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Abstract 

People can use abstract rules to flexibly configure and select actions for specific 

situations. Yet how exactly rules shape actions towards specific sensory and/or motor 

requirements remains unclear. Both research from animal models and human-level 

theories of action control point to the role of highly integrated, conjunctive 

representations, sometimes referred to as event files. These representations are 

thought to combine rules with other, goal-relevant sensory and motor features in a 

nonlinear manner and are a necessary condition for action selection. However, so far, 

no methods exist to track such representations in humans during action selection with 

adequate temporal resolution. Here, we applied time-resolved representational similarity 

analysis to the spectral-temporal profiles of the EEG signal, while participants 

performed a cued, rule-based action selection task. In two experiments, we found that 

conjunctive representations were active throughout the entire selection period and were 

functionally dissociable from the representation of constituent features. Specifically, the 

strength of conjunctions was a highly robust predictor of trial-by-trial variability in 

response times, and was selectively related to an important behavioral indicator of 

conjunctive representations, the so-called partial-overlap priming pattern. These results 

provide direct evidence for conjunctive representations as critical precursors of action 

selection in humans.  
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Significance Statement 

A tennis player planning the next stroke has to consider disparate pieces of information: 

the type of stroke, the trajectory of the incoming ball, or where to hit the ball. By 

decoding EEG signals while participants executed simple, rule-based actions, we 

demonstrate here that such different, action-relevant aspects are integrated within a 

unified, conjunctive representation––rather than being processed in a piecemeal 

manner. Furthermore, the strength of conjunctive representations is a highly robust 

predictor of how quickly actions are executed in each trial. Human-level theories and 

recent single-cell evidence from animal models suggests that conjunctive 

representations are a necessary condition for successful action selection. Our results 

provide the first direct evidence in humans that is consistent with this hypothesis.   

  



Conjunctive Representations 

 4 

Conjunctive Representations that Integrate Stimuli, Responses, 

and Rules are Critical for Action Selection  

Flexible, goal-directed action requires the use of abstract rules that can be 

applied to a range of specific situations. However, we know little about how such rules 

connect with lower-level sensory or response representations, as a specific action is 

planned and executed. In traditional stage-based processing models, rules or task sets 

regulate the flow of information from stimulus to response in form of a cascade of 

relatively independent processing steps (1-5). In contrast, recent results from research 

in non-human primates suggest a critical role of neurons with nonlinear, mixed 

selectivity response properties that integrate various aspects (rules, stimuli, 

and responses) in a conjunctive manner (6, 7). Similarly, some cognitive psychologists 

have proposed––mostly on the basis of behavioral results––that as a necessary 

step for action selection, relevant features, including rules, need to be combined into 

highly integrated, conjunctive representations, referred to as event files (8-

11). However, no direct, neural-level indicator of event files exists, making it difficult 

to bridge the gap between theories about integrated representations in human action 

selection and the literature on mixed selectivity neurons in animal models. 

Currently, the main signature of event files is an indirect, behavioral aftereffect, 

the partial-overlap priming cost (Fig.1A): When either all or none of the action-relevant 

features repeat across consecutive trials (e.g., both rule and response either repeat or 

change), performance is relatively fast. In contrast, when only some, but not all features 

overlap across trials (e.g., response repeats, but rule changes), response times (RT) 

and/or errors increase. According to event-file theory, entire event files can be easily 

repeated or replaced. However, when an overlapping feature needs to be extracted 
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from a recently activated event file, RT or error costs arise, thus leading to the partial-

overlap priming pattern.  

There is also neuroimaging evidence about how the partial-overlap cost pattern 

is expressed neuroanatomically (12, 13) or in evoked EEG components (14). However, 

given that partial-overlap costs are an aftereffect of event file formation, this 

pattern provides no information about how conjunctive representations versus their 

constituent features behave during response selection, and whether or not they are 

indeed a critical precursor of successful action. Moreover, partial-overlap costs can also 

be explained by alternative models, such as in terms of interactions between distinct 

hierarchical levels of control (15, 16), or as an indirect consequence of response 

inhibition (17).  

In order to evaluate the hypothesized role of conjunctive representations, we 

used the EEG signal to decode information about action-relevant representations in a 

time-resolved manner (18-20), while participants selected responses on the basis of 

randomly cued, action rules (11) (Fig.1AB). Conjunctive representations are per 

definition correlated with the representations of constituent features. To tease apart 

these correlated representations, we used representational similarity analysis (RSA) 

(21, 22). Standard RSAs require information about the similarity of the multivariate 

neural signals across conditions (e.g., based on correlations), which however, cannot 

be computed on the level of individual trials. Therefore, we performed RSAs using 

confusion profiles that resulted from an initial step of decoding each of the possible 

action-relevant constellations on the level of individual trials and time-points (Fig.1CD, 

see Representational Similarity Analysis in Methods). This two-step procedure allowed 
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us to examine the role of conjunctive and constituent representations in predicting trial-

by-trial variability in performance. 

In two experiments our results showed––for the first time in humans––temporally 

precise evidence for the activation of conjunctive representations during action 

selection. Consistent with both findings from mixed selectivity neurons and event-file 

theory, conjunctions were robust and unique predictors of variability in performance and 

were specifically related to the pattern of partial-overlap priming effects.  

Results 

We conducted two experiments that we report together. In Experiment 1, we 

used the spatial rules task with three different rules (see Fig.1AB), which did not allow 

us to differentiate between different types of conjunctions (i.e., S-R conjunctions versus 

rule-S-R conjunctions). In Experiment 2, we used an expanded task space with four 

different rules (Fig.1EF), which included conjunctions that shared the same S-R pairs, 

but different abstract rules (11).  This allowed us to dissociate conjunctions that 

integrate rules (i.e., rule-S-R conjunctions) from rule-independent conjunctions (i.e., S-R 

conjunctions).  

Behavior 

For all analyses, error-trials, post-error trials, and trials in which RTs were larger 

than 99.5 percent of each individuals’ RT distributions were excluded. In both 

experiments, and consistent with previous work (11), we observed partial-overlap costs 

in RTs and errors as a function of the different trial-to-trial transitions (Fig.2): In 

Experiment 1, when either rules and responses repeated or when both changed, 

responses were fast and accurate, whereas costs emerged in the case of partial 
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updates of either rules or stimuli/responses. In Experiment 2, the repetition of rule-S-R 

settings produced RT and error benefits, whereas any partial updates (including S-R 

repetitions with rule changes) generated costs (for statistical analyses, see SI Appendix, 

Tables S1 and S2).  

Tracking Representational Dynamics  

 To directly assess the role of conjunctive representations during action selection, 

we used time-resolved RSAs on the level of single trials (Fig.3A and 4A). Consistent 

with previous results, the cascade of decoded representations unfolded consistent with 

the expected flow of information: The rule was activated during the pre-stimulus phase, 

followed by a strong expression of the stimulus, and finally by the response (18, 20). 

Critically, over and above these constituent features, the conjunctive representations 

were active during the entire post-stimulus period (Fig.3A and 4A) in both Experiments. 

In Experiment 2, rule-S-R conjunctions were more strongly expressed than rule-

independent, S-R conjunctions. Also, in both experiments, conjunctions emerged in 

tandem with (in Experiment 1), or clearly before response activation (in Experiment 2, 

see also SI Appendix, Fig.S8).  Consistent with event-file theory, this temporal pattern 

suggests that conjunctions arise during response selection and not just as a response-

selection aftereffect. 

Note, that expression of conjunctions was statistically robust even though we 

accounted for subject-specific differences in RTs between action constellations. Thus, 

decoding results cannot be explained in terms of unspecific difficulty differences 

between action constellations (SI Appendix, Fig.S1 and S2). In Experiment 2, we 

observed that the rule representation diminished after stimulus onset (Fig.4A). 
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Excluding conjunction models restored the post-stimulus rule representation, suggesting 

that the rule-S-R conjunction model captures the same variance as the rule model 

explains in this phase of action selection (Fig.4A inset). 

Do Conjunctions Uniquely Predict Trial-to-trial Performance Fluctuations? 

 To test the prediction from event-file theory that conjunctive representations are 

critical for action selection, we regressed trial-to-trial variation in RTs onto the strength 

of each expressed representation. Using multilevel modeling, we performed these 

analyses for each time-point and with all predictors entered simultaneously. The 

resulting “impact-trajectories” are shown in Fig.3B and 4B (statistical results for a-priori 

selected time intervals are summarized in SI Appendix, Table S3 and S4; see also SI 

Appendix, Fig.S3 and S4 for corresponding results from standard decoding analyses). 

Note that negative t-values indicate that stronger representations lead to faster 

responses. Consistent with the prediction from event-file theory, conjunctive 

representations were the dominant predictors of performance in both experiments. In 

Experiment 2, both rule-S-R conjunctions and S-R conjunctions explained substantial, 

independent variability in trial-to-trial RTs (Fig.4B), with a slight edge for the rule-specific 

conjunctions. Combined, these results indicate that conjunctive representations emerge 

during response-selection, and predict upcoming behavior over and above the influence 

of the constituent features.   

Are Conjunctions Related to Partial-Overlap Costs?  

In order to directly connect the EEG-decoded conjunctive representations with 

the theoretical, event-file construct, we examined how these representations relate to 

the partial-overlap priming pattern. As Fig.3C and 4C show, the strength of decoded 
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conjunctions expresses the partial-overlap pattern in both Experiments 1 and 2. 

Conjunctive representations were particularly strong in those transitions in which RTs 

were fast (i.e., when either everything repeated or everything changed, see Fig.2). In 

Experiment 1, conjunctive representations showed the partial-overlap pattern in the 

expected direction during the early, b=.024, SE=.010, t(20)=2.58, but not in the late 

post-stimulus phase, b=.004, SE=.010, t(20)=.39, and none of the constituent features 

showed the critical interaction pattern, all t(20)<.21. In Experiment 2, only the strength of 

rule-S-R conjunctions showed the partial-overlap costs, b=.021, SE=.009, t(21)=2.22, 

for the early selection phase; b=.021, SE=.009, t(21)=2.24, and for the late selection 

phase (Fig.4C). None of the constituent features, all ts(21)<.72), or S-R conjunctions 

showed such an effect, b=.012, SE=.009, t(21)=1.27 for the early selection phase; 

b=.007, SE=.010, t(21)=.72, for the late selection phase. 

Another important prediction that can be derived from the event-file model is that 

strong conjunctions should be particularly difficult to “unbind” on the following trial. Thus, 

the stronger the conjunction on trial n-1, the larger should be the partial-overlap costs 

on trial n. Our results, shown in Fig.3D and 4D, confirm this prediction for both 

experiments: A stronger conjunctive representation in trial n-1, late in the selection 

period, led to a greater RT partial-overlap costs on trial n, b=.025, SE=.011, t(20)=2.25. 

Importantly, this pattern was unique for conjunctive representations, and was not found 

for any of the constituent representations, all ts(20)<.05. In Experiment 2, only rule-S-R 

conjunctions significantly modulated RT partial-overlap costs on the next trial (Fig.4D), 

b=.031, SE=.011, t(20)=2.81. Again, this pattern was absent for S-R conjunctions or any 

other of the constituent representations, all ts(21)<.38. Thus, it is specifically the 
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highest-order, rule-S-R conjunctions that relate to the partial-overlap cost pattern. Taken 

together, the behavior of decoded conjunctive representations was highly consistent 

with predictions from the event-file model.  

Discussion 

We tested whether integrated, conjunctive representations between task-relevant 

features emerge during action selection, as predicted from results with mixed selectivity 

neurons (6), and by event-file theory (8, 9). In our paradigm, action settings had to be 

updated flexibly for each trial, creating unique constellations between rules, stimuli, and 

responses. We combined a standard, linear decoding approach with a subsequent, 

time-resolved RSA in order to track the emergence of conjunctive representations and 

their constituent features over time, and for each individual trial.  

The time course of decoded information showed a highly plausible cascade of 

action representations (rule, stimulus, and then response). Most critically, we found 

robust evidence for conjunctive representations—emerging shortly after stimulus onset 

and persisting until response execution. Analyses with response-locked EEG data fully 

confirmed this pattern of results (SI Appendix, Fig.S8). The fact that conjunctive 

representations were continuously present from stimulus processing to response 

execution is consistent with their role in translating sensory codes into response codes 

based on the current task rules.   

Even though conjunctive representations were on average less strongly 

expressed than those of constituent features, they were statistically, highly robust 

(Fig.3B and Fig.4B and SI Appendix, Fig.S10). Moreover, conjunctive representations 

were strong and unique predictors of trial-by-trial variability in RTs, over and above 
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other constituent features. These results are difficult to reconcile with traditional stage 

theories (1-5) and hierarchical control models (16, 23), where information flows in a 

strict feed-forward manner and thus allows no integrated representations to emerge. 

This is the more remarkable as our task design, with explicitly cued rules that appeared 

prior to each stimulus, should have been clearly compatible with a hierarchical selection 

architecture (e.g., first selection of rule, then of rule-specific S-R link). Instead, our 

results indicate that action selection is established by tying together the disparate, task-

relevant features from the entire selection event into a common representation.    

In Experiment 1, conjunctions could entail any pairwise, or complete combination 

of rule, stimulus, or response features; in Experiment 2, we were further able to 

dissociate between rule-specific, rule-S-R conjunctions and rule-independent, S-R 

conjunctions. The fact that in Experiment 2, both rule-S-R and S-R conjunctions 

emerged is an important result in its own right. It suggests that integrated 

representations that match the contingencies in the environment develop in parallel on 

different levels of specificity. This combination of both rule-specific and rule-independent 

representations can account for past findings showing that S-R associations learned 

within one rule can transfer to another rule, albeit in a limited manner (11, 24).  

A key behavioral indicator of event files is the partial-overlap priming pattern (see 

Fig.1A) (11, 25). In both experiments, we found this pattern not only in RTs and errors 

(Fig.2), but also in the strength of conjunctions (Fig.3C and 4C). More importantly, the 

strength of conjunctions in trial n-1, predicted the size of partial-overlap costs in trial n 

(Fig.3D and 4D), suggesting the tighter the integration between action features, the 

harder it is to “unbind” the features in order to integrate them into a new conjunction. 
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Importantly, only conjunctions, and not the basic features, showed such a relationship 

with the partial-overlap pattern, thus functionally dissociating conjunctions from their 

constituent codes. The results in Experiment 2 also indicated that specifically rule-S-R 

conjunctions were related to the partial-overlap cost, not, however S-R conjunctions. It 

is noteworthy that the conjunctions in Experiment 1 (where we were not able to 

distinguish between S-R and rule-S-R conjunctions) showed a similar priming pattern as 

the rule-S-R conjunctions in Experiment 2, suggesting integration of not just stimuli and 

responses, but also of rules in both experiments.   

While our results provide temporal and functional information about specific 

representations, they are relatively silent about the underlying neural mechanisms or 

their neuroanatomical location. We had no strong a-priori predictions about frequency 

bands that might contain conjunction-specific information, we used a broad spectrum of 

frequencies for decoding. In post-hoc analyses we found that the pattern of EEG 

responses that underlies conjunctive representations is idiosyncratic (SI Appendix, 

Fig.S5), but most strongly expressed in the delta-band frequency signal (SI Appendix, 

Fig.S6 and S7). This latter result is generally consistent with previous evidence that 

decision-relevant representations can be decoded from oscillations in the delta band 

(26).   

Regarding the question of neuroanatomical location, research with animal 

models points to the hippocampus as particularly critical for representing highly 

contextualized, conjunctive information (6, 27-29). There is also some evidence from 

human neuroimaging work that implicates the hippocampus in retrieving incidentally 

learned associations between actions and their consequences, albeit using paradigms 
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that involve learning across longer time frames (30, 31). In addition, single-neuron 

electrophysiological work with non-human animals indicates that neurons coding task-

relevant features are distributed across frontal and parietal cortex (32, 33). A large 

proportion of recorded neurons in these areas integrate multiple features in a nonlinear 

manner (6, 34). Such heterogeneous, neural responses allow both efficient, linear read-

out of information to downstream neurons and can also code conjunctive information in 

a high-dimensional format (35). In human neuroimaging work, attempts to decode high-

level, task-relevant representations in frontal areas have proven more challenging (36).   

An important finding from the research on mixed selectivity neurons is that the 

degree of nonlinear information coded in these neurons is functionally distinct from the 

representation of linear features. For example, nonlinear responses were found to be 

highly robust in correct trials, but was largely missing in error trials, whereas simple, 

linear information was equally present on correct and error trials (6, 7, 37). This pattern 

is consistent with our finding that the strength of conjunctive representations uniquely 

predicts trial-by-trial performance, beyond the predictive strength of constituent, simple 

features (Fig.3B and 4B). As mentioned earlier, further evidence for a functional 

dissociation comes from our finding that only conjunctive representations, but not the 

representations of constituent, simple feature, express the partial-overlap priming 

pattern (see Fig.3CD and 4CD).  

Our results about the relevance of conjunctions for both efficient action selection 

and for the partial-overlap priming pattern, directly confirm predictions derived from 

event-file theory. Therefore, they provide an important missing link between two distinct 

lines of research: The relatively abstract, event-file conceptualization, designed to 
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explain the architecture of human action selection, and the recent progress in 

characterizing the format of representations arising from mixed selectivity neurons. For 

example, from the here established relationship between the partial-overlap pattern and 

the neural-signature of event files, we can derive the testable prediction that the partial-

overlap pattern should also be selectively expressed in the activity of mixed-selectivity 

neurons in animal models. In addition, the current results raise a range of new 

questions about the functional properties of conjunctive representations: We do not 

know how these representations are constrained by capacity limitations (38), how they 

respond to distracting information (7), to what degree they allow integration of action 

outcomes or goals (39), or how they change through experience (SI Appendix, Fig.S9) 

(11). The EEG decoding approach used here, provides the tools to address these and 

related questions in human participants. 

Method 

See SI Appendix for additional method details. 

Participants 

Forty-four people participated after signing informed consent following the 

protocol approved by the University of Oregon’s Human Subjects Committee in 

exchange for $10 per hour and additional performance-based incentives. Participants 

with a pre-defined criterion of more than 35% of trials with EEG artifacts were removed 

from further analysis, leaving 20 out of 22 participants for Experiment 1 and 21 out of 22 

for Experiment 2. 
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Stimuli, Tasks and Procedure 

Participants performed a cued rule-selection task, in which one of the pre-

instructed action rules was randomly selected to determine possible S-R mappings, on 

a trial-by-trial basis (Fig.1B) (11). Based on the cued rule, participants responded to the 

location of a circle (1.32° in radius) that randomly appeared in the corner of a white 

frame (6.6° off-center) by selecting one of the four response keys that were arranged in 

a 2 x 2 matrix. Each action rule specified four S-R links using a simple spatial 

transformation rule. For instance, the “vertical” rule mapped the top-left circle to the 

bottom-left response. In order to ensure that decoding of rule information was not driven 

by superficial, perceptual aspects, we used two cues for each rule (a pair of verbal cues 

in Experiment 1 and symbol/word pair in Experiment 2, see Fig.1C and 1E) that 

appeared in either even or odd trials to prevent immediate cue repetitions. In 

Experiment 1,”vertical”, “horizontal” and “diagonal” rules were used (i.e., 66.6 % switch 

rate).  In Experiment 2, for different rules, ”vertical”, ”horizontal”, “clockwise” and 

“counterclockwise” rules were used (i.e., 75% switch rate). This specific set of rules 

ensured that each S-R link occurred in two different rules (e.g., a top-left circle leads to 

a bottom-left response in both the vertical and the clockwise rule), allowing us try to 

decode both rule-S-R conjunctions and rule-unspecific, S-R conjunctions in Experiment 

2 (Fig.1EF).   

We presented two practice blocks and 200 experimental blocks per experiment. 

Participants were instructed to complete as many correct trials as possible within each 

16-second block. Trials that began within the 16 seconds were allowed to complete.  
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EEG Recording and Processing 

Electroencephalographic (EEG) activity was recorded from 20 tin electrodes 

using the International 10/20 system and preprocessed to remove artifacts (see EEG 

Recording and Processing in the SI). Furthermore, temporal-spectral profiles of single-

trial EEG data were obtained via complex wavelet analysis(40) by applying time-

frequency analysis (1-35 Hz) to preprocessed EEG data (see SI Appendix, Time-

frequency Analysis). This analysis resulted in a frequency-band specific power estimate 

at each sample point.  As in our previous work (18), we averaged five different 

frequency bands:1-3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the 

alpha-band, 13-30 Hz for the beta-band, 31-35 Hz for the gamma-band to prepare 

training data for the decoding analyses. Within individuals, frequency-specific power 

values were z-transformed across electrodes at every sample to remove the effects that 

uniformly influenced all electrodes. While we had no a-priori predictions about the role 

of specific frequency bands in representing different action-relevant representations, we 

present post-hoc analyses probing the relevance of each frequency band in the SI (see 

SI Appendix, Fig.S6 and S7).  

Representational Similarity Analysis  

To obtain information about the strength of each feature and conjunction on the 

level of individual trials and time-points, we used a two-step procedure. First, we 

performed a linear decoding analysis to discriminate between all 12 different action 

constellations in Experiment 1, or all 16 constellations in Experiment 2. This analysis 

was conducted for each time-point and used the average power of rhythmic EEG 

activity within the predefined frequency bands (delta, theta, alpha, beta, and gamma), 
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generating 100 features (5 frequency-bands x 20 electrodes) to train decoders. 

Following cross-validation, this decoding step yielded a vector of “confusion profiles” of 

classification probabilities for both the correct and all possible incorrect classifications, 

and for each time-point and trial (Fig.1D). As a second step, we applied RSA (21) to 

each profile of classification probabilities in order to determine their underlying similarity 

structure for each time-point and trial. Specifically, we regressed the classification-

probability vector onto model vectors as simultaneously entered predictors, which were 

derived from a set of RSA model matrices (Fig. 1D).  

Each model matrix represented a potential, underlying representation. In 

Experiment 1, we constructed RSA models for the rules, stimuli, responses, and 

conjunctions (Fig.1D). In Experiment 2, we used separate matrices for the rule-specific 

S-R conjunction model (rule-S-R conjunction) and the rule-independent S-R conjunction 

model (S-R conjunction; Fig.1F). Complete orthogonalization of basic features could be 

established within each of two equal-sized subspaces, but not across the entire space 

of action constellations. Specifically, one subspace (G1 in Fig.1E) contained 

constellations with stimuli at the top-left or bottom-right corner (leading to a bottom-left 

or bottom-right response for all rules), whereas the second subspace (G2 in Fig.1E) 

contained trials with stimuli at the left-bottom or top-right corner (leading to a top-left or 

bottom-right response). Within each subspace, conjunctions were defined by the 

combination of four rules (vertical, horizontal, clockwise, and counterclockwise), two 

stimulus positions, and two responses, ensuring that each S-R link could occur in the 

context of two different action rules.   
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Multilevel Modeling  

For the results shown in Fig.3C and 4C, and well as in Fig.3D and 4D, we used 

multilevel linear modeling to analyze within-subject variability in RSA scores as a 

function of trial-to-trial transition variables (Fig.3C and 4C), or in RTs as a function of 

trial n-1 RSA scores and trial-to-trial transition variables (Fig.3D and 4D). In each case, 

subject-specific intercepts and slopes were included as random effects. Log-

transformed RTs as dependent variable were pre-whitened by linear and quadratic 

trends of experimental trials and blocks. We performed statistical tests for a-priori 

selected time intervals: cue-to-stimulus period from the onset of cue to the onset of 

stimulus (-300 to 0 ms for Experiment 1 and -500 to 0 ms for Experiment 2), early post-

stimulus period (0 to 300 ms of the post-stimulus segment for both experiments), and 

late post-stimulus period (300 to 600 ms of the post-stimulus segment for both 

experiments). We predicted trial-to-trial RTs/RSA scores in the current trials with EEG 

signals from pre-stimulus and early post-stimulus periods in order to capture processing 

prior to response execution (see also SI Appendix, Fig.S8 for results using signals 

aligned to the response onsets). The late post-stimulus interval was used to assess how 

partial-overlap costs are modulated by the strength of action representations developed 

during selection in n-1 trials (i.e., Fig.3D and 4D). In addition, to visualize the impact of 

different decoded features on RTs across time, we also ran fixed-effect models plus 

random intercepts at each sample point, but without random slopes (Fig.3B and 4B).  
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Figures Captions 
 

 

Fig.1. (A) Event files and partial-overlap priming pattern. Shown are two examples from simplified situations with two 

possible action rules and response options, along with the idealized data pattern. The trial n-1 event file is shown as 

the yellow oval, the trial n event file as the green oval. In the first example, consecutive event files do not overlap, 

which, just as when there is complete overlap (not shown), allows efficient performance. In the second example, the 

response representation overlaps, but the rule does not, leading to partial-overlap costs––just as would be the case 

for rule overlap, but non-overlapping responses (not shown). Note, that examples of all possible trial-to-trial transition 

types in the current paradigm are embedded in Figure 2. (B) Sequence of trial events in the rule-selection task. (C) 

Spatial translation rules mapping specific stimuli to responses in Experiment 1 (horizontal, vertical, and diagonal rule). 

Two different cue words were used for each rule. Responses were made on four keys, each spatially compatible with 

one of the four possible stimulus locations. (D) Schematic steps of the representational similarity analysis. For each 

sample time (t), a scalp-distributed pattern of EEG power (see Representational Similarity Analysis in Methods) was 

used in a first step to decode trial-specific rule/stimulus/response configurations, producing classification probabilities 

for each of the possible configurations. In the second step, these classification profiles for each trial and time-point 

were simultaneously regressed onto model vectors for the potentially relevant representation. The figure shows all 
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possible vectors as model matrices (the x-axis represents the correct constellations for the decoder to pick, and the y-

axis the “confidence” with which each constellation is predicted). For each specific trial, the “vertical” vectors 

corresponding to the relevant action constellation are picked as predictors (i.e., the red boxes show all four vectors 

for one specific action constellation; the shading of matrix elements indicates the predicted classification probabilities 

with darker shadings representing higher probabilities). Note, that the conjunction matrix arises from multiplying 

corresponding elements of the constituent feature matrices with each other. The idealized classification profile 

represents an example where a unique conjunction and rule information are expressed as a peak at the correct label 

of the S-R mappingi and some confusion to other instances with the same rule. The coefficients associated with each 

predictor (i.e., in terms of t-values) reflect the unique variance explained by each of the constituent features and their 

conjunction. (E) Spatial translation rules mapping specific stimuli to responses in Experiment 2. A word or a symbol 

were used as a cue for each rule. As described in Methods, to achieve complete orthogonalization, rule-S-R 

constellations were divided into two groups of eight constellations each (G1 and G2) that were separately analyzed 

and then averaged. (F)  Models for the representational similarity analysis (RSA) used within each of the two 8-

constellation groups in Experiment 2.  
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Fig.2.  Mean response times (RTs) and errors as a function of all possible transition types in Experiments 1 and 2.  

Alongside with each data point, examples for the corresponding trial-to-trial transition type are shown (i.e., trial n-

1=top, trial n=bottom). Experiment1 allows transitions resulting from crossing the rule repetition/change factor and the 

response repetition/change factor. Experiment 2 also allowed differentiating pure stimulus changes and response 

changes in case of rule-change trials. However, for subsequent analyses on the relationship between conjunctive 

representations and overlap costs (see Fig.4D), we focused on the transitions with complete S-R changes or 

repetitions. Error bars specify 95% within-subject confidence intervals. 
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Fig.3. EEG-related results for Experiment 1. (A) Average, single-trial t-values associated with each of the basic 

features and their conjunction derived from the RSA analysis (see Fig.1C). Shaded regions specify the standard error 

around the mean. The colored squares at the bottom of the figure denote the significant time-points using a non-

parametric permutation test. The insert shows the same RSA fit scores when the conjunction was not included as 

predictor in the RSA analysis. (B) Time-course of t-values from multilevel, linear models predicting the variability in 

trial-to-trial RTs (i.e., the impact of representations on behavior), using RSA scores of all features as the 

simultaneous predictors. (C) Average RSA scores of the conjunction model as a function of rule repetition/change 

and the response repetition/change factors for the early (0-300 ms) and the late (300-600 ms) periods in the post-

stimulus interval. (D) Modulation of RT partial-overlap costs in trial n as a function of the strength of conjunction 

codes (median split) in trial n-1. Error bars specify 95% within-subject confidence intervals. 
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Fig.4. EEG-related results for Experiment 2. See caption to Fig.3 for a description of panels A-D. Different than 

Experiment 1, this experiment allowed differentiation between S-R and rule-S-R conjunctions. 


