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Recent reports on highly mobile type II twin boundaries challenge the established understanding of
deformation twinning and motivate this study. We consider the motion of twin boundaries through the
nucleation and growth of disconnection loops and develop a mechanism-based model for twin boundary
motion in the framework of isotropic linear elasticity. While such mechanisms are well established for
type I and compound twins, we demonstrate based on the elastic properties of crystals that type II twin
boundaries propagate in a similar way. Nucleation of a type I twinning disconnection loop occurs in a
discrete manner. In contrast, nucleation of a type II twinning disconnection loop occurs gradually with
increasing Burgers vector. The gradual nucleation of a type II disconnection loop accounts for the higher
mobility of type II twin boundaries compared with type I twin boundaries. We consider the homoge-
neous nucleation of a disconnection loop, which is adequate for twinning in shape memory alloys with a
low-symmetry crystal lattice. For the magnetic shape memory alloy NieMn-Ga, the model predicts
twinning stresses of 0.33MPa for type II twinning and 4.7MPa for type I twinning. Over a wide tem-
perature range, the twinning stress depends on temperature only through the temperature dependence
of the elastic constants, in agreement with experimental results.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In 2011, Straka et al. reported twinning stresses of 1.2MPa and
0.05MPa for type I and type II twins for the same NieMn-Ga single
crystal sample [1]. These values are twofold extraordinary. First,
0.05MPa is probably the lowest yield stressmeasured for anymetal
so far. Second, the ratio of type I and type II twinning stresses is 24.
Considering that the shear strains for type I and type II twins are
identical [2] and the shear stiffness on the two shear systems is
almost identical, such a large ratio requires an explanation. In this
article, we develop a twinning model based on isotropic linear
elastic dislocation theory that provides answers to why the twin-
ning stress is so low and why it is different for type I and type II
twins.

Twinning is a major mode of plastic deformation for example in
hexagonal close-packed metals [2] and nano-crystalline and nano-
structured face-centered cubic metals [3e5]. In addition, twinning
in functional materials such as shape memory alloys [6], ferroe-
lastic minerals [7], and ferroelectric ceramics [8], is associated with
a significant strain and provides the mechanisms for trans-
formation between electric/magnetic/thermal energy and me-
chanical energy.
lsevier Ltd. All rights reserved.
Structural and functional materials represent two extremes
regarding their requirement on twin boundary mobility. For
structural materials on the one hand, the twinning stress must be
high to provide strength to the material. For example, in twin-
induced plasticity (TWIP) steel, the twinning stress after grain
refining and work-hardening exceeds 1.7 GPa [9,10]. For functional
materials, the twinning stress must be low to reduce mechanical
losses associated with the conversion frommechanical to electrical
energy and vice versa. The stress values are very small indeed as
mentioned at the beginning of this introduction at the example of
Ni-Mn-Ga [1,11].

The high twinning stress in structural materials results from a
relatively large twinning shear and associated large Burgers vector
of twinning disconnections. Many twinning mechanisms were
described in the literature for such materials and Christian and
Mahajan presented a comprehensive review [2]. The high mobility
of twin boundaries in functional materials results from the small
twinning shear and associated small Burgers vector of twinning
disconnections. In materials with a shear instability such as many
martensites [12] the low shear stiffness on the twinning system
further reduces the twinning stress. Existing models rationalize the
variation of twin boundary mobility and twinning stress due to
variations of material parameters such as shear modulus and lattice
parameter. Such models explain why different materials have
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different twin boundary motility and twinning stress (e.g.
Refs. [13,14]).

Models that relate the twinning stress solely to the shear
modulus and twinning shear cannot account for the differences in
twinning stress of type I and type II twins. Straka et al. reported
0.05 and 1.2MPa twinning stress for type II and type I twins [1].
Similarly, Kellis et al. [15] reported for one sample magnetic
switching fields of 30 and 300mT where the higher value was
associated with type I twins and the lower value with type II twins.
Saren et al. [16] and Smith et al. [17] reported a boundary velocity of
39 and 82m/s for type II twins in 10M NieMn-Ga. Faran and Shilo
studied the kinetics of twin boundaries and reported that at a
driving force of 100 kJ/m3 type II twin boundaries move ten times
faster than type I twin boundaries [18]. 10M NieMn-Ga is almost
tetragonal such that the shear stiffness for type I and type II
twinning is almost identical. The shear is the same for both twin
types. Thus, current mechanism-based models do not account for
the one order of magnitude difference of twin boundary mobility of
type I and type II twins.

Here we present twin boundary propagation models for type I
and type II twins and derive the twinning stress and its tempera-
ture dependence. We assume that the nucleation of a twinning
disconnection loop controls the twinning stress. We obtain the
twinning stress from comparing the energy of the growing
disconnection loop with the work done by the stress when
expanding the loop.We build on the topological model of interfaces
[19,20]. In section 2, we evaluate the assumptions implied in the
model. In section 3, we treat straight twinning disconnections to
establish their Burgers vector and step height. For type I twins, this
approach is well established. We show that this concept also ap-
plies to type II twin boundaries. In section 4, we consider the
nucleation of a circular disconnection loop and derive the twinning
stress. In section 5, we calculate the activation energy of twin
nucleation. In section 6, we first discuss the implications of the
model for general shear band deformation and then apply it to
twinning in 10M NieMn-Ga.

2. Methodology

We relate mechanical properties to the microscopic mechanism
of deformation twinning. This is a classical task of physical metal-
lurgy. The incommensurate nature of type II twin boundaries (with
an irrational K1 plane) presents challenges to a rigorous treatment.
Atomistic simulations require a prohibiting large computer power
to address the problem. Geometrical models relying on periodicity
fail at the non-periodic structure, too. The topological model falls
into this latter category. It is an extension of crystallography to
bicrystals. It deals with geometry alone and disregards interatomic
forces. In particular, the topological model correlates crystal
structure, bicrystal misorientation, and interface defects. The to-
pological model cannot predict the particular atomic structure of an
incommensurate interface. However, it does predict the defect
content of an interface. We take results from the topological model
and apply linear, isotropic elasticity to derive energies and stresses
associated with interfacial defects. In this section, we discuss the
assumptions of our method and their implications.

2.1. Linear elasticity

Linear elasticity fails at sub-atom length scale. Linear elasticity
does not accurately describe stresses near the dislocation line. To
account for this limitation, scientists introduced an inner cut-off
radius r to delineate the dislocation core (within which linear
elasticity fails) from the bulk material for which linear elasticity
appropriately describes elastic fields. In section 4.1, we derive the
critical radius for nucleation of a type I disconnection loop, which is
five times the inner cut-off radius for a dislocation (Equation (13)).
Thus, the calculations are within the validity regime of linear
elasticity, albeit close to its lower limit. We conclude that applying
linear elasticity is reasonable though it may overestimate the en-
ergy of a dislocation loop. Therefore, linear elasticity overestimates
the twinning stress somewhat.
2.2. Isotropic elasticity

Isotropic elasticity assumes that the shear stiffness is the same
for all shear systems. Shape memory alloys have low crystal sym-
metry and the shape memory effect and twinning relate to a
martensitic transformation. Thus, shape memory alloys are inher-
ently elastically anisotropic materials and isotropic elasticity does
not accurately predict mechanical properties. Here we assess how
anisotropy impacts the results obtained in section 4. In many ma-
terials undergoing a martensite transformation, the shear stiffness
for twinning relates to the C0 modulus of the austenite phase [12].
These materials typically exhibit a softening of the TA2 phonon
branch which weakens the C0 modulus. C0 is substantially lower
than the shear stiffness on other shear systems. In particular, C’ is
substantially lower than the shear modulus G of an isotropic ma-
terial, for which G¼ Y/(1 þ n), where Y is the Young modulus and n

is the Poisson ratio. The strain energy density ε is obtained from the
stress tensor sij and strain tensor εkl:

ε¼1
2
sijεkl ¼

1
2
cijklε

2
kl (1)

where the non-vanishing stiffness components cijkl are typically
larger than the soft C’. Estimating the strain energy through C’
(Equation (10)) therefore underestimates the loop energy and, thus,
the twinning stress.
2.3. Discrete disconnection core

The core of a disconnection may spread over a certain distance.
Spreading reduces the core energy. We treat the twinning discon-
nections as having a narrow, discrete core. Therefore, by assuming a
discrete disconnection core, we overestimate the disconnection
energy, and, thus, the twinning stress.
2.4. Implications

The relative strength of the errors made by assuming linear
elasticity, isotropy, and discrete disconnection core are difficult to
assess. Further, the models include various parameters for which
exact numerical values may not be available. Therefore, numerical
results presented in section 6 may be off by a sizable factor of 2 or
even more. However, the errors are systematical. For example, the
twinning stresses for type I and type II twinning are proportional to
the shear modulus G (Equations (14) and (19)). We conclude that
the errors made by the simplifications are similar for both twinning
types. Therefore, the presented models allow (i) a qualitative
comparison of type I and type II twinning stresses, (ii) the predic-
tion of the dependences of twinning stress and activation energy on
material properties such as elastic constants and lattice parameters,
and (iii) a qualitative assessment of the temperature dependence of
the twinning stress. We limit the discussion of the results to such a
comparative assessment. We learn from this analysis what simi-
larities exist between type I and type II twinning and some
fundamental differences. An exact quantitative prediction of
twinning stresses is beyond the scope of this study.
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3. Twin boundary propagation

Following the topological model (TM) introduced by Hirth and
Pond [19], crystalline interfaces move through the propagation of
disconnections along the interface. A disconnection is a line defect
located in the interface and containing dislocation character (with
Burgers vector b) and step character (with step height h). The
disconnection line separates planar and parallel interface terraces.
As the disconnection moves, the dislocation component generates
deformation while the step component transforms a volume
increment from belonging to the one side of the boundary to
belonging to the other side.

In the case of deformation twinning, the Burgers vector is par-
allel to the twinning direction and the step height is the ratio of the
magnitude b of the Burgers vector and the twinning shear s:

h ¼ b
s

(2)

Throughout section 3, we consider straight dislocations, dis-
connections, and disclinations. We consider approximations for
small twinning shear s≪ 1 such that cosðsÞ ¼ 1, sinðsÞ ¼ tanðsÞ ¼ s,
and due to the symmetry of the stress state the shear stresses on
the primary and conjugate twinning systems are identical.
3.1. Type I twins

Vladimirsky [21] and Frank and van der Merwe [22] introduced
the twinning dislocation (Fig. 1a) as the elementary carrier of
deformation for a moving twin boundary. The twinning dislocation
makes intuitively sense for type I twins (and also for compound
twins) because the twinning plane K1 is rational. The step height hI
Fig. 1. A twinning disconnection; (a) a step in the twin boundary generates a displacement
crystal; (b) The twinning planes K1 and K2 define Burgers vector and step height.

Fig. 2. Dislocation model of a type II twin boundary; (a) conjugate dislocations line up in th
(b) the twin boundary moves when all conjugate dislocations move collectively.
is the d-spacing dK1
of the twinning plane and the Burgers vector bI

is (Fig. 1b):

bI¼ sdK1
¼ shI (3)

The work wI per line length (unit J/m) done by a stress when
moving the twinning dislocation is the Peach-Koehler force
FPK ¼ tbmultiplied by the distance Dx travelled by the dislocation:

wI¼ tbIDx ¼ thIsDx (4)

Scientists established the twinning dislocation through many
quantitative studies using transmission electron microscopy. The
terms twinning dislocation and twinning disconnection are
exchangeable. Here we favor the term twinning disconnection
since this term highlights the presence of a step which plays a
critical role in establishing the twinning stress.

3.2. Type II twins

Bullough suggested a dislocation mechanism for twinning
where shear occurs on the conjugate twinning plane [23]. Cahn
[24] and Hirth and Lothe [25] interpreted this mechanism in terms
of conjugate dislocations moving on conjugate twinning planes.
Pond and Hirth advanced a quantitative topological model for type
II twinning akin to Bullough's concept and applied it with high
accuracy to type II twinning in alpha uranium [26] and NiTi [27].
Following the topological model for type II twins, the twin
boundary contains a wall of dislocations with Burgers vector bct

perpendicular to the boundary plane (Fig. 2a). The relationship
between the magnitude bct of bct, the d-spacing dK2

of conjugate
twinning planes, and the primary (i.e. type I) twinning dislocation
is [2]:
field which is illustrated schematically as a compression of K2 planes in the upper half-

e twin boundary such that their Burgers vector is perpendicular to the twin boundary;



Fig. 3. Discrete motion of a type II twin boundary following the topological model [25]; (a) a step in a type II twin boundary is a disconnection similar to that shown in Fig. 1 with
Burgers vector and step height; the displacement field is schematically illustrated by the compressed K2 planes in the upper half-crystal; (b) the twinning disconnection moves to
the right when successive conjugate dislocations move from the lower terrace position to the upper terrace position.

Fig. 4. Displacement field of a type II twinning disconnection; (a) the displacement
field of the disconnection is the sum of the displacement fields of all conjugate dis-
locations; (b) on each terrace, the semi-infinite walls of conjugate dislocations form a
disclination; the displacement field of the disconnection is the sum of the displace-
ment fields of two disclinations with strength u1;2 ¼ ±s (i.e. the displacement field of a
disclination dipole); (c) a disclination dipole can be approximated by a single dislo-
cationwith a Burgers vector perpendicular to the direction of the disclination lines; the
displacement field of the disconnection is that of a dislocation with Burgers vector
bII ¼ shII .
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s¼ bI
dK1

¼ bct
dK2

(5)

A type II twin then grows by the collective motion of these
conjugate dislocations (Fig. 2b). As the dislocations move, the top
half-crystal shifts by a displacement Du¼ sDy where Dy is the
distance travelled by the twin boundary. Therefore, the net motion
of the dislocation is parallel to the transformed conjugate twinning
plane. The Burgers vector bct of the conjugate twinning dislocations
is perpendicular to the twin boundary because the twinning shear
on the primary twinning plane is the superposition of a simple
shear on the conjugate system and a rotation. This rotation is par-
titioned between both half-crystals [25e29] such that the conju-
gate dislocations end up perpendicular to the interface.

The twin boundary is in mechanical equilibrium when it is flat
and parallel to K1. Thus, a twin boundary stays in mechanical
equilibrium if it moves rigidly with all twinning dislocations
moving synchronously as shown in Fig. 2b. However, moving a
planar boundary rigidly requires the simultaneous braking of all
bonds on the interface. This requires a high energy and, thus, a high
stress. It requires less stress to move a dislocation on its glide plane
than to rigidly move a crystal on a slip plane. Analogously, it re-
quires less stress to move a step along a type II twin boundary
compared to moving the type II twin boundary rigidly. We further
expand this argument in section 4.2.

Fig. 3 illustrates the motion of a step in a type II twin boundary.
On either side of the step, the twin boundary consists of a semi-
infinite wall of dislocations. For the step to move a distances Dx
along the twin boundary, N dislocations move from one boundary
level by the step height to the next boundary level such that Dx ¼
NdK2

. The work wIIct done by a stress on the moving dislocations is
the Peach-Koehler force FPK ¼ tb multiplied by the number of
dislocations and the distance hII travelled by the dislocations where
hII is the step height (with the approximation for small shear
mentioned earlier):

wIIct ¼NtbcthII ¼ thIIsDx (6)

The step in the twin boundary can be interpreted by dislocations
bct as shown in Fig. 4a. Alternatively, each semi-infinite wall of
dislocations can be represented by a disclination with strength
u1;2 ¼ ±s ([30,31], Fig. 4b). The two disclinations form a disclination
dipole, which has a dislocation equivalent with Burgers vector bII
perpendicular to the line direction of the disclinations and
perpendicular to the plane containing both disclinations (Fig. 4c).
The magnitude bII of bII is:

bII¼hIIu ¼ hIIs (7)
All three defect representations shown in Fig. 4aec have the
same displacement, strain, and stress fields (except within a
boundary layer with thickness equal to the distance dK2

). Thus, the
step in the type II interface is a disconnection with Burgers vector
bII and step height hII. The work wII done by a shear stress when
moving the disconnection by Dx is:

wII¼ tbIIDx ¼ thIIsDx (8)

3.3. Conclusions from considering straight twinning disconnections

We have shown that for type I and type II twins the propagation
of the twin boundary occurs through the motion of disconnections.



Fig. 5. Loop energy and work done by a growing type I disconnection loop with
G¼ 0.5 GPa, n¼ 1/3, s¼ 0.12, h¼ 2 Å and r¼ 1 Å (Table 1); the black solid line repre-
sents the loop energy, the gray lines represent the work done by a stress of 2 (dotted)
and 3.5MPa (dashed) and by the critical stress tI (solid). For low stress, the work in-
creases more slowly at small loop radius than the loop energy. With increasing radius,
the work increases more steeply and eventually equals the work. With increasing
stress, the region where the loop energy exceeds the work decreases. At tI, the work
equals or exceeds the loop energy for all radii. Thus, tI defines the twinning stress. The
inset shows that the work and the loop energy have a common point with common
tangent at RI ¼ RcI ¼ e3

4 r and t¼ tI.
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The motion of the type II twinning disconnection can be viewed as
resulting from the collective motion of conjugate twinning dislo-
cations. Comparison of Equations (6) and (8) shows that the two
interpretations are indeed equivalent. For type I and type II twin-
ning, the work per line length done by a stress when moving a
twinning disconnection equals the product of stress, step height,
twinning shear, and distance travelled.

4. Nucleation of a disconnection loop

The lateral growth of a twin requires the nucleation of twinning
disconnections. The nucleation of a disconnection is a three-
dimensional process and cannot be modeled by straight disloca-
tions. In this section, we consider circular disconnection loops
represented by a dislocation glide loop (or briefly a glide loop).

The nucleation of the glide loop requires a shear stress. When
the glide loop grows, the shear stress does work, which is pro-
portional to the shear stress, the Burgers vector, and the area swept
by the glide loop:

WL ¼ ptbIR
2 (9)

We denote the work with a capital W to indicate that this is an
absolute work (with unit J), and not a work per line length as in
Equations (4), (6) and (8).

From the first law of thermodynamics follows that the work
done by the stress when growing the glide loop must be equal or
larger than the energy E of the glide loop [32]:

E ¼ ð2� nÞ
4ð1� nÞGRb

2
�
ln

4R
r

� 2
�

(10)

where n and r are the Poisson ratio and the inner cut-off radius
(measured from the disconnection line) below which linear elas-
ticity theory fails. The shear stress required to grow the glide loop
infinitely is the twinning shear stress.

4.1. Type I twins

For a type I twin, the step height is constant hI ¼ dK1
and, thus,

the Burgers vector is constant (Equation (3)). Comparing equations
(9) and (10) we notice that at small R the work increases more
slowly than the loop energy. In contrast at large R, the work in-
creases faster than the loop energy. For low stress values, the En-
ergy of the loop exceeds thework for awide range of R (Fig. 5).With
increasing stress, that range decreases. At the critical stress (i.e. the
twinning stress tI) this range vanishes, and E(R) andWL(R) have one
common point with a common tangent:

EðRÞ ¼ WLðR; tIÞ (11)

dEðRÞ
dR

¼ dWLðR; tIÞ
dR

(12)

which yields the critical radius RcI:

RcI ¼
e3

4
ry5r (13)

and the twinning stress tI:

tI ¼
ð2� nÞGbI
pð1� nÞe3r (14)

At stresses larger than tI, the work done by the growing loop is
always greater than the energy of the loop. We therefore take tI as
the twinning stress for type I twins. At a radius larger than RcI, the
glide loop grows stably at a stress less than tI.
4.2. Type II twins

For a type II twin with an irrational twinning plane, crystallog-
raphy does not define the step height of the disconnection. Further,
one may argue that type II twin boundaries move without steps
because their energy does not depend on the boundary position. In
section 4.2, we first show that this argument is incorrect. We then
identify what is a reasonable step height for a type II disconnection.
Finally, we develop a nucleation model for a disconnection loop
that derives from the variability of the step height.

The elasticity of the interface introduces a threshold on
boundary movement. The argumentation is similar to that pre-
sented by Fleischer for solid solution hardening [33,34]: Consid-
ering a straight and rigid dislocation moving on its glide plane
through a crystal with a random distribution of solute atoms, the
average interaction force of the stress fields of the solute atoms on
the dislocation is zero. One might erroneously conclude that solute
atoms do not increase the yield strength. However, the assumption
of a rigidly straight dislocation is not correct. At any given average
position of the dislocation, the dislocation reacts to the local stress
field of the nearest solute atoms. Dislocation segments find local
energy minima, i.e. the dislocation line is not exactly straight but
meanders about a straight line.When the dislocationmoves, a force
is required to pull the dislocation segments out of their local energy
minima. Thus, the elasticity of the dislocation line results in a net
retracting force that is solid solution strengthening.

Similarly, we may consider the rigid propagation of a twin
boundary. If a type II twin boundary with an irrational twinning
plane moved such that the adjacent crystals are absolutely rigid,
the overall structure of the twin boundary remains identical. In
such a case, the energy of the interface did not depend on the
boundary position and the boundary moved without hindrance, i.e.
the twinning stress was zero. However, the assumption of
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absolutely rigid crystals is incorrect. The atoms adjacent to the twin
boundary relax to find local energy minima. Applying density
functional theory, Wang and Sehitoglu calculate the value of the
displacements of atoms at twin boundaries of shape memory alloys
[14]. They obtained maximum displacements “within 1% of the
Burgers vector”. When the boundary moves, each atom has to be
pushed out of a local energy minimum. This requires a force.

Wemodel this force by assuming elastic interaction between the
atoms. Moving the boundary locally away from its equilibrium
position creates a strained state within the volume swept by the
boundary with the local strain energy density εl:

εl ¼
1
2
sijεklztlgl ¼ Gg2l (15)

where gl is the strain produced by the local relaxation displace-
ment and tl is the stress resulting from restoring that displace-
ment. The strain energy density increases with increasing distance
from the equilibrium position of the boundary until, at a critical
distance hc, the atoms break away from their local energy minima.

Fig. 6 illustrates the formation of a type II disconnection loop.
The figure is drawn in two versions: on the left side in two di-
mensions using straight dislocations and disconnections and on the
right side in three dimension with disconnection loops. A discon-
nection dipole (2D) or loop (3D) may form through a gentle un-
dulation of the twin boundary (Fig. 6a) that growths into a stable
loop. We approximate the undulation (which we call nascent loop)
with a rectangular profile and a circular loop of small step height
(Fig. 6b). The nascent loop may grow by increasing the step height
and by increasing the radius. We assume that the nascent loop first
grows with constant radius RnII and increasing step height hnII
(Fig. 6c) and later transitions into lateral growth (i.e. increasing
radius) with constant step height (Fig. 6d). In the first stage, the
energy of the nascent loop has two contributions. The first contri-
bution is the line energy ED of the disconnection. The Burgers vector
increases linearly with the step height and, thus, the first energy
contribution is quadratic in the step height hnII. The second
contribution is the energy Ea required to pull the atoms away from
their local energy minima (Equation (15)), which is linear in hnII:
Fig. 6. Formation of a disconnection loop in a type II twin boundary in a two-dimensional sc
left) or bowing (3D, right) of a few dislocations creates a twin boundary undulation; (b) a dis
(c) in stage one of the loop nucleation, the nascent disconnection loop grows by increa
disconnection loop grows by increasing its radius.
EnII ¼ ED þ Ea ¼ ð2� nÞ
4ð1� nÞGRnIIs

2h2nII

�
ln

4RnII
r

� 2
�
þ pR2nIIεahnII

(16)

For the nascent loop, the work WnII is proportional to the
transformed volume and increases linearly with the growth:

WnII ¼ pR2nIItshnII (17)

The energy has a quadratic term in the step height and even-
tually exceeds the work with increasing step height. When the
energy equals the work, the nascent loop can no longer increase in
height. Following results in Ref. [14], themaximumdisplacement in
the twin boundary (resulting from relaxation) is approximately ar0
where r0 is an atomic length equivalent to the type I Burgers vector,
where a is a dimensionless relaxation parameter in the order of
0.01. At this distance hc, the local energy density vanishes. Thus, hc
marks the step heights at which the disconnection nucleus can
transition from thickness growth (with increasing Burgers vector)
to lateral growth (with constant burgers vector):

hc ¼ ar0
s

(18)

At the transition, gl ¼ as, and we obtain the type II twinning
stress tII from EnII¼WnII with hnII¼ hc¼ hII:

tII ¼Ga2sþ ð2� nÞ
pð1� nÞGa

r0
4RnII

�
ln

4RnII
r

� 2
�

(19)

Fig. 7 displays the loop energy EnII, and its two contributions ED
and Ea, and the workW for a stress of 0.2MPa (gray dotted) and for
the twinning stress tII (gray solid) as a function of step height. The
slope of WnII(h) is proportional to the stress. At low stress, WnII(h)
intersects EnII(h) below hc, which prevents the transition to lateral
growth. At t¼ tII (gray solid line), the work intersects the total
energy at h¼ hc. At the stress tII, the work is sufficient to enable the
transition to lateral growth.
hematic (left) and three-dimensional representation (right); (a) The displacement (2D,
connection pair (2D, left) or loop (3D, right) represents the nascent disconnection loop;
sing its step height hII; (d) in stage two, the step height remains constant and the



Fig. 7. Loop energy and work done by a nascent type II disconnection loop with
G¼ 0.5 GPa, n¼ 1/3, s¼ 0.12, and r¼ 1 Å (Table 1); the black dash-dotted, dashed, and
solid lines represent the loop line energy, the energy required to break atoms away
from their local equilibrium site, and the total energy (Equation (16)). The gray lines
represent the work done by growing the nascent loop at 0.2MP (dotted) and at the
twinning stress tII (solid). The work at tII intersects the total energy at h¼ hc and is
sufficient to trigger the transition from thickness growth to lateral growth.

Fig. 8. Loop energy (Equation (9), black solid line) and work done by the twinning
stress tI (Equation (8), grey solid line) for small loop radii; below R/r¼ e2/4, Equation
(9) fails at representing the loop energy, which may be approximated by the dotted
grey line. The Orowan stress (Equation (19)) is largest at R/r¼ e2/4.
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5. Thermal activation

A process is thermally activated if the thermal energy kT is less
than the activation energy EA. At temperatures above the critical
temperature Tc¼ EA/k, the process is athermal. This does not mean
that the twinning stress vanishes. Also, the twinning stress may
depend on temperature above Tc. At temperatures T> Tc every
attempt to form a disconnection loop is successful. This is not the
case below Tc. In this section, we find the activation energy for type
I and type II twinning. From Equations (14) and (19) follows that at
temperatures higher than Tc, the twinning stress depends on
temperature through the temperature dependences of the shear
modulus and of the twinning shear, i.e. the lattice parameters.
5.1. Type I twinning

The Orowan stress tOR is the stress required to keep a glide loop
stable against its tendency to shrink to reduce its strain energy
(Equation (10)). The Orowan stress is the derivative of the loop
energy with respect to radius divided by Burgers vector and loop
circumference.

tOR ¼ 1
2pRb

dEðRÞ
dR

(20)

At R¼ RcI, the Orowan stress equals the twinning stress, tOR ¼
tI. For smaller radii, R< RcI, the Orowan stress exceeds the twinning
stress. In this regime, the disconnection loop is unstable under the
twinning stress and collapses spontaneously. To grow a loop at the
twinning stress to the critical radius RcI requires thermal activation.

To estimate the activation energy, we find an upper limit for the
Orowan stress. Thermal activation must provide the additional
work done by the Orowan stress above the work done by the
twinning stress when growing the loop to RcI. In other words, the
activation energy is the difference between the work done by the
Orowan stress and the work done by the twinning stress (Equation
(9)). Fig. 8 shows thework done by the twinning stress and the loop
energy for small radii. According to Equation (10), below
R¼ R0¼ e2r/4, the loop energy is negative, which is unreasonable
and indicates that linear elasticity fails below R0. The grey dotted
line in Fig. 8 marks a more realistic path of the E(R) for very small R.
We can take the Orowan stress at R0 as an upper limit for the
highest Orowan stress occurring during growth of the loop nucleus
and find an upper limit for the activation energy EAI:

EAI �ðtORðR0Þ � tIÞpbIR2cI ¼
ð2� nÞðe� 2ÞGb2I e3r

32ð1� nÞ (21)

This limit of the activation energy depends only on material
parameters including elastic constants (G, n, r) and the Burgers
vector.

5.2. Type II twinning

Similar to the Orowan stress, we may define a stress that is
required to stabilize the loop against collapsing by reducing the
step height. We call this stress step stress. In an area below hc, the
work done by the slope of the energy is larger than the slope of the
work done by the twinning stress (Fig. 7). Therefore, the work done
by the twinning stress is smaller than the work done by the step
stress. The step stress has a maximum at h¼ hc. Similar to the case
of type I twinning, we find an upper limit for the activation energy
EAII in the difference of the work done by the step stress and the
work done by the twinning stress when increasing the step height
under constant stress tII up to h¼ hc:

EAII �
�
dEAII
dh

� dW
dh

�
hc ¼ ð2� nÞ

ð1� nÞGa
2r20RnII

�
ln

4RnII
r

� 2
�

(22)

The activation energy EAII contains the radius RnII which is not an
intrinsic material parameter. RnII depends on the local atomic
arrangement and varies with position since the interface plane is
irrational. A smaller radius leads to a smaller activation energy
(Equation (22)) but a higher twinning stress (Equation (19)).

6. Discussion

6.1. Discontinuous versus continuous twin boundary motion

We derive the twinning stress for type I and type II twins
starting with the assumption that a twin boundary moves through
the nucleation and growth of a disconnection loop (i.e. an interface
terrace). While suchmechanisms are well established for type I and
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compound twins, this is not the case for type II twins.We argue that
if a boundary moved continuously as a planar defect without dis-
connections, such a mechanism would require a high stress. We
attribute this stress to the local relaxation of atoms at the interface.
This effect is stronger the more compliant the lattice is because the
relaxation parameter a increases with decreasing stiffness.

A general result from the discussion in section 4.2 is the
following: A shear band with a chemical (i.e. bonding) energy asso-
ciated to its interfaces forms by a discontinuous mechanism and not
through a homogeneous process or the rigid propagation of an inter-
face. This applies to shear bands on all length scales from atomistic
shear to macroscopic shear systems [28].
6.2. Type I and II twinning in 10M NieMn-Ga

For 10M NieMn-Ga and close to the martensite transformation
temperature, the type I and type II twinning stresses are about 1.2
and 0.05MPa [1]. Very close to the martensite/austenite equilib-
rium temperature, type I twinning stress can be as low as 0.3MPa
[35]. The twinning stresses increase linearly with decreasing tem-
perature with �40 and �0.5 kPa/K [35,36]. In the following we
discuss how the predictions of the present model correspond to
these experimental results.

Table 1 lists the numerical values for the parameters needed for
Equations ((14), (19), (21) and (22), and the sources providing these
values or data supporting these values. Some of these values are not
readily available and we discuss here our reasoning for the chosen
figures.

Shear modulus: NieMn-Ga is highly anisotropic with an
extremely low C0 modulus near the austenite/martensite phase
transformation. Seǐner et al. report that C0 increases linearly with
temperature in the austenite phase and assumes a value of
3.6 GPa at 380 K [37]. Linear extrapolation to the martensite
transformation temperature of 219 K yields about 1.5 GPa for C’.
Heczko et al. relate the low C0 modulus to a high magnetoelastic
coupling constant, which peaks at the transition temperature
indicating that C0 increases slowly with decreasing temperature in
the martensite phase [38]. Chernenko et al. report a 3 GPa Young
modulus for the martensite phase near the martensite trans-
formation [39], which suggests an even smaller C0 in the martensite
phase near the martenstite/austenite equilibrium temperature. The
Young modulus increases linearly with decreasing temperature.
The very compliant elasticity of NieMn-Ga near the martensite
transformation agrees with complete softening of the TA2 phonon
branch in the austenite andmartensite phases [40]. All these results
are consistent with a C0 modulus, which is almost zero just below
the martensite transformation temperature (we choose
C’¼ 0.5 GPa at the transition temperature) and increases slowly and
linearly with decreasing temperature to a value of approximately
15 GPa at 0 K.

Step height, Burgers vector, twinning shear: These parameters
vary with structure, lattice parameters, and, thus with composition.
Table 1
Parameters for equations ((14), (19), (21) and (22); numerical values are given for 10M

Parameter, symbol, unit Value

Shear modulus, G, GPa 0.5
Poisson ratio, n, - 1/3
Step height, hI, Å 2
Inner dislocation cut-off radius, r, Å 1
Breaking distance, r0, Å 1
Twinning shear, s, - 0.12
Loop radius, RnII, Å 20
Interface relaxation parameter, a, - 0.025
The variations are small, though, and unimportant in the scope of
this study as discussed in section 2. We use parameters consistent
with electron microscopy analyses of twinning disconnections
[41,42].

The values listed in Table 1 yield values of 4.7 and 0.33MPa for tI
and tII at the martensite transformation temperature, which is in
the right order of magnitude. For zero Kelvin, the model predicts
140 and 10MPa. Experimental data for type I twinning is not
available for such low temperatures. For type II twinning, 10MPa is
substantially higher than the 0.2MPa deduced from magnetic
switching field experiments [36]. The overestimation of the type II
twinning stress at low temperature results from the neglected
temperature dependence of the interface relaxation parameter a.
This parameter represents the compliance of the lattice. Thus, as
the shear modulus increases with decreasing temperature, a de-
creases accordingly. If we were to include the temperature
dependence of a, the model predicted a lower twinning stress at
low temperature.

For the activation energies we obtain EAI¼ 0.13meV and
EAII¼ 0.1meV. This suggests that twinning is athermal to very low
temperatures of about 2e3 K for both twinning types. This is in very
good agreement with results from Straka et al. who measured the
magnetic switching field for type II twins down to 1.7 K [36]. For a
sample without intermartensitic transformation, the switching
field increased linearly with decreasing temperature from room
temperature to 1.7 K. These results confirm that type II twinning is
athermal. At higher temperature, the twinning stress depends on
temperature only through the temperature dependence of the
shear modulus, of the interface relaxation parameter a, and of the
twinning shear. The latter dependence is weak. For type I twinning,
data is available for the temperature range down to 40 K below the
martensite transformation temperature [35]. In this range, the type
I twinning stress increases linearly with decreasing temperature
indicating athermal twinning in agreement with our findings.

The transition from thickness growth (nascent disconnection
loop) to lateral growth (at constant step height) occurs at hc. This is
the step height of type II twinning and it is about one order of
magnitude smaller than the step height of type I twinning. There-
fore, the type II twinning Burgers vector bII is about one order of
magnitude smaller than the type I twinning Burgers vector bI and
so are the associated stress fields. The elastic interaction force of
crystal defects (interstitial atoms, impurities, small angle grain
boundaries etc.) with dislocations is proportional to the dislocation
stress field. Thus, the hardening effect of such impurities is sub-
stantially reduced for type II twins as compared to type I twins.
6.3. Dependence of type II twinning stress on RnII

The type II twinning stress slowly decreases with increasing the
nucleus radius RnII (Equation (19)). Multiplying the radius with or
dividing it by 2 decreases or increases the twinning shear stress by
about 40%. The nucleus radius is not a material parameter. It
NieMn-Ga near the martensite transformation temperature.

Source Comment

[36e40] varies with temperature

[41,42] yields bI with Eq. (2) for Eq. (14)
of the order of an atomic radius

[14] of the order of an atomic radius
[41,42] varies with lattice parameters

must be larger than 5r
[14] varies with shear modulus
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depends on the local atomic arrangement and varies from position
to position. We assume that the nucleus radius is equal to or larger
than RcI (Equation (13)) although by no more than about one order
of magnitude. The reason for the upper limit is the positive and
stronger than linear dependence of the activation energy on the
nucleus radius (Equation (22)). From the experimental finding that
type II twinning is not thermally activated at 1.7 K follows that the
activation energy is less than about 0.2meV and, thus, the nucleus
radius must be less than about 10 nm.

Some authors describe the deformation-induced removal of
twin boundaries in a shape memory alloys with the term “det-
winning”. Aside from twin nucleation, twinning (which includes
twin nucleation) and detwinning (which excludes twin nucleation)
are identical processes. Since we consider here only the propaga-
tion of a twin boundary which does not include twin nucleation,
the results apply to twinning and detwinning alike. Nucleation of a
twin requires a higher stress than twin boundary motion. Thus, for
a single domain shape memory alloy single crystal, the initial
twinning stress is higher than the stress required for continuous
deformation as demonstrated by Aaltio et al. [43].

7. Conclusions

We presented a twinning model based on the disconnection
structure of twin boundaries. From the elastic property of the
interface followed the general result that twin boundaries move
through the motion of twinning disconnections. We considered the
homogeneous nucleation of disconnection loops. The first law of
thermodynamics provided conditions for the twinning stresses for
type I and type II twins. The twinning stress of type II twins is
approximately fourteen times lower than that of type I twins. For
type I twinning, the activation energy is a material constant
whereas for type II twinning, the activation energy depends on
structural fluctuations in the interface. At temperatures with
thermal energy higher than the activation energy, the twinning
stress depends on temperature only through the temperature de-
pendences of the shear modulus and the lattice constants and in
the case of type II twinning on the interface relaxation parameter a
(which depends on the shear modulus). For 10M NieMn-Ga,
thermal activation is significant only below about 3 K. Within the
limits of isotropic linear elasticity, the model predicts twinning
stresses for 10M NieMn-Ga reasonably well.
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