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ABSTRACT

User-generated item lists are a popular feature of many different
platforms. Examples include lists of books on Goodreads, playlists
on Spotify and YouTube, collections of images on Pinterest, and
lists of answers on question-answer sites like Zhihu. Recommend-
ing item lists is critical for increasing user engagement and con-
necting users to new items, but many approaches are designed
for the item-based recommendation, without careful considera-
tion of the complex relationships between items and lists. Hence,
in this paper, we propose a novel user-generated list recommen-
dation model called AttList. Two unique features of AttList are
careful modeling of (i) hierarchical user preference, which aggre-
gates items to characterize the list that they belong to, and then
aggregates these lists to estimate the user preference, naturally
fitting into the hierarchical structure of item lists; and (ii) item and
list consistency, through a novel self-attentive aggregation layer
designed for capturing the consistency of neighboring items and
lists to better model user preference. Through experiments over
three real-world datasets reflecting different kinds of user-generated
item lists, we find that AttList results in significant improvements
in NDCG, Precision@k, and Recall@k versus a suite of state-of-
the-art baselines. Furthermore, all code and data are available at
https://github.com/heyunh2015/AttList.
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1 INTRODUCTION

User-generated item lists are a widespread feature of many plat-
forms. Examples include music playlists on Spotify, collections of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 19, November 3-7, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6976-3/19/11...$15.00
https://doi.org/10.1145/3357384.3358030

1481

User
g

v

User Level
v ?

List Level [ Book List A ] [ Book List B ] [ Book List C ] [ Book List X ]

— I I | T
- N N N

~

Books:

Books: Books:

Books:

LA
PrREJUDICE

Item Level

STEPHEN
KING

1984

POy T

N N N N
Figure 1: Example: A Goodreads user likes three different
lists (A, B, and C), each composed of a collection of books.
Our proposed model exploits this user-list-item hierarchical
structure to recommend additional lists (e.g., X).

videos on YouTube, lists of books on Goodreads, wishlists of prod-
ucts on Amazon, collections (boards) of images (pins) on Pinterest,
and lists of interesting answers on question-answer sites like Zhihu.
These item lists directly power user engagement - for example,
more than 50% of Spotify users listen to playlists, accounting for
more than 1 billion plays per week [33]; and Pinterest users have
curated more than 3 billion pins to about 4 billion boards [7].

Across platforms, user-generated item lists are manually created,
curated, and managed by users, providing a unique perspective into
how items (e.g., songs, videos, books, and answers) can be grouped
together. Lists may be organized around theme, genre, mood, or
other non-obvious pattern, so users can easily explore and consume
correlated items together. To illustrate, Figure 1 presents an example
of several lists on Goodreads, a book sharing platform. This user
likes book lists organized around different themes (e.g., adventure
and horror).

But how can we effectively connect users to the right lists?
Traditional item-based recommendation has shown good success in
modeling user preferences for specific items [12, 17]. In contrast,
list-based recommendation is a nascent area with key challenges in
modeling the complex interactions between users and lists, between
lists and items, and between users and items. For example, a user’s
preference for a list may be impacted by factors such as the overall
theme of the list, all of the items or just a few of the items on the list,
the position of items on the list, and so on. The user in Figure 1 may
prefer list A for its classic mix of young adult adventure stories,
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but only like list B for its first two horror novels (by the same
author Stephen King), regardless of the rest of the items on the list.
Furthermore, the variety across book lists liked by this user raises
tough challenges in terms of modeling preference for new lists (as in
the unknown list X). A few previous efforts [3, 23] have proposed to
treat user-list and user-item interactions through a collective matrix
factorization approach [30], where a user-list interaction matrix
and a user-item matrix are jointly factorized [3, 23]. However, it
is non-trivial to weight user-list and user-item interactions in the
loss function for optimizing the list recommendation task. The
number of user-item interactions are often much more than user-
list interactions and thus dominate the loss. This imbalance in
the number of user-list and user-item interactions stems from the
hierarchical structure of item lists, i.e., a list often contains tens or
even hundreds of items, as shown in Section 5.1.

Hence, with these challenges in mind, we propose a novel hi-
erarchical self-attentive model for recommending user-generated
item lists that is motivated by two key observations:

Hierarchical user preferences. First, users and user-generated
item lists naturally form a hierarchical structure that could be help-
ful for modeling user preferences. To illustrate, Figure 1 shows how
a user (from the top) can like a collection of different lists, which
in turn are composed of different items (at the bottom). Hence, it is
natural to represent lists by their constituent items, and represent
users by the lists that they prefer. Our first motivating observation
then is user preferences can be propagated bottom-up from the item
level to the list level and finally to the user level.

Item and list consistency. Second, the similarity between items
and their neighboring items (whether by genre, theme, or other
pattern) is a key clue for modeling the importance of those items to-
wards reflecting user preferences. Likewise, the similarity between
a list and its neighboring lists can reveal the importance of those
lists to the user’s overall preferences. We refer to this similarity as
item consistency and list consistency. For example, if a scary book
(e.g., The Shining) is curated in a list (like list C in Figure 1) mainly
composed of romance books (e.g., Pride and Prejudice, Jane Eyre),
then it is less informative in terms of the overall list characteristics.
Likewise, a romance list may be less informative about the user pref-
erence if it is not consistent with the rest of the user’s profile. Our
second motivating observation is the lower the consistency between
an item and the rest of the items on a list, the less likely it can reveal
the list’s characteristics. And conversely, the higher the consistency,
the more likely it can reveal the list’s characteristics. Similarly, the
higher the consistency, the more likely a list can reveal the user’s
preference. That is, these inconsistent items and lists should be
assigned lower weights to represent the list and the user.

These observations motivate us to attack the user-generated
item list recommendation problem with a hierarchical user-list-
item model that naturally incorporates a self-attentive aggregation
layer to capture item and list consistency by correlating them to
their neighboring items and lists. In summary:

e We study the important yet challenging problem of recom-
mending user-generated item lists — a complex recommen-
dation scenario that poses challenges beyond existing item-
based recommenders.
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e We propose a hierarchical self-attentive recommendation
model (AttList), naturally fitting the user-list-item hierarchi-
cal structure, and enhanced by a novel self-attentive aggre-
gation layer to capture user and list consistency.

Experiments on three real-world datasets (Goodreads, Spo-
tify, and Zhihu) demonstrate the effectiveness of AttList ver-
sus state-of-the-art alternatives. Further, all code and data are
released to the research community for further exploration.

2 RELATED WORK

Recommendation with Implicit Feedback. Early recommender
systems mainly focused on rating prediction based on explicit feed-
back, such as ratings from reviewers [17]. However, implicit feed-
back is usually much easier to collect, as is the case in our user-list
interactions dataset described in Section 5.1. Thus, more attention
has been paid to ranking items based on user preference reflected
from implicit feedback, such as purchase history, clicks, or likes.
Among the various ranking algorithms [11, 12, 27, 28], Bayesian
Personalized Ranking (BPR) [28] is a well-known pair-wise rank-
ing framework. Recently, there have been some efforts to improve
item recommendation by introducing non-linear transformations
with neural networks [6, 10, 19-21, 35], where Neural Collabora-
tive Filtering (NCF) [10] is a typical example, where a multi-layer
perceptron model and a generalized matrix factorization model are
combined to learn the user preference. Their experiments show
that neural based recommender systems outperform traditional
methods like matrix factorization and BPR.

User-Generated Item Lists. Recently, user-generated item lists
receive more and more interest. Lo et al. [24] analyze the growth
of image collections on Pinterest. Lu et al. [22] and Eksombatchai
et al. [7] distill user preference from user-generated item lists to
enhance individual item recommendation. Besides, Greene et al. [8]
support users to continue their user-lists on Twitter. In this paper,
we focus on recommending user-generated item lists.

Although many existing algorithms successfully recommend
individual and independent items to users, approaches for recom-
mending user-generated item lists are not fully explored. There
are two studies close to ours: LIRE [23] and EFM [3]. The List
Recommending Model (LIRE) [23] is a Bayesian-based pairwise
ranking approach, which takes user preference over items within
the lists into consideration when inferring the user-lists prefer-
ence, whereby each list is modeled as a linear combination of the
items. The Embedding Factorization Model (EFM) [3] uses the co-
occurrence information between items and lists to improve list
recommendation. These models are based on a collective matrix
factorization framework [30] which jointly factorizes several related
matrices, e.g., a user-list interaction matrix and a user-item interac-
tion matrix. In contrast, the proposed AttList is designed to capture
the user-list-item hierarchical structure, which is better customized
for user-generated item list recommendation. Furthermore, both
LIRE and EFM incorporate both user-item and user-list interactions;
in contrast, AttList requires only user-list interactions to uncover
user preferences though it can be easily extended to incorporate
additional user-item interactions as well.

Attention Networks. AttList incorporates an attention layer in-
spired by recent work like the attention mechanism proposed in
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[1] and the transformer in [34] for machine translation, where it
can be used to relieve the long-range dependency problem in RNNs.
Attention networks have been used in recommendation and can be
grouped into two classes: vanilla attention and self-attention [39].

Vanilla Attention. In this case, a two-layer network is normally used
to calculate the attention score by matching a sequence of repre-
sentations of the target’s components against a learnable global
vector. Xiao et al. [36] propose an attentional factorization machine
model where the importance of feature interactions is learned by
attention networks. Zhou et al. [41] employ attention networks
to calculate the weights for different user behaviors (e.g., reading
the comments, carting and ordering) for modeling the user pref-
erence in E-commerce sites. Chen et al. [5] propose an attentive
collaborative filtering framework, where each item is segmented
into component-level elements, and attention scores are learned
for these components for obtaining a better representation of items.
Attention networks are also applied in group recommendation [2],
sequential recommendation [37], review-based recommendation
[4, 29, 32] and context-aware recommendation [26].

Self-Attention. In this case, attention scores are learned by matching
the representations against themselves and update each represen-
tation by incorporating the information of other representations.
Zhou et al. [40] apply self-attention networks to capture the inner-
relations among different user behaviors for modeling the user pref-
erence. Other approaches [13, 15, 38] use self-attention networks
for sequential recommendation where the item-item relationship
is inferred from user’s historical interactions. Self-attention is also
applied for point-of-interest recommendation [25]. In this paper,
self-attention is used to distill the consistency of neighboring items
and lists for revealing user preferences.

3 PROBLEM FORMULATION

We denote the set of users, lists and items as U and £ and 7~ where
the size of these sets is |U|, | £| and | 7| respectively. Every list in £
is composed of items from 7, where the containment relationship
between £ and 7 is denoted as C. We reserve u to denote a user
and [ to denote a list. We define the user-list interaction matrix as
R € {0, 1}UIXIL] where r,; indicates the feedback from u to |,
typically in the form of a “like”, vote, following, or other feedback
signal. Since the feedback is naturally binary, we further letr,; = 1
indicate [ has feedback from u and r,;; = 0 otherwise.

The user-generated item list recommendation problem takes as
input the users U, lists L, items 7, user-list interactions R and
C, the containment relationship between lists £ and items 7. It
outputs K item lists for each user, where each list [ is ranked by the
estimated preference of u to I, denoted as 7.

4 THE PROPOSED MODEL: ATTLIST

As discussed in Section 1, for user-generated item list recommenda-
tion, user preference naturally propagates hierarchically from items
to lists and finally to users. Furthermore, the user preference on an
item is affected by the rest of the items in the same list. Likewise,
the user preference for a list is affected by the rest of lists inter-
acted with by the user. Guided by these observations, we propose
our hierarchical self-attentive recommendation model (AttList), as
shown in Figure 2, which is built around three research questions:
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e RQ1: How can we hierarchically model the user preference
from items to lists and finally to users?

e RQ2: How can we incorporate the consistency of neighbor-
ing items and lists to better model user preferences?

¢ RQ3: Finally, how can we recommend user-generated item
lists given the hierarchical preference model?

4.1 RQ1: Hierarchical User Preference Model

The goal of the hierarchical user preference model is to learn the
latent representation for a user — x,, — and the latent representation
for a list — y;. Concretely, we propose an item-level aggregation
layer to collect user preference on items to represent the list and
a list-level aggregation layer to collect user preference on lists to
model the user.

Input Layer. The number of items contained in a list varies and
we let M denote the maximum number of items that our model can
handle. If a list length is greater than M, we only keep the earliest
M items curated in the list. If the number of items is less than M,
a “padding” item is repeatedly added to the list until the length is
M. Likewise, the number of lists interacted with a user varies and
we let N denote the maximum number of lists and apply the same
padding strategy as items. Thus, the input for the user in a user-list
pair is an item ID matrix U € NNVNXM where each element in U is
an item ID. And the input for the list in the user-list pair is an item
ID vector L € NM. Note that M and N are tuned on the validation
set and will be discussed in Section 6.3.

Positional Item Representation Layer. We first create a learn-
able item representation matrix E € RI7Xd where d is the latent
dimensionality. Based on E, the i-th item in / can retrieve its repre-
sentation e;; € R, For the padding item, a constant zero vector 0 is
used. Following [23], we also take the position of items in a list into
consideration because users usually see the top items in a list first
and may stop exploring the item list after enough items have been
consumed. Thus, we also create a learnable position representation
matrix O € RM*4 ()] is the length of the list) and o;; denotes the
position representation for e;;. We further add them together as
the positional item representation:

(1)

The effect of the position representation will be empirically studied
in our experiments.

z); =€ +0

After the item representations are obtained, the next question
is how can we aggregate item representations to model the latent
representation of the list containing the items:

Item-Level Self-Attentive Aggregation Layer. This layer is com-
posed of two attention networks: a self-attention network [34] to
take consistency of neighboring items to improve the item repre-
sentations and a vanilla attention network to aggregate the item
representations into a list representation space.

We first use a self-attention network to refine the item represen-
tations by incorporating the consistency of their neighboring items
within a list:

z;; = Sel f Attention(z;;)
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Figure 2: Framework of AttList for recommending user-generated item lists. The model is composed of three components:
prediction, user representation learning, and list representation learning. Specifically, the user representation learning com-
ponent is a stack of four layers: input layer, item positional representation layer, item-level self-attentive aggregation layer,
and list-level self-attentive aggregation layer. The list representation learning component also contains the same layers as the
user part except for a list-level self-attentive aggregation layer.

where z/, € R? denotes the representation of the i-th item in list [,
refined by our self-attention network, which will be introduced in
detail in Section 4.2.

Then, we apply the weighted sum to aggregate the refined item
representations for constructing the list latent representation. The
higher the weight is, the more informative the item is to reveal user

preference:
Y = Z ai-z);
ieM

@)

where y; € R is the aggregated list representation. And ; is the
weight learned by the vanilla attention network:

ai = uITtanh(W[z;i +by),
_ exp(ai)

Znemexp(an)’
where @; is a scalar as the weight, M = {n e N|1 < n < M} and M
is the length of the list, Wy € R*d s the weight matrix, by € R4
is the bias vector, u; € R is the global vector and tanh is used as
activation function empirically. The softmax function is used to
normalize the weight. Note that the consistency information of the
item has been incorporated in zj; by the self-attention network, thus
a; is learned by considering not only the item’s intrinsic properties
but also its consistency with neighboring items.

®)

i

Based on the aggregated list representations, we further aggre-
gate them to model the latent representation of the user who has
interacted with the lists:
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List-Level Self-Attentive Aggregation Layer. Which is similar
to the structure of the item-level aggregation layer, this list-level
layer is composed of two attention networks. The first is a self-
attention network to improve the list representations by considering
the consistency of a user’s interaction profile. The second is a vanilla
attention network to aggregate the list representations into a user
representation space.

We first refine the list representations by injecting consistency
information of their neighboring lists:

y, = Self Attention(y;)

where y; € R? denotes the representation of list I, refined by our
self-attention network, detailed in Section 4.2.

Then, we select informative lists and aggregate list representa-
tions into the user representation space:

Xy = Z Br-vyi

leR},

©

where x,, € R? is the aggregated user representation. And f; is
the weight learned by the vanilla attention network, which can be
interpreted as the contribution of list / to reveal the user preference:

By =uj tanh(Wpy) +bp).

B = exp(f1)
L7 Sier; exp(Bp)

where f] is a scalar as the weight. uy € RY, Wi € RY*d, by € RY
are the global vector, weight matrix and bias vector respectively.

©)



Session: Long - Recommendation System |

Note that the consistency information of the list has been incor-
porated in y; by the self-attention network, thus f; is learned by
considering not only the list’s intrinsic properties but also its con-
sistency with neighboring lists.

In this section, we have proposed a hierarchical user preference
model based on the first motivating observation, and next we need
to carefully take care of the list and item consistency to better model
the user preference based on the second motivating observation.

4.2 RQ2: Capturing Item and List Consistency
by Self-Attentive Networks

In this section, a self-attention network is carefully designed to
consider the consistency of neighboring items and lists to better
model the user preference. Note this self-attention network works
in the same way for the item-level aggregation layer and the list-
level aggregation layer. For simplicity, we introduce the details for
the item-level layer only (the list-level is similarly defined).

Item consistency is first measured by the similarities between
each item and its neighboring items (in Equation 6) and then pre-
served in the refined item representations (in Equation 7) and finally
returned to the vanilla attention network for assigning weights to
the items (in Section 4.1). Therefore, not only the item’s intrinsic
properties but also its “contextual” items can be considered in the
vanilla attention network (in Section 4.1) to assign weight to the
item. Particularly, an item representation will be less injected into
the list representation if it is inconsistent with the rest of items in
the list.

Specifically, we first pack all item representations from the same
list, denoted as {z;;|i € N,1 < i < M}, together into as a matrix
Z; € RMxd_ Following [34], scaled dot-product attention is also
used to calculate the self-attention score. We first have:

T
14 )
Vd

where F; € is a self-attention score matrix which indicates
the similarities among M items in a list. Since d is usually a large

F; = softmax(

(©)

RMXM

number (e.g. 128), Vd is used to scale the similarity (attention score)
for preventing gradient vanishing and the softmax function is to
normalize the self-attention scores. An example of Equation 6 is
illustrated in Figure 3(a). Then, the output of this network is ob-
tained by multiplying the self-attention score matrix F; with the
original item representation matrix Z;:

Z; =F;Z,; 7)

where Z; is a set of updated item representations where
each representation is a weighted sum of other ones and the weights
are the self-attention scores. In this way, the item representations
can be refined by incorporating information of its neighboring
items, which is illustrated in Figure 3(b). Moreover, to stabilize the
training as [15, 34], we use residual connections [9] to obtain the
final output:

c RMXd

Sel f Attention(Z;) = Z; + Z; (8)
where the original item representation is element-wisely added

to the refined item representation. The residual connections ben-
efit the model training by propagating useful low-level features
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Refined Item Representations (Vectors)

(a) Self-attention scores Fj reflects (b) Refine item representation by using
the similarities among items in list weighted-sum of original representations,
1. (Equation 6) where weights are the self-attention scores.
(Equation 7)
Figure 3: Refining item representations (z;;) by considering
the consistency with neighboring items (i.e., z;; and z;3).

to higher layers. The effect of the residual connections will be dis-
cussed in our experiments. Besides, previous work [15, 34] has
shown how to first convert the input representation matrix into
three matrices through three linear projections and then feed them
to the scaled dot-product attention. Though this way leads to a more
expressive model, it increases the training difficulty and harms the
performance in our experiments. So far, we have improved the user
preference model by considering the item and list consistency, and
next the model (i.e., xy, y;) is utilized to recommend item lists.

4.3 RQ3: Recommending Top-K Item Lists

Finally, we are ready to recommend the top-k item lists. We first
combine the aggregated representations with the ID embedding of
items and lists to capture general user preferences and then design a
prediction layer to calculate the preference score for recommending
item lists.

Combining Layer. In this layer, we element-wisely add the aggre-
gated user representation (x,) with a dedicated ID embedding of
the user (e, € R9):

Py =Xu té€y )
where p,, € R is the final representation of user u. The intention
is to consider the general user preference (modeled by e,) that
in some cases cannot be fully characterized by the aggregation
of the list representations, which has been proven beneficial for
recommendation in [2, 4, 5]. Similarly, we have:

Q=yrte (10)
wherey; € R is the aggregated representation of [ of list [, q; € R4
is the final representation and a dedicated ID embedding of the list
e; € R? is also learned to model the general characteristic of the
list, which cannot be fully expressed by the aggregation of the item
representations.

Prediction Layer. In this layer, the estimated preference score 7,
is calculated given the user latent representation p,, and the list
latent representation q;. Following [2, 10], we also first apply the
element-wise product on p,, and q;, and then concatenate it with
the original representations:

P, ©Oq

q
Py

hy = (11)
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where the element-wise product p,, © q; captures the interactive
relationship between the user and the list which follows traditional
latent factor models. The concatenation of the original representa-
tions p,, and q; is to prevent information loss due to the element-
wise product which has been proven effective for recommendation
in [2, 10].

After that, we apply a two-layer neural network to obtain the
final preference score:

{ hy = ReLU(W1hg + by),

Ful = Sigmoid(thl +b2) (12)

where h; € RP is the output of the hidden layer, W; € RP x3d
and W3 € R™*D denote the weight matrix, b; € RP and b, € RP
denote the bias vector, in which D as the predictive factors [10]
controls the model capability. Empirically, ReLU function is used
as the non-linear activation function for the hidden layer. For each
user, all lists are ranked by their corresponding preference scores
and the top-k lists are recommended to the user.

Objective Function. Following [10], we also treat top-K recom-
mendation with implicit feedback as a binary classification problem
and apply the binary cross-entropy loss as the loss function:

t==>" > ruloghy+(1-ry)log(1=ry)  (13)

uell RLUR;,

where R} denotes the set of lists interacted with u and Ry, is the set
of negative samples which are uniformly sampled from unobserved
interactions (r,,; = 0). Note that we generate a new batch of negative
samples in each iteration and the amount of the negative samples
can be controlled by a hyper-parameter ratio p, i.e., |R;| = p|R}:|.

5 EXPERIMENTAL SETUP

In this section, we first introduce three list-based datasets. After
that, baseline methods, details for reproducibility and evaluation
metrics are also provided.

5.1 Datasets: Goodreads, Spotify, and Zhihu

In this section, we describe our three list-based datasets, which are
are drawn from three popular platforms with different kinds of lists
(book-based, song-based, and answer-based), reflecting a variety of
scenarios to evaluate AttList and alternative approaches. Table 1
summarizes these three datasets.

Goodreads. Goodreads is a popular site for book reviews and rec-
ommendation. Users in Goodreads can browse all the books within
a book list and vote for the list to express their preference. We
randomly sample 18,435 users from all the users and then crawl all
lists voted by them as well as the books within the lists, resulting
in 24,217 lists containing 158,392 books (items).

Spotify. Spotify is a music streaming service where users can follow
playlists created by other users. We first search for playlists by
issuing 200 keyword queries representing popular topics on Spotify,
like “pop” and “drive”. Then, followers of the playlists are further
crawled, arriving at 7,787 lists containing 49,434 songs (items).

Zhihu. Zhihu is a question and answer community where users
can follow lists of answers that have been curated by other users.
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Figure 4: Power law distribution between users & lists and
lists & items in Spotify dataset.

For example, a list may contain two answers as the response to two
questions correspondingly: “What is the best way to read a book?"
and “How to dress for an interview?". We first randomly sample
users from the answerers of three popular topics: life, learning and
recreation. Then the lists followed by the users are also crawled,
resulting in 12,715 lists containing 211,242 answers (items).

Following the preprocessing setup in [3, 23], we filter out items
appearing in fewer than 5 lists. To study the impact of data density
on recommendation performance, we also filter out users who have
interacted with lists fewer than 5 times on Spotify and Zhihu, so
that they are denser than the Goodreads dataset. Even with such
filtering, note that the three datasets are all very sparse with density
of 0.056%, 0.115% and 0.178% respectively, which reflects the data
sparsity challenge in real-world list recommendation.

In Figure 4(a), we group users into buckets according to how
many lists they interacted with and show the number of lists that
belong to the buckets correspondingly. We find that most users
only interact with a few lists while a few users interact with a large
number of lists. A similar observation can be seen in Figure 4(b),
where most lists contain a few items while a few lists contain a
large number of items. Thus, we observe a power law distribution
between the number of lists a user interacts and the number of
items a list contains.

For our experiments, we randomly split each dataset into three
parts: 80% for training, 10% for validation and 10% for testing. Since
many users have very few interactions, they may not appear in
the testing set at all. In this case, there will be no match between
the top-K recommendations of any algorithm and the ground truth
since there are no further interactions made by these users. The
results reported here include these users, reflecting the challenges
of list recommendation under extreme sparsity.

Table 1: Summary Statistics for the Evaluation Datasets
| Dataset

|#Users | #Lists | #Interactions| Density | #Unique Items |

Goodreads| 18,435 | 24,217 250,450 0.056% 158,392
Spotify 10,183 | 7,787 91,254 0.115% 49,434
Zhihu 6,101 |12,715 138,458 0.178% 211,242

5.2 Baselines

In this section, we introduce a suite of baselines. The first set of
methods are item-based top-k recommendation methods that we
adapt to the problem of list recommendation:
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ItemPop. This simple method recommends the most popular item
lists. Lists are ranked by the number of times they have been inter-
acted with (e.g., followed or liked). The same top-K most popular
lists are recommended to all users.

MF. This is the traditional matrix factorization (MF) method pro-
posed in [17] using mean squared error as the objective function
with negative sampling from the non-observed lists (r,,; = 0).

BPR. Bayesian personalized ranking (BPR) [28] is a well-known
pair-wise ranking framework for implicit recommendation. BPR
assumes that, for each user, the preference of the observed list
(ry1 = 1) is superior to the non-observed ones (r,; = 0).

NCF. Neural collaborative filtering (NCF) [10] is a state-of-the-art
neural network method for recommendation. NCF concatenates
latent factors learned from a generalized matrix factorization model
and a multi-layered perceptron model and then uses a regression
layer to predict the preferences of a user to the lists. Following
[10], negative samples are uniformly sampled from unobserved
interactions (r,; = 0).

The next set of methods is designed specifically for list recom-
mendation. They use user-list interactions as well as the containing
relationship between lists and items.

LIRE. List Recommendation Model (LIRE) [23] is a Bayesian-based
pair-wise ranking approach. It models user preferences by the sum
of two factors. The first factor is the inner product between user
latent factors and list latent factors; the second factor is the sum
of inner products between the user factor and item latent factors
within the list.

EFM. Embedding Factorization Model (EFM) [3] is also a Bayesian-
based pair-wise model designed for list recommendation. Inspired
by paragraph2vec model in [18], it calculates the shifted positive
pointwise mutual information (SPPMI) value between lists and
items and uses this information to boost the ranking performance.

5.3 Reproducibility

All code and data are available at here!. We implement ItemPop,
BPR, and MF. The implementation of NCF is from the authors.?
For LIRE and EFM, we use code from the authors of EFM.3 We
implement AttList with Keras, and Adam [16] is applied as the
optimizer. For AttList and baseline methods, all hyper-parameters
are tuned on the validation dataset, where early stopping strategy
is applied such that we terminate training if validation performance
does not improve over 10 iterations. All neural network models
were trained using Nvidia GeForce GTX Titan X GPU with 12 GB
memory and 3,072 cores.

Eliminating Lists from the Testing Dataset for User Repre-
sentation. As discussed in Section 4.1, AttList represents a user
by the aggregation of list representations. In the training, it is im-
portant to eliminate the lists which are sampled into the testing
dataset to represent the user, which makes the training and testing
datasets mutually exclusive.

!https://github.com/heyunh2015/AttList
Zhttps://github.com/hexiangnan/neural_collaborative_filtering
Shttps://listrec.wixsite.com/efms
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Over-fitting Prevention. Dropout [31] is widely used in neural
networks training to improve generalization performance. We also
apply dropout in every layer of the model. Specifically, we ran-
domly drop y percentage of the output vectors: e;;, 07;, y;, Xy, and
h;. Following [34], we also drop y percent of the output of the
softmax function in the self-attention network. We also apply Ly
regularization to the weight matrix in the vanilla attention network
(e.g., Wy and Wy ), where A denotes the parameter controlling the
regularization strength.

Parameter Settings. The batch size is tested from [16, 32, 64, 128,
256] and 32 is selected for all three datasets according to the results
on the validation dataset. The learning rate is tested from [0.00005,
0.0001, 0.0005, 0.001, 0.005] and 0.0001 is selected for Spotify and
Zhihu while 0.001 is better for Goodreads. The candidates for the
latent dimensionality d is from [8, 16, 32, 64, 96] and we select 64
for Zhihu and 96 for the other two datasets. The maximum number
of lists N and the maximum number of items M are selected from
[5, 10, 15, 20] and [8, 16, 32, 64] respectively. The validation results
show that N = 15 and M = 32 are better for performance. The
ratio for negative sampling p is tested from [3, 5, 7, 9, 11] and 3,
5, 7 are selected for Goodreads, Spotify and Zhihu respectively.
The predictive factor D is tested from [20, 50, 100] and set as 100
for all datasets. In our model, many components use dropout and
L2 regularization. For simplicity, we introduce the range for their
parameters tuning: the y percentage for dropout is tested from [0,
0.3, 0.5, 0.8] and the L2 regularization strength A is selected from
[0.001, 0.01, 0.1].

5.4 Evaluation Metrics

Given a user, a top-K item list recommendation algorithm provides
a list of ranked item lists according to the predicted preference
of them. To assess the ranked lists with respect to the ground-
truth lists set of what users actually interacted with, we adopt
three evaluation metrics: Normalized Discounted Cumulative Gain
(NDCG) [14] at 5 and 10 (N@5 and N@10), precision at 5 and 10
(P@5 and P@10), and recall at 5 and 10 (R@5 and R@10).

6 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present our experimental results and discussion
toward answering the following experimental research questions
(RQs):
e RQ4: How well does AttList perform compared to traditional
top-k recommenders? And more importantly, how well does
AttList perform compared to models that are specifically
designed for list recommendation (LIRE and EFM)?
RQ5: What is the impact of the design choices of AttList on
the quality of list recommendation? Is attention important?
RQ6: What is the impact of the hyper-parameters of AttList
on the quality of list recommendation?
RQ7: Finally, do the learned self-attention scores capture
meaningful patterns (e.g., consistency) of items and lists?

6.1 RQ4: List Recommendation Quality

Tables 2, 3 and 4 report the experimental results on three datasets,

where “*” indicates that the improvements over all baselines pass
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the t-test significance test with p-value < 0.01 and particularly
Agpry and ALTRE denote the improvement upon EFM and LIRE. We
observe that our model significantly outperforms all baselines on all
metrics. For instance, AttList achieves the best NDCG@10 of 3.691%,
8.953% and 3.666% on the three datasets, with an improvement upon
LIRE of 10.4%, 5.9% and 6.8%. Significant improvements in terms of
precision and recall are also observed.

We also observe that the list recommending methods (AttList,
LIRE, EFM) are consistently superior to the traditional top-k recom-
mendation methods (ItemPop, BPR, MF, NCF). The possible reason
is that the list recommending methods learn the user preference
not only from user-list interactions but also from the information
of items within the lists. This demonstrates that the top-k item list
recommendation is quite different from the general top-k items
recommendation and requires considering the containing relation-
ship between lists and items. Besides, all three list recommending
methods achieve a better performance in Spotify and Zhihu than in
Goodreads, which shows that the denser the dataset is, the higher
performance can be obtained by the list recommending methods.

Table 2: Experimental Results on Goodreads Dataset

|Metric(%)|P@5 R@5 N@5 P@10 R@10 N@10 |
ItemPop | 0.692 15832 1487 0538 2620 1.760
MF 0.883 2.128 1708 0.765 3.417 2.165
BPR 1.004 2270 2.043 0.852 3.801 2.597
NCF 1.086  2.668 2.192 0.900 4.167 2.694
EFM 1311 3.347 2587 1.045 5.027 3.214
LIRE 1337 3271 2731 1.068 4.965 3.345
AttList |1.449** 3.580** 3.048** 1.148"* 5.465** 3.691**
AEFM 10.6% 6.9% 17.8% 9.9% 8.7% 14.8%
ALIRE 84% 954% 11.6% 7.6% 101% 10.4%

Table 3: Experimental Results on Spotify Dataset

|Metric(%)|P@5 R@5 N@5 P@10 R@10 N@10 |
ItemPop | 0.621 2113 1454 0532 3.533  1.961
MF 2396 7.884 6.005 1.609 10.385 6.966
BPR 2.555 8541 6.183 1.775 11.673 7.389
NCF 2.602 8793 6.643 1.820 11.914 7.832
EFM 2744  9.085 6934 1.989 13.079 8.305
LIRE 2.850 9.468 7.065 2.020 13.277 8.453
AttList [2.944** 9.887** 7.520** 2.110™ 13.935™* 8.953**
AEFM 73% 88% 85% 6.1%  6.6%  1.8%
ALIRE 33% 44% 64% 45%  50%  5.9%

Table 4: Experimental Results on Zhihu Dataset

|Metric(%)|[P@5 R@5 N@5 P@10 R@10 N@10 |
ItemPop | 1.138 2275 1860 0959 3.951 2419
MF 1341 2706 2163 1.059 4.052 2.629
BPR 1347 2743 2381 1162 4.545 3.027
NCF 1485 2.834 2435 1216 4.674 3.057
EFM 1.508 3.267 2718 1.262 5341 3.358
LIRE 1596 3.319 2.853 1303 5.350 3.433
AttList |1.754** 3.600™* 2.986** 1.393™ 5.646™* 3.666™
AEFM 163% 10.2% 9.9% 104% 57%  9.2%
ALIRE 9.9% 85% 4.7% 69% 55%  6.8%
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6.2 RQ5: Ablation Analysis

Since AttList is composed of several important design decisions —
like the inclusion of self-attention — we next present an ablation
analysis to study the impacts of these decisions on recommendation
quality. In Table 5, we present the results of AttList versus several
variants as described next:

- Vanilla Attention: In this first experiment, all the vanilla atten-
tion networks in the architecture are replaced with a simple average
pooling method. We observe that performance becomes worse in
all three datasets with a large drop, for example, 16.8% in P@10 for
Spotify. This shows that different items and lists reveal fundamen-
tally different evidence of user preferences. This demonstrates that
AttList is able to select informative items and lists to characterize
the list and the user respectively.

— Self-Attention: In this experiment, all the self-attention net-
works are removed. Significant drops in all metrics are observed
across all three datasets, especially in Zhihu with a drop of 7.3%
in P@10. These results show that our self-attention networks can
boost performance by considering consistency of neighboring items
and lists to refine the item and list representations.

— Attention Mechanism: We next not only remove the self atten-
tion networks (- Self-Attention) but also replace the vanilla attention
networks with the average pooling method (- Vanilla Attention). In
other words, the arithmetic mean of item representations is used to
model the list representation and list representations are just aver-
aged to represent the user in this case. Unsurprisingly, by entirely
removing the attention mechanism, we see a larger drop than in
either of the previous two isolated experiments.

- Residual Connections: The impacts of removing residual con-
nections in the self-attention networks is quite easily noticed, lead-
ing to a large performance drop on all datasets, proving that residual
connections are very useful to stabilize the neural network training.

— Position Information: The experimental results show that the
positional representation has a minor impact on our architecture
where a drop of 1.4%, 0.1% and 2.0% is observed on the three datasets
respectively. A possible reason is that the maximum number of
items that our model can handle is set as 32 according to the hyper-
parameters tuning in the validation set. Hence, the influence of the
top 32 items does not vary too much in terms of their positions.

— User and List ID embeddings: We observe that incorporating
the user and list ID embeddings into the final user and list repre-
sentation is able to boost the performance, especially in Goodreads.
This shows that our model captures some general characteristics
of the user and list by the ID representation which benefits top-k
list recommendation.

+ Linear Projections: Previous works [15, 34] apply three projec-
tion matrices to transform the input of self-attention layer into
three matrices Q, K and V. Then, the scaled dot-product attention
can be calculated as:

Sel f Attention(Q, K, V) = softmax(Q—KT)V
R Vd

The projections make the model more flexible. However, we find
that the projections make the network training more difficult and
degrades the performance.
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Table 5: Ablation analysis on the three datasets for precision and recall. Qualitatively similar results hold for NDCG as well.

| | Goodreads | Spotify | Zhihu |
| Architecture | P@10 Change R@10 Change |P@10 Change R@10 Change|P@10 Change R@10 Change |
AttList 1.148 5.465 2.110 13.935 1.393 5.646
- Vanilla Attention 1.075 -64% 4917 -10.0% | 1.756 -16.8% 11477 -17.6% | 1.315 -5.6% 5.347 -5.3%
- Self-Attention 1111 -3.2% 5355 -2.0% | 1972 -6.6% 12988 -6.8% | 1.292 -7.3% 5.117 -9.4%
- Attention Mechanism | 0.994 -13.4% 4.728 -13.5% | 1.741 -17.5% 11.429 -18.0% | 1.252 -10.1% 5.009 -11.3%
- Residual Connections | 1.020 -11.2% 4.752 -13.1% | 1.959 -7.2% 12999 -6.7% | 1.254 -10.0% 4.939 -12.5%
- Position Information | 1.132  -1.4% 5456 -0.2% | 2.108 -0.1% 13.904 -0.2% | 1.365 -2.0% 5.668 +0.4%
- ID Embedding 1.044 -91% 5.114 -6.4% | 2.093 -08% 13.797 -1.0% | 1.336 -4.1% 5.571 -1.3%
+ Linear Projections 1.115 -29% 5360 -19% | 2.027 -4.0% 13325 -44% | 1306 -6.2% 5.213 -7.7%
matrices have higher self-attention scores. This is understandable
5__\.-.- i - that each item is similar to itself, which reaffirms that the self-
r attention scores are actually the similarities between one item and

0202620222018 16141220 8 6 4 2 0

02 46 810121416 182022 24 26 28 3 D2 4 6 810121416 182022 24 2628 20

(a) A Spotify playlist with high consis-(b) A Spotify playlist with low consis-
tency among music tracks. tency among music tracks.

Figure 5: Heatmap of self-attention scores of two lists.

In summary, the vanilla attention network, the self-attention
network with residual connections and the user and list ID rep-
resentation are quite important for the architecture. Inspired by
previous work, we also try to use position information [23] and lin-
ear projections [34]. However, positional information of items has
a limited impact while the length of a list is short (e.g., 32). Besides,
self-attention networks should be carefully designed, where intro-
ducing linear projections increases a model’s expressive capability
but also makes the training more difficult.

6.3 RQ6: Impact of Hyper-parameters

Due to the limited space, we focus here on four representative hyper-
parameters of AttList to discuss their impact on performance. In
Figure 6(a), we observe that AttList benefits from larger numbers of
the latent dimensionality d. The best results are obtained with d =
96 in Goodreads and Zhihu. In Figure 6(b), we surprisingly observe
that a larger number (M > 32) of items harms the performance in
Spotify and Zhihu. Similarly, we find that a larger number (N > 15)
of lists harms the performance, which is omitted here for simplicity.
Figure 6(c) shows that too many negative samples (p > 5) harms
the performance in Goodreads and Spotify. Figure 6(d) shows that
the learning rate should be tuned between 0.0001 and 0.0005 to
obtain the best performance.

6.4 RQ7: Visualizing Self-Attention Scores

In this section, we visualize the self-attention scores and study if
they can reflect consistency of neighboring items and lists as we
claimed. As discussed in Section 4.2, the self-attention score matrix
in item-level aggregation layer is F; € RM*M where each element
is the similarity between two items in the list. We pick two typical
lists from Spotify and plot the heatmap of self-attention scores of
songs within the two lists as shown in Figure 5, where the darker the
color is, the higher the self-attention score is. Two observations can
be obtained from Figure 5. First, the diagonal elements in the two
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its neighboring items. Second, as a whole, the heatmap in Figure
5(a) is darker than the heatmap in Figure 5(b). This illustrates that
the list in 5(a) has a higher internal consistency than the list in
5(b). A possible reason for that is the first list curates songs more
homogeneous (e.g., similar genre) than the second list. This case
shows that our self-attention network is able to capture consistency
among items within a list.

To further investigate the self-attention scores, we present here
a case study for a well-known song Safe and Sound by Taylor
Swift, which appears in the two lists in Figure 7. We show the
self-attention scores of it in the high internal consistence list in
Figure 7(a) and the scores in the low internal consistence list in Fig-
ure 7(b). We observe that Safe and Sound has higher self-attention
scores with other songs in 7(a) than in 7(b), which is consistent with
the observation from Figure 5. Taking a song Shake It Off in Figure
7(a) as an example, this song has a relatively high self-attention
score (0.045, the maximum score is 0.072 in the list) to Safe and
Sound. Interestingly, the two songs are both performed by Taylor
Swift. This illustrates that the semantic relationship among songs
can be captured by self-attention scores.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we tackle the problem of recommending user gen-
erated item lists through a new hierarchical self-attentive recom-
mendation model. Unlike traditional collaborative filtering based
algorithms that are optimized for user-list interactions, our pro-
posed model leverages the hierarchical structure of items, lists, and
users to capture the containment relationship between lists and
items, revealing additional insights into user preferences. With this
hierarchical structure among items, lists, and users, our model first
aggregates items to characterize the lists they belong to, and then
aggregates these lists to estimate user preferences. A key aspect of
the proposed approach is a novel self-attention network to refine
the item representations and list representations by considering
consistency of neighboring items and lists. Experiments over three
real-world domains — Goodreads, Spotify, and Zhihu — demonstrate
the effectiveness of AttList versus state-of-the-art item-based and
list-based recommenders. Furthermore, these datasets and code will
be released to the research community for further exploration.

In our continuing work, we plan to improve AttList in the fol-
lowing two directions: 1) We plan to use list titles (e.g., “my favorite
adventure books") for improving our model, which also contain
rich signals of user preference. 2) The social community around a
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Figure 7: The self-attention scores of Taylor Swift’s Safe and
Sound on the two lists also featured in Figure 5. The square
marks Safe and Sound and the circle marks Shake It Off.

list

also has a considerable impact on the behavior of interactions

between users and lists. For example, users are more likely to in-
teract with lists that their friends have interacted with. Thus, the
social influence can be modeled to improve the performance.
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