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Abstract

Pulsar timing observations precisely test general relativity. Recently, the hier-
archical triple system PSR J0337 + 1715 has placed new constraints on the
existence of a fifth force from violation in the strong equivalence principle.
Many alternative gravity theories exist with massive (pseudo-)scalar fields to
explain a variety of phenomena from the accelerating expansion of the Universe
at large scales to the QCD strong CP problem at small scales. We here develop a
generic formalism for the fifth force effect in theories involving massive scalar
fields arising from e.g. string theory. With PSR J0337 measurements, we find
the strongest bound on the simplest theory with a massive scalar field beyond
general relativity and derive new constraints in other theories with axions, dark
matter mediators, and higher-curvature corrections. These results show that the
triple system JO337 provides a stringent test for massive scalar fields.

Keywords: tests of general relativity, modified gravity, fifth force

(Some figures may appear in colour only in the online journal)

1. Introduction

In the late 16th century, Galileo allegedly showed that all masses feel gravity equally in his
famous leaning tower of Pisa experiment. This suggested that all test masses experience free
fall when gravity is the only physical force involved. Such an experiment also hinted at a cen-
tral pillar of gravitational theory, the equivalence principle, that Einstein would use centuries
later. The strong equivalence principle (SEP) is at the core of general relativity (GR): all test
masses—including self-gravitating ones like stars and black holes—feel universal gravitation.

Currently, GR has been extensively verified with various experiments and observations
[1, 2]. Solar System tests have thoroughly constrained the weak field regime of gravity [1].

! Author to whom any correspondence should be addressed.
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Binary pulsar measurements have also made precision tests of the non-dynamical, strong field
regime through pulsar timing [3, 4]. Cosmological observations can probe the large-scale
nature of gravity [5]. Additionally, gravitational wave observations have probed the dynam-
ical/strong field regime of GR [6-11]. However, we can only know the validity of GR
by continually testing it at ever higher precision and energy scales. Moreover, since GR
cannot be made into a quantum theory, it is only an effective field theory description of
nature, and it must break down at some scale where quantum effects become relevant
[1,2].

In this paper, we focus on testing theories with extra dynamical scalar fields which arise in
many different contexts. For example, string theory predicts a plethora of scalar fields in the
form of dilatons and moduli. Moreover, its low-energy effective theory leads to scalar—tensor
theories [12]. Scalar fields can also source inflation and cosmic acceleration [13, 14]. Fur-
thermore, string theory predicts the existence of massive (pseudo-)scalar fields called axions.
These axions are especially interesting because they are also candidates for cold dark matter
[15]. Massive scalar fields also arise in certain modified theories of gravity within the context
of scalar—tensor theories [16, 17] and as dark matter mediators [18]. However, these additional
scalar fields come with an important cost: the extra degrees of freedom, in general, give rise
to the fifth force (on top of the four known forces in physics) between two self-gravitating
objects. This force depends on the internal structure of each body and may violate SEP [1].
We also note that there have been mathematically rigorous approaches to studying Einsteinian
gravity coupled to extra scalar fields [19-21], but we will focus in this paper on a phenomeno-
logical approach to modified gravity.

Previous experiments have placed stringent constraints on SEP violation within the Solar
System. For example, lunar laser ranging (LLR) allows us to measure the difference in the
gravitational acceleration of the Earth and the Moon towards the Sun [22-24] (the so-called
Nordtvedt effect [25]), which should vanish if the gravity acts onto objects universally as in
GR. Furthermore, NASA MESSENGER has measured the orbit of Mercury very precisely
and bounded SEP violation even more stringently than LLR experiments [26].

Binary pulsar observations can probe SEP violation even more accurately. In particular,
one can now carry out a similar test to LLR thanks to the recent discovery of the pulsar in
a stellar triple system PSR J0337 + 1715 [28, 29] (‘PSR J0337’ hereafter). This system con-
sists of an inner millisecond pulsar-white dwarf (WD) binary and a second WD in an outer
orbit (figure 1). The SEP violation was constrained by comparing the acceleration due to the
outer WD onto the pulsar and inner WD (shown as green arrows a3 and a3 in figure 1) [27].
The new measurement of the SEP violation improves on the previous measurements from
NASA messenger [26] and LLR [23, 24] a factor of 5 and 7 respectively. Unlike the previous
Solar System tests of SEP violations that can only probe weak-field effects, PSR J0337 probes
strong-field effects since both neutron stars and WDs are strongly self-gravitating objects.
Indeed, new bounds on the SEP violation from PSR J0337 have been used to place the most
stringent bounds on the massless scalar—tensor theories [27].

In this paper, we apply the SEP violation bound from PSR J0337 to theories with massive
scalar fields. We first derive a generic formulation that describes the Nordtvedt effect in such
theories. We then use this generic formulation to derive bounds on example theories.

Regarding theories beyond GR, we consider (i) Horndeski theory [30, 31], (ii) mas-
sive Brans—Dicke theory, and (iii) metric f{R) gravity. Horndeski theory is the most general
scalar—tensor theory of gravity that contains at most 2nd order derivatives in its field equations.
Massive Brans—Dicke theory [16, 17] is an extension to the well-known Brans—Dicke theory
[32] endowing the scalar field with a non-vanishing mass. Metric f(R) gravity is a higher-
curvature corrected theory where Ricci scalar R in the Einstein—Hilbert action for GR is
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Outer WD
(Body 3)

Inner WD
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Figure 1. Schematic picture of the triple system PSR J0337 + 1715 [27]. The outer WD
orbits the inner binary consisting of a pulsar and an inner WD. The violation of SEP is
characterized by the difference in the acceleration of the pulsar (a;3) and inner WD (az3)
towards the outer WD (a;3 = ap3 in GR). Its fractional difference has been constrained
to be less than 2.6 x 107 [27].

replaced by a function of the Ricci scalar f{R). This last theory can be mapped to massive
Brans—Dicke theory [33].

We also consider theories involving massive scalar fields within GR. Of course, these the-
ories do not violate SEP, but they can give rise to a fifth force due to a new interaction caused
by the massive scalar fields. One example that we study in this paper is the axion. Axions were
originally introduced to solve the strong CP problem [34] in QCD?. As already mentioned,
they also arise from string theory, creating many interesting phenomena in a string axiverse
[35]. Both QCD and string axions are candidates for cold dark matter. The second example
theory of a massive scalar field within GR is the gravitationally-bound dark matter inside
stars [18, 36, 37]. Regardless of the dark matter model, a Yukawa modification can arise for
the gravitational potential of a neutron star if a fifth force is caused by an extra light force
mediator for dark matter [18].

Below, we use the geometric units ¢ = G = 1 unless otherwise stated.

2. Formulation

Let us now present a new framework to capture the existence of a fifth force (that may lead
to a violation of SEP) due to massive scalar fields in a generic way. We will see that Yukawa
potentials arising generically from massive scalar fields result in emergence of SEP viola-
tion in a three body problem. SEP violation has been computed in specific theories previously
(for massive Brans—Dicke [16] and Horndeski [38]), but we will derive its expression in other
scalar fifth force theories (f{R) gravity, axions, and an example DM theory). Furthermore, we
have generalized this with a novel parameterized expression for SEP violation with massive
scalar fields.

2 The strong CP problem asks why QCD preserves CP symmetry. Experiments seem to measure CP symmetry in QCD
(e.g. by measurements of neutron electric dipole moment) while the mathematical description of it does not generically
have CP symmetry. This is curious because QCD must have a finely tuned parameter to have CP symmetry.

3



Class. Quantum Grav. 37 (2020) 145008 B C Seymour and K Yagi

Let us first see the modification of Newtonian acceleration with the presence of a massive
scalar field. The field equations for a scalar field will be of the form,

(O—-ml) =S5, (1)

where my is scalar field mass, [J is the d’Alembertian operator, ¢ is the scalar field, and S is
the sources. From this, we see that a scalar field will generically create a Yukawa potential
due to the Green’s function of (] — m?2. A scalar field creates a Yukawa potential between
objects with (inertial) masses my and dimensionless scalar charges g; (i = 1,2) as

Vo = —Bmymy 1 e/ X, )

r

where \ = h/(mgc) is the reduced Compton wavelength of the massive scalar field, and B
is a theory-dependent dimensionless coupling constant. This, together with the Newtonian

potential (Vx = —mymy/r)? can be unified into a single potential as
m;m; —rii/\
Vij=— r“jgij Gij =1+ Bgiq; e "/, 3)
ij

where we define r;; = r; — rj and r;; = |r; — r;| is the separation between objects i and j. The
acceleration of the ith object is found by taking the gradient of equation (3), which yields

1 m; Tij 3] »
a; = ——ViZVij = _Z_zj [gij + Bgigi—= e ”/A} rij, 4)
" Pl x

where we define the unit vector I;; = r;;/r;;. Note that the acceleration of body i depends on
the scalar charge g;. This breaks the equivalence principle.

Now, we will specialize the n body acceleration equation to a hierarchical triple system. In
order to obtain the fifth force parameter from our expression for acceleration, we must con-
sider the difference in acceleration @, = a; — a, that bodies 1 and 2 experience from a third
[16, 39]. For hierarchical triple systems like the Earth—-Moon—Sun system and PSR J0337
where the outer body is much further away from the other two, one can impose r, < r3 and
r13 ~ 13 ~ r, where r is distance from the inner binary’s center of mass to body 34 Assuming
further ry,/ A~ 0°, the expressions for @; and a, are

Giomy m roo_r.
a; = — 122 S (*23) [913 +Bqig3—— ¢ X] r, %)
1, r X
Giom; ms A I
a=+=—5 T — (7) [923 +Bpgz— e X] I. (6)
r12 r X
Now, we find the expression for a;,
my+my m -
an = ~(1+ q@:B)———tn ~ AL (7)

12

3n this work, we renormalize the gravitational constant for the potential with no scalar charges. Note that we are
setting this renormalized gravitational constant to be 1, not the bare gravitational constant.

#To see a similar analysis to higher perturbation order, it can be found in section 8.1 of reference [40]. It is noteworthy
that tidal interactions enter at higher orders.

3 We have checked that all our bounds are within this approximation regime.
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The first term is the rescaled Newtonian acceleration and the second is due to the fifth force.
The fifth force creates a relative acceleration between the inner bodies towards the third body.
Thus, a fifth force would create SEP violation in this astrophysical system.

Let us now examine the fifth force parameter A. For the pulsar in a triple system like PSR
J0337, the fifth force parameter due to massive scalar fields can generically be expressed as

A= (1 + LX) (Gi3 — G23)
=B (1 + Lx) (g1 — gz e~ ®)

This is the generic expression for the fifth force parameter involving a massive scalar field.
When fifth force is absent, GR guarantees that there is no SEP violation so we will have
A = 0. We test the presence of fifth force due to massive scalar fields by comparing how closely
A is constrained to zero (with an experimental uncertainty of o a).

Next, let us test the presence of massive scalar fields with the SEP-violation constraints
from PSR J0337. First, we derive the fifth force parameter A in example theories and list it in
table 1. Below, we look at each theory in detail and use the expression |A| < 204 to test a fifth
force at 2-0 level. We consider constraints with the measurement precisionof oo = 2.6 x 107°
from PSR J0337 [27, 28].

3. Results

3.1. Massive Brans—Dicke

Massive Brans—Dicke theory is constructed by adding a potential M(¢) to the massless
Brans—Dicke action. This forces the scalar field to acquire a scalar mass (squared)

2 Po 1"
mg = 3+2wBDM (o), 9

where wpp is the Brans—Dicke parameter, and its inverse roughly specifies the coupling
between the scalar field and matter. One recovers GR in the limit wgp — co. The background
value of the scalar field is ¢y = (4 + 2wsp)/(3 + 2wpp) [17]. The scalar field changes the
effective gravitational constant to be G = ¢,/¢ [17]. Due to the dependence of the gravita-
tional constant on the scalar field, we can define scalar charges g; = 1 — 2s; of body i for
massive Brans—Dicke theory, where the sensitivity s; is defined as s, = — 9(In m;)/9(In G)| do*
Following [16], we choose swp < spsg = 0.2. The Nordtvedt parameter 7y characterizes
SEP violation and is derived in [16] for massive Brans—Dicke theory. One can easily find
the fifth force parameter A by the relation A = ny(s2 — 51).

Let us now examine the constraints arising from the pulsar triple system. Using the con-
straints on SEP violation with the triple system in conjunction with our expression for A
in table 1, we can construct the region in the parameter space (wgp, M) ruled out by obser-
vations. Figure 2 presents the lower bound on wgp + 3/2 as a function of the scalar mass
ms. For example, the red solid curve is obtained as a contour corresponding to A = 204,
where the expression for A for massive Brans—Dicke theory can be found in table 1 and
oA = 2.6 x 107° for PSR J0337 as already mentioned. The new result from PSR J0337
now provides the most stringent bound on massive Brans—Dicke theory when the scalar field
mass is sufficiently small and improves significantly on the previous strongest bound from
the Cassini mission via Shapiro time delay. When the mass is relatively large, most stringent

5



Table 1. Mapping between fifth force parameters in equation (8) and theoretical parameters in example theories. The first class represents theories
beyond GR while the second class shows theories with scalar fields within GR. The first and second columns list example theories and their theoretical
parameters. The third and fourth columns show the mapping for B and scalar charge g. The last column shows A specific to J0337. Horndeski theory
contains arbitrary functions instead of theoretical parameters and how the generic expression for A reduces to a simpler expression for J0337 depends
on such functions. Note that f{R) corresponds to MBD with wgp = 0. In our listing for axion charge, we assume that the star is at the critical density
to source the axion field (below this cutoff the field is not sourced).

Theory Th. params B q; A for JO337 References
Massive Brans—-Dicke (wBD, m5) T 1-2s; s (L Hs e [17]
Quadratic f(R) mo= /e ! 1-2s; “2(1 4 L)y e/ (33, 41]
Horndeski — T Gia.0) — 5 Gaoo) %(1 + Hyer/? [30, 38]
Axion (o o) L fﬁ—ls&[z?) R (1 4 fyReEa [42, 43]
Dark matter (o, mg) 1 — (1 + $)apsr-wp e/ [18]
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Figure 2. The lower bound on the Brans—Dicke parameter wpp as a function of the
scalar field mass. We show the pulsar timing measurements of the SEP violation with
PSR J0337 (red solid) and of the orbital decay rate in two pulsar/ WD binaries [16, 44]
(green dotted-dashed and green dashed). We also show the Solar System measurements
of Shapiro time delay by Cassini [16] (cyan dotted) and of SEP violation by MES-
SENGER [26] (orange dotted-dashed). We include the inverse square law constraints
from LLR (blue dotted-dashed) and planetary (magenta dotted-dashed) [45, 46]. The
horizontal line (black dashed) corresponds to the f{iR) gravity with wgp = 0. Larger val-
ues on wpp corresponds to stronger bounds. Observe the new constraints derived here
(PSR J0337, LLR, and planetary bounds) place the most stringent bound in massive
Brans—Dicke theory. Note that the theoretical lower bound is wpp > —3/2, which is
why we plot wgp + 3/2 following the example of [16].

bounds come from LLR and planetary measurements, which are obtained here for the first
time.

3.2. Metric f(R)

Next, let us consider metric f(R) gravity. In particular, we consider a simple quadratic form
fAIR) =R+ @, R? which is motivated from e. g. inflation [411°. Introducing an effective scalar
field ¢ = df/dR, one can show that this theory is equivalent to Brans—Dicke theory with
wpp = 0 and a scalar mass mg; = /1/6a,. The black dashed line in figure 2 corresponds
to the parameter space of f{R) gravity. One can thus see that all scalar mass values other
than mg > 8.2 x 10~!7 eV are ruled out by PSR J0337 bounds. This corresponds to a constraint
of @ < 9.6 x 10"7m?2.

Let us compare this with other existing bounds. The earth-based experiments can probe
the Yukawa correction to the inverse square law at small length scales. For example, the E6t-
Wash experiment placed a considerably stronger bound with @, < 107! m? [47]. On the other
hand, the double-pulsar binary PSR J0737-3039 constrains @, < 2.3 x 10" m? and gravity
probe B yields a, <5 x 10" m? [48], while GW170817 gives a, < 4 x 10°m? [33]. Thus,
the new bound from PSR J0337 is weaker than any of the above and is not well suited for
probing this particular f{R) theory of gravity.

N ormally, the literature refers to a, as a,, but we add the bar to distinguish from acceleration a,.
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3.3. Horndeski gravity

Let us now briefly summarize Horndeski gravity and find its generic fifth force parameter.
Horndeski gravity is the most general scalar—tensor theory of gravity with up to 2nd order
derivatives in the field equations [30]. The theory contains four arbitrary functions G;(¢, X) for
i =(2,3,4,5) with ¢ representing the scalar field, X = —1/2¢,,¢" and ¢,, = V¢, and the
action is given by

5
S = %g / d*x/=gLi + Sulguw ¥ml, (10)
where g uv is the metric while Sy, is the action for matter field v [49]. £; is defined to be
Lr =Gy(¢, X), (11)
L; = — Gy(¢, X)0, (12)
L4 =Ga(6, R + Gax (@67 = (6,)] (13)
£5 =G50, X)Guo™ — ZX[@67 +2(6,0)’ ~3(60)'00] . (14)

with Gy = % and J = g""V,V,.
We now derive the expression for the fifth force parameter A in Horndeski gravity. From
the expression for the relative acceleration of two bodies in equation (44) of [38], we find

(g1 — q2)q3 PN\ o x
A = 1+—)e " *, 15
G40.0)(Ga,0) + 1)C ( X ) (1

where the mass of the scalar field inside the Compton length —\ is defined as

m? = — GM*‘”, (16)
) ¢
with
Gi(m,n) = % . (17)
$=09.X=0

The dimensionless scalar charge ¢; of body i and parameter ¢ in equation (15) are defined
by
ZS,‘

qi = Gaa0) — %Gzl(o,()), (18)

Giao
¢ = Gyoyy — 2G310) + 3 00, (19)
G40,0)

Figure 3 presents the bound on (¢, — ¢,)q3/(Ga0,0)(Gaw,0) + 1)¢) against m, from the fifth
force measurement of PSR J0337.

7Our expression in equation (15) differs from equation (44) of reference [38] because we renormalized the constant
so that the my — oo limit recovers GR.
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Figure 3. Lower bound on (¢, — q)q3/(G40,0)(Gaw,0) + 1)¢) as a function of the mass
of the scalar field from PSR J0337.

We now comment on how one can derive the massive Brans—Dicke result from the above
Horndeski one. Horndeski theory reduces to massive Brans—Dicke theory under the following
choice of the arbitrary functions [50]:

2
G = = PX-U©®); Gi=0; Gi=Gs=0, (20)
in conjunction with the definition for ¢, in massive Brans—Dicke given by [17]
442w BD
=_ 72 21
@0 3T 2wmn (21
Substituting these into equation (15) and using equation (18), we arrive at
R (22)
= 52 —s1)(1 —2s s
3+ wep x, )2 3

Thus, we have successfully recovered the expression for massive Brans—Dicke theory from that
in Horndeski gravity. In the end then, this constraint on Horndeski gravity is powerful because
it can be mapped onto a large class of scalar—tensor theories so that many can be tested.

3.4. Axions

In theories with axions, compact objects may acquire scalar charges that give rise to a fifth
force [42, 43]. The axion field is sourced by large densities such as those inside stellar objects,
including pulsars and WDs in PSR J0337. The scalar (or axion) charges are found by the
equation in table 1 from [42, 43, 51] where R, is the radius and p; is the density of the ith body,
while my is the axion mass and f, is the axion decay constant. However, note that the axion
field can only be sourced at a critical density such that p; > m2f?/h* and p; > f2/hR? [42].
Because axion charge decreases with larger compactness, the WDs will dominate strength
of the axion field compared to neutron stars in PSR J0337 (because 1/In(1 — 2m/R) goes
to zero as m/R approaches 1/2). Using the values of the axion scalar charges, we find the
expression for the SEP violation parameter A shown in table 1.

9
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Figure 4. Excluded regions of the axion parameter space from various observations. We
show the constraints due to the absence of a fifth force in PSR J0337 (red) and the orbital
decay measurement of the double-pulsar binary [42] and PSR J1738 [51] (magenta and
blue). We also show the constraints from measurements of the sun (yellow), supernova
SNI1987A (green), and black hole (BH) spins (orange) [42, 54, 55]. If the axion is the
dark matter source, the region above the cyan line is ruled out due to big bang nucleosyn-
thesis (BBN) constraints [56]. The QCD axion with parameters finely tuned to solve the
strong CP problem must lie on the black line [43].

Figure 4 presents the constraints in the parameter space for the axion. The shaded regions
are those which are excluded by observations. Notice that PSR J0337 can exclude a large
region of the parameter space. In particular, we can now close the previously allowed gap
between the bounds from binary pulsar and solar observations. Notice also that the shape of
the excluded region for axions from PSR J0337 is similar to that for massive Brans—Dicke the-
ory in figure 2, except there is also a minimum line at 1 /£, = 10~!7-> GeV~! due to the density
becoming lower than one of the critical ones. Notice that the range of the axion mass that
can be probed from pulsar observations is less than ~ 10~'®eV. Thus, the pulsar observa-
tions probe a different regime than those from e.g. the axion dark matter detection experiment
ABRACADABRA examining 10~?eV < mg < 107%eV [52, 53]. Thus, these two methods
for constraining the axion parameter space are complementary.

3.5. Light force mediators of dark matter

Finally, let us consider fifth forces due to light force mediators of dark matter. Dark matter
can become gravitationally bound inside neutron stars or WDs [36, 37]. Moreover, a mas-
sive light force mediator could cause a fifth force between bound dark matter in the stars
[57-59].

We test for a light force mediator between two stars generically following reference [18].
First, we assume a scalar field potential given by equation (2) and define o = Bg,q; as the
interaction strength due to the light force mediator [18]. The value of o depends not only on
the dark matter model but also on the type of objects involved. We show the expression for
the fifth force parameter A arising from this potential in table 1. We simplify this by assuming

10
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Figure 5. The upper bound of the dark matter Yukawa coupling for binaries as a function
of scalar field mass from PSR J0337 and future gravitational-wave detections. On the
left, we show the constraints for the coupling of a WD—pulsar binary from fifth force
measurements of PSR J0337 (solid red). On the right, we show the upper bound on the
coupling of a NS—NS binary with future gravitational wave observations with advanced
LIGO (dashed orange) and Einstein Telescope (dashed blue) [18]. The GW bounds come
with a representative system with masses of (2.0 M, 1.4 M) at distance of 100 Mpc.
The full parameters used in the Fisher analysis is in table 1 of reference [18]. Notice that
the bounds from two different observations are complementary to each other.

that more dark matter will be bound in a neutron star than in a WD. This assumption sug-
gests that the interaction between the pulsar and WD will dominate that of the two WDs:
Qpsr—wD > awp—wp- This assumption is a consequence of the NS having a higher dark
matter capture rate. The dark matter capture rate is proportional to both baryon density and
escape velocity squared, so the bound dark matter in a NS will dominate that of the WD [60].
From this, we can constrain the value of apsr—wp with the measurement of PSR J0337.

Figure 5 presents the lower bound on apsr—wp as a function of the mass of the light force
mediator. Notice that the shape of the curve corresponds to flipping the one in figure 2 upside
down. This is because the former is showing the lower bound while the latter is showing the
upper bound. We also present constraints on ans—ns from future gravitational-wave detec-
tions for comparison [18]. In terms of the magnitude, these pulsar bounds are comparable
to those that will be obtained with future gravitational-wave detections [18], though they are
complementary as the mass range being probed is different due to the different size of the
binary systems.

4. Conclusion and discussion

In this paper, we studied how well one can probe massive scalar fields with the fifth force
measurement in the pulsar triple system J0337. We have developed a formalism to describe
the fifth force effect for massive scalar fields due to an additional Yukawa potential in a
generic way. Applying this to various example theories, we found that we can place the cur-
rent strongest bound on massive Brans—Dicke theory. We have also found that we can restrict
new regions of the axion parameter space. Furthermore, we have placed new constraints on the
force between a neutron star and WD due to interactions from bound dark matter. Lastly, our

1
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expression for SEP bounds in Horndeski theory is generic and can be used to further test other
scalar—theories.

The future is bright for the discovery of more hierarchical systems to further constrain a
fifth force and SEP violation. So far, estimates suggest that only about 5% of the pulsars in the
Milky Way have been discovered [61]. New radio telescopes such as FAST [62] and SKA
[63] will soon come online and will vastly improve sensitivity. The results presented here
show that a fifth force or SEP violation is and will continue to be a powerful way of test-
ing GR. Our generic formalism for massive scalar fields can easily be applied to such future
detections.
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