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We study heating rates in strongly interacting quantum lattice systems in the thermodynamic
limit. Using a numerical linked cluster expansion, we calculate the energy as a function of the driving
time and find a robust exponential regime. The heating rates are shown to be in excellent agree-
ment with Fermi’s golden rule. We discuss the relationship between heating rates and, within the
eigenstate thermalization hypothesis, the smooth function that characterizes the off-diagonal matrix
elements of the drive operator in the eigenbasis of the static Hamiltonian. We show that such a
function, in nonintegrable and (remarkably) integrable Hamiltonians, can be probed experimentally
by studying heating rates as functions of the drive frequency.

PACS numbers: 02.30.Lt, 02.60.-x, 05.30.Jp, 05.70.Ln, 75.10.Jm

Periodic perturbations are a ubiquitous tool to excite
and probe quantum systems and study their response
functions. Recent developments in theory and experi-
ments have expanded the scope of periodic driving to
generate effective magnetic fields [1–4], as well as to en-
gineer topologically nontrivial band structures [5–8] and
novel time-crystalline phases [9–14]. However, under pe-
riodic driving, generic many-body interacting systems are
expected to heat up and (for a bounded spectrum, typical
of lattice fermions and spins) equilibrate at long times to
states that are effectively at infinite temperature [15, 16].
Driving at high frequencies, because of prethermal-

ization [17–30], has been proposed to slow down heat-
ing [10, 31–34]. It results in initial fast prethermal dy-
namics towards time-periodic steady states (prethermal
states) of effective local Hamiltonians [35–38], before
thermalization dynamics eventually results in featureless
“infinite-temperature” states [15, 16, 39, 40]. Prether-
malization is a universal phenomenon that occurs dur-
ing dynamics in isolated [30] and open [27, 28] systems
whenever conservation laws are weakly broken. Numer-
ical studies of prethermalization and thermalization, or,
in general, of energy absorption in driven strongly inter-
acting systems with many particles (or spins) are chal-
lenging. Progress has been achieved using massively par-
allel Krylov subspace methods [32], density matrix trun-
cation [41], and t-DMRG [42], but there is a dearth of
computational techniques to study generic models in ar-
bitrary dimensions.
Here, we report on the implementation of a numerical

linked cluster expansion (NLCE) for driven systems. NL-
CEs can be used to study arbitrary interaction strengths
in arbitrary dimensions. They were originally introduced
to study thermal equilibrium ensembles [43], where they
outperform full exact diagonalization calculations [44].
NLCEs were recently implemented to study thermaliza-
tion [45] and quantum dynamics under time-independent
Hamiltonians in one [30, 46] and two [47, 48] dimensions,
and combined with dynamical quantum typicality [49].
We use them to determine heating rates in strongly in-

teracting one-dimensional (1D) lattices in the thermody-
namic limit. The numerically obtained rates are shown
to agree with Fermi’s golden rule predictions. We ar-
gue that, in addition to helping quantify the stability of
prethermal states, heating rates can be used to probe the
structure of the off-diagonal matrix elements of the drive
operator in the eigenstates of the static Hamiltonian.
We consider a time-periodic Hamiltonian of the form

Ĥ(τ) = Ĥ0 + g(τ)K̂, where Ĥ0 is the static Hamilto-
nian and g(τ)K̂ is a weak time-periodic perturbation
of strength g, period T = 2π/Ω, and zero time aver-
age. The system is initialized (at τ = 0) in a state
ρ̂I = exp[−βIĤI ]/Tr{exp[−βIĤI ]} that is a thermal
equilibrium state of an initial static Hamiltonian ĤI

at an inverse temperature βI . At stroboscopic times
τ = nT (n = 0, 1, 2, . . . ), the density matrix ρ̂(τ)

can be written as ρ̂(τ) = (ÛF )
nρ̂I(Û

†
F )

n, where ÛF =

T exp[−i
∫ T

0
Ĥ(t)dt] is the (time ordered T ) Floquet evo-

lution operator (we set ~ = 1). We assume that ĤI , Ĥ0,
and K̂ are translationally invariant sums of local oper-
ators, and that they are mutually noncommuting (non-
trivial dynamics occurs even if g = 0).
The obvious conservation law broken by g(τ)K̂ is en-

ergy conservation. For sufficiently small g in the ther-
modynamic limit, we expect prethermalization to occur
(independently of the value of Ω), wherein the system
quickly relaxes to the equilibrium state of Ĥ0 described
by a (generalized) Gibbs ensemble [up to O(g) correc-
tions]. The relaxation towards infinite temperature can
be described by a slowly evolving (generalized) Gibbs en-
semble of Ĥ0, characterized by the instantaneous expec-
tation values of the conserved quantities of Ĥ0 [30]. The
dynamics of those quantities is described by autonomous
equations, with drifts given by Fermi’s golden rule [30].
We study the evolution of the energy defined by

the static Hamiltonian, which is also the time-averaged

Hamiltonian Ĥ(τ) = Ĥ0, E(τ) = Tr[Ĥ0ρ̂(τ)]. We con-
sider general time-periodic perturbations, which can be
Fourier decomposed as g(τ)K̂ =

∑

m>0 2gm sin(mΩτ)K̂.
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After a short initial transient dynamics, in the linear re-
sponse regime, the system absorbs energy independently
from each Fourier mode m. The average rate of energy
absorption over a cycle is Ė(τ) =

∑

m>0 Ėm(τ) with, as
expected from Fermi’s golden rule,

Ėm(τ) = 2πg2m
∑

i,f

|〈E0
f |K̂|E0

i 〉|
2(E0

f − E0
i )P

0
i (τ)

×δ(E0
f − E0

i ±mΩ), (1)

where |E0
i 〉 (|E

0
f 〉) are the eigenkets of Ĥ0 with eigenen-

ergies E0
i (E0

f ), and P 0
i (τ) = 〈E0

i |ρ̂(τ)|E
0
i 〉 is the pro-

jection of ρ̂(τ) into the basis of Ĥ0. The latter de-
fines the so-called diagonal ensemble (DE) at time τ [50],
ρ̂DE(τ) = P 0

i (τ)|E
0
i 〉〈E

0
i |. ρ̂DE(τ) is expected to char-

acterize the equilibrated state under Ĥ0 at time τ [51].
We define the rate Γ(τ) =

∑

m>0 Γm(τ), where Γm(τ) =

Ėm(τ)/[E∞ −E(τ)] is the rate for Fourier mode m, and
E∞ is the energy at infinite temperature. Only when it
is sufficiently small does one expect |E∞ − E(τ)| to be
an exponential function, and Γ(τ) to be meaningful.
We focus on 1D lattice system of hard-core bosons,

with Ĥ0 and K̂ given by

Ĥ0 =
∑

i

[(

−t b̂†i b̂i+1 − t′ b̂†i b̂i+2 + h b̂†i

)

+H.c. (2)

+V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)

+ V ′

(

n̂i −
1

2

)(

n̂i+2 −
1

2

)]

,

K̂ = −
∑

i

(

b̂†i b̂i+1 +H.c.
)

, (3)

where standard notation was used [52]. We drive the
system with a square wave g(τ) = g sgn[sin(Ωτ)], and
set t = V = 1 (our unit of energy and frequency). Ĥ0

is integrable for t′ = V ′ = h = 0 (and mappable to
the spin-1/2 XXZ Hamiltonian [52]), and nonintegrable
for nonvanishing t′, V ′, and h. We study integrable and
nonintegrable (with t′ = V ′ = 0.8 and h = 1.0) cases,
and select ĤI to have the same terms as Ĥ0 [Eq. (2)]
but with different nearest neighbor coupling parameters
(tI = 0.5 and VI = 2.0).
We implement a NLCE to calculate the energy per

site e(τ) = E(τ)/L at stroboscopic times in the ther-
modynamic limit (L → ∞). Within NLCEs, e(τ) is
expressed as a sum over the contributions of all con-
nected clusters (c) that can be embedded on the lattice,
e(τ) =

∑

c M(c) ×W e
c (τ), where M(c) is the number of

“embeddings” (per site) of cluster c, and W e
c (τ) is the

weight of e(τ) in cluster c. W e
c (τ) is obtained recur-

sively using the inclusion-exclusion principle: W e
c (τ) =

Ec(τ) −
∑

c′⊂c W
e
c′(τ), where c′ denotes the connected

subclusters of c and Ec(τ) = Tr[Ĥc
0 ρ̂c(τ)] is the energy

in cluster c [Ĥc
0 is the static Hamiltonian, and ρ̂c(τ) is

the density matrix at time τ , both in cluster c]. The
series starts with the smallest cluster (a site) for which
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FIG. 1. (Main panels) Absolute value of the energy per site

|e(τ)| vs τ for (a) the nonintegrable and (b) the integrable Ĥ0

for three strengths g = {0.05, 0.2, 0.8} of the drive, a period
T = 1.0, and βI = (30)−1. Results (at stroboscopic times) are
obtained using NLCE to (a) 16 (NLCE-16) and 17 (NLCE-
17) orders, and (b) 17 (NLCE-17) and 18 (NLCE-18) orders.
The solid lines show exponential fits to the highest NLCE or-
der. (Insets) Rates obtained in fits, as those depicted in the
main panels, for the two highest NLCE orders. For all val-
ues of g, the fits for the nonintegrable Ĥ0 are done for times
3 ≤ τ ≤ 20 for NLCE-17 and 3 ≤ τ ≤ 15 for NLCE-16, while
for the integrable Ĥ0 they are done for times 2 ≤ τ ≤ 8 for
NLCE-18 and 2 ≤ τ ≤ 7 for NLCE-17. The Fermi golden
rule predictions (open symbols) are evaluated using full exact
diagonalization in chains with: (a) 17 and 18 sites (Fermi-17
and Fermi-18) and (b) 19 and 20 sites (Fermi-19 and Fermi-
20), and periodic boundary conditions. Error bars indicate
the fitting errors for the NLCE rates, and the standard de-
viation from averages over different values of ∆E and τ for
the Fermi golden rule predictions [53]. Power-law fits (αgγ)
of the rates in both insets are done for the highest order of
the NLCE in the interval 0.05 ≤ g ≤ 0.3.

Wc(τ) = Ec(τ). For each cluster, Ec(τ) is calculated nu-
merically using full exact diagonalization. We use max-
imally connected clusters (clusters with contiguous sites
and all possible bonds) as they are optimal to study dy-
namics in chains in the presence of nearest and next-
nearest neighbor interactions [45, 46, 54]. The order of
the NLCE is set by the number of sites of the largest
cluster considered. For nonintegrable Ĥ0, we compute 17
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FIG. 2. (Main panel) Absolute value of the energy per site
|e(τ)|, normalized by its initial value |e(0)|, for a periodically

driven nonintegrable Ĥ0 with g = 0.5 and T = 1.0, for initial
thermal states of ĤI at different inverse temperatures βI . We
show results for 16 and 17 orders of the NLCE (NLCE-16 and
NLCE-17, respectively), and exponential fits to the NLCE-
17 results. (Inset) Rates obtained from exponential fits to
NLCE-17 for 3 ≤ τ ≤ 20 (as those in the main panel) and
NLCE-16 for 3 ≤ τ ≤ 15 vs βI , for g = 0.2 and g = 0.5. We
also report Fermi’s golden rule predictions obtained using full
exact diagonalization in chains with 17 and 18 sites (Fermi-17
and Fermi-18) and periodic boundary conditions.

orders of the NLCE (after exploiting all symmetries, the
dimension of largest sector of the Hamiltonian is 32 896).
When Ĥ0 is integrable, due to particle number conserva-
tion, we are able to compute 18 orders of the NLCE (the
dimension of the largest sector in this case is 21 942).
In the main panels of Fig. 1, we show NLCE results for

|e(τ)| vs τ for (a) the nonintegrable and (b) the integrable
static Hamiltonians, for three strengths g = 0.05, 0.2,
and 0.8 of the drive, for an initial thermal equilibrium
state of ĤI at an inverse temperature βI = (30)−1. The
exponential fits, which exclude the short-time transient
dynamics and long times at which the NLCE does not
converge, make apparent that the approach of e(τ) to the
infinite-temperature energy (E∞/L = 0) is exponential.
The rates obtained from such fits are plotted in the insets
of Fig. 1 vs g, for the two highest orders of the NLCE.
They agree with each other, indicating that the fits are
robust. The rates are ∝ g2 and are in excellent agreement
with Fermi’s golden rule [Eq. (1)], evaluated numerically
using full exact diagonalization in chains with periodic
boundary conditions [53].

It follows from eigenstate thermalization for noninte-
grable Hamiltonians [50, 51, 55, 56] (generalized eigen-
state thermalization for integrable Hamiltonians [57, 58])
Ĥ0 that the predictions of ρ̂DE(τ) for few-body operators
agree with those of the thermal (generalized Gibbs) en-
semble [51, 58–60]. We first focus on the case in which Ĥ0

is nonintegrable with no local conservation law. In this

case, the inverse temperature β(τ) alone characterizes
the thermal (grand canonical) ensemble at τ , ρ̂GE(τ) =
exp[−β(τ)Ĥ0]/Tr{exp[−β(τ)Ĥ0]}, where β(τ) is deter-
mined by the condition Tr[Ĥ0ρ̂GE(τ)] = Tr[Ĥ0ρ̂(τ)].
Only when β(τ) � 1 is that one expects Γ(τ) to be-
come independent of β(τ), and E(τ) to approach E∞ as
a single exponential.
To illustrate this, in the main panel of Fig. 2 we plot

|e(τ)| (normalized by its initial value |e(0)|) for various
initial inverse temperatures βI ∈ [0.01, 0.5]. The normal-
ized energies e(τ)/e(0) for βI = 0.033 and 0.01 exhibit
a nearly identical exponential decay (within the times at
which the NLCE has converged) implying that Γ is in-
dependent of βI [hence, of β(τ)] when βI . 0.03. For
βI & 0.2, one can still use exponentials to fit e(τ), but
the rates obtained depend on βI . In the inset in Fig. 2, we
report the rates obtained from such fits vs βI using two
orders of the NLCE and for two values of g. The rates
from the two orders of the NLCE agree with each other
and agree well with Fermi’s golden rule predictions. (A
worse agreement is seen for g = 0.5 than for g = 0.2 due
to the effect of higher order corrections.) The increase in
the rate seen in the inset in Fig. 2 with decreasing βI is
the one expected to occur as a function of driving time
for initial states that are not in the regime βI � 1.
Next, we focus on the dependence of the heating rates

on Ω. In nonintegrable systems, the eigenstate thermal-
ization hypothesis [50, 51, 55, 56] allows one to com-
pute Γm(τ). After resolving all symmetries of the static
Hamiltonian, the eigenstate thermalization hypothesis

ansatz for the matrix elements K
(s)
i,f = 〈E0

i |K̂|E0
f 〉 of the

operator K̂ (used as drive) in each block diagonal sector
s of Ĥ0 has the form [51, 61]

K
(s)
i,f = K(s)(E)δi,f + [D(s)(E)]−1/2f

(s)
K (E,ω)Ri,f , (4)

where E = (Ei + Ef )/2, ω = Ef − Ei, D
(s)(E) is the

density of states of Ĥ0 in sector s at energy E, and Ri,f

is a random variable with zero mean and unit variance.
K(s)(E) and f

(s)
K (E,ω) are smooth functions of their ar-

guments.
Using Eqs. (1) and (4), changing sums over eigenstates

by integrals over energy, replacing ρ̂DE(τ) by ρ̂GE(τ) and
assuming high temperature [β(τ) � 1], one obtains the
following expression for the heating rate [53]

Γm =
2π(mΩgm)2

Tr(Ĥ2
0 )

∑

s

∫ E(s)
max−mΩ/2

E
(s)
min+mΩ/2

dE |f
(s)
K (E,mΩ)|2

×D(s)(E +mΩ/2)D(s)(E −mΩ/2)/D(s)(E), (5)

where E
(s)
min (E

(s)
max) is the minimum (maximum) energy in

sector s, and mΩ is smaller than E
(s)
max−E

(s)
min (otherwise

there is no linear response heating for that mode).
In Fig. 3(a), we compare heating rates (for the nonin-

tegrable case and normalized by g2) obtained from dy-
namics evaluated with NLCE (see inset) and the ones
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FIG. 3. (Main panels) Heating rates (normalized by g2) vs Ω for (a) the nonintegrable and (b) the integrable Ĥ0, for g = 0.2
and g = 0.3. Rates obtained from exponential fits of the dynamics (as in the insets) are shown as symbols for NLCE to (a)
15 (NLCE-15) and 16 (NLCE-16) orders, and (b) to 17 (NLCE-17) and 18 (NLCE-18) orders. Rates obtained from Eq. (5)
evaluated using full exact diagonalization in periodic chains are shown as lines for (a) 18 (Γ18) and 19 (Γ19) sites, and (b) 20
(Γ20) and 21 (Γ21) sites. We also show rates of the Fourier mode m = 1 in Eq. (5) for (a) 19 [Γ19

m=1] and (b) 21 [Γ21
m=1] sites, as

well as exponential fits of the results at high Ω. (Insets) Absolute value of the energy per site |e(τ)| vs τ , using NLCE to (a) 15
(NLCE-15) and 16 (NLCE-16) orders and (b) 17 (NLCE-17) and 18 (NLCE-18) orders, for g = 0.3 and three different driving
periods T = 2π/Ω. Exponential fits to the highest order of the NLCE are shown as solid lines. The rates reported in the main
panels are obtained from exponential fits for (a) 3 ≤ τ ≤ 15 for NLCE-16 and 3 ≤ τ ≤ 12 for NLCE-15, and (b) 2 ≤ τ ≤ 8 for
NLCE-18 and 2 ≤ τ ≤ 7.5 for NLCE-17, for all g and T (error bars indicate fitting errors).

predicted by Eq. (5) [53]. NLCE results are not reported
for small and large values of Ω because the time interval
in which the NLCE converges is not sufficiently long to
produce robust exponential fits. The normalized rates
for g = 0.2 and g = 0.3 are nearly identical to one an-
other, and are well described by Eq. (5). For high Ω, we
find that the evaluation of Eq. (5) results in heating rates
that can be well described by an exponential in Ω. This
is consistent with rigorous bounds [10, 31, 36].
When Ĥ0 is integrable (the spin-1/2 XXZ limit), the

prethermal states are described by a generalized Gibbs
ensemble (GGE) ρ̂GGE(τ) [62–64]. When ρ̂I is a ther-
mal state with βI � 1 (or in general after long driving
times), ρ̂GGE(τ) ' ρ̂GE(τ) with β(τ) � 1 [65]. In this
regime, Eq. (5) gives the heating rates for the integrable
static Hamiltonian provided that there is a well defined

|f
(s)
K (E,ω)|2. In Fig. 3(b), we show the equivalent of

Fig. 3(a) but for the integrable case. Despite the dif-
ferences between the dependence of the heating rates on
Ω in the nonintegrable and integrable cases, the heating
rates in the latter are described by Eq. (5) and, for high
Ω, they are well described by an exponential in Ω.
The previous results show that heating rates can be

used to probe the function f
(s)
K (E,mΩ) in nonintegrable

and integrable systems. Still, Eq. (4) involves the density
of states. For large system sizes, since E is extensive but
Ω is not, D(s)(E +mΩ/2)D(s)(E −mΩ/2) ' [D(s)(E)]2

and E
(s)
min,max±mΩ/2 ' E

(s)
min,max. Using the saddle point

approximation to compute the integral in Eq. (5), and
using that D(s)(E∞) is maximal, the heating rate for
Fourier mode m in the thermodynamic limit (Γ∞

m ) can
be written as

Γ∞
m =

2π(mΩgm)2

Tr(Ĥ2
0 )

∑

s

|f
(s)
K (E∞,mΩ)|2Z(s), (6)

where Z(s) is the Hilbert space dimension of sector s.
Thus, the rate for Fourier mode m = 1, which Fig. 4
shows to be in excellent agreement with the heating rates
obtained from the NLCE dynamics for a wide range of

values of Ω, gives the average |f
(s)
K (E∞,Ω)|2 over all sec-

tors of the Hamiltonian in the thermodynamic limit [53].
In summary, we studied heating in strongly interact-

ing driven lattice systems and showed that, at sufficiently
high effective temperatures ([β(τ)]−1 & 2), it can be
well characterized by rates no matter whether the sys-
tem is nonintegrable or integrable. We also showed that
the rates agree with Fermi’s golden rule predictions for
both nonintegrable or integrable cases. We then argued
that heating rates can be used to probe the structure
of off-diagonal matrix elements of the operator used to
drive the system, in the eigenstates of the static Hamil-
tonian. Our results suggest that there is a well de-

fined |f
(s)
K (E,Ω)|2 in integrable interacting systems. This

has been confirmed in a recent full exact diagonalization
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study of the spin-1/2 XXZ chain [66], and needs to be
further explored to place it on equal footing with what
is known for quantum chaotic systems [51, 67–72].
This work was supported by the National Science

Foundation under Grant No. PHY-1707482. We are
grateful to W. De Roeck and S. Gopalakrishnan for mo-
tivating discussions. The computations were carried out
at the Institute for CyberScience at Penn State.

[1] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg,
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Supplemental Material:
Heating rates in periodically driven strongly interacting quantum many-body systems

Krishnanand Mallayya and Marcos Rigol
Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA

S1. NUMERICAL EVALUATION OF EQ. (1) IN THE MAIN TEXT

Equation (1) in the main text is evaluated using full exact diagonalization of chains with L sites and periodic
boundary conditions. Defining a small energy window ∆E, Eq. (1) is modified to the following expression (which is
amenable to numerical evaluation)

Ė∆E,m(τ) =
2πg2m
∆E

∑

i

P 0
i (τ)×

∑

|E0
f
−E0

i
±mΩ|≤∆E/2

∣

∣

∣〈E0
f |K̂|E0

i 〉
∣

∣

∣

2
(

E0
f − E0

i

)

, (S1)

where |E0
i 〉 (|E0

f 〉) are eigenkets of Ĥ0 with eigenenergies E0
i (E0

f ), and Pi(τ) = 〈E0
i |ρ̂(τ)|E

0
i 〉. With this coarse

graining procedure, Γ∆E,m(τ) for Fourier mode m is calculated as

Γ∆E,m(τ) =
Ė∆E,m(τ)

E∞ − E(τ)
, (S2)

where E(τ) is also evaluated using full exact diagonalization, and E∞ = 0 for our model. Γ∆E(τ) =
∑

m>0 Γ∆E,m(τ)
is the relaxation rate of E(τ).
In Fig. S1, we show Γ∆E(τ) vs τ for three values of ∆E when g = 0.05, 0.2, and 0.8, for the nonintegrable [L = 18,

Fig. S1(a)] and the integrable [L = 20, Fig. S1(b)] static Hamiltonians (the period of the drive is T = 1.0). The initial
thermal state has βI = (30)−1. It is apparent in Fig. S1 that Γ∆E(τ) is nearly constant, with a slight drift at long
times (apparent for g = 0.8), and that it is independent of the value of ∆E. We identify a range of ∆E and τ where
Γ∆E(τ) is (nearly) constant [and where the dynamics of e(τ) is exponential and robust against finite-size effects, see
Sec. S3] and compute the average of Γ∆E(τ) in this range.
In the main text, all the rates reported in Figs. 1 and 2 for which Eq. (1) was used were obtained averaging

over ∆E/L = {0.002, 0.004, . . . , 0.04} and τ = {3, 4, . . . , 10} (a total of 160 values) for the nonintegrable Ĥ0, and
∆E/L = {0.002, 0.004, . . . , 0.02} and τ = {2, 3, . . . , 6} (a total of 50 values) for the integrable Ĥ0. The standard
deviation of the averages were reported as error bars.
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FIG. S1. Γ∆E(τ) =
∑

m>0
Γ∆E,m(τ) [see Eq. (S2)] evaluated using full exact diagonalization of chains with L sites and periodic

boundary conditions for three values of ∆E for (a) the nonintegrable and (b) the integrable static Hamiltonians. Each system
is driven with g = 0.05, 0.2, 0.8, a period T = 1.0, and the initial state is at an inverse temperature βI = (30)−1. The solid
line is the average Γ∆E(τ) over (a) ∆E/L = {0.002, 0.004, . . . , 0.04} and τ = {3, 4, . . . , 10} (a total of 160 values) for the

nonintegrable Ĥ0, and (b) ∆E/L = {0.002, 0.004, . . . , 0.02} and τ = {2, 3, . . . , 6} (a total of 50 values) for the integrable Ĥ0.
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S2. DERIVATION OF EQ. (5) IN THE MAIN TEXT

Equation (1), accounting for the block diagonalization of Ĥ0 in symmetry sectors {s}, has the form

Ėm(τ) = 2πg2m
∑

s





∑

i,f∈s

|K
(s)
i,f |

2(E0
f − E0

i )P
0
i (τ)δ(E

0
f − E0

i ±mΩ)



 (S3)

where K
(s)
i,f = 〈E0

i |K̂|E0
f 〉, for i, f ∈ s, and P 0

i (τ) = 〈E0
i |ρ̂(τ)|E

0
i 〉. From the eigenstate thermalization hypothesis

(ETH) it follows that the results from the diagonal ensemble and the Gibbs ensemble agree [50, 51, 55, 56], so one
can replace P 0

i (τ) by exp[−β(τ)E0
i ]/Z(τ), where Z(τ) is the partition function, and the inverse temperature β(τ) is

set by the energy E(τ).

Using the Gibbs ensemble, the ETH ansatz for K
(s)
i,f (see main text), and replacing sums by integrals, Eq. (S3) can

be written as

Ėm(τ) = 2πmΩ(gm)2
∑

(s)

{

∫ E(s)
max−mΩ

E
(s)
min

dE e−β(τ)E

Z(τ)

∣

∣

∣f
(s)
K (E +mΩ/2,mΩ)

∣

∣

∣

2 D(s)(E)D(s)(E +mΩ)

D(s)(E +mΩ/2)

−

∫ E(s)
max

E
(s)
min+mΩ

dE e−β(τ)E

Z(τ)

∣

∣

∣f
(s)
K (E −mΩ/2,mΩ)

∣

∣

∣

2 D(s)(E)D(s)(E −mΩ)

D(s)(E −mΩ/2)

}

, (S4)

where E
(s)
min (E

(s)
max) is the minimum (maximum) energy in sector s, and we used that |f

(s)
K (E,−ω)| = |f

(s)
K (E,ω)|. A

change of variable E → E + mΩ/2 in the first integral, and E → E − mΩ/2 in the second integral, allows one to
rewrite the expression above as

Ėm(τ) = 4πmΩ(gm)2 sinh

[

β(τ)mΩ

2

]

∑

s

∫ E(s)
max−mΩ/2

E
(s)
min+mΩ/2

dE e−β(τ)E

Z(τ)

∣

∣

∣f
(s)
K (E,mΩ)

∣

∣

∣

2 D(s)(E +mΩ/2)D(s)(E −mΩ/2)

D(s)(E)
.

(S5)
At high temperatures, when β(τ) � 1, one has to lowest order in β(τ)

sinh

[

β(τ)mΩ

2

]

'
β(τ)mΩ

2
, e−β(τ)E ' 1, Z(τ) ' Tr[1], and [E∞ − E(τ)] '

β(τ)Tr[Ĥ2
0 ]

Tr[1]
. (S6)

Using Eqs. (S5) and (S6), the heating rate Γm = Ėm(τ)/[E∞ − E(τ)] reduces to Eq. (5) in the main text.

Numerical evaluation of Eq. (5) in the main text

Like Eq. (1), Eq. (5) in the main text is evaluated using full exact diagonalization of chains with L sites and periodic
boundary conditions. We define a small energy window ∆E, which we use to bin the spectrum of Ĥ0 in each symmetry
sector s. Each bin α, with energy Eα, includes all eigenstates with eigenenergies E0

i ∈ (Eα − ∆E/2, Eα + ∆E/2).
The density of states at energy Eα is then D(s)(Eα) = nα/∆E, where nα is the number of energy eigenstates in bin

α. The function |f
(s)
K (Eα, ωα)|

2, with ωα > 0, after coarse graining is given by

|f
(s)
K (Eα, ωα)|2 = D(s)(Eα)

(

∑

j,k |〈E
0
j |K̂|E0

k〉|
2

∑

j,k 1

)

, (S7)

where E0
j and E0

k are such that bin αj containing E0
j and αk containing E0

k satisfy (Eαj
+Eαk

)/2 ∈ (Eα−∆E/2, Eα+
∆E/2) and |Eαj

− Eαk
| = ωα. This coarse graining procedure modifies Eq. (5) in the main text to

ΓL
m =

2π(mΩgm)2

Tr(Ĥ2
0 )

∑

s

∑

α

∆E |f
(s)
K (Eα,mΩ)|2

D(s)(Eα +mΩ/2)D(s)(Eα −mΩ/2)

D(s)(Eα)
, (S8)

where the inner sum is over all the bins α whose energy Eα ∈ (E
(s)
min +mΩ/2, E

(s)
max −mΩ/2).

In contrast to Eq. (S1), Eq. (S8) does not involve calculating the time evolution of the system. As a result, we are
able to evaluate Eq. (S8) in chains with L = 19 (L = 21) for the nonintegrable (integrable) static Hamiltonian. The
dimension of the largest symmetry resolved sector is 13,797 (16,796) for the nonintegrable (integrable) Ĥ0.
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FIG. S2. Rate (normalized by g2) for the m = 1 mode, ΓL
m=1 [see Eq. (S8)] and Γ∞

m=1 [see Eq. (S9)], evaluated using full
exact diagonalization of chains with L sites and periodic boundary conditions for (a) the nonintegrable and (b) the integrable
static Hamiltonians, for two values of ∆E. The rates are evaluated at Ω = ∆E, 2∆E, . . . , for each value of ∆E. For the
spectrum of Ĥ0, the values: (a) ∆E/L ' 0.014 and (b) ∆E/L ' 0.006 correspond to 10L bins, and (a) ∆E/L ' 0.004 and (b)
∆E/L ' 0.002 correspond to 40L bins. For Γ∞

m=1, in both panels, results are reported for ∆E corresponding to 40L bins for
the two largest chain sizes L studied.

In Fig. S2, we show heating rates for the m = 1 mode, ΓL
m=1, evaluated at Ω = ∆E, 2∆E, . . . for two values of

∆E for the nonintegrable and the integrable static Hamiltonians. Our values of ∆E/L are such that the spectrum
of Ĥ0 is divided into 10L bins [(a) ∆E/L ∼ 0.014 and (b) ∆E/L ∼ 0.006] and 40L bins [(a) ∆E/L ' 0.004 and (b)
∆E/L ' 0.002]. The results obtained can be seen to be robust against the choice of ∆E. For the results reported
in Fig. 3 of the main text, we use ∆E/L ' 0.004 (40L bins) to evaluate Γ18, Γ19, and Γ19

m=1 in Fig. 3(a) for the
nonintegrable static Hamiltonian, and ∆E/L ' 0.002 (40L bins) to evaluate Γ20, Γ21, and Γ21

m=1 in Fig. 3(b) for the
integrable static Hamiltonian.
In Fig. S2, we also show results of the numerical evaluation of Eq. (6) in the main text using full exact diagonalization

of chains with periodic boundary conditions and L sites. The coarse grained Eq. (6), using Eq. (S7), has the form

Γ∞
m =

2π(mΩgm)2

Tr(Ĥ2
0 )

∑

s

|f
(s)
K (0,mΩ)|2Z(s). (S9)

It is apparent in Fig. S2, both for the nonintegrable and the integrable static Hamiltonians, that the results for Γ∞
m=1

calculated using Eq. (S9) do not agree with the ones for ΓL
m=1 using Eq. (S8). This is because of strong finite-size

effects in Γ∞
m=1. We note that the disagreement increases as Ω increases. The fact that finite-size effects in Γ∞

m=1

increase with increasing Ω is also apparent in the increasing discrepancy with increasing Ω between the results for the
two chain sizes shown in Fig. S2. This is in contrast to the results for ΓL (similar to ΓL

m=1 at large Ω) evaluated from
Eq. (S8) and reported in Fig. 3 in the main text for two systems sizes. The strong finite-size effects in Γ∞

m=1 are not
surprising as the assumptions made to derive Eq. (6) are not valid for the small system sizes studied in this work.

S3. CONVERGENCE OF NLCE AND EXACT DIAGONALIZATION

In Fig. S3(a), we plot the absolute value of the energy per site |e(τ)| of the nonintegrable Hamiltonian for g = 0.5,
period T = 1, and βI = 30−1. The results shown for |e(τ)| were obtained within the last four orders l of the numerical
linked cluster expansion (NLCE), and for the four largest chain sizes L (with periodic boundary conditions) studied
using exact diagonalization (ED). At short times (τ . 10), both NLCE and ED give nearly identical results (all lines
are indistinguishable in the scale of the figure). The small finite-size effects of the ED calculations for τ . 10 are the
reason we evaluate Eq. (1) of the main text with ED in the range 3 ≤ τ ≤ 10 (see Fig. S1). All the curves in this
range are well described by an exponential, so we fit an exponential to the results from the largest chain calculated
with ED (L = 18) in this range of τ [shown in Fig. S3(a) as a black line]. For τ & 10, ED calculations deviate from
the exponential, and with increasing L the curves monotonically approach the exponential fit. On the other hand,
NLCE results (l = 16 and 17) remain exponential up to τ ∼ 20 [apparent in the inset in Fig. S3(a)]. Increasing the
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FIG. S3. (a) Absolute value of the energy per site |e(τ)| of the nonintegrable Ĥ0 for g = 0.5, T = 1, and βI = 30−1, evaluated
within the last four orders l of the NLCE (NLCE-l) and for the four largest chain sizes L calculated using ED (ED-L). An
exponential fit to |e(τ)|, using the ED-18 results for 3 ≤ τ ≤ 10, is also shown (Exp fit). Inset: zoom to the result in the main
panel for 19 ≤ τ ≤ 25. (b) The errors δlNLCE(τ) and δLED(τ) [Eq. (S10)] labeled as NLCEl and EDL, respectively, at τ = 10 and
τ = 12. (c) Normalized deviation from the exponential fit, ∆l(τ) and ∆L(τ) [Eq. (S11)] for the lth NLCE order (NLCEl-fit),
and ED with L sites (EDL-fit), respectively, evaluated at τ = 22 and τ = 25. The exponential fit used is the one in panel (a).

order l of the NLCE significantly improves the convergence towards the exponential at longer times. We remark here
that, purely from the ED calculations, it is difficult to identify the exponential regime (in order to accurately predict
the rates) as the results from ED smoothly drift away from an exponential and the discrepancies between L = 17 and
18 are small at most times. We use the NLCE results as reference in order to identify the time interval in which the
ED results exhibit the “correct exponential”. That time interval is then used to compute robust Fermi’s golden rule
predictions.
Next, we quantify the convergence errors of NLCE and the finite-size errors of ED calculations. At the times at

which the highest order (l = 17) NLCE results are very close to the exponential fits to the ED (and NLCE) data,
the NLCE results serve best as reference to quantify the errors at lower orders of the NLCE and finite-size errors of
ED. For e(τ) evaluated with the lth NLCE order [el(τ)] and with the L-site periodic chain ED [eL(τ)], we define the
convergence errors for l < 17 and L, respectively, as the relative differences from el=17(τ) given by

δlNLCE(τ) =
|el(τ)− el=17(τ)|

|el=17(τ)|
and δLED(τ) =

|eL(τ)− el=17(τ)|

|el=17(τ)|
. (S10)

Fig. S3(b) reports δlNLCE(τ) and δLED(τ) vs l and L, respectively, at τ = 10 and τ = 12, for the same e(τ) as in
Fig. S3(a). The plots make apparent that the errors decrease with increasing l and L, that the errors at τ = 12 are
greater than the corresponding ones at τ = 10, and suggest that the NLCE convergence errors decrease faster with
increasing l than the ED finite-size errors with increasing L, a known fact in equilibrium calculations [44].

At τ = 10, the estimated of error for the ED calculation [δLED(10)] for L = 18 in Fig. S3(b) is less than 0.2%. For

all calculations with ED in this paper, τ = 10 is the largest time considered for the nonintegrable Ĥ0.
As argued in the main text, e(τ) in the thermodynamic limit is essentially a single exponential in τ for βI . 30−1.

Hence, for τ & 20, we can estimate errors via the deviation of the NLCE and ED results from an exponential fit to
the shorter-time results. To avoid any bias towards the NLCE results, here we compute the exponential fit from the
ED results of eL=18(τ) for 3 ≤ τ ≤ 10. The normalized deviation from the exponential fit for the lth NLCE order
[∆l(τ)] and the L-site periodic chain solved with ED [∆L(τ)], are given by

∆l(τ) =
|el(τ)− fit(τ)|

|fit(τ)|
and ∆L(τ) =

|eL(τ)− fit(τ)|

|fit(τ)|
, (S11)

where fit(τ) is the value of the exponential fit at τ . In Fig. S3(c), ∆l(τ) and ∆L(τ) are plotted vs l and L, respectively,
for τ = 22 and τ = 25. It is apparent that the NLCE results converge faster towards the exponential [at τ = 22,
∆l=17(τ) is less than 0.5%]. The errors in the ED calculations are an order of magnitude higher, and vanish more slowly
with increasing L [as in Fig. S3(b)]. The excellent convergence of the NLCE results (for τ ≤ 20 the nonintegrable
Ĥ0) was essential for the accuracy of the relaxation rates computed via fits to the NLCE data that were reported in
the main text.
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