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1 | INTRODUCTION

Systems engineering and design (SE&D) researchers increasingly tackle
questions at the intersection of technical and social aspects of complex
systems design. Practical challenges of access, limited observation scope,
and long timescales limit empirical study of SE&D phenomena. As a re-
sult, studies are typically conducted in model world settings abstracted
from the real world, such as behavioral experiments with student sub-
jects. Model worlds must be representative of the phenomena being stud-
ied to ensure insights generalize to the real world settings. Currently,
thereis alack of shared understanding and standards within the SE&D re-
search community to evaluate representativeness of model worlds. This
Communication captures the results of ongoing efforts to build consen-
sus on this topic: it defines the concept of model worlds, disambiguates
representativeness from related concepts, and draws comparisons to other
research domains. It outlines a potential path forward and calls for com-
munity participation in establishing shared standards for model world rep-
resentativeness in SE&D research.

KEYWORDS
Research methodology, design experiment, representativeness,
validity.

The Systems Engineering and Design (SE&D) community increasingly tackles research questions that span both technical
aspects of the design of large-scale complex engineering systems and social aspects of the engineering teams doing the
design. This class of problems poses challenges for empirical and theoretical study because it typically involves hundreds
of engineers, collaboration across organizations, and work over multi-year periods. To overcome these challenges,

Abbreviations: DOF, degree of freedom; NASA, National Aeronautics and Space Administration; SE&D, systems engineering and de-
sign; SME, subject matter expert
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many SE&D researchers find a middle ground between empirical field observation and theoretical modeling, turning to
what we are calling model worlds—laboratory experiments, observed training simulations, serious games and computer
experiments—to tractably observe and experimentally manipulate phenomena of interest.

Different model worlds abstract the real world in different ways (e.g., students working on simplified tasks versus
experienced engineers engaging in a day-long training exercise), and these differences have strong implications for
which kinds of insights generalize to the real-world phenomenon of interest. We contend that the SE&D community
lacks shared standards for assessing whether a model world is sufficiently representative of a real world phenomenon to
enable valid generalization. Rather than converging towards shared standards, we observe increased fragmentation

across the community which fundamentally limits our ability to aggregate knowledge and build on each other’s research.

This Communication takes a modest step to move the community towards shared standards. Over the last year, the
author team established an ad hoc working group to address model world representativeness in SE&D research. A first
round of community discussions identified a need to clarify several core concepts documented in this Communication
to facilitate convergence in the ongoing discussion. This Communication is organized as follows: Section 2 defines the
problem we aim to address; Section 3 defines the model world construct; Section 4 reviews how the terms representative-
ness and generalizability are used in the literature; Section 5 synthesizes our proposed definition of representativeness of
model worlds and the unique challenges associated with it in SE&D research as an open call for contribution.

2 | THE NEED FOR MODEL WORLDS

Empirical study of socio-technical systems poses significant practical research challenges due to limited access, large
observation scope, long timescales, and context dependency. For example, spacecraft design organizations involve
hundreds to thousands of people working together over multiple years, embedded within organization-specific cultures;
furthermore, each spacecraft design problem exhibits a unique set of contingent features with respect to specific
technical and programmatic challenges and constraints. As a result, phenomena associated with design organizations,
artifacts, and processes are difficult to study using direct observations of the real world. At the same time, the governing
socio-technical processes also challenge the limits of existing theoretical modeling frameworks.

Some researchers supplement partial observation with archival analysis and retrospective interviews following a
case study methodology; 1 however, each case is labor-intensive, limiting the number of instances that can be observed.
There is a strong incentive to find or build proxies for the real phenomenon—what we call model worlds—that enable
more tractable observation and experimental manipulation. Model worlds range from theoretical models 2 to simulated
environments in laboratory settings 3 to field settings. *> While differing significantly in realism, fidelity and level of
abstraction, all model worlds aim to be representative of real-world phenomena with respect to the specific research
question posed.

Assessing model world representativeness is fundamental to producing generalizable results when observation of
amodel world replaces direct observation of the real world. Generalizability is a necessary precursor to aggregating
knowledge across studies. Other fields have agreed-upon standards for when a model world is representative of
what. For example, aircraft designers regularly adopt model worlds to aid in the early stages of design. Rather than
building and instrumenting wings of many shapes and sizes and flying under a range of flow conditions (a huge expense),
the accepted convention starts with a reduced-order, in many cases, two dimensional (2-D) model shown in Fig. 1.
However, in adopting this kind of model, which abstracts many features of the real world, it is critical to understand
the conditions under which it is (and is not) representative. In this specific case, a 2-D model is good for understanding

airfoil performance (lift, drag, moment) for high aspect ratio wings. However, because it assumes an infinitely long wing,
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it breaks down for low aspect ratio wings. For these types of wings, the airflow over wing near the tips is an important
driver of performance, so a 3-D model with a realistic wing length is needed in the analysis. In other words, a 2-D model
is only representative for high aspect ratio wings.

Canresearchers use model worlds in SE&D research settings in the same way that reduced-order models are used
in aeroelasticity? We believe the answer is yes, at least for some phenomena of interest. In asking this question, it is
important to realize that aeroelasticity did not start with the 2-DOF model; rather, it was synthesized over many years
of research. Equally important, its utility hinges on knowing where it works and where it does not. To that end, our
long-term goal is for the SE&D community to identify and promulgate model worlds and establish associated consensus
on the extent and limitations of their representativeness with respect to phenomena of interest. The following sections

define features of the constructs that underlie this vision.

3 | THE MODEL WORLDS CONCEPT

We define a model world as an abstraction of the real world that represents subject(s) performing task(s) in context for the
purpose of advancing research objectives. Each aspect of this definition is intentional and merits additional explanation.

First, a model world must abstract some aspect of the real world. Abstraction allows observation and experimenta-
tion without directly impacting a real-world system. For example, the 2-DOF aeroelasticity model world abstracts an
airfoil to a small set of mathematical parameters. In contrast, a field case study of a design team performing normal
work in context is not a model world because it observes an instance of the real world.

Second, the model world must include the subject of study (either animate or inanimate), the task it performs (or
function or process in the case of inanimate subjects), and the context in which that task is performed. One of the
distinguishing features of SE&D research is that both context and task are important determinants of a subject’s
behavior. For example, a designer (human subject) performs an engineering analysis (task) differently depending on
what tools and colleagues they have access to (context). Analogously, an airfoil (inanimate subject) generates different
lift profiles (task or function) depending on the flow conditions (context).

Third, the model world must be used to advance specific research objectives. The representativeness of a model
world only has meaning with respect to a defined research question. A model world that is representative for one
objective might not be representative of another depending on how the subject, task, and context have been abstracted.

Model worlds can either be adopted or constructed. Adopting a model world involves finding one already in
existence: observing subjects performing tasks in a context abstracted by others for a non-research objective (that
aligns with the researcher’s objective). For example, Joseph et al. leveraged spacecraft concurrent design studies,
which are performed for various non-research purposes, as a model world setting to study how experts interact and
share information during a conceptual design process. ¢ Figure 2 shows subject matter experts (SMEs) working on a
study at the Goddard Space Flight Center.” The subjects are real experts and their task is similar to normal spacecraft
design activities but co-located in the same room for a compressed one-week timeline. This abstraction enables direct
observation of the design process but also changes how the SMEs behave, both in terms of how they interact and what
design choices they make.

Other examples of adopted model worlds in SE&D research leverage settings such as training simulations and
engineering analogs. Gralla et al. leveraged training simulations in the humanitarian operations context to study realistic
subjects working on contained but otherwise realistic tasks in a simulated environment.# Palma and Mesmer study how
drama troupes put together a play as an abstraction of the systems engineering design process.® Adopted model worlds

can also be viewed as natural experiments across multiple instances. In our first example, NASA's concurrent design
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facilities conduct hundreds of design studies per year.

Constructing a model world involves creating a synthetic environment to interrogate a research question. The
researcher must choose how much and at what level of fidelity the subject, task, and context must be present to achieve
representativeness. While there are established norms for abstracting features in the context of simulation,? adding
human subjects presents additional challenges to induce realistic behaviors in an artificial setting. 1° Different model
worlds may be required to address different research objectives.

For example, Grogan and de Weck constructed tabletop board games to model federated space systems. 11 Human
subjects of varying levels of expertise interact with highly abstracted tasks (e.g., playing cards and chips) with interactions
and context framed by game rules. While the spatial-temporal dynamics are highly abstracted, the tabletop format
elicits rich interpersonal interactions suitable to study strategic design behaviors. Alternative model worlds based
on computer-based simulations allow more realistic spatial-temporal dynamics but limit study of emergent social
interactions around the table. In the context of railway systems, Meijer concludes that some applications, such as
engaging with actual operators, require model worlds with high correspondence to real infrastructure, timetables, and
processes while other applications, such as prototyping, benefit from low-tech model worlds with more flexible roles,

rules, and resources. 12

Model worlds are important research tools because they allow researchers to study phenomena whenit is inefficient
or infeasible for direct observation. The real world instance may be inaccessible due to confidentiality or security
concerns; intractable to collect simultaneous observations of thousands of geographically-distributed engineers; absent
of counterfactual or future states for comparison if the goal is to assess a novel intervention or plan for future behaviors
in a new operating environment; or impossible to experimentally manipulate for ethical or practical reasons. However,
since model worlds are, by definition, abstractions, it is critical to characterize when the inferences made in a model

world generalize to the real world it proxies.

4 | RECONCILING REPRESENTATIVENESS AND GENERALIZATION

Representativeness is a homograph that means slightly different things across communities, posing challenges in
interdisciplinary settings. This section explains three uses of the term representativeness from statistical, analytical and
ecological perspectives illustrated in Fig. 3 and clarifies how they relate to generalization in SE&D research. Across
disciplines, there are many other words for closely related concepts, including validity, verification, validation, and
transferability. Treating each of them in depth is beyond the scope of this communication, however throughout the
below discussion, we highlight some of the connections across disciplines.

Statistical representativeness describes whether inferences made about characteristics of a sample generalize to the
population from which it was drawn. 13 Research in this paradigm focuses on inferring population-level characteristics.
For example, aresearcher might study how often or when engineers call a colleague to request design information versus
seeking the same information by looking up a value in a shared database. They conduct their research by surveying
engineers in a large company. The notion of statistical representativeness defines how they should sample and the extent
to which they can generalize their findings. If they distribute their survey to all design engineers (or a random subset
thereof) and the response is uncorrelated with the target phenomenon (e.g., there is no reason to believe that only good
designers responded to their survey) statistical representativeness indicates sample-level inferences can be generalized to
the population of all engineers in the firm. However, statistical representativeness does not directly support inferences
about design engineers in general; this is a question of analytical representativeness.

Analytical representativeness describes whether theory developed by studying an empirical instance (often a case
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study) generalizes to other similar instances. 14 Research in this paradigm focuses on understanding causal mechanisms
of a process in context. Continuing the previous example, the researcher may hypothesize that trustworthiness of infor-
mation sources in each context contributes to preferences for calling a colleague or looking up data in a database. They
decide to conduct their research by interviewing a selection of engineers across multiple firms. The notion of analytical
representativeness defines how they should choose the firm cases and what those choices mean for generalization. If
trust is an important moderator of preference, they should choose a few firms where engineers trust the database and
others where they do not. After conducting in-depth interviews with several engineers from each organization, they
can compare patterns of behaviors across instances. If engineers in high-trust organizations behave similar to each
other but different from engineers in low-trust organizations, conclusions support the hypothesis that trust drives the
observed behavior. Analytical reasoning supports generalizing this result to other high- and low-trust organizations,
regardless of whether they were included in the study sample. Thus, analytical representativeness requires a logical
argument for which features of the context-subject-task interaction are important to generate the studied behavior.

Statistical and analytical perspectives consider when (i.e., under what conditions) it is appropriate to generalize
from one real world instance to another. However, model worlds are not real world instances. Whether they are created
or adopted, abstraction in model worlds introduces a different set of concerns for representativeness and generalization.
The key question when designing a model world to address a research question (and associated theory) is what features
of the real world phenomenon need to be “expressed” for representative behaviors to emerge? These ideas are discussed
most deeply in the fields of experimental psychology and behavioral economics. There is a related discussion within the
simulation community, as well. Here, we extend the core ideas of representative design and ecological validity from the
Brunswikian perspective that most directly relate to model world representativeness in SE&D research. 1516

Ecological representativeness describes whether a subject’s response to stimuli in an artificial setting such as an
experimental laboratory (or analogously simulation model) corresponds to their behavior in the associated real world
setting (i.e., their ecology). Research in this paradigm focuses on isolating causal effects in terms of stimulus response.
Continuing the previous example, the researcher may want to explain how engineers establish trust in a data source.
They decide to design an experiment where subjects perform design tasks that require information from other disci-
plines, with differential costs of querying a database versus calling a colleague. Experimental manipulation varies how
the two sources are presented with respect to trustworthiness cues. The notion of ecological representativeness defines
which features of the real world need to be included in the laboratory setting to defend against threats to generalization.

In particular, researchers must recognize that their subjects may have ingrained assumptions, developed over
long experience in a context, that are outside of experimental control. For example, engineers selected from low-trust
settings may assume that database data is always out of date, regardless of the cues provided by the researchers.
If not considered, this may be a serious confound (e.g., if engineers from low-trust settings perceive the cues in the
experimental manipulation differently than do engineers form high-trust organizations). On the other hand, this reality
can be leveraged, e.g. by selecting subjects from high- and low-trust settings proportionally to their existence in the real
world, and letting their experiences serve as cues. Compared to working with student subjects who do not have the
ingrained assumptions, this design enables a higher behavioral realism because the ingrained assumptions more closely
stimulate realistic behavior than would any artificial cue in the lab.

Ecological representativeness enables researchers to generalize findings from the experiment to the real world that
the experiment represents, but not necessarily to other real world settings. The extent to which findings generalize to
other contexts is based on a logic similar to analytical representativeness. In the experimental context, the key question
is about how closely cues were tailored to the particular ecology. Since the same cue can be effective for one population
and not another, there is often a tradeoff between behavioral realism of the specific subjects and relevance to other

settings.
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Figure 4 synthesizes the concept of representativeness for SE&D research from the three perspectives. The statistical
view drives how to generate a sample from a population to ensure sample characteristics can be generalized to the
population. The ecological view focuses on what features of the world need to be represented in an experiment to cue
realistic behavior so causal mechanisms can be transferred back to the real world. The analytical view establishes a
logical argument to select empirical instances that are sufficiently related that explanations of phenomena observed in
one setting can be transferred to other similar settings. As will be discussed in the section that follows, aspects of each
of these concepts are important to defining model world representativeness.

5 | TOWARDS SHARED STANDARDS ON REPRESENTATIVE MODEL WORLDS

Advancing the use of model worlds in the SE&D community requires researchers to know which inferences can be
appropriately generalized from a model world to other contexts and the community to agree on how to assess valid
generalizations in studies. To that end, this section summarizes several key concepts to achieve that vision.

First, we introduced the concept of a model world as an abstraction of the real world that represents subjects
performing tasks in context for the purpose of generalizing research insights. It is important to distinguish partially
artificial settings from true empirical ones, because of the need to consider issues related to ecological validity in
addition to analytical and/or statistical representativeness. For example, even if the subjects and tasks are real but the
context is abstracted (as in concurrent design settings), the behavior may only be ecologically representative of some
phenomena (such as design heuristics) and not of others (such as communication, due to the compressed space and
time).

Second, we disambiguated three established definitions of representativeness from the social sciences. Combined,
they establish a basis for mapping laboratory observations to real world SE&D contexts. Ecological representativeness
relates behavior observed in a laboratory setting to a real world instance. Analytical representativeness relates one
real world instance to others based on theoretical similarity. Statistical representativeness relates information from a
discrete sample to its larger population. A combined progression selects analytically similar instances to study, designs
or adopts a model world as an abstracted settings in which to study behavior, and samples subjects from a population.

Third, we highlighted the importance of the three-way subject-task-context interaction in driving the representa-
tiveness of models worlds in SE&D in particular. The social science fields surveyed to support this work focus on how
a human (or larger group of humans) behave and whether that behavior transfers to other instances. In some fields
such as experimental psychology, subject-task contingency leads to a need to control for (or at least account for) prior
experiences. In other fields such as economics, the subject-context interaction emphasizes differential response to
incentives based on subjective value. In SE&D research, all three of subject-task-context must often be considered to
generate realistic responses, even when the focus is indeed the human. Engineering is a contextual field—manifestation
of a designer’s expertise is related to many factors including the design problem, available tools, and navigation of
knowledge networks within an organization.

Initial community discussions also highlight that many SE&D researchers study non-human subjects which fit
the framework but in a less straightforward way. Research on topics such as optimization methods, control, and
design principles focus on artifacts (algorithms, methods, tools) as inanimate subjects performing a task or function
in a context. Nonetheless, although it is rarely framed as such, the choice of decision heuristic in an algorithm is a
representation of the subject’s behavior and how they interact with their context while performing a task. For example,
design researchers often choose between exploring solutions spaces using a top-down optimization framework or

a bottom-up multi-agent framework. The choice of modeling framework is salient if the research goal is to mitigate
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computationally-intractable problems 17 or to understand how design activities are influenced by differential control
and partial information availability, even if both approaches yield similar solutions. 18 This illustrates the importance of
making conscious choices to select appropriate model worlds that enable transfer of knowledge to real world settings;
and the framing of research choices around the subject-task-context triplet can support that conscious research design
choice decision-making.

While these concepts outline what is needed to assess model world representativeness, there is much more work
to do before any implied standard can be directly applied to SE&D research. As currently stated, there is substantial art
to implementing notions of analytical and ecological validity, particularly as subject-task-context interactions become
more complex. Our hope is that by defining key concepts and terms carefully we can initiate an important discussion.

Arriving at shared standards of model world representativeness is a long-term goal that will take community-wide
contributions and discussions. In the near-term, acknowledging that representativeness is important will promote a
discussion of it in studies that adopt or create model worlds. Justifying representativeness includes a statement of why
amodel world is appropriate for a research question and the limits of how it should be used. Even if there is room for
debate in a particular context, including a rationale for peer review will lead researchers to thoughtfully select model
worlds that yield greater insights. If such norms are used widely, we will also benefit from a community-wide discussion

of appropriate uses of and designs for model worlds.
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FIGURE 1 A 2-Dairfoil model world represents a wing (left) as a simplified shape (right) with air velocity (V), lift (L),
drag (D), and moment (M) parameters. (Image source: Wikimedia Oblivion8000/Public domain).
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FIGURE 2 Left: SE&D model worlds consist of subjects performing tasks in a context; Right: A concurrent design
facility is an adopted model world for spacecraft design because the task and subjects are abstracted from normal
practice (Image source: Hihn et al.”).
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FIGURE 3 Comparison of permissible generalization under different views of representativeness.
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FIGURE 4 Combined view on representativeness in SE&D research settings.



