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ARNOLD-THOM GRADIENT CONJECTURE FOR THE ARRIVAL TIME

TOBIAS HOLCK COLDING AND WILLIAM P. MINICOZZI 11

ABSTRACT. We prove conjectures of Bené Thom and Vladimir Arnold for €% solutions to
the degenerate elliptic equation that is the level set equation for motion by mean curvature.

We believe these results are the first instances of a general principle: Solutions of many
degenerate equations behave as if they are analytic, even when they are not. If se, this
would explain various conjectured phenomena.

0. INTRODUCTION

By a classical result, solutions of analytic elliptic PDESs, like the Laplace equation, are
analytic. Many important equations are degenerate elliptic and solutions have much lower
regularity. Still, one may hope that solutions share properties of analytic functions. On the
surface, such properties seem to be purely analytic; however, they turn out to be closely
connected to important open problems in geometry.

For an analytic function, Lojasiewicz, [L1], proved that any gradient flow line with a limit
point hag finite length and, thus, limits to a unique critical point. This result has since been
known as Lojasiewicz’s theorem. The proof relied on two Lojastewicz inequalities for analytic
functions that had also been used to prove two conjectures around 1960: Laurent Schwarz’s
division conjecture in 1959 in [[L3] and a conjecture of Whitney about singularities in 1963 in
[L4]. Around the same time, in 1958, Hormander proved a special case of Schwarz’s division
conjecture by establishing Lojasiewicz’s first inequality for polynomials, [H5|.

Figure illustrates in R? a situation conjectured to be impossible. The Arnold-
Thom conjecture asserts that a blue integral curve does not spiral as it ap-
proaches the critical set (illustrated in red, orthogonal to the plane where the
curve spirals).
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2 ARNOLD-THOM GRADIENT CONJECTURE FOR THE ARRIVAL TIME

Around 1972, Thom, [T], [L2], [Kul, [A], [G], conjectured a strengthening of Lojasiewicz’s
theorem, asserting that each gradient flow line of an analytic function approaches its limit
from a unique limiting direction:

Conjecture 0.1. If a gradient flow line «{¢) for an analytic function has a limit point, then
{t)—Tea

exists.
|2{t)— 2o

the limit of secants lim;_.,

This conjecture arose in Thom’s work on catastrophe theory and singularity theory and
became known as Thom's gradient conjecture. The conjecture was finally proven in 2000
by Kurdyka, Mostowski, and Parusinski in [KMP], but the following stronger conjecture
remains open (see page 282 in Arnold’s problem list, [A]):

Conjecture 0.2. If a gradient flow line z{¢) for an analytic function has a limit point, then

the limit of the unit tangents % exists.

It is easy to see that if lim;_ .. % exists, then so does lim;_.., ﬁgg:i:' It follows that
the Arnold-Thom conjecture 0.2 implies Thom’s gradient conjecture 0.1. Easy examples
show that the Lojasiewicz theorem, the Lojasiewicz inequalities, and both Conjectures 0.1

and 0.2 fail for general smooth functions; see, e.g., fig. 3.5 in [Si] or fig. 1 in [CMS].

Analytic functions play an important role in differential equations since solutions of ana-
lytic elliptic equations are themselves analytic. In many instances, the properties that come
from being analytic are more important than analyticity itself. We will show that solutions
of an important degenerate elliptic equation have analytic properties even though solutions
are not even C°. Namely, we will show that Conjectures 0.1, 0.2 hold for solutions of the
classical degenerate elliptic equation, known as the arrival time equation,

) Vu
(0.3) 1 = |Vu|div (Vu ) ;
Here w is defined on a compact connected subset of R*™! with smooth mean convex bound-
ary. BEquation (0.3) is the prototype for a family of equations, see, e.g., [OsSe|, used for
tracking moving interfaces in complex situations. These equations have been instrumen-
tal in applications, including semiconductor processing, fluid mechanics, medical imaging,
computer graphics, and material sciences.

Even though solutions of (0.3) are a priori only in the viscosity sense, they are always twice
differentiable by [CM5], though not necessarily C%; see [CM6], [H2], [I], [KS|]. Even when
a solution is C?, it still might not be €3, Sesum, [S], let alone analytic as in Lojasiewicz’s
theorem. However, solutions behave like analytic functions are expected to:

Theorem 0.4. The Arnold-Thom conjecture holds for C? solutions of (0.3).

The geometric meaning of {0.3) is that the level sets u 1(¢) are mean convex and evolve
by mean curvature flow. One says that w is the arrival time since u(x) is the time the hy-
persurfaces w~ 1(t) arrive at x under the mean curvature flow; see Chen-Giga-Goto, [ChGG],
Evans-Spruck, [ES|, Osher-Sethian, [OsSe|, and [CM3]|. Geometrically, singular points for
the flow correspond to critical points for w.

We conjecture that even for solutions that are not €2, but merely twice differentiable, the
Arnold-Thom conjecture holds:
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Conjecture 0.5. Lojasiewicz’s inequalities and the Arnold-Thom conjecture hold for all
solutions of (0.3).

If this conjecture holds, then the gradient Lojasiewicz inequality would imply that the
flow is singular at only finitely many times as has been conjectured, [W3], [AAG], [Wa], [M].

One of the important ingredients in the proof of Theorem 0.4 is an essentially sharp rate of
convergence for the rescaled mean curvature flow; this will be given in Proposition 2.4 below.
This rate is not fast enough to directly show the convergence of unit tangents, which is closely
related to the existence of a non-integrable kernel of the linearized operator. However, we
overcome this by a careful analysis of this kernel.

We believe that the principle that solutions of degenerate equations behave ag though they
are analytic, even when they are not, should be quite general. For instance, there should be
versions for other flows, including Ricci flow; ¢f. [CMY].

1. LOJASIEWICZ THEOREM FOR THE ARRIVAL TIME

A function v satisfies a gradient Lojasiewicz inequality near a point y (see, e.g., [CMS§]) if
there exist p > 1, € and a neighborhood of ¥ (all depending on v and ¥) so that

(1.1) lv —w(y)| < C|Vul?.

This is nontrivial only if ¥ is a critical point. If Vo(y) = 0 and » satisfies (1.1), then v(y) is
the only critical value in this neighborhood (this applies for any p > 0).

In this section, we show {1.1) with p = 2 for a C? solution u of {0.3). When u is not (%,
then (1.1) can fail for any fixed p > 1. Namely, for any odd integer m > 3, Angenent and
Veldzquez construct rotationally symmetric examples in [AV] where |u — u(y)| ~ |Vu|m-t
for a sequence of points tending to y. The examples in [AV] were constructed to analyze so-
called type II singularities that were previously observed by Hamilton and proven rigorously

to exist by Altschuler-Angenent-Giga, [AAG]; ¢f. also [GK].

From now on, u will be €. To prove (1.1), we first recall the properties that we will use.
Namely, if § = {z| Vu(z) = 0} denotes the critical set," then [CM5] and [CM§6] give:

(81) & is a closed embedded connected k-dimensional € submanifold whose tangent space
is the kernel of Hess,,. Moreover, & lies in the interior of the region where wu is defined.
(§2) If ¢ € S, then Hess,(g) = —=2 I and Aulg) = —ZE=E where I is orthogonal

n—Fk ?
projection onto the orthogonal complement of the kernel.

After subtracting a constant, we can assume that supu = 0.
Using these properties, the next thecrem gives the gradient Lojasiewicz inequality.

Theorem 1.2. We have that u(S) = 0 and

v
— n—k

(1.3) asu —+ 0.
In particular, there exists C' > 0 so that C1|Vu|? < —u < C' |[Vul?.

IThe flow is smooth away from the singular set S consisting of cylindrical singularities; see, [W1], [W2],
[H1], [HS1], [HS2], [HaK], [An]; cf. [B], [CM1]. See also [CM4].
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FProof. The boundary of the domain is smooth and mean convex, so Vu # 0 on the boundary.
The normalization supw = 0 implies that 4 = 0 at any maximum. Thus, there is at least
one point in & with w = 0. By {81), v is constant on & and we conclude that u(S) = 0.

Given ¢ > 0, choose d§ > 0 so that |p —g| < d implies that |u;(p) — ui(g)| < € and,
moreover, so that the d-tubular neighborhood of & does not intersect the boundary of the
domain. Let ¢ be any point with dist(g,S) < § and then let p be a point in the compact set
& that minimizes the distance to g (note that p might not be unique). Since & is C*, the
minimizing property implies that the vector ¢ — p is orthogonal to the tangent space to &.
In particular, (82) implies that

q4—p

(1.4) Hessu(p)lg —p) = ——-

Given t € (0, 1], the fundamental theorem of calculus gives

(15) Vulptla—p) ~ [ Fesulp+ s(a—p)ia—p)ds.

Combining this with (1.4) and the continuity of the Hessian gives

(1.6)

Using this at t = 1 gives

(1.7)

Using the fundamental theorem of calculus on u this time, (1.6) gives that

VU@+“§*PD+t%E%'§€HQ*ﬂ-

<elg—pl.

q—p
Vu(q) + m

p — gf? /1 q—p € 5
1.8 == | < V t(g — t——.qg— dt < —|p—ql|°.
(1.8) M@+2m_k)f 0<TMH7@ P+t —ra—p)|d=glp—d
Since ¢ > 0 is arbitrary, combining the last two inequalities gives (1.3).
The last claim follows from (1.3) since {u = 0} = {|Vu| =0} = §. O

The next theorem shows that the gradient flow lines of u have finite length (this is the
Lojasiewicz theorem for u), converge to points in &, and approach S orthogonally. The first
claims follow immediately from the gradient Lojasiewicz inequality of Theorem 1.2. Let 11,
denote orthogonal projection onto the kernel of Hess,.

Theorem 1.9. Each flow line v for Vu has finite length and limits to a point in &. Moreover,
if we parametrize -y by s > 0 with |y:| =1 and 4(0) € S, then

(1.10) w0 ™ 5o g
(1.11) Vulr (D =~ s
(1.12) Mais(ve) — 0.

In particular, for s small, we have that v(s) C B,

(0.
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Proof. Each point lies on a flow line where u is increasing and limits to 0, so v limits to S.
If we parametrize v by time ¢ (so that wo~(t) = ¢ and || = ﬁ), then the length is

(1.13) ﬁoﬁdtmﬁﬁﬁdtﬁﬁ%dtm,

where the approximation used (1.3). In particular, the flow lines starting from w = 7" have
finite length approximately equal to /2 (k — n) T. It follows that v has a limit v(0) € & as
t — 0 and we get the approximation (1.10). Combining (1.10) and (1.3) gives (1.11).

For s > 0, the arrival time equation (0.3), continuity of Au, and (52) give that

Hess, (Vu, Vu) 1

(1.14) Hessy (Vs,7vs) = VuP = Au(v(s)) +1 = Au(v(0)) +1 = -

Since Hess, — —ﬁ I, we conclude that I1,5(ve) — 0, giving the third claim. Finally, the
last claim follows from (1.10) and |v,| = 1. []

2. REDUCING THEOREM 0.4 TO AN ESTIMATE FOR RESCALED MCLE

In this section, we will reduce the Arnold-Thom conjecture to an estimate for rescaled
mean curvature flow.

A one-parameter family of hypersurfaces M, evolves by mean curvature flow (or MCF)
if each point z(7) evolves by d,# = —Hmn. Here H is the mean curvature and n a unit
normal. The rescaled MCF %, = \/%—u{x\u(x) = —e t} is equivalent to simultaneously
running MCF and rescaling space, up to reparameterizations of time and the hypersurfaces.
A one-parameter family of hypersurfaces »3; flows by the rescaled MCF if

(2.1) Bap— — (H—%(m,n)) oy

It will be convenient to set ¢ = H — %(;r;,n}. The fixed points for rescaled MCF are

shrinkers where ¢ = 0; the most important examples are cylinders C = Sm » R” where
k=0, .. ,n—1 Below, Il : R*"!' — R” %! is orthogonal projection on the orthogonal

complement of the axis R® of the cylinder C. The rescaled MCF is the negative gradient
flow for the Gaussian area

(2.2) F(Z) = /Ee—'“’T .

In particular, F(%;) is non-increasing. Define the sequence d; by

(23) 8 = \[P(Zi1) — F(S12).

As in [OM1], the entropy A(X) I8 sUp; vq zperntt £{80X + 20). We will use the Gaussian L7
||

norm given by [g/ 2.5, = 5, lolPe™ %
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2.1. Summability of ;. As we will see in (2.18) below, §; bounds the distance that %
evolves from j to 7+1. Existence of lim, ., 3}; is proven in [CM2] by showing that >"d; < oc.
We will need that ¢; is summable even after being raised to a power less than one:

Proposition 2.4, There exists 8 < 1 so that

(2.5) i 8F < oo.

=1

Proof. By (6.21) and lemma 6.9 in [CM2], there exists p > 1 and C so that

t—oo

(2.6) iaﬁ <3 (F 1) — lim F(Et)) < Qg
ki

Moreover, lemma 6.9 in [CM2| shows that this implies that > d; < oo,
We will show next that if 0 < g < p, then

(2.7) Y &< oo,

To prove this, set b; = j? and a; =3 5 .82, then a; — a;y; = 5;? and

f=j Y1

(2.8) biyg — b=+ 11— <csit,

where ¢ depends on g and we used that 5 > 1. Summation by parts gives
N N-1
> a3 Z bila; — ajr1) =brag — byanyi + Y ajpalbia — by)
=k =k

(2.9) < ke Zdj? i Zj‘fjj‘?‘l.
i=Fk j=k

This is bounded independently of N since g < p, giving (2.7).
Suppose that @ > 0. The Hélder inequality gives Zéf = (56 ) % < oo if

(2.10) S 62iF+Y 5 < 0.

To get (2.5), we need 8 < 1 and a so that both sums in (2.10) are finite. By (2.7), the first
is finite if 2—; < p. The second is finite if 2 — # < 2a. To satisfy both, we must have

(2113 2—-8<2a<pp.
This is possible as long as 2 < {1 + p) 8. Since 1 < p, we can choose such a # < 1. [

2.2. Cylindrical approximation. The rescaled MCE ¥, converges to a limiting cylinder
C by [CM2]. Thus, for each large integer j, ¥, is well-approximated by C.

In the next proposition, we will bound the distance from 2}; to some cylinder C; that is
allowed to change with t. We will let II; denote the projection orthogonal to axis of ;.
The operator £ will be the drift Laplacian on the cylinder C;. Property (1) collects a priori
estimates for the graph function w, (2) shows that w almost satisfies the linearized equation,
(3) shows the approximating cylinders converge, and {4) gives a priori bounds on higher
derivatives. We will only use (3) in this section; (1)}, (2) and (4) will be used later.
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Proposition 2.12. Given 0 < ¢ and 4 < 1, there exist a constant C' and a sequence of
radii R; and cylinders C; satisfying:

1) Fort € 7,7+ 1|, ¥; is a graph over Br, M ;4 of a function w with [|w||cs < 2L,
9 it R;
2 5 8
[wiyrae + H@HW8»2(BRj) +e @ <04,
S 2
w? + |Vaw|* 4 |Hess, |* + |VHess,|® + |[V2Hess,|* < Céfe% ,
& + |Vo|? + |Hessy]2 < Oér‘?ﬁe%,
P 7
(2) The function w and its Euclidean partial derivatives w; and wy; on C; satisfy

6= (L4 1) w] < O+ R)W? + [Tul?) + Cllw| + [Val) [Hess,|

¢i_(£+%)wi

|pi; — Lwgg] < C(1+ Ry) (Jw| + |[Vw|+ [Hessy| + |[VHess,| + \VgHessw\)Q .

< O+ Ry) (Jw] + |Vw| + [Hessy| + [VHess,[) (Jw] + [Vw| + Vi) |

(3) T — M4 < C&F.
(4) Given any ¢, there exists C; with |Viw| + |Vi¢| < C;.

Proof. Let ¢ > 0 and a be fixed as in the definition of ry on page 261 in [CM2|. We will
initially find a radius R} so that every estimate (1), (2), (3) and (4) holds except for the C*
bound in (1) which we replace by ||w||cze < €. We will then use (1) to get the C* bound
on a slightly smaller It; < R;- with the other bounds still holding.

(R
As in (5.2) in [CM2], define R by et = 67. Since ¥; — C, we can assume that X
is fixed close to C on a large set. Theorem 5.3 in [CM2| gives ' and g > 0 and a cylinder
;11 so that B(1+2;¢)R§—O M3, for t € 4,7 + 1], is a graph over C;;4 of a function w with
|w]|cze < € and, moreover, (4) holds. Furthermore, lemma 5.32 in [CM2] gives €' so that

g
(2.13) /B B F < s,

(1) R M2t
Using theorem 0.24 from [CM2], we get for any £, < 1 that
(2.14) lw]|Fs < Cgy 5, 85 -

Using the higher derivative bound from (4} and interpolation (e.g., lemma B.1 in [CM2]},
we get for any fs < 31 that

(2.15) [wlFyen < Cpoputn 95

We have now established the first part of (1). Similarly, the second two parts of (1) follow
from the first part, (4) and interpolation again.

We turn next to property (2). Lemma 4.6 in [CM2| computes the nonlinear graph equation
for shrinkers; using p for points in C;, this gives

(2.16) ¢ = flw, Vw) + {p, V(w, Vw)) + (d(w, Vw), Hess,) ,
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where f(s,4), V(s,4) and ®(s, y) are smooth functions for |s| small. Moreover, since |A|> = i
on &, the operator £ + 1 is the linearized operator for the shrinker equation and lemma 4.10
in [CM2] gives that

(2.17) 16— (£ + Dwl| < Co(w® + [Vwl?) + Callw] + |Ve]) [Hess,| |

where Cy < C'(1 + |p|) and C5 is bounded. This gives the first claim in (2). Differentiating
(2.16) in a Euclidean direction z; and arguing similarly gives the second claim. Finally,
differentiating (2.16) again gives the remaining claim in (2).

We next prove (3) by bounding the Gaussian distance from *3; to 3,14 by €' d; and showing
that C; is Lipschitz in ¥;. The first part follows since |z;| = |¢| and

F+1 ! 24 z
(2.18) / 16l dt < O/ Il dt < C (/ 161% dt) <.
7 2 2

To see that C; is Lipschitz in ¥;, we need to slightly modify the proof of theorem 0.24 in
[CM2]. The choice of the cylinder in [CM2| occurs on page 240 in step 1 of the proof of
proposition 2.1 there. There, the R* factor is determined to be the approximate kernel of
A at any point p in a fixed ball B, 5. In [CM2], p is left arbitrary — it does not effect the
bounds in (1), (2) and (4) - and the R* factor given by choosing any p would work (all
that is needed are (2.22)-(2.24) there). To make C; Lipschitz in ;, we will choose the R”
factor by averaging over the approximate kernel of 4 for each point in the ball By /57 The
resulting R* factor, and thus the cylinder, is then Lipschitz in >); as desired.

R2
Finally, we will fix R; < R where ||w|jca < 2 and we still have e~ 3 < C’éf where C' now
By
also depends on ;. This follows from the pointwise C'* bounds in (1) and e i = d;. U

2.3. Reduction. The next theorem reduces Theorem 0.4 to an estimate for rescaled MCF.

Theorem 2.19. Theorem 0.4 holds if every rescaled MCF ¥, with A(3;) < co that goes to
a cylinder as ¢ — oo satisfies

(2.20) Z/ ( - nﬁl(vm) i < o0

Bonnkiy

We will prove Theorem 2.19 here and (2.20) in Section 5. Suppose, therefore, that the
function w and reparameterized gradient flow line v(s) are as in Section 1. In particular,
v(s) iz defined on [0, 4] with |y = 1 and v(0) € §. We will show that ~. has a limit as

s — 0. The derivative of ~, = —% is
1 Hess,, (v, &
221 e =~ (Hossu(3) = (B3, ) = — e — 9T log Dul,

where ()T is the tangential projection onto the level set of w.

The simplest way to prove that lim~y, exists would be to show that f [Vss| < 00, which is
related to the rate of convergence for an associated rescaled MCF. While this rate fails to
give integrability of |y, it does give the following:

Lemma 2.22, Given any A > 1, we have lim, .o fSAS |¥ss| ds = 0.
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Proof. Using Theorem 1.9 and the fact that Hess, — — -1, (2.21) implies that s [y — 0.
The lemma follows immediately from this. [l

To get around the lack of integrability, we will decompose v, into two pieces - the parts
tangent and orthogonal to the axis - and deal with these separately. The tangent part goes
to zero by (1.12) in Theorem 1.9. We will use {2.20) to control the orthogonal part.

Proof of Theorem 2.19. Translate so that v(0) = 0 and let H = ﬁ be the mean curvature

of the level set of u. The mean curvature H of ¥; at time t = — log(—u) is given by
. « locH +/2(n—k
(2.23) B gl = BN - Vieg H.
v —u s

Note that u(y(s)) is decreasing and Theorem 1.9 gives #(s) =~ —2 log s + log(2(n — k)) and

(224) ¢(9) = =2 (log(-u(r(9)) = o -2,

Given a positive integer 7, define s; so that t(s;) = j. Note that ‘log

8j+1

is uniformly

bounded. Therefore, by Lemma 2.22, it suffices to show that -, has a limit.
We can write vs, = Ilas ;(Vs,) + I(7vs,). We have Ilaaq;(vs,) — 0 since Hae; — Tlas
and Ilugs{7s) — 0. Thus, we need that lim; . [15{~,,) exists; this will follow from

(225) Z |H ,YSJ 9+1(,YSJ+1)| < 00

Theorem 1.9 gives (for s small) that v(s) C B, and, thus, (2.21) gives

—u(y(s))

|HJ‘+1(’YS;;) - Hj+1(rysj+1)| < / |Hj+1(788)‘ ds = / |H;i+1 (vlog H(’Y(S))H ds
8441 8

41

84 3
(2.26) <C / sup |Hj+1(V log H)| (-,—u)ds.
syt By ormamry
Using (2.23) and (2.24) in (2.26) and then applying Theorem 2.19 gives
(2.27) Z |H9+1 & B I %Hi < C Z / Bsup [ (VH)| dt < 0.
20t

On the other hand, > |Hj Vaz) = Hj+1(qfsj)| < 00 by (3) in Proposition 2.12 and Proposition
2.4. Therefore, the triangle inequality gives (2.25), completing the proof. [l

3. APPROXIMATE EIGENFUNCTIONS ON CYLINDERS

The key remaining point is summability of I1;,,(VH). The bound for w? in (1) from
Proposition 2.12 is summable by Proposition 2.4, but the bound for w is not. In particular,
(1) gives a bound for V H that is not summable. This bound for VH cannot be improved due
to slowly growing Jacobi fields. However, these Jacobi fields do not contribute to I1;.1(V H).
We will show that the remainder of w, after we subtract these Jacobi fields, is small.

In this section, we will show that if an approximate eigenfunction w on a cylinder C begins
to grow, then it must grow rapidly. The key tool is the frequency function for the drift
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Laplacian as in [CM7]; the difficulty here is handling error terms. Let z € R* be coordinates

on the Euclidean factor, f = %, L the drift Laplacian £ = Ap — %VZ = Ap + Lgr, Wwhere
n—k

A 2Hm—k}

In applications, w will be given by Proposition 2.12 and, thus, will satisty (1), (2} and (4)
there. Thus, we will assume that w is a function on {|z| < R} C C satisfying:

Ay is the Laplacian on S and divy = div — (3, -) the drift divergence.

8
(3.1) (£ + 1w — ¢| < e (Jw| + |Vw|) where ¢ is a function and 5 < (1—3¢)3,
(3.2) sup [(£+ Dw| < u.
|| < 4n

Equation (3.1) arises from w satisfying a nonlinear equation Mw = ¢ and £ + 1 is the
linearization of M. We will also assume that g > 0 is small and

2
(3.3) w32z + | Bllwe: +e 5 <p,

(3.4) w(x) + |V ()2 + |Hessy(2)? < pe't .

We will assume that the Euclidean first derivatives w; and second derivatives w;; satisfy

(3.5) ‘(ﬁ + %) W;

(3.6) sup |Lwgy| < Cp p where O, depends on r.
|z|<r

< il + € (Jwl| + [Vl + [V}

By lemma 3.26 in [CM2], the kernel of £ +1 on the weighted Gaussian space on C consists
of quadratic polynomials and “infinitesimal rotations” of the form

(3.7) W= a;(a? -2+ > ayziz;+ Y axha(6),
i i<j k
where a;, a;; are constants and each fy, is a Ag-eigenfunction with eigenvalue %
The next theorem quadratically approximates w in || < 3n by @ as in (3.7). Namely,

while (3.4) gives |w| < C u?, the next theorem gives |w — w| < C' p¥ with v ~ 1.
Theorem 3.8, Given v < 1, there exists C, € and po > 0 so that if w satisfies (3.1)—(3.6)
with po > p and € > ¢, then there is a function @ as in (3.7) with

(3.9) sup |w— @ < Cp”.

|z|<3n
3.1. First reduction.

Lemma 3.10. If w satisfies {3.1)-(3.6), then there is a function @ as in (3.7) so that
v = w — W satisfies (3.1)—(3.6) and

(Al) Each Euclidean second derivative v;; has [ w; = 0.

(A2) Each Euclidean first derivative v; has f _ v;h =0 for any b with Agh = —1A.

(A3) We have |[ _ »| < pVol(z = 0).

Proof. Given @ as in (3.7}, the Euclidean first and second derivatives are given at z = 0 by

(311) W; = hz(Q), Wy = 2a4, ’lf)z'j = Qi; for i < 7.
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To arrange (Al), define a; and ay; by

(3.12) 2a; / 1 :/ wy; and ag; / 1= / wy; for ¢ < 7.
=0 =0 =0 =0

Similarly, for (A2}, let h; be the projection of w; onto the %—eigenspace of Ag at x = 0. Claim

(A3) follows by integrating (£ + 1)w at x =0 and using (3.2) and (Al). []
For a function v, we let Hess, = 8:?26:109:' denote its Euclidean Hessian.
{0

Corollary 3.13. Given 8 > 2, there exists € so that if v satisfies (3.1)—(3.6) and (A1)—{A3),
then

(3.14) sup (|w|ﬁ + |Vrev|” + |Hessff;\5) <O+ / |Hess®|? .
|z|< 3n || < dn
Similarly, given & > 2 and r > 3n, there exists Cg, so that
(3.15) sup (\fv|5 + |Vasv|® + \Hessﬁ\ﬁ) < Cgp t* + Ca,y / |Hess%|® .
|2f <r |e|<r+1

Proof. We will prove (3.14); (3.15) follows similarly. Set §% = u? + f‘x‘«m |Hess?|*. Since
we have uniform higher derivative bounds on #, interpolation implies that all norms are
equivalent if we go to any worse power. Thus, given any £ < 1, (3.2) gives

(3.16) Hess? oo + (€ + Lyollys < C1 67,

where ' depends on 8. It follows that [(Ag + 1)w(6,0)| < €, §°. Since Ay+1 is invertible
(lemma 2.5 in [CM2]), this (and interpolation again) gives for any fs < 5 that

(3.17) (0,0)] < Cpé72.
Given a Euclidean first derivative »;, (3.16) gives that

(Ag b ;) :(6.0)

The operator (Ag + %) is not invertible, but (A2) implies that v;(f,0) is orthogonal to the
kernel so we get (using interpolation again) that |v;(#,0)| < C36%. The bound on w; at
x = 0 and the Hessian bound give a bound on w; everywhere. Integrating this and using
(3.17) gives the desired pointwise bound on v, completing the proof. [

(3.18) < C,d% .

3.2. The frequency. Civen a function u on C, define I and D by?

(3.19) Hrs= rlk/z u?

2

(3.20) D) = >+ / uu, =T rk / ([Vul® + ulu) ef.
jz|= |z <r

Here u, denotes the normal derivative of w on the level set |x| = r. Note that f is proper. It
is easy to see that I’ — % and (log ) = %, where the frequency U = % cf. [Be], [CMT].

?When k = 1 and the sphere is disconnected, let 7 be signed distance and set I(|r|) = Joop w4 [

=—7
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The next theorem shows that if the growth of an approximate eigenfunction hits a certain
threshhold, then it grows very rapidly. The theorem is stated for eigenvalue 1, but generalizes
easily to other eigenvalues. The case (£ + 1)v = 0, where € = ¢ = 0, follows from [CMT].

Theorem 3.21. Given ry > max{9n,4n + 64+/2}, there exist R = R(n,r1), C = C(n,r1)
so that if  is a function on {|z| < R} satisfying (3.1), where R < R, and

2
(3.92) 2 / e T < / v?ef and L < Ulry),
|z|<9n |z|<ry 16
then for any A € (0,1/3)

_ (1—ge—a)RZ
(3.23) f vPef < AP |||, + C I(R) B & ovrar
|| < 4n

To prove Theorem 3.8, we will find a scale r; where Theorem 3.21 applies to give that w
is bounded by p”. To do this, we will find a long stretch where Hessy, must grow and, thus,
w must also have grown. Note that Hess?, is easier to work with since each RF derivative
lowers the eigenvalue by 1/2 and, thus, lowers the threshold for growth (cf. [CMT]).

The proof of Theorem 3.21 uses a modified version of the frequency. Define K and Ug by

P 2

(3.24) E(r)=r*"*evt e {|Vo]* —v*} et = D(r) —r¥FeT /||< (vLv +v?) e ¥,
E(r)
I{r)

Lemma 3.26. If E(r) > 0, then

(3.27) (ogUp) (1) = 22 47— 2 OO (% - 2) |

(3.25) Ugl(r) =

Proof. The Cauchy-Schwarz inequality (f uuT)Q < fuz f |Vu|? gives

2=k Dok up
(328) E'(r) = E+EE+?‘”/ (Vo —2*) > =—"FE+_BE+-—=—rI.
r 2 x| =r T 2 T
The lemma follows from this since ITJ = % []

The next lemma is valid for any function v.

Lemma 3.29. If r > 7 > 3n and

(3.30) / v?e ™t </ v?e T
|| <7 F|z|<r

then

32
(3.31) / el < — / |Vo|?e=7.
lz|<r R —i || <
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Proof. Since L |z[* = 2k — |z|?, we have div; (v z) = 2v{z, Vo) +2v*(k — |z|?/2). Using the
absorbing inequality 2 |v(z, Vo)| < |z[*v?/4 + 4 |Vo|?, the divergence theorem gives

2
/ (|‘r| _k) fvge—f:_:r'e_ / ?_}2—}—2/ fU<$,V’U>e_f
|| <r 2 |@]=r o] st

2

(3.39) < —re” / v+ / (@2 i +4 Vv2> et
o= jalcr 4

It follows that

~2 2
(Tk) / e f i / et < / (ﬂk) el < 4 / \VU|Qe_f.
4 r< ol <r |o|<7 oj<r \ 4 o] <r

Bringing in the assumption (3.30) gives

72
(T — 2k> f et < 4/ Vo|2e™7.
4 F|z|<r |z|<r

The lemma follows from this and using the assumption again. [

£
VRS

'y
&%

Proof of Theorem 3.21. We can assume that [[¢|7. < A® [ _,,
(3.23) immediately. Therefore, given any r > 4n, (3.1) gives

v%e 7 since otherwise we get

(3.33) D—B|(r) <2 *e% / (e + A)o? + Vo) o .

| <r
Suppose now that some r > 4n satisfies
2 - 1 o =
(x1) fmqfv g & 2 f\x\@‘v”‘ e 7.

We will use (x1) to show that D{r) and E(r) are comparable, get a differential inequality
for Ug(r) and bound the ratio of the derivatives of quantities in (x1}. Namely, (x1) gives

1 o2 2
(3.34) 3 p¥ e4/ Vo|*e ™ <r*Fer / (Vo] —v?) e/ = Efr).
|z|<r |z|<r
Similarly, using (3.33), (x1) and (3.34) gives that
3¢ A v
(3.35) |D — E|(r) < (26 + 2) r2-k / (VolPe ¥ < (3e+ A) E(r).
|z|<r

We conclude that D(r), and thus also I'{r), are also positive and
(3.36) U —Ug|(r) < (3e+ A) Ug(r),
(3.37) (1-3e—A)Ug<U(r) <(1+3+A)Ug.
Using this in Lemma 3.26 gives the differential inequality at r

2—k r i Ug
3.38 loglp) = T o o (14 8 L AJ .
(3.39) GogUs) > 2% 47— T~ (134 A

From (3.37), the definition of U/, and the Cauchy-Schwarz inequality, we get at r that

(3.39) 1—Be— AP VAP E P P=D"< I+ / |Vol?.

|z|=r
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Noting that 3¢ + A < %, we get

Ug(r) o UR(r)  Jioer [VOP
; < — — < .
(3.40) T S -AF L

We will also need a second property (the first part is the strict form of (x1)):

(x2) fmqfvz el <1 e |Vo|2ef and & < Ug(r).
Set ro = 4n + 64+/2. We will show that if {x2) holds for some r > ry, then it holds for all
s > r. We will argue by contradiction, so suppose that s > r is the first time (%2) fails. Note

that (x2) is equivalent to Up(r) > & and F(r) > 0 where F(r) = Sz (1 |Vo]? —2?) e,

Since s is the first time, we have F(s) > 0 (i.e., (x1)), Ug(s) — % > 0 and

i
(3.41) F(£) > 0 and Ug(t) — ;2 >0 forallt € [r,s).

We also have that at least one of F(s) and Ug(s) — % is zero. Suppose first that F(s) = 0

and, thus, F'(s) < 0. However, (3.40) and Ug(s) — g—; > 0 give that

(3.42) (s )2 a Uk(s) _ f‘x‘zs\vm{

64 452 7 f.??

However, this implies that /{s) > 0 as long as s > 64+/2, giving the desired contradiction

in the first case. Suppose now that Ug(s) = g—; and, thus, Ug(s) < & and

2
(3.43) (log Ug)'(s) < —.

$
On the other hand, (3.38) gives that

2—k s 32 s 35 k+30

3.44 logUp)' (s) > - (1+3e+A) > - .
Ga1)  (ogtUp) (9> 2E 22 isepap ta B Mt

This contradicts (3.43) since s > ry, completing the proof of the claim.
We will now show that (%2) holds for ry. Using the first part of (3.22), we can apply
Lemma 3.29 (with 7 = 9n) to get

32 1
(3.45) / v?e™f < 2/ |Vo|?e < / Vol2e ™,
jal<rs 8ln® — 8n Jizj<n 2 Jial<ry

where the last inequality used that 81n? > 8n + 64. This gives the first part of (x2); in
particular, (x1) holds and (3.37) gives that

3
(3.46) Ulr)) < {1+3e+A) Ug(r) < 5 Uglry) .
Since ;—; < U(ry) by the second part of (3.22), the second part of (x2) also holds.

We have established that (x2) holds for all r > r{, so we get the differential inequality
(3.38) for Uy and the equivalence (3.36) between U/ and Ug. This will give the desired
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growth of U and, thus also, /. We do this next. Set & = {(3e+ A). We claim that there
exists R = R(k,ry) = ry so that for all » > R we have

2

(3.47) Ugl(r) > m

The key is that if (3.47) fails for some r > ry, then (3.38) implies that
Cr k430 Up 4

(3.48) (logUp)' = 5 = —— — (1 + @27 =

On the other hand, for r = 4k, we have

(3.49) (log -2k -G8 GS)I I —
2(1 + k)2 72— 2k —68 r

where the last inequality used that 6k + 204 < r2. Integrating (3.48) and (3.49) and using
that Up > g—;, gives an upper bound for the maximal interval where (3.47) fails. The first
derivative test, (3.48), and (3.49) imply that once (3.47) holds for some R > ry, then it also
holds for all r > R. This gives the claim. Using (3.36) and (3.47), we get for r > R that

(1—k&) [r?
3.50 Uy = (1 —r)U ——k—34) .
(3.50) ") 2 0= RUs0) > o
Integrating this from R to R gives that
I(R) RU(r) (l—&) {R°-R° R
.51 log—— =2 dr > — (2k +68) log = | .
(8:51) ¢ [(R) /R P T s\ 2 SR lsg
Since It depends only on & and 1y, exponentiating gives ¢ = C(k,r;) so that
= 1—r (1—r] p2
(3.52) sup I(r) = I(R) < C I(R) R®F™ tror ¢ 2t ¥
ri<r<R

Choose ry € [ry,2r] that achieves the minimum of D on [ry,2r]. Since I’ = %, it follows
that D(rg) < 1(2ry). Therefore, since (x1) holds for ro, we have
o2 D
(3.53) ri ke f viel < E(ry) < (r2) < 21(2r1).
|z|<rs (]‘ - H’)

Finally, combining {3.52) and (3.53) gives (3.23). O

4., GENERAL FREQUENCY

In this section, we will prove Theorem 3.8 by showing that either we already have the
bound on w or (3.22) holds and Theorem 3.21 bounds w. Throughout this section, we will
assume that w satisfies (3.1)-(3.6) and (A1)-(A3).

The main task left is to prove the following proposition:

Proposition 4.1. Given ry > 9n, there exist A > r, and { so that if ¢ > § and
(4.2) / |Hess%|* = ¢ 2,
|| <dn

then there exists r1 € (ry, A) satisfying (3.22).
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Throughout this section, C, will be a constant that depends on r (but not on w or y) that
will be allowed to change from line to line.

4.1. Proof of Theorem 3.8 assuming Proposition 4.1.

Lemma 4.3. Given r > 0, there exists C, so that

/ Hess?, / w
|z|<r |z|<r

Furthermore, given any i on 8** with Agh = —% h and [ h*(0)df =1, we have

(4.4) -+ &0k

(4.5)

/ th’“w’ 8, i,
jaf <

FProof. Let w;; be a Euclidean second derivative and define the spherical average

(4.6) T = 1=k / .

By (Al), we have J;;(0) = 0. Note that |£ w;y| < C, g, so we have

2
(4.7) | T (r) < r““e4f| |Lwy| e <Cppp.
T|<r
Thus, we get that |J;;(r)| < O, p. Integrating this gives the integral bound on Hess,, in {4.4)

f|m|<'r w
w. Namely, (A3) bounds J(0) and we bound J'(r) by using that

flm\@ Apsw| < O, p.
To get the last claim, define a vector-valued function Ji(r) by

follows similarly by

and, thus, the same bound on fm@ ARk’lU‘. The bound on
setting J(r) = r'=*

|zf=r

Agw integrates to zero over each sphere and

(4.8) Julr) =r17F f VR W,
|z|=
so that J,(0) = 0 by (A2). Arguing as above and using the integral bound on the Euclidean

Hessian bounds Jp,{r) and integrating this gives the last claim. [

Corollary 4.9, Given 7 > 4n, there exist C5 so that

(4.10) / Hess% |2 < Cr y? + Cx / |Hess?,|* .
|| <7

Flz|<rtl

Proof. Set A ={r < |z| <7+ 1}. Let wy; be a Euclidean second derivative and # a cutoff
function that is one for |z| < 7, zero for 7+ 1 < |z|, and |Vn| < 2. Given d > 0, we get

divy (7Pwi; Vwys) = 77 (|Vwi]® + wi; Lwi;) + 2w {(Vwy, V)

1 1
(4.11) > i (2 | Vw2 — dw? — T cwijﬁ) — 2|V w.



ARNOLD-THOM GRADIENT CONJECTURE FOR THE ARRIVAL TIME 17

We get that
1
Vwgl?e <26 we 4 — Lwy[* e+ (8425 w e f
7 i J o7
|z|<F || <F 20 || <F+1 A
2
(4.12) <24 / whe + Of% + (8 4+ 26) / wie
| <7 A

On the other hand, Lemma 4.3 and the Neumann Poincaré inequality give s so that

(4.13) / w; g T (,wg—i—/ |Vawg;|* ef> :
|| <7 || <7

Using this to bound the first term on the right in (4.12) and taking § > 0 small enough
(depending on 7}, this can be absorbed. Finally, summing over 4, j gives the corollary.  [J

Proof of Theorem 3.8. Lemma 3.10 gives @ as in (3.7) so that v = w — @ satisfies (3.1)-(3.6)
and (Al), (A2) and (A3). By Corollary 3.13, it suffices to get f|m|<4n v? < O pP with v < 8.

Proposition 4.1 gives A and ( (depending just on n) so that if (4.2) holds with { > (,
then there exists ry satisfying (3.22) with

(4.14) r1 € (max{9n,+/8n + 256}, A).

We can assume that (4.2) holds with ¢ > { since the theorem otherwise follows from
Corollary 3.13. Therefore, Theorem 3.21 applies and we get R = R(n,ry) and O = C(n,r)
so that for any A € (0,1/3)

_{1-se-Ay B2
[ et <R gfh+ CI® B e
|| < dn

(1—3e—4A)

(4.15) < A2 %y ¢ Rt (e—%z) Gaetn?

This required R > R; if R > R, then there is a positive lower bound for g and the theorem
holds trivially. Since e*RTQ < u?, the theorem follows by taking €, A > 0 small enough that
(4.16) (1—-3—A)>v(1+3e+A)?.

U
4.2. Proof of Proposition 4.1. We will get a positive lower bound for the frequency Us
for Hess?, that will force Hess?, to grow very rapidly. We will then combine Poincaré and

reverse Poincaré inequalities to show that w itself grows rapidly as claimed. To do this,
define quantities f5, Dy and U/ for Hess?, by

(4.17) Ty(ry = riF / |Hess%,|? |
|z|=r

Dy =515, and Uy = D2 50 that (logI3)" = 2Y2. Define ¢ = (£ + 1) w so that Cwy; = ;.

Is r

Differentiating /5, we see that

(4.18)  Dy(r) = P2k Z/ WisBywyp= r>keT / (|VHessﬂ|2 + Z wijwij) e~
.5 o |z|=r |z]<r
i,

4



18 ARNOLD-THOM GRADIENT CONJECTURE FOR THE ARRIVAL TIME

The next two lemmas give a differential inequality for Us; when Us; > 0 and then establish
that Us(r) is positive on an interval.

Lemma 4.19. If Uz(r) > 0, then

el
2—k U Tl_k x|=r 4,7 12 :
(4.20) (log Uy (1) > PR N Jiwt=r 2255 %5

FProof. Differentiating D, gives that

2k
(4.21) Dy(r) = —— D2+ _ Dy 47 /| | (IVHessfuI”wa%) :
T|=r i3

The first equality in (4.18) and the Cauchy-Schwarz inequality give that
(4.22) D3(r) < Lr)r** / Z (Brw;)? < L(r)r* / |V Hess?,|?
|z|=r |z|=r
Since Dy(r) > 0 (by assumption), using (4.22) in (4.21) and dividing by Ds(r) gives

2—k r U rzk
& szgwm -

The lemma. follows from this and the Cauchy-Schwartz inequality since (logf3) = 2% [

(4.23) (log Do)'(r) =

T 2 T |z|=r

Lemma 4.24. Given A > 4n, there exists {, so that if (4.2) holds for ¢ > (o, then for each
r € (4n,2X) we have Us(r) > 0 and, moreover, for v € (4n,2A — 1) there exists ¢, > 0 so

(4.25) max{Us(s)|s € [r,r + 1]} > c,.
Proof. Given r € (4n, 2)), the Neumann Poincaré inequality, (4.4) and (4.2) give

G
/ |Hess?,|* < C, u? + C, / |VHess?, |2 < —/ |Hess%,|* + C, / |VHess?,|2.
|| <7 || <r C ||« dr || <

If ¢ is large enough (depending on A), we can absorb the first term on the right to get

(4.26) / Hess%,|* < C, / |VHess%, |2
| <r o] <r
To bound the error term in (4.18), use the absorbing inequality to get for any 4 > 0
2 ji7
(4.27) Z/ |[whsswizle™ < 5/ |Hess%[2ef + T,w
g lel<r || <r
(3

Taking § > 0 small and then ¢ even larger, the last two inequalities give that

1
(4.28) E / [iwigle ™ < 5/ |VHess? |%e
- |z <r |z|<r
0.7

Using this in (4.18), we conclude that

2=k 3
(4.29)  Dy(r) = TeT / |VHess%,|* e ¥ > C, /
|z|<r

|z| <

|Hess,|* = C! / s*115(s)ds.
0
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In particular, Us(r) = 0. Moreover, we get for r € {4n,2X — 1) that
(4.30) Dy(r+1) = C, I(r).

Note that Corollary 4.9 implies that f3(r) > 0. We have either f3(r + 1) < 2f53(r) or
2 I1(r) < Iz(r+1); the claim (4.25) follows from (4.30) in each case, completing the proof. O

The next lemma. gives r,, so that Us(r) = % when 7 > r, as long as (4.2) holds for a large
¢ that depends on A. It will be crucial that r,, does not depend on A.

Lemma 4.31. Given A > 4n, there exists ¢, so that if (4.2) holds for ¢ > (;, then for each
r € (4n,2X) we have Us(r) > 0 and, moreover,

2
(4.32) Us(r) > % for r € (rn,2A), where r,, depends only on n.

Proof. We will choose (; even greater than the { given by Lemma 4.24. Thus, Lemma 4.24
gives that I5(r) > 0 for r € (4n,2)) and (4.25) holds. Let ¢4, be the constant from (4.25)
with = 4n, so that there exists s € (4n,4n + 1) with

(433) UQ(S) = Wi 2 0
Corollary 4.9 and the monotonicity of /3 give Cp so that Cq ¢ p? < Ir(r) and, thus,

(Tl_k f\m\=r 253 ng)é P G
S

(4.34) =

Using this in Lemma 4.19 gives for v € (4n, 2X) that

2—k+r Us Oy

(4.35) (logUs) (r) > . 2y

Now choose {; > (, so that CIC’Cin = i. Thus, if ¢4, < Us(r) < 1;)62 and r € (4n,2}), then
r?—2U(r) 1 _4r—15_ r
4.36 log Us)’ R T > —>0.

Combining this with (4.33), we see that Us > ¢y, for r € (4n + 1,2X). Arguing as in the
proof of (3.47), {4.36) gives that

o There exists r,, depending on n so that there is ry € [4n + 1,7,] with Us(ry) > %
2

¢ There cannot be a first r € (ry, 2)) with Uy(r) = 5.

[]

The next lemma uses reverse Poincaré inequalities to bound the Euclidean Hessian in
terms of the L? norm of the function on a larger set.

Lemma 4.37. If r > 4n and (4.2) holds for { > 84, then

(4.38) / |Hess?,|? e~ < 204 / wre ™t
|| < || <r+2
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Proof. Given a compactly supported function n{z) and a Euclidean partial derivative w;, we
have (LZ + %) w; = 5 and, thus,

1

(4.39) divy (n°w; V) = n* (|Vwi|2 — ?wf + wz-v,bi) + 2w (Vn, V)
The divergence theorem and Cauchy-Schwarz and absorbing inequalities give
(4.40) [Tt < [ (@val + oyt + i) o
Taking < 1 identically one for |z| < r and cutting off linearly for r < |z| < r + 1, we get
(4.41) / | Vw|* e~ < / [|? e + 6 / Jw;|* e

|| <r |z|<r+1 |z|<r+1
Since (3.5) gives that ¢y < |[Vé| + € (Jw| + |Vw| + [Vw;|) and |V re < u, we get
(4.42) / [Hess®,|* e™F < 24 + / (2w® + 10 |Vw\2) et

|| <r || <r+1

We will now argue similarly to bound the right-hand side of (4.42) in terms of w itself.
We will again let n be a cutoff function {(on a different set). We have

(4.43) divy (PPwVw) =7° ([Vw]* —w® + wy) + 2nw (Vw, Vn) .

Using the absorbing inequality |2nw (Vw, V)| < r5?|Vw|?/2 4+ 2|Vn|*w? and the Cauchy-
Schwarz inequality on the w term, the divergence theorem gives that

(1.44) [ vkt < [ awntet e + .
Bquation (3.1) gives that 12 < 2¢% + 2e(w? + |Vwl|?), so we get
(4.45) /772 (Vw|® e~ < 242 + 2 /ﬁZVwPe_f + / ((3+ 2e)w® + |Vn|?) w?e ™.

Since € < &, we can absorbe the [Vw|? term. Thus, takingn < 1 identically one for |z| < r+1
and cutting off linearly for r + 1 < |z| < r + 2, we get

(4.46) / Vw|® e < 4p?+10 / w?e V.
|z|<r+1 || <r+2
Combining this with (4.42) gives that
(4.47) / |Hess?|? e=f < 42 4% 4 102 / wie
|| <r || <r+2

The lemma, follows since (4.2) implies that 42 4% < 1 | |Hess%,|* e~/ []

x|<dn

Given a function u on the cylinder, ¥y € R®, and A € R, let Wy uy be the norm squared of
the projection of w on the A eigenspace of Ay on the sphere x = 4. Let BE be the ball in R”.

Lemma 4.48. Given A € R, there exists C' depending on A, k,n so that

(4.49) / uQS/ \I’,\,u,m+OR2/ vR’“u|2+c/ (((£ + Nw)? + |Hess? )
|| <R B

ks |z|<R | <R
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Proof. Since £ + X = (Ag + A) + Lgs, we get for each y € B% that

/ Wt < Upuy +C / ((Ag+ )\)u)2 % Wi 1+ 28 /
=Yy =Y

=y =y

2
(4.50) < Wyuy + 2¢ / VR

T=Y

((£+)\)u)2+4k0/

T=y

[Hess%[* + 4¢ R? /

T=Y

Integrating this over B}% gives the lemma.

The next lemma is a Poincaré inequality bounding w by Hess%,.

Lemma 4.51. We have
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(£ +Nu)® +2¢ / (Lpeu)®

(4.52) / w?* < Cp / |Hess®,|* + Cr y?
|z| <R |z|<R+1
Proof. Lemma 4.48 with v = w and A =1, so that ¥, , , = 0 and |(£ + Dw| < C, u, gives
(4.53) / w? < C R2 / VR w2 + C / |Hess%,|* + Cr y?.
|| <R |z|<R || <R

We need to absorb the first term on the right side. Let w; be a Euclidean derivative of w.

Applying Lemma 4.48 with « = w; and A = % gives

(4.54) / w? </ Wi, .+ CR? / |Hess?,|* + C / |Hess®, |> + Cr u? .
lz|<R Bk P lz|<R lz|<R

Let {h;} be an L*-orthonormal basis of f—elgenfunctlons for Ag and define U;;(x) = [ hj(
It follows that

(4.55) Teyoo= > (Tiy(@)?

&
By Lemma 4.3, (f‘x‘@ \I/W(I)) < C, 2. The Poincaré inequality on B}% gives

2
k
VR,

(4.56) / (Uii(x))* < Cpp® + Cr / < O Py / |Hess?, |
BY BY

lz|<R

Putting this together gives

(4.57) / w® < Cp / | VR Hess%|? + Cr / |Hess®,|* + Cr u2.
|z|<R |z|<E

|z|< R

O w;{x,8) db.

Finally, to complete the proof, we use |LHess?,| < C, p and the reverse Poincaré inequality

to bound the |V Hess%,| term.

]

Froof of Proposition 4.1. We will fix A at the end depending just on n and r; and then

choose . Given r > 4n, Lemma 4.51 and (4.2) give

(4.58) / w? < ! / |Hess%,|> + C, y? < C, / |Hess?, |
|z|<r |z|<r+1 dn<|z|<r+1
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Let r,, be given by Lemma 4.31, so that Us(r) > % forr > r, Ifr, <randr+1<s < A-2,
then (4.58) and Lemma 4.31 give that

2

(4.59) / w? < CoLir+1) <G Is)e 7.
|z|<r

On the other hand, Lemma 4.37 gives that

(4.60) /st‘” L) & I = /

0 |z|<s

|Hess%,|* e~ < 204 / wre T
|z|<s+2

It follows that we can choose r,;, depending just on n, so that 2 f|w|<9n w?e ¥ < f\w|<w w?e~f
In particular, the first part of (3.22) holds for any ry > r,.
Let fy and Uy be the quantities { and U for w. We repeat the argument starting from
r = max{r,, 7} using Us > % to force Iy to grow. For A large, depending on n and ry,
7,.2

this gives r1 € (max{ry,ry},A) with Ug(ry) > ;—2 (we could do this for any rate below 7).

Finally, choose {5 > 84 larger than the {; from Lemma 4.31 with this A. [

5. PROVING THE ESTIMATE FOR RESCALED MCF

We will now prove (2.20) and, thus, complete the proof of Theorem 0.4. From now on,
¥, < R"1 is a rescaled MCF with A(Z;) < oo and ¥, converges as t — oo to a cylinder
 an—k L . 3
= S\/Z(”——k) x R¥. The sequence d; is defined in (2.3).

Proposition 5.1. {2.20) holds.

Froof. We will assume that £ = 1 as the case k = 0 follows similarly, but much more easily.
Let 8 < 1 be given by Proposition 2.4. The proposition will follow once we show

(5.2) sup  sup | (VH)| < C’df,

te[f,j+1] BzanZi

where (’ does not depend on 7.

We next explain how the parameters will be chosen. First, since # < 1, we can choose
v,B < 1 so that 8 < v 8. Next, given this v, Theorem 3.8 gives € > 0. Finally, we choose
the constant ¢; > 0 in Proposition 2.12 to ensure that (3.1) holds with &

Proposition 2.12 with ¢ and 4 € (,1) as above gives constants R;,C and cylinders C;
so that B, MY is a graph over Cj;4 of a function w for each ¢ € [7,7 + 1]. Moreover, (1),
(2) and (4) in Proposition 2.12 give (3.1)—(3.6) with ¢ < € and pu = O’éf. Theorem 3.8 now
applies with our choice of v < 1 above. Thus, we get a constant €, and function

(5.3) B = aiz 2+ agwiet » wphi(d),
i 1<k k
where a;, a;, are constants and each hg(d) is a %—eigenfunction for Ag, and we have

(5.4) sup |w—1D|§C,,,w”:C'5§”.

|z|<3n

The R* unit vector fields &y, on 11 push forward to vector fields on ¥, that we still denote
O, Since {|z| < 3n} N I; is the graph over C;41 of w with Hw||%2(|x|53n) ol Céf, it follows
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- £ &
that |[VH| < €67 and |II;11(0,)| < C67 on |z| < 3n. Therefore, (5.2) follows from

7

(5.5 sup |VeH| < C o7,

|z|<3n

where H is now regarded as a function on C;.; itself. It remains to establish (5.5).

The mean curvature H of the graph of w is given at each point explicitly as a function of
w, Vw and Hess,,; see corollary A.30 in [CM2]. We can write this as the first order part (in
w, Vw, Hess,,) plus a quadratic remainder

(5.6) H=H; + (A9+Aw+;> w4 O(w?) .

Here O(w?) is a term that depends at least quadratically on w, Vw, Hess,, and the constant
H- = :"/gk is the mean curvature of C. We will show that the ¢ derivative of each of the

terms in (5.6) is bounded by C 5?. This is obvious for the constant term. It is also obvious
for the quadratic term O{w?) using interpolation and Hw||%2(|m‘<3n) et C’éf. Similarly, since
B v > f, the estimate (5.4) and interpolation give that

1 =

(5.7) ‘v (A9+Aw+2> (w— )| < C8f.
The proposition follows from the above since applying the linearized operator to w gives

1y . 1
(5.8) Vo (A@—FA:E—I——)TUV@Z(A9+Am+—>xkhk0.

2 - 2
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