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Conjunctive Representations

Abstract
People can use abstract rules to flexibly configure and select actions for specific
situations. Yet how exactly rules shape actions towards specific sensory and/or motor
requirements remains unclear. Both research from animal models and human-level
theories of action control point to the role of highly integrated, conjunctive
representations, sometimes referred to as event files. These representations are
thought to combine rules with other, goal-relevant sensory and motor features in a
nonlinear manner and are a necessary condition for action selection. However, so far,
no methods exist to track such representations in humans during action selection with
adequate temporal resolution. Here, we applied time-resolved representational similarity
analysis to the spectral-temporal profiles of the EEG signal, while participants
performed a cued, rule-based action selection task. In two experiments, we found that
conjunctive representations were active throughout the entire selection period and were
functionally dissociable from the representation of constituent features. Specifically, the
strength of conjunctions was a highly robust predictor of trial-by-trial variability in
response times, and was selectively related to an important behavioral indicator of
conjunctive representations, the so-called partial-overlap priming pattern. These results
provide direct evidence for conjunctive representations as critical precursors of action

selection in humans.
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Significance Statement
A tennis player planning the next stroke has to consider disparate pieces of information:
the type of stroke, the trajectory of the incoming ball, or where to hit the ball. By
decoding EEG signals while participants executed simple, rule-based actions, we
demonstrate here that such different, action-relevant aspects are integrated within a
unified, conjunctive representation—rather than being processed in a piecemeal
manner. Furthermore, the strength of conjunctive representations is a highly robust
predictor of how quickly actions are executed in each trial. Human-level theories and
recent single-cell evidence from animal models suggests that conjunctive
representations are a necessary condition for successful action selection. Our results

provide the first direct evidence in humans that is consistent with this hypothesis.
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Conjunctive Representations that Integrate Stimuli, Responses,
and Rules are Critical for Action Selection

Flexible, goal-directed action requires the use of abstract rules that can be
applied to a range of specific situations. However, we know little about how such rules
connect with lower-level sensory or response representations, as a specific action is
planned and executed. In traditional stage-based processing models, rules or task sets
regulate the flow of information from stimulus to response in form of a cascade of
relatively independent processing steps (1-5). In contrast, recent results from research
in non-human primates suggest a critical role of neurons with nonlinear, mixed
selectivity response properties that integrate various aspects (rules, stimuli,
and responses) in a conjunctive manner (6, 7). Similarly, some cognitive psychologists
have proposed—mostly on the basis of behavioral results—that as a necessary
step for action selection, relevant features, including rules, need to be combined into
highly integrated, conjunctive representations, referred to as event files (8-

11). However, no direct, neural-level indicator of event files exists, making it difficult
to bridge the gap between theories about integrated representations in human action
selection and the literature on mixed selectivity neurons in animal models.

Currently, the main signature of event files is an indirect, behavioral aftereffect,
the partial-overlap priming cost (Fig.1A): When either all or none of the action-relevant
features repeat across consecutive trials (e.g., both rule and response either repeat or
change), performance is relatively fast. In contrast, when only some, but not all features
overlap across trials (e.g., response repeats, but rule changes), response times (RT)
and/or errors increase. According to event-file theory, entire event files can be easily

repeated or replaced. However, when an overlapping feature needs to be extracted
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from a recently activated event file, RT or error costs arise, thus leading to the partial-
overlap priming pattern.

There is also neuroimaging evidence about how the partial-overlap cost pattern
is expressed neuroanatomically (12, 13) or in evoked EEG components (14). However,
given that partial-overlap costs are an aftereffect of event file formation, this
pattern provides no information about how conjunctive representations versus their
constituent features behave during response selection, and whether or not they are
indeed a critical precursor of successful action. Moreover, partial-overlap costs can also
be explained by alternative models, such as in terms of interactions between distinct
hierarchical levels of control (15, 16), or as an indirect consequence of response
inhibition (17).

In order to evaluate the hypothesized role of conjunctive representations, we
used the EEG signal to decode information about action-relevant representations in a
time-resolved manner (18-20), while participants selected responses on the basis of
randomly cued, action rules (11) (Fig.1AB). Conjunctive representations are per
definition correlated with the representations of constituent features. To tease apart
these correlated representations, we used representational similarity analysis (RSA)
(21, 22). Standard RSAs require information about the similarity of the multivariate
neural signals across conditions (e.g., based on correlations), which however, cannot
be computed on the level of individual trials. Therefore, we performed RSAs using
confusion profiles that resulted from an initial step of decoding each of the possible
action-relevant constellations on the level of individual trials and time-points (Fig.1CD,

see Representational Similarity Analysis in Methods). This two-step procedure allowed
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us to examine the role of conjunctive and constituent representations in predicting trial-
by-trial variability in performance.

In two experiments our results showed—for the first time in humans—temporally
precise evidence for the activation of conjunctive representations during action
selection. Consistent with both findings from mixed selectivity neurons and event-file
theory, conjunctions were robust and unique predictors of variability in performance and
were specifically related to the pattern of partial-overlap priming effects.

Results

We conducted two experiments that we report together. In Experiment 1, we
used the spatial rules task with three different rules (see Fig.1AB), which did not allow
us to differentiate between different types of conjunctions (i.e., S-R conjunctions versus
rule-S-R conjunctions). In Experiment 2, we used an expanded task space with four
different rules (Fig.1EF), which included conjunctions that shared the same S-R pairs,
but different abstract rules (11). This allowed us to dissociate conjunctions that
integrate rules (i.e., rule-S-R conjunctions) from rule-independent conjunctions (i.e., S-R
conjunctions).

Behavior

For all analyses, error-trials, post-error trials, and trials in which RTs were larger
than 99.5 percent of each individuals’ RT distributions were excluded. In both
experiments, and consistent with previous work (11), we observed partial-overlap costs
in RTs and errors as a function of the different trial-to-trial transitions (Fig.2): In
Experiment 1, when either rules and responses repeated or when both changed,

responses were fast and accurate, whereas costs emerged in the case of partial
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updates of either rules or stimuli/responses. In Experiment 2, the repetition of rule-S-R
settings produced RT and error benefits, whereas any partial updates (including S-R
repetitions with rule changes) generated costs (for statistical analyses, see S| Appendix,
Tables S1 and S2).

Tracking Representational Dynamics

To directly assess the role of conjunctive representations during action selection,
we used time-resolved RSAs on the level of single trials (Fig.3A and 4A). Consistent
with previous results, the cascade of decoded representations unfolded consistent with
the expected flow of information: The rule was activated during the pre-stimulus phase,
followed by a strong expression of the stimulus, and finally by the response (18, 20).
Critically, over and above these constituent features, the conjunctive representations
were active during the entire post-stimulus period (Fig.3A and 4A) in both Experiments.
In Experiment 2, rule-S-R conjunctions were more strongly expressed than rule-
independent, S-R conjunctions. Also, in both experiments, conjunctions emerged in
tandem with (in Experiment 1), or clearly before response activation (in Experiment 2,
see also Sl Appendix, Fig.S8). Consistent with event-file theory, this temporal pattern
suggests that conjunctions arise during response selection and not just as a response-
selection aftereffect.

Note, that expression of conjunctions was statistically robust even though we
accounted for subject-specific differences in RTs between action constellations. Thus,
decoding results cannot be explained in terms of unspecific difficulty differences
between action constellations (SI Appendix, Fig.S1 and S2). In Experiment 2, we

observed that the rule representation diminished after stimulus onset (Fig.4A).
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Excluding conjunction models restored the post-stimulus rule representation, suggesting
that the rule-S-R conjunction model captures the same variance as the rule model
explains in this phase of action selection (Fig.4A inset).

Do Conjunctions Uniquely Predict Trial-to-trial Performance Fluctuations?

To test the prediction from event-file theory that conjunctive representations are
critical for action selection, we regressed trial-to-trial variation in RTs onto the strength
of each expressed representation. Using multilevel modeling, we performed these
analyses for each time-point and with all predictors entered simultaneously. The
resulting “impact-trajectories” are shown in Fig.3B and 4B (statistical results for a-priori
selected time intervals are summarized in SI Appendix, Table S3 and S4; see also Sl
Appendix, Fig.S3 and S4 for corresponding results from standard decoding analyses).
Note that negative t-values indicate that stronger representations lead to faster
responses. Consistent with the prediction from event-file theory, conjunctive
representations were the dominant predictors of performance in both experiments. In
Experiment 2, both rule-S-R conjunctions and S-R conjunctions explained substantial,
independent variability in trial-to-trial RTs (Fig.4B), with a slight edge for the rule-specific
conjunctions. Combined, these results indicate that conjunctive representations emerge
during response-selection, and predict upcoming behavior over and above the influence
of the constituent features.

Are Conjunctions Related to Partial-Overlap Costs?

In order to directly connect the EEG-decoded conjunctive representations with

the theoretical, event-file construct, we examined how these representations relate to

the partial-overlap priming pattern. As Fig.3C and 4C show, the strength of decoded
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conjunctions expresses the partial-overlap pattern in both Experiments 1 and 2.
Conjunctive representations were particularly strong in those transitions in which RTs
were fast (i.e., when either everything repeated or everything changed, see Fig.2). In
Experiment 1, conjunctive representations showed the partial-overlap pattern in the
expected direction during the early, b=.024, SE=.010, {(20)=2.58, but not in the late
post-stimulus phase, b=.004, SE=.010, {(20)=.39, and none of the constituent features
showed the critical interaction pattern, all {(20)<.21. In Experiment 2, only the strength of
rule-S-R conjunctions showed the partial-overlap costs, b=.021, SE=.009, #(21)=2.22,
for the early selection phase; b=.021, SE=.009, {(21)=2.24, and for the late selection
phase (Fig.4C). None of the constituent features, all ts(21)<.72), or S-R conjunctions
showed such an effect, b=.012, SE=.009, #(21)=1.27 for the early selection phase;
b=.007, SE=.010, t(21)=.72, for the late selection phase.

Another important prediction that can be derived from the event-file model is that
strong conjunctions should be particularly difficult to “unbind” on the following trial. Thus,
the stronger the conjunction on trial n-1, the larger should be the partial-overlap costs
on trial n. Our results, shown in Fig.3D and 4D, confirm this prediction for both
experiments: A stronger conjunctive representation in trial n-1, late in the selection
period, led to a greater RT partial-overlap costs on trial n, b=.025, SE=.011, {(20)=2.25.
Importantly, this pattern was unique for conjunctive representations, and was not found
for any of the constituent representations, all s(20)<.05. In Experiment 2, only rule-S-R
conjunctions significantly modulated RT partial-overlap costs on the next trial (Fig.4D),
b=.031, SE=.011, {(20)=2.81. Again, this pattern was absent for S-R conjunctions or any

other of the constituent representations, all ts(21)<.38. Thus, it is specifically the
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highest-order, rule-S-R conjunctions that relate to the partial-overlap cost pattern. Taken
together, the behavior of decoded conjunctive representations was highly consistent
with predictions from the event-file model.

Discussion

We tested whether integrated, conjunctive representations between task-relevant
features emerge during action selection, as predicted from results with mixed selectivity
neurons (6), and by event-file theory (8, 9). In our paradigm, action settings had to be
updated flexibly for each trial, creating unique constellations between rules, stimuli, and
responses. We combined a standard, linear decoding approach with a subsequent,
time-resolved RSA in order to track the emergence of conjunctive representations and
their constituent features over time, and for each individual trial.

The time course of decoded information showed a highly plausible cascade of
action representations (rule, stimulus, and then response). Most critically, we found
robust evidence for conjunctive representations—emerging shortly after stimulus onset
and persisting until response execution. Analyses with response-locked EEG data fully
confirmed this pattern of results (S| Appendix, Fig.S8). The fact that conjunctive
representations were continuously present from stimulus processing to response
execution is consistent with their role in translating sensory codes into response codes
based on the current task rules.

Even though conjunctive representations were on average less strongly
expressed than those of constituent features, they were statistically, highly robust
(Fig.3B and Fig.4B and Sl Appendix, Fig.S10). Moreover, conjunctive representations

were strong and unique predictors of trial-by-trial variability in RTs, over and above
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other constituent features. These results are difficult to reconcile with traditional stage
theories (1-5) and hierarchical control models (16, 23), where information flows in a
strict feed-forward manner and thus allows no integrated representations to emerge.
This is the more remarkable as our task design, with explicitly cued rules that appeared
prior to each stimulus, should have been clearly compatible with a hierarchical selection
architecture (e.qg., first selection of rule, then of rule-specific S-R link). Instead, our
results indicate that action selection is established by tying together the disparate, task-
relevant features from the entire selection event into a common representation.

In Experiment 1, conjunctions could entail any pairwise, or complete combination
of rule, stimulus, or response features; in Experiment 2, we were further able to
dissociate between rule-specific, rule-S-R conjunctions and rule-independent, S-R
conjunctions. The fact that in Experiment 2, both rule-S-R and S-R conjunctions
emerged is an important result in its own right. It suggests that integrated
representations that match the contingencies in the environment develop in parallel on
different levels of specificity. This combination of both rule-specific and rule-independent
representations can account for past findings showing that S-R associations learned
within one rule can transfer to another rule, albeit in a limited manner (11, 24).

A key behavioral indicator of event files is the partial-overlap priming pattern (see
Fig.1A) (11, 25). In both experiments, we found this pattern not only in RTs and errors
(Fig.2), but also in the strength of conjunctions (Fig.3C and 4C). More importantly, the
strength of conjunctions in trial n-1, predicted the size of partial-overlap costs in trial n
(Fig.3D and 4D), suggesting the tighter the integration between action features, the

harder it is to “unbind” the features in order to integrate them into a new conjunction.
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Importantly, only conjunctions, and not the basic features, showed such a relationship
with the partial-overlap pattern, thus functionally dissociating conjunctions from their
constituent codes. The results in Experiment 2 also indicated that specifically rule-S-R
conjunctions were related to the partial-overlap cost, not, however S-R conjunctions. It
is noteworthy that the conjunctions in Experiment 1 (where we were not able to
distinguish between S-R and rule-S-R conjunctions) showed a similar priming pattern as
the rule-S-R conjunctions in Experiment 2, suggesting integration of not just stimuli and
responses, but also of rules in both experiments.

While our results provide temporal and functional information about specific
representations, they are relatively silent about the underlying neural mechanisms or
their neuroanatomical location. We had no strong a-priori predictions about frequency
bands that might contain conjunction-specific information, we used a broad spectrum of
frequencies for decoding. In post-hoc analyses we found that the pattern of EEG
responses that underlies conjunctive representations is idiosyncratic (S| Appendix,
Fig.S5), but most strongly expressed in the delta-band frequency signal (S| Appendix,
Fig.S6 and S7). This latter result is generally consistent with previous evidence that
decision-relevant representations can be decoded from oscillations in the delta band
(26).

Regarding the question of neuroanatomical location, research with animal
models points to the hippocampus as particularly critical for representing highly
contextualized, conjunctive information (6, 27-29). There is also some evidence from
human neuroimaging work that implicates the hippocampus in retrieving incidentally

learned associations between actions and their consequences, albeit using paradigms
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that involve learning across longer time frames (30, 31). In addition, single-neuron
electrophysiological work with non-human animals indicates that neurons coding task-
relevant features are distributed across frontal and parietal cortex (32, 33). A large
proportion of recorded neurons in these areas integrate multiple features in a nonlinear
manner (6, 34). Such heterogeneous, neural responses allow both efficient, linear read-
out of information to downstream neurons and can also code conjunctive information in
a high-dimensional format (35). In human neuroimaging work, attempts to decode high-
level, task-relevant representations in frontal areas have proven more challenging (36).

An important finding from the research on mixed selectivity neurons is that the
degree of nonlinear information coded in these neurons is functionally distinct from the
representation of linear features. For example, nonlinear responses were found to be
highly robust in correct trials, but was largely missing in error trials, whereas simple,
linear information was equally present on correct and error trials (6, 7, 37). This pattern
is consistent with our finding that the strength of conjunctive representations uniquely
predicts trial-by-trial performance, beyond the predictive strength of constituent, simple
features (Fig.3B and 4B). As mentioned earlier, further evidence for a functional
dissociation comes from our finding that only conjunctive representations, but not the
representations of constituent, simple feature, express the partial-overlap priming
pattern (see Fig.3CD and 4CD).

Our results about the relevance of conjunctions for both efficient action selection
and for the partial-overlap priming pattern, directly confirm predictions derived from
event-file theory. Therefore, they provide an important missing link between two distinct

lines of research: The relatively abstract, event-file conceptualization, designed to
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explain the architecture of human action selection, and the recent progress in
characterizing the format of representations arising from mixed selectivity neurons. For
example, from the here established relationship between the partial-overlap pattern and
the neural-signature of event files, we can derive the testable prediction that the partial-
overlap pattern should also be selectively expressed in the activity of mixed-selectivity
neurons in animal models. In addition, the current results raise a range of new
questions about the functional properties of conjunctive representations: We do not
know how these representations are constrained by capacity limitations (38), how they
respond to distracting information (7), to what degree they allow integration of action
outcomes or goals (39), or how they change through experience (S| Appendix, Fig.S9)
(11). The EEG decoding approach used here, provides the tools to address these and
related questions in human participants.
Method

See Sl Appendix for additional method details.
Participants

Forty-four people participated after signing informed consent following the
protocol approved by the University of Oregon’s Human Subjects Committee in
exchange for $10 per hour and additional performance-based incentives. Participants
with a pre-defined criterion of more than 35% of trials with EEG artifacts were removed
from further analysis, leaving 20 out of 22 participants for Experiment 1 and 21 out of 22

for Experiment 2.
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Stimuli, Tasks and Procedure

Participants performed a cued rule-selection task, in which one of the pre-
instructed action rules was randomly selected to determine possible S-R mappings, on
a trial-by-trial basis (Fig.1B) (11). Based on the cued rule, participants responded to the
location of a circle (1.32° in radius) that randomly appeared in the corner of a white
frame (6.6° off-center) by selecting one of the four response keys that were arranged in
a 2 x 2 matrix. Each action rule specified four S-R links using a simple spatial
transformation rule. For instance, the “vertical” rule mapped the top-left circle to the
bottom-left response. In order to ensure that decoding of rule information was not driven
by superficial, perceptual aspects, we used two cues for each rule (a pair of verbal cues
in Experiment 1 and symbol/word pair in Experiment 2, see Fig.1C and 1E) that
appeared in either even or odd trials to prevent immediate cue repetitions. In
Experiment 1,”vertical”’, “horizontal” and “diagonal” rules were used (i.e., 66.6 % switch
rate). In Experiment 2, for different rules, "vertical”, "horizontal”, “clockwise” and
“counterclockwise” rules were used (i.e., 75% switch rate). This specific set of rules
ensured that each S-R link occurred in two different rules (e.g., a top-left circle leads to
a bottom-left response in both the vertical and the clockwise rule), allowing us try to
decode both rule-S-R conjunctions and rule-unspecific, S-R conjunctions in Experiment
2 (Fig.1EF).

We presented two practice blocks and 200 experimental blocks per experiment.
Participants were instructed to complete as many correct trials as possible within each

16-second block. Trials that began within the 16 seconds were allowed to complete.
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EEG Recording and Processing

Electroencephalographic (EEG) activity was recorded from 20 tin electrodes
using the International 10/20 system and preprocessed to remove artifacts (see EEG
Recording and Processing in the Sl). Furthermore, temporal-spectral profiles of single-
trial EEG data were obtained via complex wavelet analysis(40) by applying time-
frequency analysis (1-35 Hz) to preprocessed EEG data (see S| Appendix, Time-
frequency Analysis). This analysis resulted in a frequency-band specific power estimate
at each sample point. As in our previous work (18), we averaged five different
frequency bands:1-3 Hz for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the
alpha-band, 13-30 Hz for the beta-band, 31-35 Hz for the gamma-band to prepare
training data for the decoding analyses. Within individuals, frequency-specific power
values were z-transformed across electrodes at every sample to remove the effects that
uniformly influenced all electrodes. While we had no a-priori predictions about the role
of specific frequency bands in representing different action-relevant representations, we
present post-hoc analyses probing the relevance of each frequency band in the Sl (see
S| Appendix, Fig.S6 and S7).
Representational Similarity Analysis

To obtain information about the strength of each feature and conjunction on the
level of individual trials and time-points, we used a two-step procedure. First, we
performed a linear decoding analysis to discriminate between all 12 different action
constellations in Experiment 1, or all 16 constellations in Experiment 2. This analysis
was conducted for each time-point and used the average power of rhythmic EEG

activity within the predefined frequency bands (delta, theta, alpha, beta, and gamma),
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generating 100 features (5 frequency-bands x 20 electrodes) to train decoders.
Following cross-validation, this decoding step yielded a vector of “confusion profiles” of
classification probabilities for both the correct and all possible incorrect classifications,
and for each time-point and trial (Fig.1D). As a second step, we applied RSA (21) to
each profile of classification probabilities in order to determine their underlying similarity
structure for each time-point and trial. Specifically, we regressed the classification-
probability vector onto model vectors as simultaneously entered predictors, which were
derived from a set of RSA model matrices (Fig. 1D).

Each model matrix represented a potential, underlying representation. In
Experiment 1, we constructed RSA models for the rules, stimuli, responses, and
conjunctions (Fig.1D). In Experiment 2, we used separate matrices for the rule-specific
S-R conjunction model (rule-S-R conjunction) and the rule-independent S-R conjunction
model (S-R conjunction; Fig.1F). Complete orthogonalization of basic features could be
established within each of two equal-sized subspaces, but not across the entire space
of action constellations. Specifically, one subspace (G1 in Fig.1E) contained
constellations with stimuli at the top-left or bottom-right corner (leading to a bottom-left
or bottom-right response for all rules), whereas the second subspace (G2 in Fig.1E)
contained trials with stimuli at the left-bottom or top-right corner (leading to a top-left or
bottom-right response). Within each subspace, conjunctions were defined by the
combination of four rules (vertical, horizontal, clockwise, and counterclockwise), two
stimulus positions, and two responses, ensuring that each S-R link could occur in the

context of two different action rules.
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Multilevel Modeling

For the results shown in Fig.3C and 4C, and well as in Fig.3D and 4D, we used
multilevel linear modeling to analyze within-subject variability in RSA scores as a
function of trial-to-trial transition variables (Fig.3C and 4C), or in RTs as a function of
trial n-1 RSA scores and trial-to-trial transition variables (Fig.3D and 4D). In each case,
subject-specific intercepts and slopes were included as random effects. Log-
transformed RTs as dependent variable were pre-whitened by linear and quadratic
trends of experimental trials and blocks. We performed statistical tests for a-priori
selected time intervals: cue-to-stimulus period from the onset of cue to the onset of
stimulus (-300 to 0 ms for Experiment 1 and -500 to 0 ms for Experiment 2), early post-
stimulus period (0 to 300 ms of the post-stimulus segment for both experiments), and
late post-stimulus period (300 to 600 ms of the post-stimulus segment for both
experiments). We predicted trial-to-trial RTs/RSA scores in the current trials with EEG
signals from pre-stimulus and early post-stimulus periods in order to capture processing
prior to response execution (see also Sl Appendix, Fig.S8 for results using signals
aligned to the response onsets). The late post-stimulus interval was used to assess how
partial-overlap costs are modulated by the strength of action representations developed
during selection in n-1 trials (i.e., Fig.3D and 4D). In addition, to visualize the impact of
different decoded features on RTs across time, we also ran fixed-effect models plus

random intercepts at each sample point, but without random slopes (Fig.3B and 4B).
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Fig.1. (A) Event files and partial-overlap priming pattern. Shown are two examples from simplified situations with two
possible action rules and response options, along with the idealized data pattern. The trial n-1 event file is shown as
the yellow oval, the trial n event file as the green oval. In the first example, consecutive event files do not overlap,
which, just as when there is complete overlap (not shown), allows efficient performance. In the second example, the
response representation overlaps, but the rule does not, leading to partial-overlap costs—just as would be the case
for rule overlap, but non-overlapping responses (not shown). Note, that examples of all possible trial-to-trial transition
types in the current paradigm are embedded in Figure 2. (B) Sequence of trial events in the rule-selection task. (C)
Spatial translation rules mapping specific stimuli to responses in Experiment 1 (horizontal, vertical, and diagonal rule).
Two different cue words were used for each rule. Responses were made on four keys, each spatially compatible with
one of the four possible stimulus locations. (D) Schematic steps of the representational similarity analysis. For each
sample time (f), a scalp-distributed pattern of EEG power (see Representational Similarity Analysis in Methods) was
used in a first step to decode trial-specific rule/stimulus/response configurations, producing classification probabilities
for each of the possible configurations. In the second step, these classification profiles for each trial and time-point

were simultaneously regressed onto model vectors for the potentially relevant representation. The figure shows all
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possible vectors as model matrices (the x-axis represents the correct constellations for the decoder to pick, and the y-
axis the “confidence” with which each constellation is predicted). For each specific trial, the “vertical” vectors
corresponding to the relevant action constellation are picked as predictors (i.e., the red boxes show all four vectors
for one specific action constellation; the shading of matrix elements indicates the predicted classification probabilities
with darker shadings representing higher probabilities). Note, that the conjunction matrix arises from multiplying
corresponding elements of the constituent feature matrices with each other. The idealized classification profile
represents an example where a unique conjunction and rule information are expressed as a peak at the correct label
of the S-R mappingi and some confusion to other instances with the same rule. The coefficients associated with each
predictor (i.e., in terms of t-values) reflect the unique variance explained by each of the constituent features and their
conjunction. (E) Spatial translation rules mapping specific stimuli to responses in Experiment 2. A word or a symbol
were used as a cue for each rule. As described in Methods, to achieve complete orthogonalization, rule-S-R
constellations were divided into two groups of eight constellations each (G1 and G2) that were separately analyzed
and then averaged. (F) Models for the representational similarity analysis (RSA) used within each of the two 8-

constellation groups in Experiment 2.
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Fig.2. Mean response times (RTs) and errors as a function of all possible transition types in Experiments 1 and 2.
Alongside with each data point, examples for the corresponding trial-to-trial transition type are shown (i.e., trial n-
1=top, trial n=bottom). Experiment1 allows transitions resulting from crossing the rule repetition/change factor and the
response repetition/change factor. Experiment 2 also allowed differentiating pure stimulus changes and response
changes in case of rule-change trials. However, for subsequent analyses on the relationship between conjunctive
representations and overlap costs (see Fig.4D), we focused on the transitions with complete S-R changes or

repetitions. Error bars specify 95% within-subject confidence intervals.
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Fig.3. EEG-related results for Experiment 1. (A) Average, single-trial t-values associated with each of the basic
features and their conjunction derived from the RSA analysis (see Fig.1C). Shaded regions specify the standard error
around the mean. The colored squares at the bottom of the figure denote the significant time-points using a non-
parametric permutation test. The insert shows the same RSA fit scores when the conjunction was not included as
predictor in the RSA analysis. (B) Time-course of t-values from multilevel, linear models predicting the variability in
trial-to-trial RTs (i.e., the impact of representations on behavior), using RSA scores of all features as the
simultaneous predictors. (C) Average RSA scores of the conjunction model as a function of rule repetition/change
and the response repetition/change factors for the early (0-300 ms) and the late (300-600 ms) periods in the post-
stimulus interval. (D) Modulation of RT partial-overlap costs in trial n as a function of the strength of conjunction

codes (median split) in trial n-1. Error bars specify 95% within-subject confidence intervals.
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Fig.4. EEG-related results for Experiment 2. See caption to Fig.3 for a description of panels A-D. Different than
Experiment 1, this experiment allowed differentiation between S-R and rule-S-R conjunctions.
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