?

Previous PDF

Next PDF

Introduction

Key statements (i)

These ILs represent a class of compounds that have great potential in the separation of high molecular weight and...

Sulfonium- and phosphonium-based ils with aryl moieties hold promise as high thermal stability stationary phases tha...

+ Show more

Recommended Articles

Relationship between desorbent usage and the recovery of a target product in three-zone simulated moving bed processes designed under the conditions of positive and negative flow-rate-ratios of liquid to solid phases

Sungyong Mun

Journal of Chromatography A • 11 October 2019

View PDF

Feedback 💭

Practical considerations on the particle size and permeability of ion-exchange columns applied to biopharmaceutical separations

Journal of Chromatography A 1604 (2019) 460466

Contents lists available at ScienceDirect

Journal of Chromatography A

journal homepage: www.elsevier.com/locate/chroma

Ultra-high thermal stability perarylated ionic liquids as gas chromatographic stationary phases for the selective separation of polyaromatic hydrocarbons and polychlorinated biphenyls

Gabriel A. Odugbesi^a, He Nan^a, Mohammad Soltani^b, James H. Davis Jr.^b, Jared L. Anderson a,*

^a Department of Chemistry, Iowa State University, Ames, IA 50011, USA

^b Department of Chemistry, University of South Alabama, Mobile, Alabama 36688, USA

ARTICLE INFO

Article history: Received 2 July 2019 Revised 13 August 2019 Accepted 17 August 2019 Available online 19 August 2019

Keywords: Gas chromatography Polycyclic aromatic hydrocarbons

ABSTRACT

Ionic liquids (ILs) are well-known in the field of separation science for their unique selectivity when used as stationary phases in gas chromatography (GC). While a significant amount of knowledge has been attained in correlating structural features of an IL to separation selectivity, developments in producing IL-based stationary phases suitable for high temperature GC studies have lagged behind. Column bleed is a result of the stationary phase undergoing volatilization/decomposition at high temperatures and is undesirable in separations coupled to GC/MS. It has been well-known that traditional classes of ILs with long alkyl side chain substituents are susceptible to Hofmann elimination at elevated temperatures. In this study, a new class of IL stationary phases containing perarylated cations exhibiting improved thermal stability are introduced. These ILs were used to prepare wall-coated open tubular columns with