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Although using look-ahead information is known to improve the competitive ratios of online convex opti-

mization (OCO) problems with switching costs, the competitive ratios obtained from existing results often

depend on the cost coefficients of the problem, and can potentially be large. In this paper, we propose new

online algorithms that can utilize look-ahead to achieve much lower competitive ratios for OCO problems with

switching costs and hard constraints. For the perfect look-ahead case where the algorithm is provided with the

exact inputs in a future look-ahead window of size K , we design an Averaging Regularized Moving Horizon

Control (ARMHC) algorithm that can achieve a competitive ratio of K+1
K . To the best of our knowledge,

ARMHC is the first to attain a low competitive ratio that is independent of either the coefficients of the

switching costs and service costs, or the upper and lower bounds of the inputs. Then, for the case when

the future look-ahead has errors, we develop a Weighting Regularized Moving Horizon Control (WRMHC)

algorithm that carefully weights the decisions inside the look-ahead window based on the accuracy of the

look-ahead information. As a result, WRMHC also achieves a low competitive ratio that is independent of

the cost coefficients, even with uncertain hard constraints. Finally, our analysis extends online primal-dual

analysis to the case with look-ahead by introducing a novel łre-stitchingž idea, which is of independent

interest.
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1 INTRODUCTION

In this paper, we study online convex optimization (OCO) problems with switching costs and hard
constraints [3, 4, 19, 20, 28, 34]. In its generic form, an OCO problem proceeds in time t = 1, 2, ..., T .

At each time t , first the environment (or adversary) reveals the input ®A(t) ∈ RM×1 and the service-

cost function ht (·, ®A(t)). Then, the decision maker chooses the decision ®X (t) ∈ RN×1, which is based

Authors’ addresses: Ming Shi, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906,

USA, sming@purdue.edu; Xiaojun Lin, School of Electrical and Computer Engineering, Purdue University, West Lafayette,

IN, 47906, USA, linx@ecn.purdue.edu; Lei Jiao, Department of Computer and Information Science, University of Oregon,

Eugene, OR, 97403, USA, jiao@cs.uoregon.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART22 $15.00

https://doi.org/10.1145/3326136

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 22. Publication date: June 2019.



22:2 Ming Shi, Xiaojun Lin, and Lei Jiao

on all revealed inputs from ®A(1) to ®A(t). A service cost ht ( ®X (t), ®A(t)) is incurred for the decision
®X (t). Further, there is a switching cost that penalizes the increments [ ®X (t)− ®X (t −1)]+ for each time
t , where [x]+ = max{x , 0}. In the majority of this paper, we focus on the case where the service cost

is linear in ®X (t) and the switching cost is linear in the increment [ ®X (t) − ®X (t − 1)]+, although some
of the results will also be generalized to convex service costs. Such an OCO formulation can be used
to model online decisions in many application domains, such as machine learning [12, 27, 30, 34],
networking [20, 21, 23, 28], cloud computing [7, 8, 22, 29], cyber-physical systems [1, 11, 19, 24]
and wireless systems [18, 25, 31]. (See specific examples of applications in Sec. 2.1.) Moreover, in

many practical settings, the decision ®X (t) is subject to hard constraints that must be satisfied at
each time t . For example, enough VNFs need to be set up to serve the incoming traffic [9, 28]. In an

offline setting, the entire input sequence ®A(1) to ®A(T) was known in advance. Then, the optimal
offline decisions could be found by solving a simple convex optimization problem. However, we

are interested in the online setting where ®A(t) is only revealed at time t (along with some limited
look-ahead information to be introduced shortly). Our goal is then to design online algorithms
with low competitive ratios, where the competitive ratio is defined as the worst-case ratio between
the total costs of an online algorithm and that of the optimal offline solution.

Although there exist a number of online algorithms that can achieve provable competitive ratios
for fairly general classes of OCO problems [3, 7, 8, 20, 28], it remains a challenge to achieve low
competitive ratios. For example, the regularization method can be used on very general classes
of OCO problems without any future information [3, 14]. It computes the online decision at each
time by replacing the immediate switching-cost with a carefully-chosen strictly-convex term
that more aggressively penalizes large increments of the control variables. Although a provable
competitive ratio can be shown, the resulting competitive ratio often depends on the dimension
of the problem and the characteristics of the inputs. For example, the reference [14] shows that,
for an NFV orchestration and scaling problem, the competitive ratio is log

(
1 + MI

ϵ

)
+ 1 + 1

ϕ
,

where M is the number of VNFs, I is the number of servers, and ϕ is the lower bound of any
positive decision variables. As a result, the competitive ratio can potentially be large. This is not
surprising because, when there is absolutely no future knowledge, the competitive ratio often
has to be large due to adversarial inputs (unless further restrictions are imposed on the specific
problem structure [1, 11]). Fortunately, in many applications, such as resource allocation in data
centers [20, 28], power dispatching in smart grid [11, 32, 33], and video streaming in wireless
systems [18, 25, 31], the future input can be predicted to some extent. Such future information can
be modeled as a look-ahead window [20]. Intuitively, the further ahead such prediction is provided,
and the more accurate the prediction is, the lower the competitive ratio should be. It is thus of great
interest in understanding how to best utilize either perfect or imperfect look-ahead to achieve low
competitive ratios.
Online decisions using perfect look-ahead have been studied in [6, 20, 26]. However, existing

results are still unsatisfactory due to potentially large competitive ratios. Receding Horizon Control
(RHC), also known as Model Predictive Control (MPC), is a popular framework in the literature
to use look-ahead [6, 20, 26]. RHC optimizes the total costs in the look-ahead window based on
the predicted inputs, and then only commits to the first decision. However, even in the perfect
look-ahead case, it has been shown that the competitive ratio of RHC may not improve as the
look-ahead window sizeK increases [8, 20]. Recently, Lin et al. propose the Averaging Fixed Horizon
Control (AFHC), which averages decisions from multiple rounds of Fixed Horizon Control (FHC).
AFHC is shown to be (1 +max

n

wn

(K+1)·cn
)-competitive, where cn is the service-cost coefficient and

wn is the switching-cost coefficient [20]. Note that while this competitive ratio of AFHC improves
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as K increases, it still increases with max
n

wn

cn
. In contrast, note that the competitive ratios of the

regularization method [3] does not depend on wn

cn
. Therefore, it remains an open question whether

one can develop online algorithms that can achieve low competitive ratios both decreasing in K
and independent ofwn and cn for the OCO problem that we consider in this paper.
For imperfect look-ahead, existing results mainly focus on the competitive difference of RHC,

AFHC, and CHC (Committed Horizon Control) [7, 8]. Note that the competitive difference is the
difference between the cost of an online algorithm and that of the optimal offline solution, while
the competitive ratio is the ratio between them. Thus, even if the competitive difference is bounded,
it does not imply that the competitive ratio is bounded. In fact, even the competitive difference
in [7, 8] still depends on such problem parameters as the coefficients of the switching costs. In
addition, there are also crucial differences between the problem formulations of [7, 8] and that
in this paper. First, the model in [7] and [8] assumes a probability distribution of the uncertainty
(i.e., an auto-regressive model driven by i.i.d. signals). In practice, it may be difficult to know what
exactly the distribution of uncertainty is. In contrast, we are interested in the worst-case competitive
guarantees, without assuming a distribution of uncertainty. Second, these existing results typically
do not consider hard constraints that depend on the input (e.g., the service must be greater than
the input demand). The difficulty in combining such hard constraints with imperfect look-ahead
is that such hard constraints become uncertain for future time slots in the look-ahead window.
As a result, decisions based on imperfect look-ahead may not satisfy the actual hard constraints
in the future. The work in [11] studies competitive online algorithms under such uncertain hard
constraints, but for a more specific problem structure where the switching cost is incurred for
only one decision variable. Recently, we propose a Robust Affine Policy (RAP) that optimizes the
competitive ratio for OCO problems within the class of affine policies [28]. Although RAP can work
with hard constraints, its competitive ratio still depends on the switching-cost coefficientwn [28].
Thus, for the general OCO problems that we study in this paper, it remains an open problem to
develop online algorithms with low competitive ratios under imperfect look-ahead and uncertain
hard constraints.

In summary, none of the existing results can achieve low competitive ratios independent of the
switching-cost and service-cost coefficients under either perfect look-ahead or imperfect look-
ahead. In this paper, we design new online algorithms that address these open questions. We make
the following contributions.

(1) First, we study the case with perfect look-ahead, i.e., at time t , inputs from ®A(t) to ®A(t + K)
are given to the decision maker. We first develop a novel Averaging Regularized Moving Horizon
Control (ARMHC) algorithm that is (K+1

K
)-competitive. We note that this result is highly appealing

because the competitive ratio depends only on the size of the look-ahead window K , but not on
other problem parameters, including both the coefficients of the service costs and switching costs,
and the upper and lower bounds of future inputs. To the best of our knowledge, this is the first
result of such type in the literature for general OCO problems with perfect look-ahead. Further,
note that even with a small look-ahead window of size K = 1, the competitive ratio is already
2. In contrast, the competitive ratio of the regularization method is often much larger [3]. This
suggests that even a small window of perfect look-ahead can be highly effective in reducing the
competitive ratio. Moreover, as the look-ahead window size K increases, the competitive ratio of
ARMHC further decreases to 1.

In order to develop this result, we introduce in ARMHC two key ideas. One is to use a łregular-
ization termž at the tail of each look-ahead window, and the other is to commit to only the first
K − 1 decisions in the look-ahead window. As we will elaborate in Sec. 3.2, both ideas are crucial
for achieving competitive ratios much lower than the state-of-art. While our proof utilizes ideas
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from online primal-dual analysis [5], a key difficulty is to ensure that, even with look-ahead, the
online dual variables are still feasible for the offline problem (see Sec. 3.3). To address this difficulty,
we introduce a novel łre-stitchingž idea to deal with the gap between look-ahead rounds, which is
of independent interest.

(2) Second, we study the case with imperfect look-ahead, i.e., at time t , only a possible trajectory

of the near-future inputs from ®A(t + 1) to ®A(t + K) is given to the decision maker, as well as
upper and lower bounds of the possible future inputs. Our proposed variant of RMHC will use the
upper bounds of the future inputs in the decisions so that future hard constraints are met after
averaging multiple decisions. However, note that the accuracy of future predictions typically varies
in time, e.g., the prediction accuracy is usually lower further into the future. Thus, even within a
look-ahead window, the qualities of decisions made by RMHC are different for different time slots,
i.e., the decision for a time slot will be less reliable if the prediction accuracy for the time slot is
lower. Due to this reason, simply averaging multiple rounds of RMHC is no longer a good idea.
Instead, we propose to assign different weights to the costs and decisions at different time slots
and across different rounds of RMHC. By carefully choosing the weights, our proposed Weighting
Regularized Moving Horizon Control (WRMHC) algorithm can achieve an even lower competitive
ratio under imperfect look-ahead. Finally, the competitive ratio of WRMHC is also independent of
the service-cost and switching-cost coefficient.

We note that the reference [13] also develops randomized online algorithms for a fairly general
class of łbenefit task systemsž, which can attain a competitive ratio of K+1

K
under perfect look-ahead

window of size K . The idea behind the randomized online algorithms proposed in [13] also shares
some similarity to the averaging idea in AFHC and ARMHC. However, there is a crucial difference.
[13] considers the problem of maximizing a non-negative benefit. In contrast, we (as well as the
related work in [3, 7, 8, 14, 20]) consider the problem of minimizing a non-negative cost. For
benefit-maximization problems, the loss of benefit due to an online decision at a given time slot is
upper-bounded by the corresponding benefit gained by the optimal offline decision. In contrast, for
cost-minimization problems, the switching cost incurred by an online decision at a given time slot
can potentially be much larger than the corresponding cost of the optimal offline decision. Due to
this reason, online versions of the benefit-maximization problems are more tractable than online
versions of the cost-minimization problems, and thus the competitive results of [13] do not apply
to our cost-minimization setting either. To the best of our knowledge, our paper is the first one that
can attain a low K+1

K
competitive ratio under perfect look-ahead for cost-minimization problems.

2 PROBLEM FORMULATION

In this section, we provide the formulation of the online convex optimization (OCO) problem that
we considered in this paper.

2.1 OCO problem with switching costs and hard constraints

Consider a time-horizon of T time slots. At each time t = 1, 2, ..., T , first the input ®A(t) = [am ,m =

1, ...,M]T ∈ RM×1 and a service-cost function ht (·, ®A(t)) are revealed ([·]
T denotes the transpose of a

vector or matrix). Then, the decision maker chooses a decision ®X (t) = [xn(t),n = 1, ...,N ]T ∈ RN×1

from a convex decision set Xt ( ®A(t)). The set Xt ( ®A(t)) may contain hard constraints that depend on

input, and can be written as linear inequalities in ( ®X (t), ®A(t)), i.e.,

B1
®X (t) ≥ B2

®A(t), for all time t = 1, ...,T, (1)
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where B1 is an L × N matrix and B2 is an L ×M matrix. We assume that B1, B2 ≥ 0, where ł≥ž

is component-wise. For example, one such constraint could be
N∑
n=1

xn(t) ≥
M∑

m=1
am(t), which can

mean that the incoming traffic must be served by the servers in data centers [20, 28] or the power
demand must be satisfied by the dispatching generation in smart grids [32].

Provided that the hard constraint is met at time t , a service cost ht ( ®X (t), ®A(t)) is incurred. For

the moment, we assume that the service cost is linear, i.e., ht ( ®X (t), ®A(t)) = ®C
T(t) ®X (t), where

®C(t) = [cn(t),n = 1, ...,N ]T ∈ RN×1 is the service-cost coefficient. (Our results for the perfect
look-ahead case will also be generalized to convex service costs in Sec. 3.4.) Note that if the hard
constraint is not satisfied, we assume that the service cost will be +∞. Additionally, there is a

switching cost ®W T[ ®X (t) − ®X (t − 1)]+ that penalizes the increment1 of each entry of the decision
®X (t) at time t , where ®W = [wn ,n = 1, ...,N ]T ∈ RN×1 is the switching-cost coefficient.

Remark 1. Although the above linearity assumptions may seem restrictive, they can be used to
model many practical applications. For example, in the Network Function Virtualization (NFV)
orchestration and scaling problems [9, 14, 28], the service cost corresponds to the cost of setting up
functions at servers and the distance cost of routing traffic, which are both linear in the control
variables (i.e., the number of functions set up at each server and the fraction of traffic routed to
each server). The switching cost can model the cost of migrating the states from one server to
another server, which is proportional to the change of control variables. Similarly, in cloud or
edge computing [15ś17], the service cost corresponds to the operation cost of the servers or the
energy cost, which are linear in the control variables (i.e., the number of servers that are used). The
switching cost captures the costs for hardware wear-and-tear, state migration and profile loading.
These costs are also proportional to the changes of decision variables. Further, note that we have
assumed the switching-cost coefficients to be time-invariant. In practice, this is often a reasonable
assumption, e.g., the switching cost in NFV corresponds to the cost of migrating the states from one
server to another server. This cost is proportional to the amount of states that need to be migrated,
and the cost-coefficient does not change in time [14, 28]. A similar assumption on time-invariant
switching-cost coefficients has also been made in [1, 7, 8, 11, 20].

If all the future inputs were known, then the above problem would have been a standard convex
optimization problem as follows,

min
{ ®X (1), ..., ®X (T)}

{
T∑

t=1

®CT(t) ®X (t) +

T∑

t=1

®W T[ ®X (t) − ®X (t − 1)]+

}

(2a)

sub. to: B1
®X (t) ≥ B2

®A(t), for all time t ∈ [1,T], (2b)

®X (t) ≥ 0, for all time t ∈ [1,T], (2c)

where [l1, l2] denotes the set {l1, l1 + 1, ..., l2} and ®X (0) = 0 as typically assumed in the literature of
OCO problems [8]. However, in this paper (as in [8, 12, 27, 30, 34]), we focus on the setting where
the decision maker must make decisions in an online fashion. This means that at each time t , she
must make the current decision ®X (t) based on only the current input ®A(t) and a limited amount of

future look-ahead (which will be defined precisely in Sec. 2.2). Moreover, once the decision ®X (t)
is made, the decision is irrevocable. In future time slots t + 1, t + 2, ..., T, she cannot go back and

revise the decision ®X (t). Thus, this problem becomes an online problem.

1Note that some related papers on OCO problems charge the switching cost by the absolute value, e.g., | ®X (t ) − ®X (t − 1) |.

It has been shown in [4] that switching costs defined by absolute values can be converted to switching costs defined by

increments, because the sum of the absolute values of the changes is upper-bounded by twice the sum of the increments.
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For ease of exposition, We use ®C(t1 : t2) to collect the service-cost coefficients ®C(t) from t = t1
to t2, i.e., ®C(t1 : t2) ≜

{
®C(t), for all t ∈ [t1, t2]

}
. Define ®A(t1 : t2) and ®X (t1 : t2) similarly. We now

introduce the look-ahead model.

2.2 Modeling Look-Ahead

As we discussed in the introduction, in many applications the future inputs can be predicted to
some extent. We can model such partial future information via a look-ahead window. Let the size of
the look-ahead window be K ≥ 1. At each time t , the decision maker will not only know the exact

input ®A(t) of time t , but also know some information about the future inputs ®A(t + 1), ®A(t + 2), ...,
®A(t + K). Note that the future inputs after time t + K are still unknown to the decision maker at
time t . Next, we differentiate between perfect and imperfect look-ahead.

(i) In the perfect look-ahead case, at each time t , the decision maker can know the precise values

of future service-cost coefficients ®C(t + 1 : t + K) and inputs ®A(t + 1 : t + K) within the look-ahead

window. Thus, the online algorithm can make the current decision ®X (t) based on not only all

revealed service-cost coefficients ®C(1 : t), inputs ®A(1 : t) and past decisions ®X (1 : t − 1), but also

future values of ®C(t + 1 : t + K) and ®A(t + 1 : t + K) in the look-ahead window.
(ii) In the imperfect look-ahead case, at each time t , we assume that the decision maker still

knows the precise future service-cost coefficients ®C(t + 1 : t + K) within the look-ahead win-

dow. However, she only knows approximate values of future inputs ®A(t + 1 : t + K) in the

look-ahead window [11]. Specifically, she is given a predicted trajectory ®A
pred
t (t + 1 : t + K) ={

a
pred
t,m (t + i),m ∈ [1,M], i ∈ [1,K]

}
from time t + 1 to t + K , as well as bounds on how far the real

inputs ®A(t + 1 : t + K) can deviate from the predicted trajectory. Specifically, at a future time t + i ,
i = 1, 2, ..., K , the ratio of them-th component of the real input to that of the predicted input is
bounded by

f lowm (i) ≤
am(t + i)

a
pred
t,m (t + i)

≤ f
up
m (i), for allm ∈ [1,M], i ∈ [1,K]. (3)

The upper-bounds ®f up(i) = { f
up
m (i), for all m ∈ [1,M]} and the lower-bounds ®f low(i) = { f lowm (i),

for allm ∈ [1,M]} are functions of i and are known in advance. Notice that for current time t , i.e.,

i = 0, ®f up(0) = ®f low(0) = 1, since the current input ®A(t) has already been revealed. Thus, the online

algorithm needs to make the current decision ®X (t) based on not only all revealed inputs ®A(1 : t)

and past decisions ®X (1 : t − 1), but also the look-ahead information, given by ®A
pred
t (t + 1 : t + K),

®f up(1 : K) = { ®f up(i), for all i ∈ [1,K]} and ®f low(1 : K) = { ®f low(i), for all i ∈ [1,K]}. Notice that

if f
up
m (i) ≡ 1 and f lowm (i) ≡ 1 for allm ∈ [1,M] and i ∈ [1,K], then ®A

pred
t (t + i) is exactly the real

input ®A(t + i) for all i ∈ [1,K] in the look-ahead window, and we thus reduce to the case of perfect
look-ahead.

Remark 2. The assumption that the service-cost coefficients ®C(t + 1 : t + K) are still known in
the imperfect look-ahead case is reasonable in certain applications. For example, the service-cost
coefficients may be fixed in advance for the entire time-horizon, as is the case for the distance costs
and the setup costs in NFV [14, 28], or the operation cost and energy cost (when the energy price
is fixed) in cloud or edge computing [15ś17].

As we discussed briefly in Sec. 1, for imperfect look-ahead, the hard constraints (1) are more
challenging to deal with. This is because the hard constraints in (1) for future time slots are based

on the predicted input ®A
pred
t (t + 1 : t + K) and thus become uncertain. As a result, decisions based
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on imperfect prediction may not be able to meet the real constraints in the future. Hence, these
uncertain hard constraints in the look-ahead window need to be considered carefully.

2.3 The Performance Metric

For an online algorithm π , let Costπ (1 : T) be its total cost, i.e.,

Costπ (1 : T) =

T∑

t=1

{
®CT(t) ®X π (t) + ®W T[ ®X π (t) − ®X π (t − 1)]+

}
, (4)

where ®X π (t) is the decision of the online algorithm π at each time t . Let ®XOPT(1 : T) be the optimal
offline solution to the optimization problem (2), whose total cost is CostOPT(1 : T). We evaluate an
online algorithm π using its competitive ratio

CRπ ≜ max
{all possible inputs ®A(1:T)}

Costπ (1 : T)

CostOPT(1 : T)
, (5)

i.e., the worst-case ratio of its total cost to that of the optimal offline solution. Thus, in this paper
we are interested in developing online algorithms with low competitive ratios.

3 THE PERFECT LOOK-AHEAD CASE

In this section, we consider first the case with perfect look-ahead. In [20], Averaging Fixed Horizon
Control (AFHC) has been proposed as a way to utilize such perfect look-ahead information. It was
shown in [20] that AFHC can achieve lower competitive ratios than Receding Horizon Control
(RHC) for certain classes of online problems. However, in the following we will show via a simple
counter-example that AFHC could still incur large competitive ratios. This counter-example thus
motivates us to develop new competitive online algorithms that can achieve significantly lower
competitive ratios with perfect look-ahead.

3.1 A Counter-Example for AFHC

Algorithm 1 Averaging Fixed Horizon Control (AFHC)

Input: ®A(1 : T), K .

Output: ®XAFHC(1 : T).
FOR t = −K + 1 : T
Step 1: Let τ ← t mod (K + 1), and ®X (t − 1) ← ®X FHC(τ ) (t − 1).

Step 2: Based on ®A(t : t + K), solve problem QFHC(τ ) (t) in Eq.(7) to get ®X FHC(τ ) (t : t + K).
Step 3: Use Eq.(6) below to compute the final decision

®XAFHC(t) =
1

K + 1

K∑

τ=0

®X FHC(τ ) (t). (6)

END

We first describe the behavior of AFHC from [20], which is given in Algorithm 1 for completeness.
AFHC with a look-ahead window of size K takes the average of the decisions of K + 1 versions
of Fixed Horizon Control (FHC) algorithms as follows. Let τ be an integer from 0 to K . The τ -

th version of FHC, denoted by FHC(τ ), calculates decisions at time t = τ + (K + 1) · u, where

u = −1, 0, ...,
⌊
T

K+1

⌋
. Specifically, at each time t = τ + (K + 1) · u, the current input ®A(t) and inputs
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in the current look-ahead window t + 1, ..., t + K are revealed. FHC(τ ) then calculates the solution

to the following problem QFHC(τ ) (t) at each time t = τ + (K + 1) · u,

min
®X (t :t+K )

{
t+K∑

s=t

[
®CT(s) ®X (s) + ®W T[ ®X (s) − ®X (s − 1)]+

]}

sub. to: B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t , t + K],

®X (s) ≥ 0, for all time s ∈ [t , t + K].

(7)

Here, the initial value ®X (t − 1) is also from FHC(τ ), but is computed at an earlier time t − K − 1,

i.e., by solving QFHC(τ ) (t − K − 1) as in Eq.(7). Further, whenever the time index s is outside the

set [1,T], we use the convention that ®A(s) = 0 and ®X (s) = 0. By concatenating multiple rounds of

FHC(τ ) at time t = τ + (K + 1) · u, u = −1, 0, ...,
⌊
T

K+1

⌋
, we get an entire decision sequence denoted

by ®X FHC(τ ) (1 : T). Then, AFHC simply takes the average of ®X FHC(τ ) (1 : T) for all τ ∈ [0,K].
We briefly explain the intuition why AFHC can achieve a competitive ratio decreasing in the

look-ahead window size K . Recall that the decision of AFHC at time t is the average of K versions
of FHC from time t − K to t . For versions of FHC from time t − K + 1 to t , they already know the
future input at time t + 1 thanks to perfect look-ahead. Hence, it is intuitive that their switching
costs from time t to t + 1 should be close to optimal. However, for the version of FHC at time t −K ,
since its look-ahead window ends at time t , it does not know the future input at time t + 1. As a
result, its łend-of-look-aheadž decision may potentially lead to larger-than-optimal switching cost
from time t to t + 1. Fortunately, because AFHC takes the average of all of them, the undesirable
effect due to the version of FHC at time t − K is reduced by a factor of K . This is the reason that
the competitive ratio of AFHC decreases with K . (In contrast, the competitive ratio of RHC or FHC
may not decrease with K [20].) However, the magnitude of this undesirable effect still depends on
the coefficients of the switching costs. Therefore, the competitive ratio of AFHC will also depend
on the coefficients of the switching costs, and can still be quite large, especially when K is not very
large. In the following example, we demonstrate that AFHC can indeed incur an arbitrarily large
competitive ratio.
Counter-example 1: We use a look-ahead window of size K = 3 as an example, but similar

behaviors can arise for any value of K . Assume that both ®X (t) and ®A(t) are 1-dimension, and thus
can be replaced by scalars x(t) and a(t). Further, the hard constraint is x(t) ≥ a(t) for all time t .
There are two possible values, a, a ≥ 0, for the inputs. The high value a is assumed to be much
larger than the low value a. In this example, the input sequence is a(4j − 3) = a(4j − 2) = a

and a(4j − 1) = a(4j) = a, j = 1, 2, ..., T4 , which is plotted in Fig. 1a for a = 0 and a = 1000.
The switching-cost coefficientw is much larger than the service-cost coefficient c(t). For ease of
explanation, we assume that T is a multiple of 4 here.
Cost of the optimal offline solution: Since the offline algorithm knows the entire input

sequence in advance, it sees that the high input a will appear in the future. Thus, the optimal offline
solution will set the decision xOPT(t) = a for time t = 1, 2 and xOPT(t) = a for all time t later (even
when a(t) = a) to avoid switching costs altogether. The decisions are plotted in Fig. 1b for a = 0

and a = 1000. The corresponding total cost is CostOPT(1 : T) = [c(1) + c(2)]a +w(a − a)+
T∑
t=3

c(t)a.

(The second term is the only switching cost, which is incurred at time t = 3.)
Cost of AFHC: Since AFHC does not have all the future information, it is difficult for AFHC

to emulate the optimal offline decision. To see this, note that for K = 3, there are 4 versions

of FHC. The decisions of FHC(0), FHC(1), FHC(2) and FHC(3) are plotted in Fig. 1d for a = 0
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Fig. 1. Behaviors of OPT, AFHC and ARMHC in Counter-example 1.

and a = 1000. Although FHC(0) and FHC(1) follow exactly the same decisions as the optimal

offline solution, FHC(2) and FHC(3) will have a different behavior due to the łend-of-look-aheadž
problem, i.e., they will choose a lower value of ®X (t) in the later part of the look-ahead window
because the last input of the look-ahead window is a. Please see Appendix A for the derivation

of the decision sequences of different versions of FHC(τ ). Taking the average of these decisions,

AFHC gives the final decision sequence (a,a,a,a) for the first round and (
a+a

2 ,
a+a

2 ,a,a) for all
subsequent rounds starting from time 5. The decision sequence is plotted in Fig. 1c for a = 0

and a = 1000. (See Appendix A for details.) The corresponding total cost is CostAFHC(1 : T) =

[c(1) + c(2)]a+[c(3) + c(4)]a+w(a−a)+
T/4∑
j=2

{[
c(4j−3)+c(4j−2)

] a+a
2 +

[
c(4j−1)+c(4j)

]
a+w

a−a

2

}
.

In summary, we can observe that the total switching cost of AFHC increases by w
a−a

2 every

4 time slots due to the terms
T/4∑
j=2

w
a−a

2 , while the switching cost incurred by the optimal offline

solution is onlywa for the entire time horizon. Ifw ≥
T∑
t=1

c(t), the total-cost ratio of AFHC and the

optimal offline solution is

CostAFHC(1 : T)

CostOPT(1 : T)
≥
T
4w

a−a

2

2wa
=

T

16

a − a

a
, (8)

which can become arbitrarily large as the time horizon T increases.
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3.2 Averaging Regularized Moving Horizon Control

From Counter-example 1, we can see that the competitive ratio of AFHC depends on the service-cost
coefficients and the switching-cost coefficients, and could be large. In this section, we will introduce
an Averaging Regularized Moving Horizon Control (ARMHC) algorithm, which can achieve a
competitive ratio independent of the switching-cost and service-cost coefficients.
Analogous to AFHC, ARMHC takes the average of the decisions from multiple rounds of a

subroutine, called Regularized Moving Horizon Control (RMHC). Fig. 2 provides an overview of
RMHC and ARMHC. Specifically, let the size of the look-ahead window be K , and τ be an integer

from 0 to K − 1. The τ -th version of RMHC, denoted by RMHC(τ ), plays a similar role as FHC(τ ),

but with some crucial differences. At each time t = τ +Ku, u = −1, 0, ...,
⌊
T
K

⌋
, recall that the current

input ®A(t) is revealed. Further RMHC(τ ) is given the inputs in the look-ahead window t + 1, ..., t +K .

RMHC(τ ) then calculates the solution to the following problemQRMHC(τ ) (t) at each time t = τ +Ku,

min
®X (t :t+K−1)

{
t+K−1∑

s=t

[
®CT(s) ®X (s) + ®W T[ ®X (s) − ®X (s − 1)]+

]

− [ ®W T − ®CT(t + K)]+ · ®X (t + K − 1)

}

(9a)

sub. to: B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t , t + K − 1], (9b)

®X (s) ≥ 0, for all time s ∈ [t , t + K − 1]. (9c)

Note that unlike FHC(τ ), which produces K + 1 slots of decisions for the current time and the entire

look-ahead window, RMHC(τ ) only produces the first K slots of decisions. Due to this reason, the

initial value ®X (t − 1) for QRMHC(τ ) (t) is from RMHC(τ ) computed at an earlier time of t − K (rather

than t − K − 1 for FHC(τ )), where QRMHC(τ ) (t − K) was solved. In other words, the multiple rounds

of RMHC(τ ) repeat every K time slots. As in FHC, we also follow the convention that ®A(t) = 0 and
®X (t) = 0 for all t ≤ 0 and t > T . In this way, multiple rounds of RMHC(τ ) concatenated also produce

an entire decision sequence ®XRMHC(τ ) (1 : T). Then, ARMHC takes the average of ®XRMHC(τ ) (1 : T)
for all τ ∈ [0,K − 1]. The details are given in Algorithm 2. Note that if t +K > T , the tail of RMHC
exceeds the time horizon T . These last rounds of RMHC thus have completed future information,

and can solve an offline problem Q̃RMHC(τ ) (t) in Eq.(10) instead of QRMHC(τ ) (t) in Eq.(9).
Now we discuss the key properties of ARMHC. Comparing ARMHC with AFHC, the main

difference is in the formulation of problem QRMHC(τ ) (t) in Eq.(9) versus the formulation of problem

QFHC(τ ) (t) in Eq.(7). We can see two important ideas in RMHC.
(i) Go-Back-1-Step: In Eq.(9), instead of optimizing the decisions over all K + 1 time slots of the

look-ahead window (as in Eq.(7)), RMHC only optimizes the first K time slots of decisions. The
intuition is that the last time-slot’s decision is too difficult to choose since the future is unknown.
(ii) Regularization at the tail: In Algorithm 2, at each time t , there is an additional term, i.e.,

−[ ®W T − ®CT(t +K)]+ · ®X (t +K − 1), at the end of the objective in Eq.(9). This term can be viewed as

a łregularization termž on the last decision ®X (t +K − 1). Such a regularization term aims to prevent
unnecessary changes between time t +K − 1 and time t +K . For example, suppose that there exists
an index n ∈ [1,N ], such that cn(t + K) < wn . Since the service cost is small, the optimal offline
decision xn(t + K) may be large at time t + K . Then, in order to avoid large switching costs, the
optimal offline decision may also use a larger value of xn(t + K − 1) at time t + K − 1. This effect is
emulated by RMHC with the above regularization term. To see this, note that if cn(t +K) < wn , we

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 22. Publication date: June 2019.



On the Value of Look-Ahead in Competitive Online Convex Optimization 22:11

RMHC(& '() *)

RMHC(&,- '() *)

RMHC(&,*.- '() *)

…

time/ /+1 /+1 -1 /+1

look-ahead window

current time: /

…

…

3⃗45678(/)

current round of decisions

…

…

…

Fig. 2. Averaging Regularized Moving Horizon Control: at each time t , it averages decisions from K versions

of RMHC(τ ).

Algorithm 2 Averaging Regularized Moving Horizon Control

Input: ®A(1 : T), K .

Output: ®XARMHC(1 : T).
FOR t = −K + 2 : T
Step 1: τ ← t mod K , and then ®X (t − 1) ← ®XRMHC(τ ) (t − 1).

Step 2: Given the current input ®A(t) and the near-term future inputs ®A(t + 1 : t + K) in the
look-ahead window,
if t + K ≤ T then

solve QRMHC(τ ) (t) in Eq.(9) to get ®XRMHCτ (t : t + K − 1).
else

solve Q̃RMHC(τ ) (t) in Eq.(10) to get ®XRMHC(τ ) (t : T).

min
®X (t :T)

{
T∑

s=t

[
®CT(s) ®X (s) + ®W T[ ®X (s) − ®X (s − 1)]+

]}

(10a)

sub. to: B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t ,T], (10b)

®X (s) ≥ 0, for all time s ∈ [t ,T]. (10c)

end if

Step 3: Use Eq.(11) below to get the final decision

®XARMHC(t) =
1

K

K−1∑

τ=0

®XRMHC(τ ) (t). (11)

END

have −[wn −cn(t +K)]
+
< 0. Then, to minimize the total objective function ofQRMHC(τ ) (t) in Eq.(9),

RMHC may also set xn(t +K − 1) to be a larger value. On the other hand, when cn(t +K) ≥ wn , the
optimal offline decision xn(t + K) is likely to be small, and thus we no longer need xn(t + K − 1) to
be large. This effect is also emulated by RMHC with the above regularization term. To see this, note
that in this case [wn − cn(t + K)]

+
= 0. Then, the regularization term plays no roles in determining
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the value of xn(t +K − 1). We will defer to Sec. 3.3 (see Remark 4) to explain how we construct this
regularization term in this particular way.

Remark 3. We note that a similar idea of łGo-Back-1-Stepž has appeared in the literature. For
example, in [8], the authors propose to compute the decisions for the entire look-ahead window,
but only commit to the first part of the decisions. However, in Appendix B, we will provide a
counter-example to show that just adding the łGo-Back-1-Stepž idea to AFHC will still lead to poor
competitive ratios. Thus, the second idea of łregularizationž is also critical. It will be clear from our
analysis in Sec. 3.3 that it relies on the combination of these two ideas to works. Finally, we note
that our regularization term is different from most results in the literature [3].

Cost of ARMHC: For the input sequence in Counter-example 1 in Sec. 3.1, each version of
RMHC will always set the decision x(t) = a after time 2. This is because the regularization term
contains the large switching-cost coefficient. Thus, even if the last input of the look-ahead window

is a, RMHC will choose a large value of ®X (t + K − 1) to minimize the objective in Eq.(9). The
decisions at time t = 1 and time t = 2 are obviously equal to a. By taking the average of 3 versions

of RMHC(τ ), ARMHC gives the final decision x(1) = x(2) = a and x(t) = a for all time t > 2. The
final decision sequence of ARMHC will be the same as the optimal offline solution that is plotted in
Fig. 1b.

3.3 Competitive Analysis

The following Theorem 3.1 provides the theoretical performance guarantee for the competitive
ratio of ARMHC.

Theorem 3.1. Given a look-ahead window of size K , the Averaging Regularized Moving Horizon

Control (ARMHC) algorithm is (K+1
K
)-competitive, i.e., for any T ,

CostARMHC(1 : T) ≤
K + 1

K
CostOPT(1 : T), for all A(1 : T). (12)

As shown in Theorem 3.1, the competitive ratio of ARMHC is only a function of the look-ahead
window size K , and is independent of any cost coefficients or bounds on future inputs. In contrast,
as we demonstrated earlier, the competitive ratio of AFHC [20] could increase arbitrarily as the
switching-cost coefficients increase. Similarly, the competitive ratio of the regularization method [3]
could be arbitrarily large if the gap between the upper and lower bounds of future inputs increases.
To the best of our knowledge, ARMHC is the first algorithm in the literature that can utilize perfect
look-ahead to attain such a clean and parameter-independent competitive ratio.
The rest of the section is devoted to the proof of Theorem 3.1. We first give the high-level idea,

starting from a typical online primal-dual analysis. For the offline problem (2), by introducing

an auxiliary variable ®Y (t) for the switching term [ ®X (t) − ®X (t − 1)]+, we can get an equivalent
formulation of the offline optimization problem (2),

min
{ ®X (1:T), ®Y (1:T)}

{
T∑

t=1

®CT(t) ®X (t) +

T∑

t=1

®W T ®Y (t)

}

(13a)

sub. to: B1
®X (t) ≥ B2

®A(t), for all time t ∈ [1,T], (13b)

®Y (t) ≥ ®X (t) − ®X (t − 1), for all time t ∈ [1,T], (13c)

®X (t), ®Y (t) ≥ 0, for all time t ∈ [1,T]. (13d)

Then, let ®β(t) = [βl (t), l = 1, ...,L]T ∈ RL×1 and ®θ (t) = [θn(t),n = 1, ...,N ]T ∈ RN×1 be the Lagrange
multipliers for constraints (13b) and (13c), respectively. We have the offline dual optimization
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problem to (13),

max
{ ®β (1:T), ®θ (1:T)}

T∑

t=1

®βT(t)B2
®A(t) (14a)

sub. to: ®β(t) ≥ 0, ®θ (t) ≥ 0, for all time t ∈ [1,T], (14b)

®C(t) − BT
1
®β(t) + ®θ (t) − ®θ (t + 1) ≥ 0, for all time t ∈ [1,T], (14c)

®W − ®θ (t) ≥ 0, for all time t ∈ [1,T]. (14d)

Let DOPT(1 : T) and CostOPT(1 : T) be the optimal offline dual objective value for (14) and the
optimal offline primal cost for (13), respectively. According to the duality theorem [2, p. 260], we
know that

DOPT(1 : T) = CostOPT(1 : T). (15)

The key of proving Theorem 3.1 is to show that RMHC produces a sequence of online dual variables
that are feasible to the offline dual optimization problem (14). Then, since the dual problem is a
maximization problem, the corresponding online dual cost, denoted by DRMHC(1 : T), satisfies
DRMHC(1 : T) ≤ DOPT(1 : T). If we can show that the primal and dual costs of RMHC satisfy
CostRMHC(1 : T) ≤ K+1

K
· DRMHC(1 : T), the desired result then follows.

However, along this path, we have two difficulties. First, because of the additional regularization
terms in the objective of RMHC, the relationship between CostRMHC(1 : T) and DRMHC(1 : T)
needs to be revisited. Second, the dual variables computed by different rounds of RMHC may not
be feasible for the offline problem. Below, we will address these difficulties step-by-step.
Step-1 (Quantifying the gap between the primal cost and the dual cost of RMHC): First, similar to

the transformation in (13), we can get an equivalent formulation of problem (9),

min
{ ®X (t :t+K−1), ®Y (t :t+K−1)}

{
t+K−1∑

s=t

[
®CT(s) ®X (s) + ®W T ®Y (s)

]
− [ ®W T − ®CT(t + K)]+ · ®X (t + K − 1)

}

(16a)

sub. to: B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t , t + K − 1], (16b)

®Y (s) ≥ ®X (s) − ®X (s − 1), for all time s ∈ [t , t + K − 1], (16c)

®X (s), ®Y (s) ≥ 0, for all time s ∈ [t , t + K − 1]. (16d)

For each round of RMHC(τ ) from time t to t + K − 1, we define the primal cost

CostRMHC(τ ) (t : t + K − 1) =

t+K−1∑

s=t

{
®CT(s) ®XRMHC(τ )(s)

+ ®W T[ ®XRMHC(τ ) (s) − ®XRMHC(τ ) (s − 1)]+
}
.

(17)

Note that CostRMHC(τ ) (t : t + K − 1) includes the switching cost from time t − 1 to t but not the
switching cost from time t + K − 1 to t + K .

Next, let
(
®βRMHC(τ )(t : t +K − 1), ®θRMHC(τ ) (t : t +K − 1)

)
be the optimal dual solution to the dual

of the optimization problem (16). Then, for each τ ∈ [0,K − 1], we can define the online dual cost
in a similar manner as of the offline dual problem (14), i.e.,

DRMHC(τ ) (t : t + K − 1) ≜

t+K−1∑

s=t

(
®βRMHC(τ ) (s)

)T
B2
®A(s). (18)
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Gold
≜



DRMHC(0) (−K : −1) DRMHC(0) (0 : K − 1) · · · DRMHC(0) (
⌊
T
K

⌋
· K :

⌊
T
K

⌋
· K + K − 1)

DRMHC(1) (−K + 1 : 0) DRMHC(1) (1 : K ) · · · DRMHC(1) (
⌊
T
K

⌋
· K + 1 :

⌊
T
K

⌋
· K + K )

.

.

.

.

.

.

.

.

.

.

.

.

DRMHC(K−1) (−1 : K − 2) DRMHC(K−1) (K − 1 : 2K − 2) · · · DRMHC(K−1) (
⌊
T
K

⌋
· K + K − 1 :

⌊
T
K

⌋
· K + 2K − 2)



(21)

Gnew
≜



DRMHC(0) (−K : −1) 0 DRMHC(1) (1 : K ) 0 · · · DRMHC(τ1(U)) (1 + U · (K + 1) : K + U · (K + 1))

DRMHC(1) (−K + 1 : 0) 0 DRMHC(2) (2 : K + 1) 0 · · · DRMHC(τ2(U)) (2 + U · (K + 1) : K + 1 + U · (K + 1))

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

DRMHC(K−1) (−1 : K − 2) 0 DRMHC(0) (K : 2K − 1) 0 · · · DRMHC(τK (U)) (K + U · (K + 1) : 2K − 1 + U · (K + 1)
)

DRMHC(0) (0 : K − 1) 0 DRMHC(1) (K + 1 : 2K ) 0 · · · DRMHC(τK+1(U)) (K + 1 + U · (K + 1) : 2K + U · (K + 1))


(22)

However, note that (16) contains additional regularization terms in the objective function. Thus,

there will be some gap between CostRMHC(τ ) (t : t +K − 1) and DRMHC(τ ) (t : t +K − 1). The following
lemma captures this gap. Define the tail-terms as

ϕ(τ )(t) ≜ − ®W T ®XRMHC(τ ) (t), (19a)

ψ (τ )(t) ≜ [ ®W T − ®CT(t + 1)]+ ®XRMHC(τ ) (t). (19b)

Lemma 3.2. (Per-round gap between the primal and dual costs of RMHC(τ )) For each τ ∈ [0,K − 1]

and for any t = τ + Ku where u = −1, 0, ...,
⌊
T
K

⌋
, we have

CostRMHC(τ ) (t : t + K − 1) ≤ DRMHC(τ ) (t : t + K − 1)

+ ϕ(τ )(t − 1) +ψ (τ )(t + K − 1), for all ®A(t : t + K − 1).
(20)

Lemma 3.2 shows that the primal cost incurred by RMHC(τ ) in each round is upper-bounded by

the online dual cost plus two additional tail-terms. Intuitively, the first tail-term ψ (τ )(t + K − 1)

is simply the regularization term. The other tail-term ϕ(τ )(t − 1) is due to the initial condition
®XRMHC(τ ) (t − 1), which appears in constraint (16c). Then, ®XRMHC(τ ) (t − 1) will enter the Lagrangian,

which leads to ϕ(τ )(t − 1). The rest follows from the strong duality theorem [2, p.260]. Please see
Appendix C for the proof of Lemma 3.2.

Step 2 (Construct a feasible offline dual solution): Similar to FHC(τ ), we now wish to concatenate

multiple rounds of RMHC(τ ) together. We then compare the total primal cost CostRMHC(τ ) (1 : T) of

RMHC(τ ) with its total online dual cost DRMHC(τ ) (1 : T), which will be no smaller than the optimal
offline dual DOPT(1 : T) if the online dual variables are feasible for the offline problem. However, we

face a new difficulty. That is, simply concatenating multiple rounds of the same version of RMHC(τ ),
i.e., with the same τ , will not result into feasible dual variables for the offline dual problem (14).
This is because, according to Eq.(14), for any time t = τ + Ku, the dual variables should satisfy the

constraint ®C(t +K − 1) − BT
1
®β(t +K − 1) + ®θ (t +K) − ®θ (t +K − 1) ≥ 0. However, the dual variables

at time t + K − 1 and time t + K are obtained from the duals of QRMHC(τ ) (t) and QRMHC(τ )(t + K),
respectively. Since these two optimization problems are independent, the decisions may not satisfy
the above constraint. We note that extending the regularization method of [3] to perfect look-ahead
will encounter the same difficulty in constructing feasible dual solutions. Specifically, the method

of [3] requires setting ®θ (t + 1) to be a specific function of ®X (t), so that the online dual variables
remain feasible for the offline optimization problem. However, with look-ahead, such relation is too
restrictive because it limits our capability to choose better decisions based on look-ahead prediction.
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To resolve the above difficulty, we introduce a new way of łre-stitchingž together different

rounds of RMHC(τ ). Let RMHC(τ )(t) denote the round of RMHC(τ ) from time t to time t + K −
1, where t = τ + Ku for some integer u. Our key idea is to stitch RMHC(τ )(t) together with

RMHC((τ+1) mod K )(t +K +1), but not RMHC(τ )(t +K). Note that there is a gap at time t +K between

RMHC(τ )(t) and RMHC((τ+1) mod K )(t + K + 1). We then add carefully-chosen dual variables at time
t + K so that the entire sequence of dual variables is feasible to the offline dual problem (14).

Specifically, before łre-stitchingž, we could organize all rounds of DRMHC(τ ) (t : t + K − 1),
t = τ + Ku, into a matrix form Gold in Eq.(21). (Here, for any time index out of the range of
[1,T], by convention we can simply set the corresponding terms of the online dual components
to 0.) However, as we discussed above, the dual variables from each row of Gold may not form a
feasible solution to the offline dual optimization problem. With the łre-stitchingž idea, we instead
re-organize them into a new matrix Gnew in Eq.(22). Here, for each row i = 1, 2, ...,K + 1, we let

τi (u) = (i + (K + 1)u) mod K , u = −1, 0, ...,U, where U =
⌊
T

K+1

⌋
. Note that the non-zero terms

in Gnew has a one-to-one correspondence to the terms in Gold. Each row of Gnew corresponds to
components of Gold along a diagonal direction. There is a new row at the bottom of Gnew because
the corresponding terms are skipped in row 1 to K . For each 0 inGnew, we assign the dual variables
as follows. For the i-th row, 0 in Gnew corresponds to time slots i + (K + 1)u + K , where u = −1, 0,

...,
⌊
T

K+1

⌋
. We then use

{
®̃β(i + (K + 1)u + K) = ®0,

®̃θ (i + (K + 1)u + K) = [ ®W − ®C(i + (K + 1)u + K)]+,
(23)

for each time i + (K + 1)u + K between DRMHC(τi (u)) (i + (K + 1)u : i + (K + 1)u + K − 1) and

DRMHC(τi (u+1)) (i + (K + 1)(u + 1) : i + (K + 1)(u + 1)+K − 1). Note that, since ®̃β(i + (K + 1)u +K) = ®0,
the corresponding dual cost added to the total online dual cost is zero, which is why we simply
write 0 in Gnew.

Let Gi, j be the entry on the i-th row, j-th column of a matrix G . Gi, j may be either a dual cost or
a 0 term. Then, Lemma 3.3 below shows two important properties of Gnew.

Lemma 3.3. (Properties of Gnew) (1) The sum of all the entries in the original matrix Gold is upper-

bounded by that in the new matrix Gnew
, i .e .,

K∑

i=1

⌊ TK ⌋+2∑

j=1

Gold
i, j ≤

K+1∑

i=1

2⌊ TK+1 ⌋+3∑

j=1

Gnew
i, j . (24)

(2) Online dual variables from each row ofGnew form a feasible solution to the offline dual optimiza-

tion problem (14).

Part (1) of Lemma 3.3 holds because we are only rearranging the components of Gold into Gnew

and adding 0 terms. The key of checking part (2) of Lemma 3.3 is to verify constraint (14c) at time

t +K − 1 and t +K , where t = i + (K + 1)u. Indeed, we can show that ®θ (i + (K + 1)u +K + 1) = ®W .
Combining with (23), we can then verify, for row i , the feasibility constraint. Please see Appendix D
for the proof of Lemma 3.3.

Remark 4. Satisfying constraint (14c) is also the main reason why we choose the regularization term
in the form of (9). Specifically, suppose that we replace the regularization term in (9) with a more

general form of −R(t) · ®X (t). Focus on a 0 term in row i of Gnew. Note that this 0 term corresponds

to time slot i + (K + 1)u + K for some integer u, and is between RMHC(τi (u)) and RMHC(τi (u+1)). In
the rest of this remark, we let t = i + (K + 1)u. First, by writing the equivalent formulation of (9)
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(similar to (16) but using the general regularization term of −R(t) · ®X (t)) and its KKT conditions at
time t + K − 1, we must have,

®C(t + K − 1) − BT
1
®βRMHC(τi (u)) (t + K − 1) + ®θRMHC(τi (u)) (t + K − 1) − R(t + K − 1) ≥ 0. (25)

Thus, in order to satisfy constraint (14c) at time t + K − 1, it is sufficient to set

®̃θ (t + K) ≤ R(t + K − 1). (26)

Second, note that RMHC(τi (u+1)) optimizes over time t + K + 1 to time t + 2K . In order to satisfy
constraint (14c) at time t + K , we need the online dual variables to satisfy

®C(t + K) − BT
1
®̃β(t + K) + ®̃θ (t + K) − ®θRMHC(τi (u+1)) (t + K + 1) ≥ 0. (27)

Thus, by choosing ®̃β(t + K) = ®0 as in (23), it is sufficient to set

®̃θ (t + K) ≥ ®θRMHC(τi (u+1)) (t + K + 1) − ®C(t + K) = ®W − ®C(t + K), (28)

where in the last stepwe have used ®θRMHC(τi (u+1)) (t+K+1) = ®W (see the detailed proof in Appendix D).
Third, from the definition of the dual variables, we have

®W ≥ ®̃θ (t + K) ≥ 0. (29)

Finally, combining Eqs.(26), (28) and (29), it is sufficient to choose R(·) such that

®W ≥ R(t + K − 1) ≥ [ ®W − ®C(t + K)]+. (30)

Our regularization term corresponds to R(t +K −1) = [ ®W T− ®CT(t +K)]+, because it has the smallest

impact on the objective value of Eq.(9). Note that we can also choose R(t + K − 1) = ®W , which is
the case in Sec. 3.4.

Step 3: We next show in Lemma 3.4 that the sum of the tail-terms from the same version τ of

RMHC(τ ) over all rounds is non-positive.

Lemma 3.4. (The total contribution of the tail-terms) For each τ ∈ [0,K − 1], we have

⌊ TK ⌋∑

u=−1

{
ϕ(τ )(τ + Ku − 1) +ψ (τ )(τ + Ku + K − 1)

}
≤ 0. (31)

This ismainly because [ ®W T− ®CT(τ+Ku+K)]+ ®XRMHC(τ ) (τ+Ku+K−1) ≤ ®W T ®XRMHC(τ )(τ+Ku+K−1)
and we can then cancel these terms. Please see Appendix E for the proof of Lemma 3.4.
Now we are ready to provide a complete proof for Theorem 3.1.

Proof. (Proof of Theorem 3.1) First, from the cost definition in Eq.(4), we know that the total
cost of ARMHC is

CostARMHC(1 : T) =

T∑

t=1

®CT(t) ®XARMHC(t) +

T∑

t=1

®W T[ ®XARMHC(t) − ®XARMHC(t − 1)]+. (32)

Then, from Eq.(11) that ARMHC takes the average of K versions of RMHC decisions, we have

CostARMHC(1 : T) =

T∑

t=1

{
®CT(t) ·

[
1

K

K−1∑

τ=0

®XRMHC(τ ) (t)

]}

+

T∑

t=1

{
®W T ·

[
1

K

K−1∑

τ=0

®XRMHC(τ ) (t) −
1

K

K−1∑

τ=0

®XRMHC(τ )(t − 1)

]
+
}

.

(33)
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Due to the convexity of [·]+ and Jensen’s Inequality, we have

CostARMHC(1 : T) ≤
1

K

T∑

t=1

K−1∑

τ=0

®CT(t) ®XRMHC(τ ) (t)

+

1

K

T∑

t=1

K−1∑

τ=0

®W T[ ®XRMHC(τ ) (t) − ®XRMHC(τ ) (t − 1)]+.

(34)

Next, we change the order of the summations over t and τ . Meanwhile, we put together all rounds

of RMHC(τ ) from the same row of Gold. We can then get

CostARMHC(1 : T) ≤
1

K

K−1∑

τ=0

⌊ TK ⌋∑

u=−1

CostRMHC(τ ) (τ + Ku : τ + Ku + K − 1). (35)

According to Lemma 3.2, we have

CostARMHC(1 : T)

≤
1

K

K−1∑

τ=0

⌊ TK ⌋∑

u=−1

{

DRMHC(τ ) (τ + Ku : τ + Ku + K − 1) + ϕ(τ )(τ + Ku − 1) +ψ (τ )(τ + Ku + K − 1)

}

≤
1

K

K−1∑

τ=0

⌊ TK ⌋∑

u=−1

DRMHC(τ ) (τ + Ku : τ + Ku + K − 1),

(36)

where we have used Lemma 3.4 in the last step. Then, applying the re-stitching idea, we have,

K−1∑

τ=0

⌊ TK ⌋∑

u=−1

DRMHC(τ ) (τ + Ku : τ + Ku + K − 1) =

K∑

i=1

⌊ TK ⌋+2∑

j=1

Gold
i, j

≤

K+1∑

i=1

2⌊ TK+1 ⌋+3∑

j=1

Gnew
i, j ≤ (K + 1)D

OPT(1 : T),

(37)

where the first inequality follows from part (1) of Lemma 3.3, and the second inequality follows
from part (2) of Lemma 3.3 and that the dual objective value of any feasible dual variables must be
no larger than the optimal offline dual cost DOPT(1 : T). Combining Eqs.(36), (37) and (15), we have

CostARMHC(1 : T) ≤
1

K
· (K + 1)DOPT(1 : T)

=

K + 1

K
· CostOPT(1 : T), for all T and ®A(1 : T).

(38)

□

3.4 Convex Service Costs

The above results assume that the service cost is linear in ®X (t). For the case with perfect look-ahead,
our results can be generalized to convex service costs, with a minor change of ARMHC. Specifically,

here the service cost at time t is given by ht ( ®X (t)), where ht (·) is a non-negative convex function.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 22. Publication date: June 2019.



22:18 Ming Shi, Xiaojun Lin, and Lei Jiao

In Algorithm 2, instead of solving the optimization problem (9), now ARMHC solves (39) below,

min
®X (t :t+K−1)

{
t+K−1∑

s=t

[
hs ( ®X (s)) + ®W

T[ ®X (s) − ®X (s − 1)]+
]
− ®W T ®X (t + K − 1)

}

sub. to: B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t , t + K − 1],

®X (s) ≥ 0, for all time s ∈ [t , t + K − 1],

(39)

Note that the regularization term is changed to − ®W T ®X (t + K − 1) because we no longer have a

fixed ®C(t). We then have Theorem 3.5 as follows.

Theorem 3.5. When the online convex optimization problem formulated in Sec. 2.1 uses convex ser-

vice costs ht ( ®X (t)), the Averaging Regularized Moving Horizon Control (ARMHC) algorithm described

above is (K+1
K
)-competitive.

Please see Appendix F for the proof of Theorem 3.5.

4 THE IMPERFECT LOOK-AHEAD CASE

In the previous section, we have assumed that the future information in the look-ahead window of
size K is perfect. In practice, such an assumption is often too strong. Although one can predict the
future input in the look-ahead window, such predictions are usually not precise. In this section, we
will develop competitive online algorithms for such cases with imperfect look-ahead.

Recall our model of imperfect look-ahead in Sec. 2.2, where the decision maker is given the

current input along with a predicted input trajectory ®A
pred
t (t + 1 : t +K) in the look-ahead window.

Moreover, she knows the upper and lower bounds defined by ®f up(1 : K) and ®f low(1 : K) as in Eq.(3).
Our proposed algorithms will utilize such knowledge of the prediction accuracy in the look-ahead
window to achieve low competitive ratios.

Note that the Committed Horizon Control (CHC) in [8] also aims to deal with imperfect look-
ahead. However, the results there only provide guarantees on the competitive difference of CHC,
not its competitive ratio. Further, the results there assume no hard constraints that depend on
inputs. Thus, it remains an open problem to develop online algorithms with low competitive ratios
under imperfect look-ahead and such hard constraints.

4.1 Dealing with Uncertain Hard Constraints under Imperfect Look-Ahead

As we mentioned at the end of Sec. 2.2, combining imperfect look-ahead with uncertain hard
constraint creates new challenges. Note that in the perfect look-ahead case, the predicted inputs in

the look-ahead window is precise. Hence, the decisions solved by RMHC(τ ) in Eq.(9) always satisfy
the real constraint (1) in the future, so do the ARMHC decisions when an average is taken over

different versions of RMHC(τ ). However, in the imperfect look-ahead case, due to the prediction
error, the real inputs in the look-ahead window might be larger than the predicted values. If we
still use the predicted input in the constraints in Eq.(9), the decisions obtained by ARMHC may not
satisfy the hard constraints with real inputs.

A simple remedy is to use the upper bound of the future inputs in the optimization problem (9).
This becomes RMHC-IL (Regularized Moving Horizon Control-Imperfect Look-ahead), which can

be described as follows. At each time t , each version τ of RMHC-IL(τ ) simply replaces (9b) and (10b)
of time t + 1 to time t + K − 1 by

B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t + 1, t + K − 1], (40)
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where ®A(s) = {am(s), for all m ∈ [1,M]} and am(s) = a
pred
t,m (s) · f

up
m (s − t) is the upper bound of

the future inputs. Then, by taking an average across multiple versions of RMHC-IL(τ ), we have a
revised version of ARMHC for the imperfect look-ahead case. We call it Averaging Regularized
Moving Horizon Control-Imperfect Look-ahead (ARMHC-IL). Theorem 4.1 below provides the
competitive ratio of the ARMHC-IL.

Theorem 4.1. The competitive ratio of the Averaging Regularized Moving Horizon Control-Imperfect

Look-ahead (ARMHC-IL) algorithm is K+1
K
· max
{i ∈[0,K−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
.

We omit the proof of Theorem 4.1 because it can be viewed as a special case of the more general
result in Theorem 4.2 later (by letting ρ(i) = 0 for all i ∈ [0,K − 1] there). To the best of our
knowledge, ARMHC-IL is the first algorithm to achieve a theoretically-guaranteed competitive
ratio under imperfect look-ahead for online convex optimization (OCO) problem with uncertain
hard constraints. The competitive ratio in Theorem 4.1 has two parts. The first part, K+1

K
, is from

the performance of ARMHC shown in Theorem 3.1 in Sec. 3.3. The second part is based on the gap
between the upper and lower bounds. Thus, it captures the impact of the prediction error. If there
is no prediction error, the second part is 1. We then recover the results with perfect look-ahead.
However, the competitive ratio of ARMHC-IL is still highly sensitive to the bounds on the

prediction accuracy. In particular, the competitive ratio of ARMHC-IL is dominated by the worst
prediction quality. Intuitively, this dependency of ARMHC-IL on the worst-case prediction accuracy
is because ARMHC-IL treats all time slots uniformly. Knowing the prediction accuracy of each

future time slot, we could have treated the time slots and different rounds of RMHC(τ ) differently,
according to how reliable the prediction is. The following Weighting Regularized Moving Horizon
Control (WRMHC) assigns different weights to inputs and decisions, which can achieve a lower
competitive ratio than ARMHC-IL and has lower dependency on the worst-case prediction accuracy.

4.2 Weighting Regularized Moving Horizon Control

Different from AFHC or ARMHC, Weighting Regularized Moving Horizon Control (WRMHC) takes
the weighted average of the decisions from multiple rounds of a subroutine, called Generalized
Regularized Moving Horizon Control (GRMHC). In view of the different prediction quality at
different times, GRMHC adds weights ρ(0 : K − 1) = {ρ(i), for all i ∈ [0,K − 1]} to different terms
in the optimization problem (9). Moreover, GRMHC may not use the entire look-ahead window of
size K if the prediction quality in the later part of the look-ahead window is very poor. Specifically,
let the size of the committed look-ahead window be k , 1 ≤ k ≤ K . Then, GRMHC may only use the
predicted inputs in the first k time-slots of the look-ahead window. We will show how to choose
the optimal value for k and ρ(0 : k − 1) at the end of this section. Let τ be an integer from the

set [0,k − 1]. At each time t = τ + ku, u = −1, 0, ...,
⌊
T
k

⌋
, the τ -th version of GRMHC, denoted

by GRMHC(τ ), is given the current input ®A(t) and the predicted inputs ®A
pred
t (t + 1 : t + k). Then,

GRMHC(τ ) calculates the solution to the following optimization problem QGRMHC(τ ) (t) at each time
t = τ + ku,
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min
®X (t :t+k−1)

{
t+k−1∑

s=t

ρ(s − t) ®CT(s) ®X (s) + ®W T
[
ρ(0) ®X (t) − ρ(k − 1) ®X (t − 1)

]
+

+

t+k−1∑

s=t+1

®W T
[
ρ(s − t) ®X (s) − ρ(s − t − 1) ®X (s − 1)

]
+

−
[
®W T − ®CT(t + k)

]
+

· ρ(k − 1) ®X (t + k − 1)

}

(41a)

sub. to: B1
®X (t) ≥ B2

®A(t), (41b)

B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t + 1, t + k − 1], (41c)

®X (s) ≥ 0, for all time s ∈ [t , t + k − 1]. (41d)

Note that a weight ρ(s − t) is assigned to each time slot s in the objective of (41). Intuitively, with a
smaller ρ(s − t), the cost of the corresponding time s will contribute less to the total cost. In this

way, the input of the corresponding time will have less influence on the decisions. Since GRMHC(τ )

only commits to the first k slots of the entire look-ahead window, the initial value ®X (t − 1) for

QGRMHC(τ ) (t) is from GRMHC(τ ) computed at an earlier time of t − k , when QGRMHC(τ ) (t − k) was
solved. Let τ̃ (t , i) ≜ (t − i) mod k for any i ∈ [0,k − 1]. Then, at each time t , WRMHC takes the

weighted average of ®XGRMHC(τ )(t) for all τ ∈ [0,k − 1],

®XWRMHC(t) =

k−1∑
i=0

ρ(i) ®XGRMHC(τ̃ (t,i )) (t)

k−1∑
i=0

ρ(i)

. (42)

Similar to RMHC, if t + K > T, GRMHC solves Q̃GRMHC(τ ) (t) in Eq.(43) instead of QGRMHC(τ ) (t) in
Eq.(41). The details of WRMHC are given in Algorithm 3.
In summary, comparing WRMHC with ARMHC-IL, we can see two important differences. The

first one is the different weights assigned to each ®X (s) in the objective of (41). These weights
represent different importance of the cost-terms due to different prediction quality. The second one
is the different weights in the averaging in Eq.(42), which again reflect different importance due to
different prediction quality. Theorem 4.2 below gives the competitive ratio of WRMHC.

Theorem 4.2. The competitive ratio of theWeighting RegularizedMovingHorizon Control (WRMHC)

algorithm with the committed look-ahead window of size k and weights ρ(0 : k − 1) is

k + 1

k−1∑
i=0

ρ(i)

max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i). (44)

In other words, the competitive ratio of WRMHC contains two parts. The first part, (k+1)
k−1∑
i=0

ρ(i)

,

is still similar to that of ARMHC in Theorem 3.1 for the perfect look-ahead case. The only dif-
ference is that the denominator of this term is the sum of k different weights. The second part,

max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i), is not only based on the gap between the upper and lower bounds,
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Algorithm 3Weighting Regularized Moving Horizon Control (WRMHC) with committed look-
ahead window of size k

Input: ®A(1 : T), K , ®f up(1 : K) and ®f low(1 : K).

Output: ®XWRMHC(1 : T).
FOR t = −k + 2 : T
Step 1: τ ← t mod k , and then ®X (t − 1) ← ®XGRMHC(τ ) (t − 1).

Step 2: Given the current input ®A(t) and predicted inputs ®A
pred
t (t + 1 : t + K) in the committed

look-ahead window,
if t + k ≤ T then

solve problem (41) to get ®XGRMHC(τ ) (t : t + k − 1),
else

solve problem (43) to get ®XGRMHC(τ ) (t : T),

min
®X (t :T)

{
T∑

s=t

ρ(s − t) ®CT(s) ®X (s) + ®W T
[
ρ(0) ®X (t) − ρ(k − 1) ®X (t − 1)

]
+

+

T∑

s=t+1

®W T
[
ρ(s − t) ®X (s) − ρ(s − t − 1) ®X (s − 1)

]
+

}

sub. to: B1
®X (t) ≥ B2

®A(t),

B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t + 1,T],

®X (s) ≥ 0, for all time s ∈ [t ,T].

(43)

end if

Step 3: Use Eq.(42) to get the final decision ®XWRMHC(t).
END

but also based on the weights. This result then allows us to set appropriate weights to offset the
influence from poor predictions. Please see Appendix G for the complete proof of Theorem 4.2.

Based on Theorem 4.2, we now discuss how to set the weights and choose the optimal size k∗ of
the committed look-ahead window.

Lemma 4.3. For any k ∈ [1,K], the optimal weight ρ(0 : k − 1) for minimizing the competitive ratio

in Eq.(44) is given by

{
ρ∗(0) = 1,

ρ∗(i) = min
m∈[1,M ]

f lowm (i)

f
up
m (i)
, for all i ∈ [1,k − 1]. (45)

See Appendix H for the proof of Lemma 4.3. Then, the competitive ratio of WRMHC becomes
k+1

1+
k−1∑
i=1

min
m∈[1,M ]

f lowm (i )

f
up
m (i )

. Finally, we can obtain the optimal size of the committed look-ahead window as

k∗ = arg min
1≤k≤K

k + 1

1 +
k−1∑
i=1

min
m∈[1,M ]

f lowm (i)

f
up
m (i)

. (46)
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Fig. 3. Theoretical competitive ratios of AFHC(α) for various values of α = 3, 20, 50 and ARMHC. (α =

max
{n∈[1,N ],t ∈[1,T]}

wn

cn (t )
)

Theorem 4.4. Using the weights in Eq.(45) and the optimal size of committed look-ahead window

k∗ given in Eq.(46), the competitive ratio of WRMHC∗ is

CRWRMHC∗
=

k∗ + 1

1 +
k∗−1∑
i=1

min
m∈[1,M ]

f lowm (i)

f
up
m (i)

. (47)

Compared with the competitive ratio of ARMHC-IL in Theorem 4.1, the competitive ratio in

Theorem 4.4 is less sensitive to the worst-case prediction max
i ∈[0,K−1],m∈[1,M ]

{ f
up
m (i)

f lowm (i)

}
. For example,

the competitive ratio in Eq.(47) will never be larger than k∗ + 1, while the competitive ratio in
Theorem 4.1 can potentially be much larger than k∗ + 1. This insensitivity is because WRMHC

assigns a much smaller weight ρ(i) = min
m∈[1,M ]

f lowm (i)

f
up
m (i)

for the worst-case prediction.

Finally, from Algorithm 3 we notice that when the look-ahead is perfect, i.e., f
up
m (i) ≡ 1 and

f lowm (i) ≡ 1 for all m ∈ [1,M] and i ∈ [1,K], WRMHC∗ will choose the weight ρ(i) = 1 for all
i ∈ [0,K − 1] and the size of the committed look-ahead window becomes k∗ = K . Then, WRMHC∗

becomes ARMHC as in the perfect look-ahead case. Hence, WRMHC∗ can also be regarded as a
generalized version of ARMHC that works for both perfect and imperfect look-ahead.

5 NUMERICAL RESULTS

In this section, we compare the theoretical competitive ratios of our proposed algorithms and
the existing algorithms under perfect and imperfect look-ahead. Further, using traces either from
Counter-example 1 or from the HP trace in [10], we conduct numerical simulations comparing the
empirical performance of ARMHC and AFHC for perfect look-ahead, and that of WRMHC and
CHC for imperfect look-ahead. Throughout, CRπ is the competitive ratio of an online algorithm π .

5.1 Perfect Look-Ahead

In this section, we focus on the case with perfect look-ahead. We first compare the competitive
ratio of ARMHC with that of AFHC. AFHC has been proposed in [20] for perfect look-ahead.
Its competitive ratio is shown to be 1 + α

K+1 , where α = max
{n∈[1,N ],t ∈[1,T]}

wn

cn (t )
. In contrast, the

competitive ratio of our proposed ARMHC is K+1
K

. These competitive ratios are plotted in Fig. 3.
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Fig. 4. Empirical competitive ratios of AFHC and ARMHC for the input in Counter-example 1.

From Fig. 3, we can observe that the competitive ratios of both AFHC and ARMHC decrease as
the size of the look-ahead window K increases. However, the competitive ratio of AFHC is much
larger than that of ARMHC, especially when K is not very large and α is very large. For example,
whenK = 2, CRAFHC is 7.667 and 17.667 for α = 20 and 50, respectively. In contrast, the competitive
ratio of our proposed ARMHC is only 1.5. Thus, ARMHC achieves significantly lower competitive
ratios for online convex optimization (OCO) problems with perfect look-ahead.
Then, we provide numerical results comparing their empirical performance. We take T = 336.

While the switching-cost coefficient ®W is fixed, we allow the service-cost coefficient ®C(t) to change

in time. ®C(t) are uniformly generated between 0 and 1, i.e., ®C(t) ∼ U (0, 1). For Figs. 4a and 5b, we

use ®W ∼ U (3, 4), and thus ®W ≥ 3 ®C(t). For Figs. 4b and 5c, ®W ∼ U (20, 30), thus ®W ≥ 20 ®C(t). For

Figs. 4c and 5d, ®W ∼ U (50, 60), thus ®W ≥ 50 ®C(t).
In Fig. 4, we compare the empirical performance of ARMHC with that of AFHC using the input

presented in Counter-example 1 in Sec. 3.1. Here, we take N = 10, M = 30, L = 5 and all entries
of B1 and B2 are generated under U (0, 1). In the rest of the simulation, we define the empirical
competitive ratio (ECR) to be the ratio of total cost of an online algorithm to that of the optimal
offline solution for a given input. Fig. 4 shows results for one realization. We observe that ARMHC
nearly performs optimally with ECR close to 1. In contrast, AFHC has a large ECR for all three
cases of the switching-cost coefficients. The gap is especially large when K is not very large.

In Fig. 5, we compare the empirical performance of ARMHC with that of AFHC using the inputs
generated from the HP trace in [10] (re-produced in Fig. 5a). Notice that hereM = 1. Moreover, we
take N = 3, L = 1 and all entries of B1 and B2 are 1. We consider one week and the inputs are for

every half hour. From Fig. 5, we can observe that, except when both K and ®W are very small, in
which case the difference is very small, the cost ratio of ARMHC is much lower than that of AFHC
for most other cases.

5.2 Imperfect Look-Ahead

In Fig 6, we compare the theoretical competitive ratios of ARMHC-IL and WRMHC. Here, the
bounds are f

up
m (i) = 1 + ϵup · i and f

low
m (i) = max{0, 1 − ϵlow · i}, for all i ∈ [1,K], where ϵup = 0.3

and ϵlow = 0.025. First, we can observe that ARMHC-IL is highly sensitive to the prediction error.

Specifically, since
f
up
m (k )

f lowm (k )
increases as k increases, CRARMHC-IL increases quickly. In contrast, the

competitive ratio of WRMHC increases much slower and is always around a value of 2. Second,
ARMHC-IL can also choose the optimal size of a committed look-ahead window, i.e., one can get

CRARMHC-IL∗
= 2 when choosing k∗ = 2. Still, WRMHC∗ attains a lower competitive ratio, i.e.,

CRWRMHC∗
= 1.7 when k∗ = 2.
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Fig. 5. Empirical competitive ratios of AFHC and ARMHC for the trace in Fig. 5a.
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Fig. 6. Theoretical competitive ratios of ARMHC-IL and WRMHC.

Then, we provide numerical results for the empirical performance of WRMHC and CHC under

imperfect look-ahead. In all the simulations, we take T = 336. The service-cost coefficient ®C(t) and

the switching-cost coefficient ®W are generated randomly in advanced. While ®W is fixed, we allow
®C(t) to change in time. ®C(t) are uniformly generated in the continuous interval from 0 to 1, i.e.,
®C(t) ∼ U (0, 1). For ®W ≥ 3 ®C(t), ®W ≥ 20 ®C(t) and ®W ≥ 50 ®C(t), we generate ®W the same way as in
the numerical analysis for perfect look-ahead in Sec 5.1. For each look-ahead window, we take the
trace in Fig. 5a as the real input. Notice that, as for Fig. 6, the bounds are f

up
m (i) = 1 + ϵup · i and

f lowm (i) = max{0, 1 − ϵlow · i}, for all i ∈ [1,K], where ϵup = 0.3 and ϵlow = 0.025. Then we generate

imperfect look-ahead by adding noise within the range given by ®f up(1 : K) and ®f low(1 : K).
We refer to the version of WRMHC with the optimal choice of k∗ as WRMHC∗. In Table 1, using

the inputs presented in Counter-example 1 in Sec. 3.1, we compare the empirical performance of
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®W ≥ 3 ®C(t) ®W ≥ 20 ®C(t) ®W ≥ 50 ®C(t)

ECR of CHC 2.4057 4.7134 9.7890

ECR of WRMHC∗ 1.1714 1.1411 1.1772

Table 1. Empirical competitive ratios of CHC and WRMHC∗ for inputs in Counter-example 1.

®W ≥ 3 ®C(t) ®W ≥ 20 ®C(t) ®W ≥ 50 ®C(t)

ECR of CHC 1.9204 3.1945 5.4397

ECR of WRMHC∗ 1.7226 1.2966 1.2161

Table 2. Empirical competitive ratios of CHC and WRMHC∗ for the trace in Fig. 5a.

WRMHC∗ with that of CHC. Here, we take N = 10,M = 30, L = 5 and all entries of B1 and B2 are
generated underU (0, 1). From [8], we know that when the product of the switching-cost coefficient
and the size of the decision space is large, CHC will always use the entire look-ahead window and
become AFHC. Here, we have scaled the values of inputs to be about 1000 and it is large enough
for CHC to become AFHC. From Table 1, we observe that WRMHC∗ nearly performs optimally
with ECR close to 1. In contrast, CHC has a large ECR for all three cases of the switching-cost
coefficients. The gap is especially large when k is not very large.
In Table 2, we compare the empirical performance of WRMHC∗ with CHC using the inputs

generated from the HP trace at [10] (re-produced in Fig. 5a). Notice that here M = 1. Moreover,
we take N = 3, L = 1 and all entries of B1 and B2 are 1. From Table 2, we can observe that the
empirical competitive ratio of WRMHC∗ is much lower than that of CHC for all cases. Moreover,
when the switching-cost coefficient increases, CHC will get worse since it will pay more costs for
switching, likely due to the łend-of-look-aheadž problem we discussed in Sec. 3.1. In contrast, the

ECR of WRMHC∗ decreases as ®W increases since it will switch less when ®W becomes larger.

6 CONCLUSION

In this paper, we study how to best utilize either perfect or imperfect look-ahead to achieve
low competitive ratios in online convex optimization (OCO) problems. For perfect look-ahead,
we develop the Averaging Regularized Moving Horizon Control (ARMHC) algorithm, which is
K+1
K

-competitive. This is the first result in the literature that can achieve a parameter-independent
competitive ratio for this type of cost-minimization problems with perfect look-ahead. For imperfect
look-ahead, we propose the Weighting Regularized Moving Horizon Control (WRMHC) algorithm,
whose competitive ratio is less sensitive to the prediction errors. It is the first online algorithm
with a theoretically-guaranteed competitive ratio under imperfect look-ahead. Further, our analysis
combines online primal-dual analysis with a novel re-stitching idea, which is of independent
interest.

Throughout the paper, we have made a number of assumptions on the service costs and switching
costs, e.g., the service costs are linear and the switching costs are proportional to the increments of
decisions across time. Not all assumptions are essential in all cases. For example, for the perfect
look-ahead case, we have relaxed the linear service costs to convex service costs in Sec. 3.4. Further,
Theorem 3.1 will also hold under capacity constraints. This is because the entries of both B1 and
B2 could be negative, without affecting the proofs of our results for the perfect look-ahead case.
In this way, constraint (1) can also represent capacity constraints, e.g., the consumption of the
resources should not exceed the available amount of resources in Network Functions Virtualization
(NFV) [9, 14, 28]. Similarly, we expect that Theorem 3.1 holds for the case when switching-cost
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coefficients ®W change in time, but are otherwise known in a perfect look-ahead window. However,
we expect that it will be more difficult to relax these assumptions for the imperfect look-ahead
case. For example, when the service cost is convex (and non-linear), or when there are capacity
constraints, it becomes more difficult to upper-bound the online cost because the ratio between
the true online cost and the cost estimated by RMHC-IL (based on the upper-bound of the future

inputs) could be larger than max
{m∈[1,M ]}

f mup (i)

f m
low
(i)
. Further, when future switching-cost coefficient ®W (t)

at the end of the look-ahead window is not precisely known, it is also more difficult to construct
the regularization term in (9a) and (41a) so that the online dual variables are feasible for the offline
dual problem. For future work ,we plan to study other ways to deal with such difficulty. Further, we
plan to use more realistic traces to evaluate the proposed online algorithms. Finally, an important
open question is to derive lower bounds on the competitive ratios for OCO under either perfect or
imperfect look-ahead, which will shed important insight on how tight our competitive ratios are
for both cases.
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A DERIVATION OF THE DECISION SEQUENCE FOR AFHC IN COUNTER-EXAMPLE 1

In the following, we provide the derivation of the decision sequences of different versions of FHC(τ ).

FHC(0) sees the input sequence2 (0,a,a,a) in the first round3 and gives the decision (0,a,a,a)
to satisfy the input a at time t = 3. It sees the input sequence (a,a,a,a) in all subsequent rounds
and gives the decision sequence (a,a,a,a) for these rounds. To understand these decisions, note
that the first and the fourth decisions should be a to satisfy the hard constraints. The second and

third decisions are still a for the following reasons. First, FHC(0) knows that a large input a will be
received at the end of the look-ahead window. Second, recall that the switching-cost coefficientw
is much larger than the service-cost coefficient c(t). Thus, if the second and third decisions were

2In the following, we divide the input and decision sequences into rounds of 4 time slots in order to describe their patterns.
3By convention, the input at time t = 0 is 0.
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reduced, a large switching cost would be incurred later for increasing the decision back to a. Hence,

(a,a,a,a) are the optimal decisions for FHC(0) for these rounds.

FHC(1) sees the input sequence (a,a,a,a) and gives the decision sequence (a,a,a,a) in the first
round. Note that the first two decisions are a, which is enough to satisfy the inputs a. The last

two decisions need to increase to a to satisfy the inputs a at time t = 3, 4. FHC(1) sees the input
sequence (a,a,a,a) in all subsequent rounds and gives the decision sequence (a,a,a,a) for these

rounds. Similar to FHC(0) discussed above, since in each of these rounds, FHC(1) sees the decision a
at the end of last round and knows that the large input a will be received at the end of the current

round, FHC(1) will keep all the decisions to be a.

Notice that both FHC(0) and FHC(1) follow exactly the same decisions as the optimal offline
solution discussed in Sec. 3.1, because they see a large input a coming at the tail of the look-ahead

window. In contrast, as we see below, FHC(2) and FHC(3) will have a different behavior due to the
łend-of-look-aheadž problem that we mentioned before.

Specifically, FHC(2) sees the input sequence (0, 0, 0,a) in the first round, and (a,a,a,a) in all

subsequent rounds. Thus, FHC(2) gives the decision sequence (0, 0, 0,a) in the first round and
(a,a,a,a) in all subsequent rounds. To understand these decisions, for every round other than the
first round, note that since the first input is a and the last time-slot’s decision given by the previous
round is a, the first decision of each round is a. Then, the decision needs to be increased to a to
satisfy the second and third inputs. The last decision is a because future inputs are unknown to

FHC(2), and thus using a lower decision value a does not incur any switching costs but lowers
the service costs. (Recall that the switching costs are only incurred when the decision variables

increase but not when they decrease.) As a result, (a,a,a,a) are the optimal decisions for FHC(2) at
time t = 4, and get repeated every 4 time slots.

Similarly, FHC(3) sees the input sequence (0, 0,a,a) and gives the decision sequence (0, 0,a,a) in
the first round. It sees input sequence (a,a,a,a) and gives the decision sequence (a,a,a,a) in all
subsequent rounds. To understand these decisions, for every round other than the first round, note
that the first two decisions need to be a to satisfy the first two inputs in each round. The last two
decisions are a since it is sufficient to use a lower decision value in order to minimize the objective
value.

All of these decision sequences are plotted in Fig.1d for a = 0 and a = 1000. We can notice that,

while FHC(0) and FHC(1) keep the decision a, the decisions of FHC(2) and FHC(3) go down in each
round.

Finally, by taking the average of the decisions of these 4 versions of FHC(τ ), AFHC gives the final

decision sequence (a,a,a,a) for the first round and (
a+a

2
,
a+a

2
,a,a) for all subsequent rounds (of

every 4 slots) starting from time t = 5. The decision sequence is plotted in Fig. 1c for a = 0 and
a = 1000.

B COUNTER-EXAMPLE 2

Note that the łGo-Back-1-Stepž idea is somewhat similar to the idea of CHC (Committed Horizon
Control) [8], where the decisions for the entire look-ahead window is computed, but only the first
part of the decisions is committed. Although we could apply such an idea to AFHC directly, as we
show below, it will still have the łend-of-look-aheadž problem as shown in Sec. 3.1. To see this,
consider the following modification to AFHC and FHC, which we refer to as AFHC−1 and FHC−1.

Specifically, at each time t = τ + Ku, u = −1, 0, ...,
⌊
T
K

⌋
, FHC

(τ )
−1 is given the current input and the

inputs in the current look-ahead window t + 1, ..., t + K . FHC
(τ )
−1 then calculates the solution to

the optimization problem QFHC(τ ) (t) in Eq.(7), but it only commits to the first K decisions. Thus,
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Fig. 7. Behaviors of AFHC−1 with the same inputs as in Counter-example 1.

similar to RMHC, now the initial value ®X (t − 1) forQFHC(τ ) (t) is from FHC
(τ )
−1 computed at an earlier

time of t − K , i.e., when QFHC(τ ) (t − K) was solved. AFHC−1 is formally given in Algorithm 4. We
now use the same input sequence in Counter-example 1 to show that AFHC−1 can still have an
arbitrarily large competitive ratio.

Algorithm 4 Averaging Fixed Horizon Control-first K decisions committed (AFHC−1)

Input: ®A(1 : T), K

Output: ®XAFHC−1 (1 : T)
FOR t = −K + 2 : T

Step 1: Let τ ← t mod K , and ®X (t − 1) ← ®X FHC
(τ )
−1 (t − 1).

Step 2: Based on ®A(t : t + K), solve problem QFHC(τ ) (t) in Eq.(7) and commits to the first K

decisions, denoted as ®X FHC
(τ )
−1 (t : t + K − 1).

Step 3: Use Eq.(48) below to get the final decision

®XAFHC−1 (t) =
1

K

K−1∑

τ=0

®X FHC
(τ )
−1 (t). (48)

END

Cost of AFHC−1: Here, we consider the same input sequence as in Counter-example 1. Note

that as K = 3, there are 3 versions of FHC−1. The decisions of FHC
(0)
−1 , FHC

(1)
−1 , FHC

(2)
−1 are plotted

in Fig. 7b for a = 0 and a = 1000. Specifically, FHC
(0)
−1 sees input sequence (a,a,a,a) in the round

from time t = 3 to t = 6. Similar to FHC(3), it gives the decision sequence (a,a,a,a) since there
is no need to maintain a large decision at time t = 5, 6. However, based on the łGo-Back-1-Stepž
idea, it only commits to the first 3 slots, i.e., (a,a,a). Then, at time t = 6, it sees input a(6) = a.
Since x(5) = a, it gives the decision x(6) = a. In this way, a lower decision level a is still used at

time t = 5 and t = 6. The same behavior occurs for FHC
(1)
−1 at time t = 9, 10 and for FHC

(2)
−1 at

time t = 13, 14. When AFHC−1 takes the average of these 3 versions of FHC
(τ )
−1 , the final decision

sequence becomes (a,a,a,a) for the first round and (
2a+a

3 ,
2a+a

3 ,a,a) for all subsequent rounds
(of every 4 slots) starting from time t = 5. We plot the final decision sequence of AFHC−1 in
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Fig. 7a. The corresponding total cost is CostAFHC−1 = [c(1) + c(2)]a + [c(3) + c(4)]a +w(a − a) +
T/4∑
j=2

{
[c(4j − 3) + c(4j − 2)]

2a+a

3
+

[
c(4j − 1)+ c(4j)

]
a +w

a−a

3

}
. Notice that the total switching cost

of AFHC−1 still increases by a value ofw
a−a

3
every 4 time slots due to the terms

T/4∑
j=2

w
a−a

3
. Thus,

similar to Counter-example 1, ifw ≥
T∑
t=1

c(t), the ratio between the total cost of AFHC−1 and that

of the optimal offline solution is

CostAFHC−1 (1 : T)

CostOPT(1 : T)
≥
T
4
w

a−a

3

2wa
=

T

24

a − a

a
, (49)

which can become arbitrarily large as the time horizon T increases.

C PROOF OF LEMMA 3.2

Proof. Notice that each version of RMHC(τ ) solves the optimization problem (9) to get the

corresponding decisions ®XRMHC(τ ) (t : t +K − 1) and ®Y RMHC(τ ) (t +K − 1). This optimization problem
(9) is equivalent to the optimization problem (16). Then, by applying the Karush-Kuhn-Tucker
(KKT) conditions [2, p. 243] to (16), we have the following equations:

Complementary slackness:
(
®βRMHC(τ ) (s)

)T
[B2
®A(s) − B1

®XRMHC(τ ) (s)] = 0, for all time s ∈ [t , t + K − 1], (50a)
(
®θRMHC(τ ) (s)

)T
[ ®XRMHC(τ ) (s) − ®XRMHC(τ ) (s − 1) − ®Y RMHC(τ ) (s)] = 0,

for all time s ∈ [t , t + K − 1], (50b)

Stationarity/Optimality:
(
®XRMHC(τ ) (s)

)T
[ ®C(s) − BT

1
®βRMHC(τ ) (s) + ®θRMHC(τ ) (s) − ®θRMHC(τ ) (s + 1)] = 0,

for all time s ∈ [t , t + K − 2], (51a)
(
®XRMHC(τ ) (t + K − 1)

)T [
®C(t + K − 1) − BT

1
®βRMHC(τ ) (t + K − 1)

+ ®θRMHC(τ ) (t + K − 1) − [ ®W − ®C(t + K)]+
]
= 0, (51b)

(
®Y RMHC(τ ) (s)

)T
[ ®W − ®θRMHC(τ ) (s)] = 0, for all time s ∈ [t , t + K − 1]. (51c)

We now calculate the real cost of each version of RMHC(τ ) in the current decision round from
time t to t + K − 1, where t = τ + Ku and u = −1, 0, ...,

⌊
T
K

⌋
. We have

CostRMHC(τ ) (t : t + K − 1)

=

t+K−1∑

s=t

{
®CT(s) ®XRMHC(τ ) (s) + ®W T[ ®XRMHC(τ ) (s) − ®XRMHC(τ ) (s − 1)]+

}

≤

t+K−1∑

s=t

{
®CT(s) ®XRMHC(τ ) (s) + ®W T ®Y RMHC(τ ) (s)

}
,

(52)

where the last inequality is due to constraints (16c) and (16d). Then, according to Eqs.(50a) and (50b),

by adding these zero-value terms, adding and deducting the term [ ®W − ®C(t +K)]+ ®XRMHC(τ ) (t +K−1),
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we have

CostRMHC(τ ) (t : t + K − 1)

≤

t+K−1∑

s=t

{
®CT(s) ®XRMHC(τ ) (s) + ®W T ®Y RMHC(τ ) (s)

}

+

t+K−1∑

s=t

{(
®βRMHC(τ ) (s)

)T [
B2
®A(s) − B1

®XRMHC(τ ) (s)
]}

+

t+K−1∑

s=t

{(
®θRMHC(τ ) (s)

)T
[ ®XRMHC(τ ) (s) − ®XRMHC(τ )(s − 1) − ®Y RMHC(τ ) (s)]

}

+ [ ®W − ®C(t + K)]+ ®XRMHC(τ ) (t + K − 1) − [ ®W − ®C(t + K)]+ ®XRMHC(τ ) (t + K − 1).

(53)

Rearranging Eq.(53), we get

CostRMHC(τ )(t : t + K − 1)

≤

t+K−1∑

s=t

(
®βRMHC(τ ) (s)

)T
B2
®A(s) + [ ®W T − ®CT(t + K)]+ ®XRMHC(τ ) (t + K − 1)

+

t+K−2∑

s=t

(
®XRMHC(τ ) (s)

)T [
®C(s) − BT

1
®βRMHC(τ ) (s) + ®θRMHC(τ ) (s) − ®θRMHC(τ ) (s + 1)

]

+

(
®XRMHC(τ ) (t + K − 1)

)T [
®C(t + K − 1)

− BT
1
®βRMHC(τ ) (t + K − 1) + ®θRMHC(τ )(t + K − 1) − [ ®W − ®C(t + K)]+

]

+

t+K−1∑

s=t

(
®Y RMHC(τ ) (s)

)T [
®W − ®θRMHC(τ ) (s)

]
− ®W T ®XRMHC(τ ) (t − 1).

Using Eqs.(51a-51c), all except the first two terms and the last term on the right-hand side are equal
to 0. Finally, using the notations in Eqs.(18) and (19a), (19b), we have

CostRMHC(τ ) (t : t + K − 1)

≤ DRMHC(τ ) (t : t + K − 1) − ϕ(τ )(t − 1) +ψ (τ )(t + K − 1).
(55)

□

D PROOF OF LEMMA 3.3

Proof. Part (1) of Lemma 3.3: first, since there are K versions of RMHC(τ ), there are K rows in
the original matrix Gold. The total time horizon is at most from t = −K + 2 to t = T and RMHC(τ )

proceeds every K time slots. Thus, there are at most
⌊
T
K

⌋
+ 2 components in each row of Gold.

Hence, the sum on the left-hand side of Eq.(24) represents the sum of all the components in the
original matrix Gold.

Second, recall that some components from Gold are skipped during re-stitching and are concate-
nated in the (K + 1)-th row of Gnew. Thus, there are K + 1 rows in the new matrix Gnew. Between
every two adjacent components, we add a zero-value component corresponding to the new dual

variables added during re-stitching. Thus, there are at most 2
( ⌊
T

K+1

⌋
+ 2

)
− 1 = 2

⌊
T

K+1

⌋
+ 3

components in each row of the new matrix Gnew. Hence, the sum on the right-hand side of Eq.(24)
represents the sum of all the components in the new group Gnew.
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Finally, during re-stitching, we only add non-negative components and do not remove any
components or terms in the original groupGold. Hence, the sum of the components in corresponding
groups will not decrease. Eq.(24) is thus proven.

Part (2) of Lemma 3.3: notice that in each row of Gnew, K online dual costs DRMHC(τ ) (t) and a

zero term appear repeatedly. Without loss of generality, consider the online dual costs DRMHC(τ ) (t :

t + K − 1), followed by a zero, and then followed by DRMHC((τ+1) mod K )
(t + K + 1 : t + 2K), where

t = τ + Ku and u = −1, 0, ...,
⌊
T
K

⌋
. We only need to prove that the dual variables from time t to

time t + K are feasible to the offline dual optimization problem (14). The feasibility will then hold
for all other time slots simply by repeating the argument in every round of K + 1 time slots (e.g.,
from time t − K − 1 to t − 1 or from time t + K + 1 to t + 2K + 1).

Towards this end, we first provide some properties of the online dual variables ®βRMHC(τ ) (t :

t + K − 1) and ®θRMHC(τ ) (t : t + K − 1). Recall that the optimization problem (16) is a minimization
problem. Then, by the definition of the dual, we have

®βRMHC(τ ) (s) ≥ 0, for all time s ∈ [t , t + K − 1], (56a)

®θRMHC(τ ) (s) ≥ 0, for all time s ∈ [t , t + K − 1]. (56b)

Similarly, from the stationarity/optimality conditions (51a-51c) in Appendix C, we know that

these online dual variables from each version of RMHC(τ ) satisfy the following dual constraints,

®C(s) − BT
1
®βRMHC(τ ) (s) + ®θRMHC(τ ) (s) − ®θRMHC(τ ) (s + 1) ≥ 0, for all time s ∈ [t , t + K − 2], (57a)

®C(t + K − 1) − BT
1
®βRMHC(τ ) (t + K − 1) + ®θRMHC(τ ) (t + K − 1) − [ ®W − ®C(t + K)]+ ≥ 0, (57b)

®W − ®θRMHC(τ ) (s) ≥ 0, for all time s ∈ [t , t + K − 1]. (57c)

Then, we can verify the feasibility of the online dual variables from time t to time t + K for the
offline dual optimization problem (14) as follows.

(i) Consider time t to time t + K − 2. The online dual variables ®βRMHC(τ ) (t : t + K − 2) and
®θRMHC(τ ) (t : t +K − 2) satisfy constraints (56a) and (56b), Eqs.(57a) and (57c). Thus, they are feasible
to constraints (14b-14d) from time t to t + K − 2 in the offline dual optimization problem (14).

(ii) For time t +K − 1, constraints (14b) and (14d) still hold due to Eqs.(56a), (56b) and (57c). Then,

consider constraint (14c) with the online dual variables ®βRMHC(τ ) (t +K − 1), ®θRMHC(τ ) (t +K − 1) and

®̃θ (t + K). The left-hand side of constraint (14c) satisfies

®C(t + K − 1) − BT
1
®βRMHC(τ ) (t + K − 1) + ®θRMHC(τ ) (t + K − 1) − ®̃θ (t + K) (58a)

= ®C(t + K − 1) − BT
1
®βRMHC(τ ) (t + K − 1) + ®θRMHC(τ ) (t + K − 1) − [ ®W − ®C(t + K)]+ (58b)

≥ 0. (58c)

Eq.(58b) holds because we add ®̃θ (t + K) = [ ®W − ®C(t + K)]+ during the re-stitching step. Eq.(58c) is
true due to constraint (57b).

(iii) Similarly, for time t + K , constraints (14b) and (14d) still hold. Further, the left-hand side of
constraint (14c) satisfies

®C(t + K) − BT
1
®̃β(t + K) + ®̃θ (t + K) − ®θRMHC((τ+1) mod K )

(t + K + 1)

= ®C(t + K) − 0 + [ ®W − ®C(t + K)]+ − ®θRMHC((τ+1) mod K )

(t + K + 1)
(59)
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where Eq.(59) is due to ®̃β(t+K) = 0, ®̃θ (t+K) = [ ®W − ®C(t+K)]+. We now show that ®θRMHC((τ+1) mod K )
(t+

K + 1) = ®W . Suppose in the contrary that ®θRMHC((τ+1) mod K )
(t + K + 1) < ®W . First, notice that if we

increase ®θRMHC((τ+1) mod K )
(t + K + 1) by a value of δ , we can also increase ®βRMHC((τ+1) mod K )

(t + K + 1)

such that BT
1
®βRMHC((τ+1) mod K )

(t +K + 1) increases by the same value of δ . Then, constraint (14c) still

holds. However, by doing so, we get a larger value of the dual objective
∑T

t=1
®βT(t)B2

®A(t). This

contradicts the fact that ®θRMHC((τ+1) mod K )
(t +K + 1) is the optimal dual solution to RMHC. Thus, we

must have ®θRMHC((τ+1) mod K )
(t + K + 1) = ®W . From Eq.(59), we thus have,

®C(t + K) − BT
1
®̃β(t + K) + ®̃θ (t + K) − ®θRMHC((τ+1) mod K )

(t + K + 1)

≥ ®C(t + K) − 0 + ®W − ®C(t + K) − ®W

= 0,

Hence, the online dual variables from each row of the new matrixGnew are feasible to the offline
dual optimization problem (14).

□

E PROOF OF LEMMA 3.4

Proof. Applying the definition of ϕ(τ )(t − 1) andψ (τ )(t +K − 1) in Eq.(19), we have that, for any
τ ∈ [0,K − 1], the sum of the tail-terms for all rounds satisfies

⌊ TK ⌋∑

u=−1

{
ϕ(τ )(τ + Ku − 1) +ψ (τ )(τ + Ku + K − 1)

}
(61a)

=

⌊ TK ⌋∑

u=−1

{
− ®W T ®XRMHC(τ )(τ + Ku − 1) + [ ®W T − ®CT(τ + Ku + K)]+ · ®XRMHC(τ ) (τ + Ku + K − 1)

}
.

(61b)

We call the two tail-terms in Eq.(61b) with the same indexu as a łpairž. Then, we rearrange the terms
in the summation by putting together the second term in the previous pair and the first term in the

next pair. Notice that, in the first pair, the first term ϕ(τ )(τ −K − 1) = − ®W T ®XRMHC(τ ) (τ −K − 1) = 0.

This is because, by convention, ®X (t) = 0 for all time t ≤ 0. In the last pair, the second term

ψ (τ )(τ + K
⌊
T
K

⌋
+ K − 1) = [ ®W T − ®CT(τ + K

⌊
T
K

⌋
+ K)]+ ®XRMHC(τ ) (τ + K

⌊
T
K

⌋
+ K − 1) = 0. This is

because, when t + K > T , RMHC solves problem Q̃RMHC(τ ) (t) in Eq.(10) instead of QRMHC(τ ) (t) in
Eq.(9), which takes the future inputs after time T as 0. Thus, we have

⌊ TK ⌋∑

u=−1

{
ϕ(τ )(τ + Ku − 1) +ψ (τ )(τ + Ku + K − 1)

}

=

⌊ TK ⌋−1∑

u=0

{
− ®W T ®XRMHC(τ ) (τ + Ku − 1) + [ ®W T − ®CT(τ + Ku)]+ · ®XRMHC(τ ) (τ + Ku − 1)

}
(62a)

≤ 0, (62b)

where Eq.(62b) is due to

[ ®W T − ®CT(τ + Ku)]+ ®XRMHC(τ ) (τ + Ku − 1)

≤ ®W T ®XRMHC(τ ) (τ + Ku − 1).
(63)
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The result of Lemma 3.4 then follows. □

F PROOF OF THEOREM 3.5

The proof follows a similar line as in steps 1, 2 and 3 in the proof of Theorem 3.1 in Sec. 3.3. We
first provide some preliminary results.

F.1 Preliminary Results

Notice that in Sec. 3.3, by introducing an auxiliary variable ®Y (t) for the switching term [ ®X (t) −
®X (t − 1)]+, we can get an equivalent formulation (13) for the original offline optimization problem
(2). Similarly, we can apply this method to get the following equivalent formulation for the offline
optimization problem with convex service costs,

min
{ ®X (1:T), ®Y (1:T)}

{
T∑

t=1

ht ( ®X (t)) +

T∑

t=1

®W T ®Y (t)

}

(64a)

sub. to: B1
®X (t) ≥ B2

®A(t), for all time t ∈ [1,T], (64b)

®Y (t) ≥ ®X (t) − ®X (t − 1), for all time t ∈ [1,T], (64c)

®X (t), ®Y (t) ≥ 0, for all time t ∈ [1,T]. (64d)

Then, let ®β(t) = [βl (t), l = 1, ...,L]T ∈ RL×1 and ®θ (t) = [θn(t),n = 1, ...,N ]T ∈ RN×1 be the
Lagrange multipliers for constraints (64b) and (64c), respectively. We have the Lagrangian of
problem (64) as follows,

L( ®X (1 : T), ®Y (1 : T), ®β(1 : T), ®θ (1 : T))

=

T∑

t=1

ht ( ®X (t)) +

T∑

t=1

®W T ®Y (t) +

T∑

t=1

®βT(t)
[
B2
®A(t) − B1

®X (t)
]
+

T∑

t=1

®θT(t)
[
®X (t) − ®X (t − 1) − ®Y (t)

]
.

(65)

Step-1: Similar to Eq.(64), we can get the following equivalent formulation for the optimization
problem (39) with convex service costs,

min
{ ®X (t :t+K−1),
®Y (t :t+K−1)}

{
t+K−1∑

s=t

[
hs ( ®X (s)) + ®W

T ®Y (s)
]
− ®W T ®X (t + K − 1)

}

(66a)

sub. to: B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t , t + K − 1], (66b)

®Y (s) ≥ ®X (s) − ®X (s − 1), for all time s ∈ [t , t + K − 1], (66c)

®X (s), ®Y (s) ≥ 0, for all time s ∈ [t , t + K − 1]. (66d)

Now, for each round of RMHC(τ ) from time t to t +K −1, where t = τ +Ku andu = −1, 0, ...,
⌊
T
K

⌋
,

the new formulation of the online primal cost is

CostRMHC(τ ) (t : t + K − 1) =

t+K−1∑

s=t

{
hs ( ®X

RMHC(τ ) (s)) + ®W T[ ®XRMHC(τ ) (s) − ®XRMHC(τ ) (s)]+
}
. (67)

Next, let
(
®βRMHC(τ ) (t : t +K − 1), ®θRMHC(τ ) (t : t +K − 1)

)
be the optimal dual solution to the dual of

the optimization problem in Eq.(66). Then, for each τ ∈ [0,K − 1], we can define the online dual
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cost by

DRMHC(τ ) (t : t + K − 1)

=

t+K−1∑

s=t

(
®βRMHC(τ ) (s)

)T
B2
®A(s)

+

t+K−2∑

s=t

ηs

(
−BT

1
®βRMHC(τ ) (s) + ®θRMHC(τ ) (s) − ®θRMHC(τ ) (s + 1)

)

+ ηt+K−1

(
−BT

1
®βRMHC(τ ) (t + K − 1) + ®θRMHC(τ ) (t + K − 1) − ®W

)
,

(68)

where

ηs (®u) = min
®X ≥0

{
hs ( ®X ) + ®u

T ®X
}
. (69)

Further, we can define the following tail-terms as in (19),

ϕ(τ )(t − 1) = − ®W T ®XRMHC(τ ) (t − 1), (70a)

ψ (τ )(t + K − 1) = ®W T ®XRMHC(τ ) (t + K − 1). (70b)

Then, we have Lemma F.1 below, which is similar to Lemma 3.2.

Lemma F.1. (Per-round gap between the primal and dual costs of RMHC(τ )) Using the new definition

of CostRMHC(τ ) (t : t + K − 1), DRMHC(τ ) (t : t + K − 1) and the tail-terms in Eqs.(67-70), for each

τ ∈ [0,K − 1] and for any t = τ + Ku where u = −1, 0, ...,
⌊
T
K

⌋
, we have

CostRMHC(τ ) (t : t + K − 1) ≤ DRMHC(τ ) (t : t + K − 1)

+ ϕ(τ )(t − 1) +ψ (τ )(t + K − 1), for all ®A(t : t + K − 1).
(71)

The proof uses duality theorem [2, p. 260] and follows the same line as in the proof of Lemma 3.2
in Appendix C.
Step-2: From Eqs.(64) and (65), we know that the optimal offline dual cost is

DOPT(1 : T) = max
{ ®β (1:T)≥0,
®θ (1:T)≥0}

min
{ ®X (1:T),
®Y (1:T)}

L( ®X (1 : T), ®Y (1 : T), ®β(1 : T), ®θ (1 : T)). (72)

We wish to construct online dual variables that are feasible for the offline optimization problem (64).
Towards this end, we first characterize a condition for the dual feasibility of the offline problem.

Recall that, given the dual variables ®β(1 : T) and ®θ (1 : T), the dual objective function of the offline
problem is given by

min
{ ®X (1:T), ®Y (1:T)}

L( ®X (1 : T), ®Y (1 : T), ®β(1 : T), ®θ (1 : T)) (73)

We say that the dual variables ®β(1 : T) and ®θ (1 : T) are feasible if the above dual objective function
is not −∞.

Collecting all the terms of L( ®X (1 : T), ®Y (1 : T), ®β(1 : T), ®θ (1 : T)) that depend on ®X (t) and ®Y (t),
and checking when the corresponding minimization will approach −∞. we can show that the dual

variables ( ®β(1 : T), ®θ (1 : T)) are feasible for the offline problem if they satisfy the following three
conditions simultaneously for all t ∈ [1,T],

®β(t) ≥ 0, ®θ (t) ≥ 0, (74a)
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min
®X (t )≥0

{
ht ( ®X (t)) +

[
− ®βT(t)B1 +

®θT(t) − ®θT(t + 1)
]
· ®X (t)

}
> −∞, (74b)

®W − ®θ (t) ≥ 0. (74c)

We now construct online dual variables that satisfy (74). First, from the construction of the online

dual DRMHC(τ ) (t : t + K − 1) in Eq.(68), we can easily verify that, because the online dual variables

chosen by RMHC(τ ) should make (68) not equal to −∞, they must also satisfy constraints (74a-74c)
for time t to t + K − 2. Second, applying the re-stitching idea, we can organize these online duals
into the matrixGnew. Then, in the i-th row ofGnew, we introduce extra dual variables (corresponds
to the 0 terms in Gnew)

{
®̃β(i + (K + 1)u + K) = ®0,

®̃θ (i + (K + 1)u + K) = ®W
(75)

at time i + (K + 1)u + K for every u = −1, 0, ...,
⌊
T
K

⌋
. Then, we can verify Lemma 3.3 for time

t + K − 1 and time t + K as follows. Let t = i + (K + 1)u for some u and consider the round of
RMHC(τ ) starting from t . First, at time s = t + K − 1, constraints (74a) and (74c) trivially hold
because the corresponding dual variables at t + K − 1 satisfies the KKT conditions for RMHC(i)
(see Eqs.(56a), (56b) and (57c)). Further, for this time slot, the corresponding term in (68) is identical
to the corresponding term in the offline dual. Thus, because our online dual variables makes (68)
not equal to −∞, they must satisfying constraint (74b). Second, at time t + K , the corresponding
term in the offline Lagrangian is

ht+K ( ®X (t + K)) + ®̃β
T(t + K)B2

®A(t + K)

+

[
−BT

1
®̃β(t + K) + ®̃θ (t + K) − ®θ (t + K + 1)

]T
®X (t + K).

(76)

Note that we have set ®β(t+K) = ®0 and ®θ (t+K) = ®W . Further, we can show that ®θ (t+K+1) = ®W (see

Appendix D). Thus, this term in the Lagrangian corresponding to time t+K is simplyht+K ( ®X (t+K)).

Since ht+K ( ®X (t + K)) is assumed to be non-negative, the constraint (74b) is trivially satisfied. Part
(2) of Lemma 3.3 thus holds. Finally, the corresponding offline dual cost for time t + K must also be
non-negative. Thus, following the proof in Appendix D, we still have the conclusion in Lemma 3.3.

Step-3: Notice that, by replacing [ ®W T − ®CT(τ +Ku)]+ ®XRMHC(τ ) (τ +Ku − 1) with ®W T ®XRMHC(τ ) (τ +
Ku − 1) in Appendix E, each step in the proof in Appendix E still holds. Hence, Lemma 3.4 still
holds.

F.2 Proof of Theorem 3.5

Proof. First, since now the service cost is convex, the total cost of ARMHC is

CostARMHC(1 : T) =

T∑

t=1

ht ( ®X
ARMHC(t)) +

T∑

t=1

®W T[ ®XARMHC(t) − ®XARMHC(t − 1)]+.

Then, from Eq.(11) that ARMHC takes the average of K versions of RMHC decisions, we have

CostARMHC(1 : T) =

T∑

t=1

ht

(
1

K

K−1∑

τ=0

®XRMHC(τ ) (t)

)

+

T∑

t=1

®W T

[
1

K

K−1∑

τ=0

®XRMHC(τ ) (t) −
1

K

K−1∑

τ=0

®XRMHC(τ ) (t − 1)

]
+

.
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Note that both ht (·) and [·]
+ are convex. According to Jensen’s Inequality, we have

CostARMHC(1 : T) ≤
1

K

T∑

t=1

K−1∑

τ=0

ht ( ®X
RMHC(τ ) (t))

+

1

K

T∑

t=1

K−1∑

τ=0

®W T[ ®XRMHC(τ ) (t) − ®XRMHC(τ ) (t − 1)]+.

Next, we can change the order of the summations over t and τ . Meanwhile, we put together all

rounds of RMHC(τ ) from the same row of Gold. We can then get

CostARMHC(1 : T) ≤
1

K

K−1∑

τ=0

{ ⌊ TK ⌋∑

u=−1

τ+Ku+K−1∑

t=τ+Ku

[
ht ( ®X

RMHC(τ ) (t))

+ ®W T[ ®XRMHC(τ ) (t) − ®XRMHC(τ ) (t − 1)]+
]}

.

The rest of the proof follows the same steps from Eq.(37) to Eq.(38). Hence, for the online
optimization problem (2) using convex service costs, the competitive ratio of ARMHC described in
Sec. 3.4 is still K+1

K
. □

G PROOF OF THEOREM 4.2

The proof again follows a similar line as in steps 1, 2 and 3 in the proof of Theorem 3.1 in Sec. 3.3.
We first provide some preliminary results.

G.1 Preliminary Results

By introducing an auxiliary variable ®Y (t) for the switching-cost term in Eq.(41), we can get an
equivalent formulation of the optimization problem (41) as follows.

min
{ ®X (t :t+k−1),
®Y (t :t+k−1)}

{
t+k−1∑

s=t

ρ(s − t) ®CT(s) ®X (s) +

t+k−1∑

s=t

®W T ®Y (s) −
[
®W T − ®CT(t + k)

]
+

· ρ(k − 1) ®X (t + k − 1)

}

(77a)

sub. to: B1
®X (t) ≥ B2

®A(t), (77b)

B1
®X (s) ≥ B2

®A(s), for all time s ∈ [t + 1, t + k − 1], (77c)

®Y (t) ≥ ρ(0) ®X (t) − ρ(k − 1) ®X (t − 1), (77d)

®Y (s) ≥ ρ(s − t) ®X (s) − ρ(s − t − 1) ®X (s − 1), for all time s ∈ [t + 1, t + k − 1], (77e)

®X (s), ®Y (s) ≥ 0, for all time s ∈ [t , t + k − 1]. (77f)
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Step-1: For each round of GRMHC(τ ) from time t to t + K − 1, we define the primal cost

CostGRMHC(τ ) (t : t + k − 1) ≜

t+k−1∑

s=t

®CT(t)ρ(s − t) ®XGRMHC(τ ) (s)

+ ®W T
[
ρ(0) ®XGRMHC(τ ) (t) − ρ(k − 1) ®XGRMHC(τ ) (t − 1)

]
+

+

t+k−1∑

s=t+1

®W T
[
ρ(s − t) ®XGRMHC(τ ) (s) − ρ(s − t − 1) ®XGRMHC(τ ) (s − 1)]+.

(78)

Next, we let ®βGRMHC(τ )(t), ®βGRMHC(τ ) (t + 1 : t +k − 1), ®θGRMHC(τ )(t) and ®θGRMHC(τ ) (t + 1 : t +k − 1) be
the optimal dual solutions to the dual of the optimization problem (77). Then, for each τ ∈ [0,k − 1],

we can define the online dual cost in a similar manner as for RMHC(τ ) in Eq.(18), i.e., the online

dual cost of GRMHC(τ ) is

DGRMHC(τ )(t : t + k − 1| ®A)

≜

(
®βGRMHC(τ )(t)

)T
B2
®A(t) +

t+k−1∑

s=t+1

(
®βGRMHC(τ ) (s)

)T
B2
®A(s).

(79)

Further, we define the following two tail-terms in the same form of Eq.(19), except that now they
are multiplied by the weight ρ(k − 1), i.e.,

ϕ(τ )(t − 1) ≜ −ρ(k − 1) ®W ®XGRMHC(τ ) (t − 1), (80a)

ψ (τ )(t + k − 1) ≜ ρ(k − 1)[ ®W − ®C(t + k)]+ ®XGRMHC(τ ) (t + k − 1). (80b)

Then, we have Lemma G.1 below, which is similar to Lemma 3.2.

Lemma G.1. (Per-round gap between the primal and dual costs of GRMHC(τ )) For each τ ∈ [0,k − 1]

and any t = τ + ku where u = −1, 0, ...,
⌊
T
k

⌋
, we have

CostGRMHC(τ ) (t : t + k − 1) ≤ DGRMHC(τ )
(
t : t + k − 1| ®A

)

+ ϕ(τ )(t − 1) +ψ (τ )(t + k − 1), for all ®A(t : t + k − 1).
(81)

The proof follows the same line as the proof of Lemma 3.2 in Appendix C. There are two

differences. First, we need to replace the real input ®A(t) with the upper bound ®A(t) in Eq.(50a) for
time t + 1 to time t +K − 1. This is because GRMHC considers the future uncertain hard constraints
based on the upper bound of the future inputs. Second, as in Eq.(77), we need to add the same
weight ρ(0 : k − 1) to the corresponding decision variables of each equation during the proof.

Step-2: Similar to Step-2 in Sec. 3.3, here we can still organize the online dual cost in Eq.(79),

i.e., DGRMHC(τ )
(
t : t + K − 1| ®A

)
, into the matrix Gnew using the re-stitching idea. Second, as shown

in Step-2 in Sec.3.3, we can add ł0ž for the gap in each row of Gnew. However, since we add

weights in the optimization problem (77), the online dual variables ®βGRMHC(τ )(t : t + k − 1) and
®θGRMHC(τ )(t : t+k−1)may not be feasible for the offline dual optimization problem (14). Fortunately,

from Eq.(77), we can verify that these dual variables from each version τ of GRMHC(τ ) satisfy

ρ(s − t) ®C(s) − BT
1
®βGRMHC(τ ) (s) + ρ(s − t) ®θGRMHC(τ ) (s)

− ρ(s − t) ®θGRMHC(τ ) (s + 1) ≥ 0, for all time s ∈ [t , t + k − 2], (82a)
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ρ(k − 1) ®C(t + k − 1) − BT
1
®βGRMHC(τ ) (t + k − 1) + ρ(k − 1) ®θGRMHC(τ ) (t + k − 1)

− ρ(k − 1)[ ®W − ®C(t + k)]+ ≥ 0, (82b)

®W − ®θGRMHC(τ ) (s) ≥ 0, for all time s ∈ [t , t + k − 1], (82c)

Further, these dual variables are all non-negative. Then, we can construct a set of dual variables
that




®̃βGRMHC(τ ) (s) =
®βGRMHC(τ ) (s)

ρ(s−t )
, for all time s ∈ [t , t + k − 1],

®̃θGRMHC(τ ) (s)) = ®θGRMHC(τ ) (s)), for all time s ∈ [t , t + k − 1].
(83)

We can then define the online dual cost

D̃GRMHC(τ ) (t : t + k − 1| ®A) ≜

t+k−1∑

s=t

(
®̃βGRMHC(τ ) (s)

)T
B2
®A(s). (84)

Notice that the feasible dual variables and the real inputs are used in Eq.(84). Applying the re-
stitching idea, we can organize these online dual costs into the matrixGnew. Meanwhile, in the i-th
row of Gnew, we still introduce

{
®̃β(i + (K + 1)u + K) = ®0,

®̃θ (i + (K + 1)u + K) = [ ®W − ®C(i + (K + 1)u + K)]+,

at time i + (K + 1)u +K for u = −1, 0, ...,
⌊
T

K+1

⌋
. Then, Lemma 3.3 still holds. The proof is the same

as the proof in Appendix D. The only difference is that now we need to replace the dual variables
there by the corresponding dual variables in Eq.(83).

Step-3: Notice that the two tail-terms in Eq.(80) are in the same form as the tail-terms in Eq.(19),
except that each of them is multiplied by the same weight ρ(k − 1). Multiply the tail-terms during
the proof in Appendix E by the same weight, each step still holds. Thus, the sum of the tail-terms
from all rounds of GRMHC are still upper-bounded by 0. Therefore, Lemma 3.4 still holds.

G.2 Proof of Theorem 4.2

Proof. First, from the cost definition in Eq.(4), we know that the total cost of WRMHC is

CostWRMHC(1 : T) =

T∑

t=1

®CT(t) ®XWRMHC(t) +

T∑

t=1

®W T[ ®XWRMHC(t) − ®XWRMHC(t − 1)]+.

Then, in Eq.(42), we notice that WRMHC takes the weighted average of K versions of GRMHC
decisions. Recall the notation introduced in Sec. 4.2 that τ̃ (t , i) ≜ (t − i) mod k for any i ∈ [0,k − 1].
Then, we have

CostWRMHC(1 : T) =

T∑

t=1




®CT(t) ·

k−1∑
i=0

ρ(i) ®XGRMHC(τ̃ (t,i )) (t)

k−1∑
i=0

ρ(i)




+

T∑

t=1

®W T ·



k−1∑
i=0

ρ(i) ®XGRMHC(τ̃ (t,i )) (t)

k−1∑
i=0

ρ(i)

−

k−1∑
i=0

ρ(i) ®XGRMHC(τ̃ (t−1,i )) (t − 1)

k−1∑
i=0

ρ(i)



+

.
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Since τ̃ (t − 1, i) = τ̃ (t , i + 1), we have

k−1∑

i=0

ρ(i) ®XGRMHC(τ̃ (t−1,i )) (t − 1) =

k−1∑

i=0

ρ(i) ®XGRMHC(τ̃ (t,i+1)) (t − 1) (86a)

=

k−2∑

i=0

ρ(i) ®XGRMHC(τ̃ (t,i+1)) (t − 1) + ρ(k − 1) ®XGRMHC(τ̃ (t,k )) (t − 1) (86b)

=

k−1∑

i=1

ρ(i − 1) ®XGRMHC(τ̃ (t,i )) (t − 1) + ρ(k − 1) ®XGRMHC(τ̃ (t,0)) (t − 1).

(86c)

Here, we obtain Eq.(86b) by simply rewriting the summation in Eq.(86a) and take the last term out.
Eq.(86c) is true because τ̃ (t ,k) = τ̃ (t , 0). Then, due to the convexity of the cost terms and Jensen’s
Inequality, we have

CostWRMHC(1 : T) ≤
1

k−1∑
i=0

ρ(i)

T∑

t=1

{
k−1∑

i=0

®C(t)ρ(i) ®XGRMHC(τ̃ (t,i )) (t)

+

k−1∑

i=1

®W
[
ρ(i) ®XGRMHC(τ̃ (t,i )) (t) − ρ(i − 1) ®XGRMHC(τ̃ (t,i )) (t − 1)

]
+

+ ®W
[
ρ(0) ®XGRMHC(τ̃ (t,0)) (t) − ρ(k − 1) ®XGRMHC(τ̃ (t,0)) (t − 1)

]
+

}

.

Next, we change the order of the summations over t and i . Meanwhile, we put together all rounds

of GRMHC(τ ) from the same row of Gold. We can then get

CostWRMHC(1 : T)

≤
1

k−1∑
i=0

ρ(i)

k−1∑

τ=0

⌊ Tk ⌋∑

u=−1

{
τ+ku+k−1∑

t=τ+ku

®CT(t)ρ(t − τ − ku) ®XGRMHC(τ ) (t)

+

τ+ku+k−1∑

t=τ+ku+1

®W T
[
ρ(t − τ − ku) ®XGRMHC(τ ) (t) − ρ(t − τ − ku − 1) ®XGRMHC(τ ) (t − 1)

]
+

+ ®W T
[
ρ(0) ®XGRMHC(τ ) (τ + ku) − ρ(k − 1) ®XGRMHC(τ ) (τ + ku − 1)

]
+

}

.

(88)

Then, applying Lemma G.1, we have

CostWRMHC(1 : T)

≤
1

k−1∑
i=0

ρ(i)

k−1∑

τ=0

⌊ Tk ⌋∑

u=−1

{
DGRMHC(τ ) (τ + ku : τ + ku + k − 1| ®A)

+ ϕ(τ )(τ + ku − 1) +ψ (τ )(τ + ku + k − 1)
}
.

(89)
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Notice that the online dual costs defined in Eq.(79) is based on the upper bound of the future inputs

®A(t + 1 : t + k − 1). Moreover, the corresponding dual variables may not be feasible to the offline
optimization problem (13). Fortunately, in Eq.(84), we construct the online dual costs with feasible
dual variables and the real inputs. To relate the online dual costs defined in Eq.(79) with the online
dual costs defined in Eq.(84), we have

DGRMHC(τ ) (t : t + k − 1| ®A)

=

t+k−1∑

s=t

(
®̃βGRMHC(τ )(s)

)T
B2
®A(s)

ρ(s − t) ®A(s)

®A(s)
(90a)

≤

t+k−1∑

s=t

(
®̃βGRMHC(τ ) (s)

)T
B2
®A(s)ρ(s − t) max

m∈[1,M ]

am(s)

am(s)
(90b)

≤

t+k−1∑

s=t

(
®̃βGRMHC(τ ) (s)

)T
B2
®A(s)ρ(s − t) max

m∈[1,M ]

f
up
m (s − t)

f lowm (s − t)
(90c)

≤ DGRMHC(τ ) (t : t + k − 1| ®A) max
{i ∈[0,k−1]
m∈[1,M ]}

ρ(i)
f
up
m (i)

f lowm (i)
, (90d)

Here, the multiplications and divisions of the input vector ®A(t) in Eq.(90a) are entry-wise. As

mentioned in Sec. 2.2, in Eqs.(90c) and (90d), we have
f
up
m (0)

f lowm (0)
= 1 for allm ∈ [1,M]. Then, for the

terms involving the online dual cost DGRMHC(τ ) (τ + Ku : τ + Ku + K − 1| ®A) in Eq.(89), applying
Eq.(90) and the re-stitching idea, we have,

k−1∑

τ=0

⌊ Tk ⌋∑

u=−1

{
DGRMHC(τ ) (τ + ku : τ + ku + k − 1| ®A)

}

≤

k−1∑

τ=0

⌊ Tk ⌋∑

u=−1

DGRMHC(τ ) (τ + ku : τ + ku + k − 1| ®A) · max
{i ∈[0,k−1]
m∈[1,M ]}

ρ(i)
f
up
m (i)

f lowm (i)
(91a)

≤

k∑

i=1

⌊ Tk ⌋+2∑

j=1

Gold
i, j max
{i ∈[0,k−1]m∈[1,M ]}

ρ(i)
f
up
m (i)

f lowm (i)
(91b)

≤

k+1∑

i=1

2⌊ Tk+1 ⌋+3∑

j=1

Gnew
i, j max

{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i) (91c)

≤ (k + 1)DOPT(1 : T) · max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i). (91d)

Therefore, combining Eqs.(89), (91), we have that the total cost of WRMHC satisfies

CostWRMHC(1 : T)

≤
k + 1

k−1∑
i=0

ρ(i)

DOPT(1 : T) · max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i)
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≤ CostOPT(1 : T) ·
k + 1

k−1∑
i=0

ρ(i)

· max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i).

□

H PROOF OF LEMMA 4.3

Proof. The key to prove Lemma 4.3 is to solve the following optimization problem, given
k ∈ [1,K],

min
ρ(0:k−1)≥0

max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i)

k−1∑
i=0

ρ(i)

. (93)

Suppose that the optimal solution to Eq.(93) is ρ̃(0 : k − 1). We let

α ≜ max
{i ∈[0,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ̃(i). (94)

Thus, from Eq.(94), we have

f
up
m (i)

f lowm (i)
ρ̃(i) ≤ α , for all i ∈ [0,k − 1] andm ∈ [1,M] (95a)

⇒ ρ̃(i) ≤
α f lowm (i)

f
up
m (i)

, for all i ∈ [1,k − 1] andm ∈ [1,M] (95b)

⇒

{
ρ̃(0) ≤ α ,

ρ̃(i) ≤ min
m∈[1,M ]

αf lowm (i)

f
up
m (i)

, for all i ∈ [1,k − 1]. (95c)

Then, the objective function of the outer minimization in Eq.(93) satisfies

max
{i ∈[1,k−1],m∈[1,M ]}

f
up
m (i)

f lowm (i)
ρ(i)

k−1∑
i=0

ρ(i)

(96a)

≥
α

α +
k−1∑
i=1

min
m∈[1,M ]

αf lowm (i)

f
up
m (i)

(96b)

=

1

1 +
k−1∑
i=1

min
m∈[1,M ]

f lowm (i)

f
up
m (i)

. (96c)

In other words, (96c) corresponds a lower bound on the optimal value of (93). On the other hand,
by setting {

ρ̃(0) = 1,

ρ̃(i) = min
m∈[1,M ]

f lowm (i)

f
up
m (i)
, for all i ∈ [1,k − 1], (97)

the objective value in the outer minimization in Eq.(93) is exactly (96c). Hence, the weights in
Eq.(97) is the solution to (93). □
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