits when controlling for
confound variables is medium.
Multicollinearity diagnosis. We diagnose our models, check-
ing for multicollinearity, since highly correlated regressors
may inflate the variance. We first check the correlation be-
tween the predictors and then we get the variance inflation
factor (VIF) for each predictor. We noticed that predictors are
not highly correlated (the highest correlation is 0.6 between
number of pull requests and number of issues). Regarding the
variance inflation factor, all variables have VIF values below
3, which is a safe value and indicate that our models do not
suffer from multicollinearity [2, 13].

B. Frequent Code Change Types and Association Rules

Regarding the types of frequent code changes, we analyzed
the commit history using the Apriori algorithm and set a min-
imum support value of 0.05. When analyzing the association
rules, we focus on the confidence and lift metrics to check the
strength of the rules. Table III presents the code changes that
co-occur along with their support and absolute count values.

We can note that all types of changes, when considered
individually, appear in the results returned by the algorithm.
However, we focus only on types of changes that occur

TABLE III
FREQUENT TYPES CODE CHANGES IN ALL COMMITS.

Frequent change types Support Absolute count

Mobile

{build} 0.07081202 12166
{test} 0.07848341 13484
{source_code} 0.67038014 115176
{source_code,test} 0.05435169 9338

Non-mobile

{test} 0.09728867 28573
{build} 0.11002986 32315
{source_code} 0.70661541 207528
{source_code,test} 0.05106353 14997
{source_code,build} 0.05217012 15322

together with other types. That is, we analyze results where at
least two types of changes appear. In mobile systems, the types
of code changes that occur together (i.e., in the same commit)
with a support greater than the minimum support is source
code and test changes. This co-occurrence happened with a
support of 0.054 (i.e., in 5.4% of all commits). The low support
indicates that developers do not usually perform changes in
source code and test files simultaneously. Surprisingly, mobile
developers do not usually change source code files together
with build files [18]. We performed some tests and found that
source code changes occur together with build changes only
with a support of 0.03. Regarding non-mobile platforms, we
see two co-occurrences of types of changes. First, source code
changes occur together with test changes with a support of
0.051. Second, source code changes also co-occur with build
changes with a similar support: 0.052.

To obtained association rules, we rely on default values
of minimum support (0.001) and minimum confidence (0.8)
defined by the arules package in R. We then found the
following rule for the mobile platform: {build,test} => {source
code}. This association rule has a support value of 0.0062,
confidence of 0.9177, lift of 1.3689, and absolute count of
1070. This rule indicates that developers commonly perform
changes in source code files given they changed build and test
files. However, the low value of support shows that both sides
of the rule (build and test changes, and source code changes)
do not occur very frequently in commits.

A similar rule was obtained for non-mobile platforms:
{build,test} => {source code}. This association rule has a
support value of 0.0134, confidence of 0.8597, lift of 1.2166,
and absolute count of 3927. Although the association rule
for non-mobile is the same of mobile, we obtained different
metric values. For instance, the support is 2.15 times higher
in non-mobile than in mobile, which indicates that both sides
of the rules (build and test changes, and source code changes)
occur more frequently in commits of non-mobile applications.
However, the confidence is lower. This indicates that, although
a source code change is likely to be necessary given that build
and test changes were made, the strength of this statement is
smaller compared to mobile platform.

As we observed, there is a regular pattern of change in
the mobile platform, with a possible seasonal behavior. As a
possible implication for newcomers who intend to contribute



to mobile repositories, we recommend that they look at the
temporal trend before sending a contribution to an OSS
project. For instance, it is not recommended to send a pull
request in the end of the year as projects are not very active
at that time. Instead, we recommend to send a pull requests in
the beginning of the year. We also highlight that source code
contributions to non-mobile repositories may require changes
to test files or build configuration files as well since changes
to such kinds of files usually occur together.

IV. RELATED WORK

Several works have investigated different types of code
changes and performed commit history analysis. For instance,
Levin and Yehudai [17] analyzed the co-evolution of only
test changes and source code changes. In this work, we
also included build changes in our co-evolution analysis. In
addition, Macho et al. [18] performed a study on build changes
relying only on the Apache Maven build automation tool
(pom.xml files). On the other hand, we included two other build
automation tools: Ant (build.xml) and Graddle (build.graddle).
Furthermore, we compare the co-evolution of changes in
mobile applications against non-mobile applications. Faragó
et al. [19] investigated whether modifications performed on
frequently changing code have worse effect on software
maintainability than those affecting less frequently modified
code. Their findings indicated that modifying high-churn code
is more likely to decrease the overall maintainability of a
software system, which can increase the number of defects.

In summary, prior works focused on different aspects of
code changes. Here, we perform a broader analysis of code
changes, investigating their frequency, factors that explain
them, and the co-evolution of different types of changes.

V. FINAL REMARKS AND FUTURE WORK

This paper presented a study aiming at investigating how
code changes evolve in mobile and non-mobile platforms by
analyzing the frequency of commits. Our statistical analysis
revealed that being mobile significantly impacts the frequency
of commits. We also observed that in the mobile platform
source code changes occur together with test changes with
a low frequency. In non-mobile platforms, we found that (i)
source code changes and test changes and (ii) source code
changes and build changes. This is an undergoing work, and
as a next step, we plan to investigate mobile, desktop, and Web
platforms separately. We also intend to perform a time-series
analysis to reveal more explicit patterns of evolution of code
changes and understand which factors influence the evolution,
and extend our study to analyze how scattered (number of
changed files) and deep (LOC) code changes are in different
platforms. Finally, we plan to interview professionals from
each platform.
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