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ABSTRACT

Recommendation algorithms typically build models based on user-
item interactions (e.g., clicks, likes, or ratings) to provide a person-
alized ranked list of items. These interactions are often distributed
unevenly over different groups of items due to varying user pref-
erences. However, we show that recommendation algorithms can
inherit or even amplify this imbalanced distribution, leading to item
under-recommendation bias. Concretely, we formalize the concepts
of ranking-based statistical parity and equal opportunity as two
measures of item under-recommendation bias. Then, we empirically
show that one of the most widely adopted algorithms — Bayesian
Personalized Ranking — produces biased recommendations, which
motivates our effort to propose the novel debiased personalized
ranking model. The debiased model is able to improve the two pro-
posed bias metrics while preserving recommendation performance.
Experiments on three public datasets show strong bias reduction
of the proposed model versus state-of-the-art alternatives.
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1 INTRODUCTION

The social and ethical concerns raised by recommenders are increas-
ingly attracting attention, including issues like filter bubbles [26],
transparency [27], and accountability [30]. In particular, item under-
recommendation bias — wherein one or more groups of items are sys-
tematically under-recommended - is one of the most common but
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(a) Example of RSP based bias:
2 groups of items and 20 users, recommend top1 to users
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(b) Example of REO based bias:
2 groups of items and 20 users, recommend top1 to users; assume every user will only like 1 item
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Figure 1: (a) is an example of the RSP-based bias measure. (b)
is an example of the REO-based bias measure.

harmful issues in a personalized ranking recommender. Item under-
recommendation bias is common in scenarios where the training
data used to learn a recommender has an imbalanced distribution
of feedback for different item groups due to the inherent uneven
preference distribution in the real world [31]. For example, ads for
non-profit jobs may be clicked at a lower rate than high-paying
jobs, so that a recommendation model trained over this skewed
data will inherit or even amplify this imbalanced distribution. This
can result in ads for non-profit jobs being under-recommended.
Previous works on item under-recommendation bias [16-19,
31, 33] mainly focus on investigating how to produce similar pre-
dicted score distributions for different groups of items (in other
words, by removing the influence of group information when pre-
dicting preference scores). The main drawback of these works is
that they mainly focus on the perspective of predicted preference
scores [16-19, 31, 33]. In practice, however, predicted scores are an
intermediate step towards a ranked list of items that serves as the
final recommendation result, and having unbiased predicted scores
does not necessarily lead to an unbiased ranking result. Thus, in
this paper, we directly study item under-recommendation bias in
the ranking results themselves. More specifically, we investigate
two concrete scenarios of item under-recommendation bias and
propose two metrics to measure the corresponding bias of each
scenario: ranking-based statistical parity (RSP) and ranking-based
equal-opportunity (REO).
Ranking-based statistical parity. RSP measures whether the
probabilities for items in different groups to be recommended (that
is, to be ranked in top k) are the same. Poor RSP means one or
more groups have lower recommendation probabilities than others.
That is, these groups are systematically under-recommended. Fig-
ure la provides an example of this RSP-based bias measure, where
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there are two groups of items (group1 has 6 items and group2 has 4
items) being recommended to 20 users (where we recommend the
top-1 item for each user). Within the 20 recommended items, 14
are from group1 and 6 are from group2, thus we can calculate that
groupl items have higher recommendation probability (11.67%)
than group2 items (only 7.5%). RSP is especially important when
the item groups are determined by sensitive attributes (for example,
gender or race when people are recommended, or political ideolo-
gies when political news are recommended) because systematic
low recommendation probability for specific sensitive groups will
result in social unfairness issues. For instance, if Figure 1a is to
recommend male students (group1) and female students (group2)
for college recruiting, then females are under-recommended and
receive unfair treatment during the college recruiting process. Be-
sides, from the view of decision making, RSP-based bias also means
that the decision whether to recommend an item is partially de-
termined by the sensitive attributes, i.e., whether recommending a
student depends on the gender of the student: with everything else
the same, a male student is more likely to be recommended, while
a female student is less likely to be recommended.

Ranking-based equal opportunity. Another drawback of prior
works [16-19, 31, 33] on item under-recommendation bias is that
they view the bias as only depending on recommendation results
without taking user preferences into account. For recommenders
without sensitive attributes for items (like books or movies), we
are less concerned with equal recommendations as in our previous
RSP example, but demand that recommendations be driven by user
preferences. However, general recommendation algorithms tend to
overestimate popular groups and underestimate unpopular groups
(a common issue of machine learning that also occurs in classifica-
tion tasks [5, 32]). Thus these algorithms are not fully aligned with
user preferences but rather assign lower recommendation probabil-
ities for items in minority groups even if they are actually liked by
users. Hence, we propose the second metric - REO - to measure
the bias that items in one or more groups have lower recommenda-
tion probabilities given the items are liked by users. One example
of REO-based bias is shown in Figure 1b, where we recommend
two groups of items to 20 users (where we recommend the top-1
item for each user), and assume every user only has one liked item
(12 users like group1 items, 8 users like group2 items). Ideally, the
probability of being correctly recommended should be the same
across groups, but from this example, we see that 8 users (out of
12) who like group1 items are correctly recommended, but only 2
users (out of 8) who like group2 items are correctly recommended.
Compared to RSP, REO-based bias does not depend on sensitive
attributes and hence is intrinsic to all recommender systems, poten-
tially exerting damaging influence to both users and item providers.
On the one hand, user needs corresponding to minority groups
are not fully acknowledged, leading to lower user satisfaction. On
the other hand, item providers of minority groups may receive less
exposure than they should receive. For instance, if Figure 1b is to
recommend crime movies (group1) and children’s movies (group2),
then children’s movies are less likely to be correctly recommended,
leading to an undesired imbalance. In this case, users who like
children’s movies cannot be satisfied by the recommendation; and
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children’s movies receive less feedback, further exaggerating the
imbalance and forming a vicious circle.

Contributions. With these two different scenarios in mind and
corresponding bias metrics, we empirically demonstrate that a fun-
damental recommendation model - Bayesian Personalized Ranking
(BPR) [28] - is vulnerable to this item under-recommendation bias,
which motivates our efforts to address it. Then, we show how to
overcome this bias based on the two introduced metrics through
a debiased personalized ranking model (DPR) that has two key
features: a multi-layer perceptron adversary that seeks to enhance
the score distribution similarity among item groups and a KL Diver-
gence based regularization term that aims to normalize the score
distribution for each user. Incorporating these two components to-
gether, RSP (or REO depending on how we implement the adversary
learning) based bias can be significantly reduced while preserving
recommendation quality at the same time. Extensive experiments
on three public datasets show the effectiveness of the proposed
model over state-of-the-art alternatives. In general, DPR is able to
reduce the two bias metrics for BPR by 67.3% on average (with an
improvement of 48.7% over the best baseline), while only decreas-
ing F1@15 versus BPR by 4.1% on average (with an improvement
of 16.4% over the best baseline).

2 RELATED WORK

Recommendation Bias. Many efforts have focused on mitigating
bias for recommendation tasks in the context of explicit rating pre-
diction. More specifically, from the perspective of eliminating bias
based on statistical parity, Kamishima et al. proposed regularization-
based models [17, 18] to penalize bias in the predicted ratings; and
Yao et al. [31] proposed three bias metrics on the user side in rating
prediction tasks and generalized the regularization-based model to
balance recommendation quality and the proposed metrics. Recent
works have started to shift attention toward recommendation bias
in personalized ranking tasks. However unlike this paper, most do
not align bias with the ranking results. For example, although under
the ranking recommendation setting, Kamishima et al. [16] adopted
a regularization-based approach to eliminate bias for predicted pref-
erence scores; and Zhu et al. [33] proposed a parity-based model
over predicted scores by first isolating sensitive features and then
extracting the sensitive information. Research in [7], [8] and [4]
proposed metrics that consider the ranking results. However, there
are three main differences between them and the present work: i)
neither of [7] nor [8] takes ground truth of user preferences into
consideration; ii) [7] and [4] only consider two-group scenarios;
and iii) [4] and [8] consider bias among item groups for individ-
ual users rather than consider system-level bias for different item
groups. In sum, the main differences between this work and previ-
ous works are that the bias we investigate is over ranking results
among multiple groups; is based on both statistical parity and equal
opportunity; and is calculated from the system-level.

Popularity bias is another type of recommendation bias in which
recommenders tend to recommend popular items more frequently
than unpopular items. Existing works [2, 3] typically study popu-
larity bias by grouping items based on their popularity (usually two
groups: popular vs. unpopular), which has a similar problem setup
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as in this work. However, popularity bias does not consider specific
meanings for item groups (such as gender, race or category).

Other Related Topics. There are some recent efforts investigating
topics related to recommendation bias. For example, Beutel et al. [6]
and Krishnan et al. [22] explored approaches to decrease the bias
w.r.t. recommendation accuracy for niche items. Recommendation
diversity [15], which requires as many groups as possible appearing
in the recommendation list for each user, is related to the metric
RSP in this work, but fundamentally different. Another similar
concept to RSP called calibrated recommendations is proposed by
Steck [29], which encourages the same group proportions as the
historical record for each user and can be regarded as a special bias
for individual users. The main differences of our work and these
previous works are that research of recommendation diversity and
recommendation calibration investigate the distribution skews for
each individual user rather than for the whole system, and they
only consider the recommendation distributions without taking
into account the ground truth of user preference and item quality
as in this work.

3 BIAS IN PERSONALIZED RANKING

In this section, we first describe the personalized ranking problem
and ground our discussion through a treatment of Bayesian Person-
alized Ranking (BPR) [28]. Next, we introduce two proposed bias
metrics for personalized ranking. Last, we empirically demonstrate
that BPR is vulnerable to the item under-recommendation bias.
By measuring the inherent bias in BPR, we aim to show that item
under-recommendation bias is a common and critical issue, which
motivates our efforts to address it.

3.1 Bayesian Personalized Ranking

Given N users U = {1,2,...,N}and Mitems I = {1,2,..., M}, the
personalized ranking problem is to recommend a list of k items to
each user u based on the user’s historical behaviors 7.} = {i, j,...},
where i, j,... are the items u interacts with before (and so can
be regarded as implicit positive feedback). Bayesian Personalized
Ranking (BPR) [28] is one of the most influential methods to solve
this problem, which is the foundation of many cutting edge per-
sonalized ranking algorithms (e.g. [12, 13]). BPR adopts matrix
factorization [21] as the base and minimizes a pairwise ranking
loss, formalized as:

. ~ = A0 o2
min LppR =~ > Z Ino(Gui = Yuj) + 1Ol
uel ielf
JeI\I}

1

where 7,,; and 7, j are the predicted preference scores calculated
by the matrix factorization model for user u to positive item i
and sampled negative item j; o(+) is the Sigmoid function; |||
is the Frobenius norm; © represents the model parameters, i.e.,
0O = {P,Q}, where P and Q are the latent factor matrices for users
and items; and Ag is the trade-off weight for the 12 regularization.

With the trained BPR, we can predict the preference scores to-
ward all un-interacted items and rank them in descending order for
user u. A list of items with the top k largest scores {Ry, 1, Ry, 2, - -
will be recommended to user u, where R, i is the item id at the
ranked k position.

. ’Ru,k}

451

SIGIR 20, July 25-30, 2020, Virtual Event, China

3.2 Bias Metrics

However, there is no notion of debiasing in such a personalized rank-
ing model. Here, we assume a set of A groups G = {g1,92,---,94},
and every item in 7 belongs to one or more groups. A group here
could correspond to gender, ethnicity, or other item attributes. We
define a function Gy, (i) to identify whether item i belongs to group
ga- If it does, the function returns 1, otherwise 0. Next, we introduce
two metrics for item under-recommendation bias for the personal-
ized ranking problem.

Ranking-based Statistical Parity (RSP). Statistical parity requires
the probability distributions of model outputs for different input
groups to be the same. In a similar way, for the personalized rank-
ing task, statistical parity can be defined as forcing the ranking
probability distributions of different item groups to be the same.
Because conventionally only the top-k items will be recommended
to users, we focus on the probabilities of being ranked in top-k,
which is also aligned with basic recommendation quality evaluation
metrics such as precision@k and recall@k. As a result, we propose
the ranking-based statistical parity metric - RSP, which encourages
P(R@klg = g1) = P(R@Klg = g2) = ... = P(R@KIg = ), where
R@k represents ‘being ranked in top-k’, and P(R@k|g = g4) is the
probability of items in group g, being ranked in top-k. Formally,
we calculate the probability as follows:

TN Tk Gea(Rui)
SN Sien g Gea (i)

where Z;C:l Gg, (Ry,i) calculates how many un-interacted items
from group g, are ranked in top-k for user u, and };c 1\ 7+ Gg, (i)
calculates how many un-interacted items belong to group g, for u.
Last, we compute the relative standard deviation (to keep the same
scale for different k) over the probabilities to determine RSP@k:

std(P(R@k|g = g1), ..., P(R@k|g = ga))
mean(P(R@k|g = g1),. .., P(R@k|g = ga))’

where std(-) calculates the standard deviation, and mean(-) calcu-
lates the mean value.

P(R@k|g = ga) =

RSP@k =

Ranking-based Equal Opportunity (REO). Our second metric
is based on the concept of equal opportunity [5, 9, 32], which en-
courages the true positive rates (TPR) of different groups to be
the same. Take a binary classification task with two groups as an
example, equal opportunity requires:

P(c=1lg=0,c=1)=P(c=1lg=1Lc=1),

where c is the ground-truth label, ¢ is the predicted label; P(c =
1|g = 0,¢ = 1) represents the TPR for group 0, P(c = 1|lg = 1,c = 1)
is the TPR for group 1. Similarly, in the personalized ranking system,
equal opportunity demands the ranking based TPR for different
groups to be the same. We can define the TPR as the probability of
being ranked in top-k given the ground-truth that the user likes
the item, noted as P(R@k|g = g4,y = 1), where y = 1 represents
items are liked by users. The probability can be calculated by:

SN, | G, (Ru)Y (, Rui)
ZuN:I Zien\z; Gg, (DY (u, i) ’

where Y (u, R, ;) identifies the ground-truth label of a user-item pair
(4, Ry,i), if item Ry, ; is liked by user u, returns 1, otherwise 0 (in

P(R@k|g=9ga,y=1) =
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Group #ltem  #Feedback %

Sci-Fi 271 157,290 580.41

Adventure 276 133,946 485.31
Crime 193 79,528 412.06
ML1M Romance 447 147,501 329.98
Children’s 248 72,184 291.06

Horror 330 76,370 231.42

Relative std - - 0.33
American(New) | 1610 91,519 56.84

Japanese 946 45,508 48.11

Yelp Ttalian 1055 46,434 44.01
Chinese 984 36,729 37.33

Relative std - - 0.17

Grocery 749 49,646 66.28

Office 892 37,776 42.35

Amazon Pet 518 16,260 31.39
Tool 606 14,771 24.37

Relative std - - 0.44

Table 1: Group information in the three datasets.

practice, Y (u, i) identifies whether a user-item pair (u, i) is in the
test set); Zf:l Gg, (Ru,i)Y (u, Ry ;) counts how many items in test set

from group g, are ranked in top-k for user u,and 3¢ 7\ 7+ Gg, ()Y (. 1)

counts the total number of items from group g, in test set for user
u. Similar to RSP, we calculate the relative standard deviation to
determine REO@k:

std(P(R@k|g=g1,y=1)...P(R@k|g = ga,y = 1))
mean(P(R@k|g = g1,y = 1)... P(R@k|g = g4,y = 1))

For classification tasks, TPR is the recall of classification, and
for personalized ranking, the probability P(R@k|g = g4,y = 1) is
recall@k of group g,. In other words, mitigating REO-based bias
requires recall@k for different groups to be similar.

Note that for both RSP@k and REO@k, lower values indicate
the recommendations are less biased. In practice, RSP is partic-
ularly important in scenarios where people or items with sensitive
information are recommended (such as political news). Because
RSP-based bias in these scenarios leads to social issues like gender
discrimination during recruiting or political ideology unfairness
during election campaigns. Conversely, REO is supposed to be en-
hanced in general item recommendation systems so that no user
need is ignored, and all items have the chance to be exposed to
users who like them.

REO@k =

3.3 BPR is Vulnerable to Data Bias

In this section, we empirically show that BPR is vulnerable to im-
balanced data and tends to produce biased recommendation based
on metrics RSP and REO. Since there is no standard public dataset
related to recommendation bias with sensitive attributes, we adopt
three public real-world datasets that have been extensively used in
previous works [11, 13, 31]. However, conclusions we draw should
still hold if we analyze the bias on datasets with sensitive features
because the fundamental problem definition and the mechanism
leading to bias are exactly the same as the experiments in this paper.

MovieLens 1M (ML1M) [10] is a movie rating dataset, where we
treat all ratings as positive feedback indicating users are interested
in rated movies. We consider the recommendation bias for movie
genres of ‘Sci-Fi’, ‘Adventure’, ‘Crime’, ‘Romance’, ‘Childrens’, and
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P(R@k|g) P(R@k|g, y=1)
Genres @5 @10 @15| @5 @10 @15
Sci-Fi 00654 .01306 .01949.09497 .16819 .22922
Adventure .00516 .01022 .01521|.08884 .15808 .21657
Crime .00456 .00888 .01318|.07469 .13017 .17941
ML1M Romance .00327 .00665 .01002|.06448 .12003 .16366
Children’s .00251 .00494 .00742|.05852 .10470 .14464
Horror .00176 .00354 .00533|.05399 .10132 .13985
RSP or REO .41054 .40878 .40579|.20885 .19316 .18933
American(New) .00154 .00302 .00449|.06345 .10904 .14497
Japanese .00111 .00219 .00328|.04770 .08207 .11106
Yelp ITtalian .00093 .00194 .00297|.03890 .07087 .09658
Chinese .00072 .00146 .00222|.03376 .05626 .07961
RSP or REO |.28005 .26376 .25224(.24515 .24290 .22253
Grocery .00283 .00572 .00869|.03931 .07051 .09297
Office .00165 .00336 .00506|.01196 .02039 .03180
Amazon Pet .00185 .00348 .00501|.04815 .07807 .10215
Tool .00082 .00165 .00250|.00552 .01105 .01519
RSP or REO [.40008 .40672 .41549(.68285 .65756 .62175

Table 2: Ranking probability distributions and RSP and REO
metrics on three datasets by BPR.

‘Horror’, and remove other films, resulting in 6,036 users, 1,481
items, and 526, 490 interactions.

Yelp (https://www.yelp.com/dataset/challenge) is a review dataset
for businesses. We regard the reviews as the positive feedback
showing user interests and only consider restaurant businesses.
We investigate the recommendation bias among food genres of
‘American(New)’, Japanese’, ‘Italian’, and ‘Chinese’, resulting in
8,263 users, 4,420 items, and 211, 721 interactions.

Amazon [25] contains product reviews on the Amazon e-commerce
platform. We regard user purchase behaviors as the positive feed-
back, and consider recommendation bias among product categories
of ‘Grocery’, ‘Office’, ‘Pet’, and “Tool’, resulting in 4, 011 users, 2, 765
items, and 118, 667 interactions.

Moreover, Table 1 lists the details of each group in the datasets,

including the number of items, the number of feedback, and the

ratio between them %. We use this ratio to identify the

intrinsic data imbalance. The higher the ratio is, the more this group
is favoured by users, and the relative standard deviation of ratios
for all groups can indicate overall bias in the dataset. Hence, the

Amazon and ML1M datasets contain relatively high bias; and Yelp
#feedback

has lower bias, but American(New) restaurants still have ~———

around 1.5 times higher than that of Chinese restaurants.

We run BPR on these datasets and analyze the ranking probability
distributions. The detailed model hyper-parameter settings and data
splitting are described in Section 5.2. Table 2 presents P(R@k|g)
and P(R@k|g, y = 1) for different groups on three datasets by BPR,
where we consider k = 5, 10, and 15. We also list the metrics RSP@k
and REO@k. From the table, we have three major observations:

(i) For all datasets, the ranking probabilities are very different
among groups, e.g., in ML1IM, P(R@5|g = Sci-Fi) is four times
higher than P(R@5|g = Horror), and P(R@5|g = Sci-Fi,y = 1) is
two times higher than P(R@5|g = Horror,y = 1). And the high
values of RSP@k and REO@*k for all k and datasets demonstrate
the biased recommendations by BPR.

(ii) The distributions of P(R@k|g) and P(R@k|g,y = 1) for all
#feedback

Jitem  Shown in

datasets basically follow the distributions of
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(a) Original. (b) BPR results. (c) DPR results.

Figure 2: The original distribution of #feedback/#item over different groups of ML1M data, and the ranking top15 probability
distributions (both statistical parity and equal opportunity based) produced by BPR and proposed DPR.
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Figure 3: Illustration of the intuition of the proposed DPR.

Table 1, and sometimes the deviations of the ranking probability

e # i
distributions are even larger than % distributions, for ex-

ample, the relative standard deviation of P(R@15|g) in ML1M is
0.4058 while that of 2£¢¢dback ;oo 3344, which indicates that BPR

preserves or even ampﬁlé::rsnthe inherent data bias.

(iii) As k decreases, the values of RSP@k and REO@k increase.
In other words, the results are more biased for items ranked at top
positions. This phenomenon is harmful for recommenders since
attention received by items increases rapidly with rankings getting

higher [23], and top-ranked items get most of attention from users.

Moreover, we also plot the original % distribution of

ML1M in Figure 2a and the ranking probability distributions by
BPR in Figure 2b, which visually confirms our conclusion that
BPR inherits data bias and produces biased recommendations. This
conclusion motivates the design of a debiased personalized ranking
framework as the models proposed in this paper. Figure 2c shows
the ranking probability distributions generated by the proposed
Debiased Personalized Ranking models, illustrating more evenly
distributed and unbiased recommendations compared to BPR.

4 DEBIASED PERSONALIZED RANKING

Previous works on debiased recommendation [16, 19, 33] mainly
focus on forcing different groups to have similar score distributions,
which cannot necessarily give rise to unbiased rankings. One key
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reason is that users have different predicted score distributions,
which means a high score from one user to an item does not nec-
essarily result in a high ranking, and a low score does not lead
to a low ranking. Conversely, if every user has an identical score
distribution, the value ranges of the scores in top-k for all users
will be the same, as demonstrated in Figure 3a. Then, the top-k
scores in different item-group score distributions (noted as p(y]g))
are also in the same value range. Last, as illustrated in Figure 3b,
if we enforce identical score distribution for different item groups,
the proportions of top-k scores in the whole distribution for dif-
ferent groups will be the same, i.e., we have the same probability
p(R@k|g) for different groups (the definition of RSP). Similarly, if
the positive user-item pairs in different groups have the same score
distribution (noted as p(ylg, y = 1)), we will have the same proba-
bility p(R@k|g, y = 1) for different groups (the definition of REO),
as presented in Figure 3c. Based on this intuition, the proposed DPR
first enhances the score distribution similarity between different
groups by adversarial learning, then normalizes user score distri-
butions to the standard normal distribution by a Kullback-Leibler
Divergence (KL) loss. We introduce the two components of DPR
and the model training process in the following subsections.

4.1 Enhancing Score Distribution Similarity

Adversarial learning has been widely applied in supervised learn-
ing [5, 24, 32] to mitigate model bias, with theoretical guarantees
and state-of-the-art empirical performance. Inspired by these works,
we propose to leverage adversarial learning to enhance the score
distribution similarity between different groups. We first take the
metric RSP as the example to elaborate the proposed method, and
then generalize it to REO. Last, we show the advantages of the
proposed adversarial learning over previous methods.

Adversary for RSP. The intuition of adversarial learning in this
case is to play a minimax game between the BPR model and a dis-
criminator. The discriminator is to classify the groups of the items
based on the predicted user-item scores by BPR. As a result, BPR
does not only need to minimize the recommendation error, but
also needs to prevent the discriminator from correctly classifying
the groups. If the discriminator cannot accurately recognize the
groups given the outputs (predicted scores) from BPR, then the
predicted score distributions will be identical for different groups.
More specifically, in the adversarial learning framework, each train-
ing user-item pair (u, i) is first input to a conventional BPR model;
then the output of BPR, 7,; is fed into a multi-layer perceptron
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(MLP) to classify the groups g; of the given item i. g; € [0, 1]4 is the
output of the last layer of MLP activated by the sigmoid function,
representing the probability of i belonging to each group, e.g., gi.q
means the predicted probability of i belonging to group g,. The
MLP is the adversary, which is trained by maximizing the likelihood
L ado(gi, 8), and BPR is trained by minimizing the ranking loss
shown in Equation 1 as well as minimizing the adversary objective
Lado(8i,8i)- 8i € {0,1}4 is the ground-truth groups of item i, if i
is in group ggq, gi,q = 1, otherwise 0. We adopt the log-likelihood as
the objective function for the adversary:

A
max Lago(D) = ) (gialogBia + (1~ gia)log (1~ Eia),
a=1
where we denote £ 44, (gi, 8i) as £ a4, (i) for short, and ¥ is the
parameters of the MLP adversary. Combined with the BPR model,
the objective function can be formulated as:

minmax > > Lepr(u i)+ (L ago(i) + £ado())
uel iel}
Jen\L} @)

. ~ ~ Ao
where Lppr(u, i, j) = —Ino(Yui — Yu,j) + 7||®||§,

and a is the trade-off parameter to control the strength of the
adversarial component.

Adversary for REO. As for REO, we demand the score distribu-
tions of positive user-item pairs rather than all the user-item pairs
to be identical for different groups. Therefore, instead of feeding
both scores for positive and sampled negative user-item pairs 4y, ;
and Jy, j, we only need to feed 7j,, ; into the adversary as:

min max Z Z Lppr(u, i, j) + aL g, (i).
e ¥ uel ielf ©)
JjeI\IL}

Advantages of adversarial learning. There are two existing ap-
proaches to achieve a similar effect: a regularization-based method [ 16,
17, 31]; and a latent factor manipulation method [33]. The advan-
tages of the proposed adversarial learning over previous works can
be summarized as: (i) it can provide more effective empirical perfor-
mance than other methods, which will be further demonstrated in
Section 5.4; (ii) it is flexible to swap in different bias metrics (beyond
just RSP and REO); (iii) it can handle multi-group circumstances;
and (iv) it is not coupled with any specific recommendation models
and can be easily adapted to methods other than BPR (such as more
advanced neural networks).

4.2 Individual User Score Normalization

After the enforcement of group distribution similarity, the next step
towards debiasing personalized ranking is to normalize the score
distribution for each user. We can assume the score distribution of
every user follows the normal distribution because based on the
original BPR paper [28], every factor in the user or item latent factor
vector follows a normal distribution. Then P} Q; (for a given user
u, P, is a constant and Q; is a vector of normal random variables)
follows a normal distribution as well. Thus we can normalize the
score distribution of each user to the standard normal distribution
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#Users  #Items #Ratings Density
ML1M-2 5,562 543 215,549 7.14%
Yelp-2 6,310 2,834 117,978 0.66%
Amazon-2 | 3,845 2,487 84,656 0.89%

Table 3: Characteristics of the three 2-group datasets.

by minimizing the KL Divergence between the score distribution
of each user and a standard normal distribution as the KL-loss:

L= ). Dxi(qe(®)IN(0,1),
ueld

where gg(u) is the empirical distribution of predicted scores for
user u, and Dy, (+||-) computes KL Divergence between two distri-
butions.

4.3 Model Training

Combining the KL-loss with Equation 2 leads to the complete DPR
model to optimize RSP, noted as DPR-RSP:

minmax 7 > (Lepr(wi.J) +@(Eade(i) + £ado(i) + PLKL,
uel iel}
JeI\L;

where f is the trade-off parameter to control the strength of KL-
loss. Similarly, we can optimize REO by combining KL-loss with
Equation 3 to arrive at a DPR-REO model as well. Note that although
the proposed DPR is built with BPR as the model foundation, it
is in fact flexible enough to be adapted to other recommendation
algorithms, such as more advanced neural networks [14].

Then, we train the model in a mini-batch manner. Generally,
during model training, there are two phases in each epoch: first we
update weights in the MLP adversary to maximize the classifica-
tion objective, then update BPR to minimize the pairwise ranking
loss, classification objective and KL-loss all together. Concretely,
following the adversarial training process proposed in [24], in each
epoch, we first update the MLP adversary by the whole dataset
(in a stochastic way), then update BPR by one mini-batch, which
empirically leads to fast convergence. And in practice, we usually
first pre-train the BPR model for several epochs and then add in
the adversarial training part.

5 EXPERIMENTS

In this section, we empirically evaluate the proposed model w.r.t. the
two proposed bias metrics as well as the recommendation quality.
We aim to answer three key research questions: RQ1 What are
the effects of the proposed KL-loss, adversary, and the complete
model DPR on recommendations? RQ2 How does the proposed
DPR perform compared with other state-of-the-art debiased models
from the perspectives of mitigating item under-recommendation
bias and recommendation quality preserving? and RQ3 How do
hyper-parameters affect the DPR framework?

5.1 Datasets

The three datasets used in the experiments have been introduced
in Section 3.3. Since the state-of-the-art baselines can only work
for binary group cases, to answer RQ2, we create subsets keeping
the most popular and least popular groups in the original datasets:
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ML1M-2 (‘Sci-Fi’ vs ‘Horror’), Yelp-2 (‘American(New)’ vs. ‘Chi-
nese’), and Amazon-2 (‘Grocery’ vs. “Tool’). The specifics of the
2-group datasets are presented in Table 3. All datasets are randomly
split into 60%, 20%, 20% for training, validation, and test sets. Note
that there is no standard public dataset with sensitive features, thus
we use public datasets for general recommendation scenarios to
evaluate the performance of mitigating RSP-based bias. However,
conclusions we draw should still hold if we analyze the debiasing
performance on datasets with sensitive features because the funda-
mental problem definition and the mechanism leading to bias are
exactly the same as the experiments in this paper.

5.2 Experimental Setup

Metrics. In the experiments, we need to consider both recommen-
dation quality and recommendation bias. For the recommendation
bias, we report RSP@k and REO@k as described in Section 3.2. As
for the recommendation quality we adopt F1@k. We report the
results with k = 5, 10, and 15. Note that we also measure NDCG in
the experiments, which shows the same pattern as F1, hence we
only report F1@k for conciseness.

Baselines. We compare the proposed DPR with biased method
BPR shown in Section 3.1 and two state-of-the-art debiased recom-
mendation methods:

FATR [33]. This is a tensor-based method, which enhances the
score distribution similarity for different groups by manipulating
the latent factor matrices. We adopt the 2D matrix version of this
approach. Note that FATR is designed for statistical parity based
metric, hence we do not have high expectation for the performance
w.r.t. equal opportunity.

Reg [16, 17, 31]. The most commonly used debiasing method for
two-group scenarios, which penalizes recommendation difference
by minimizing a regularization term. Following [16], we adopt the
squared difference between the average scores of two groups for all
items as the regularization to improve RSP, denoted as Reg-RSP.
For REO, we adopt the squared difference between the average
scores of positive user-item pairs as the regularization, denoted as
Reg-REO (it is similar to DPR-REO but enhances the distribution
similarity by static regularization rather than adversary).

To have a fair comparison, we modify the loss functions of all
baselines to the BPR loss in Equation 1. Moreover, to align the
baselines with the bias metrics for ranking, we further add the
proposed KL-loss introduced in Section 4.2 to both baselines.

Reproducibility. Code and data for this work can be found at
https://github.com/Zziwei/Item-Underrecommendation-Bias. We
implement the proposed model using Tensorflow [1] and adopt
Adam [20] optimization algorithm. We tune the hyper-parameters
of the models involved by the validation set, the basic rules are: (i)
we search the hidden dimension over {10, 20, 30, 40, 50, 60, 70, 80};
(ii) search the Ly regularizer Ag over {0.01,0.05,0.1,0.5,1.0}; (iii)
search the adversary regularizer @ over range [500, 10000] with
step 500; (iv) search the KL-loss regularizer f§ over range [10, 70]
with step 10; and (v) search the model specific weight in FATR
over {0.01,0.05,0.1,0.5, 1.0}, and model specific weight for Reg-RSP
and Reg-REO over the range [1000, 10000] with step 2000. Note
that selections of @ and f should consider the balance between
recommendation quality and recommendation bias.
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ML1M Yelp Amazon

BPR 0.1540 0.0808 0.0836

BPR w/ KL-loss | 0.0571 0.0254 0.0313
A -62.92% -68.56% -62.56%

Table 4: Comparison between BPR w/o KL-loss for JS Diver-
gences among user score distributions over three datasets.

BPR BPR with KL-Loss
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Figure 4: CDFs of user score distributions predicted by BPR
and BPR with KL-loss over ML1M dataset.

There are two sets of experiments: experiments over multi-group
datasets (ML1M, Yelp, and Amazon) to answer RQ1 and RQ3;
and experiments over binary-group datasets (ML1M-2, Yelp-2, and
Amazon-2) to answer RQ2.

In the first set of experiments, for all three datasets: we set 20 as
the hidden dimensions for BPR, DPR-RSP, and DPR-REO; we set the
learning rate 0.01 for BPR, and ngpg 0.01 as well for DPR-RSP and
DPR-REO. For all methods, we set Ag = 0.1 for ML1M and Amazon;
set Ag = 0.05 for Yelp. As for adversary learning rate 144,, we set
0.005 for ML1M and Yelp, 0.001 for Amazon. For all three datasets,
we set o = 5000 for DPR-RSP. As for DPR-REO, we set a = 1000 for
ML1M, 5000 for Yelp, and 10000 for Amazon.

In the second set of experiments, we set different hidden dimen-
sions for different datasets, but for the same dataset all methods
have the same dimension: we set 10 for ML1M-2, 40 for Yelp-2, and
60 for Amazon-2. We set the learning rate 0.01 for baselines, and
0.01 as ngpg for DPR-RSP and DPR-REO. As for adversary learning
rate 144, We set 0.005 for all three datasets.

For all methods in all experiments, we have negative sampling
rate 5 and mini-batch size 1024. For all debiased methods, we set
B = 30. And we adopt a 4-layer MLP with 50 neurons with ReLU
activation function in each layer as the adversary for DPR.

5.3 ROQ1: Effects of Model Components

In this subsection, we aim to answer three questions: whether the
KL-loss can effectively normalize user score distribution? whether
the adversary can effectively enhance score distribution similarity
among groups? and whether DPR-RSP and DPR-REO can effectively
improve the bias metrics RSP and REO?

Effects of KL-loss. The KL-loss is to normalize the user score
distribution. Hence, we adopt the Jensen-Shannon Divergence (JS
Divergence) to measure the deviation between user score distri-
butions, where lower JS Divergence indicates that the user score
distributions are normalized better. We compare BPR and BPR with
KL-loss over all three datasets, the results are shown in Table 4,
and the improvement rates (noted as A) are also calculated. We can
observe that with the KL-loss, the divergence among user score
distributions is largely reduced, demonstrating the effectiveness
of KL-loss. To better show the effects of KL-loss, we visualize the
score distribution for every user produced by BPR with and without
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Figure 5: PDFs of p(y|g) for different groups by BPR and BPR
w/ adv for RSP over ML1M dataset.

MLIM Yelp Amazon

BPR 0.0222 0.0011 0.0215

RSP setting | BPRw/ adv | 0.0090 0.0004 0.0046
A -59.46% | -63.64% | -78.60%

BPR 0.0128 0.0045 0.0378

REO setting | BPRw/ adv | 0.0047 0.0041 0.0087
A -63.28% | -8.89% | -76.98%

Table 5: Comparison between BPR and BPR w/ adv for JS
Divergences of score distribution among different groups.

MLIM Yelp Amazon

BPR 0.1520 0.0371 0.0230

F1@15 DRP-RSP | 0.1439 0.0354 0.0221
A -5.31% -4.32% -3.90%

BPR 0.4058 0.2522 0.4155

RSP@15 | DPR-RSP 0.0936 0.0856 0.0607
A -76.92% | -66.07% | -85.40%

Table 6: Comparison between BPR and DPR-RSP w.r.t.
F1@15 and RSP@15 over three datasets.

KL-loss for ML1M in Figure 4, where each curve represents the Cu-
mulative Distribution Function (CDF) of a single user’s scores. The
closely centralized CDFs in the right figure verify the effectiveness
of the proposed KL-loss.

Effects of Adversary. The adversary in DPR is to enhance the
score distribution similarity among different groups. To evaluate
the effectiveness of the adversarial learning, we compare the per-
formances of BPR and BPR with adversary for both metrics (noted
as BPR w/ adv for RSP and BPR w/ adv for REO). More specifically,
we compare BPR with BPR w/ adv for RSP w.r.t. JS Divergence
among p(y|g) for different groups, and compare BPR with BPR w/
adv for REO w.r.t. JS Divergence among p(ylg, y = 1) for different
groups. Results are shown in Table 5, where the top three rows are
calculated on all user-item pairs not in the training set (fit the RSP
setting), the bottom three rows are calculated on user-item pairs
only in the test set (fit the REO setting). The table demonstrates
the extraordinary effectiveness of the proposed adversarial learn-
ing for enhancing distribution similarity under both settings. To
further validate this conclusion, we visualize the distributions of
p(ylg) for different groups from ML1M in Figure 5 (distributions of
p(Ylg, y = 1 have the same pattern), where the Probability Distri-
bution Function (PDF) of every group’s score distribution is plot as
a single curve. We can find that PDFs by BPR w/ adv are close to
each other, while PDFs by the ordinary BPR differ considerably.

Effects of DPR. The effects of the complete DPR should be eval-
uated from the perspectives of both recommendation quality and
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ML1IM Yelp Amazon

BPR 0.1520 0.0371 0.0230

F1@15 DRP-REO | 0.1527 0.0363 0.0208
A +0.49% -1.94% -9.81%

BPR 0.1893 0.2225 0.6217

REO@15 | DPR-REO 0.0523 0.0874 0.3577
A -72.38% | -60.73% | -42.47%

Table 7: Comparison between BPR and DPR-REO w.r.t.
F1@15 and REO@15 over three datasets.

ML1IM-2 | Yelp-2 | Amazon-2

BPR 0.0564 0.0034 0.0514

FATR 0.0218 0.0027 0.0332

RSP setting | Reg-RSP 0.0276 0.0026 0.0378
DPR-RSP 0.0155 0.0020 0.0079
A -28.90% | -23.08% -76.20%

BPR 0.0422 0.0216 0.1531

FATR 0.0044 0.0078 0.1844

REO setting | Reg-REO 0.0179 0.0062 0.0219
DPR-REO | 0.0011 0.0018 0.0038

A -75.00% | -70.97% -82.65%

Table 8: Comparison between DPR and baselines for JS Di-
vergences of score distribution among groups.

recommendation bias. We first investigate the performance of DPR-
RSP. F1@15 and RSP@15 results of both BPR and DPR-RSP over
three datasets are listed in Table 6, where the change rates for
them are calculated. From the table we have three observations: (i)
DPR-RSP improves the bias metric RSP over BPR greatly (decreases
RSP@15 by 76% on average); (i) DPR-RSP effectively preserves the
recommendation quality (only drops F1@15 by 4% on average); and
(iii) for different datasets with different degrees of bias, DPR-RSP
can reduce the bias to a similar level (RSP@15 for three datasets by
DPR-RSP are all smaller than 0.1).

Similar conclusions can be drawn for DPR-REO based on Ta-
ble 7, where comparison between BPR and DPR-REO w.r.t. F1@15
and REO@15 are listed. We can observe that DPR-REO is able to
decrease metric REO@15 to a great extent while preserving high
F1@15 as well. Generally speaking, DPR-REO demands less recom-
mendation quality sacrifice because the definition of REO is less
stringent and debiasing is easier to achieve than RSP. However,
there is one exception that in Amazon dataset, DPR-REO drops
F1@15 by 9.8%. It may be because for the Amazon dataset, every
item group has its own collection of users, and there are few users
giving feedback to more than one group, which exerts difficulty for
DPR-REO training.

5.4 RQ2: Comparison with Baselines

We next compare the proposed DPR with state-of-the-art alterna-
tives to answer two questions: (i) how does the proposed adversarial
learning perform in comparison with baselines for predicted score
distribution similarity enhancement? and (ii) how does the pro-
posed DPR perform for both bias metrics compared with baselines?
Because baselines Reg-RSP and Reg-REO can only work for binary-
group cases, we conduct the experiment over ML1M-2, Yelp-2, and
Amazon-2 datasets in this subsection.

To answer the first question, we report JS Divergences of score
distributions for different groups in Table 8, where the top five
rows are calculated on all user-item pairs not in the training set
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Figure 6: F1@k and RSP@Kk of four different models over three datasets.
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Figure 7: F1@k and REO@k of four different models over three datasets.
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Figure 8: F1@15, RSP@15, and REO@15 of DPR-RSP and DPR-
REO w.r.t. different numbers of layers over ML1M.

(fitting the RSP setting), and the bottom five rows are calculated on
user-item pairs only in the test set (fitting the REO setting). The im-
provement rates of DPR over the best baselines also are calculated.
From the table we can conclude that the proposed adversarial learn-
ing can more effectively enhance score distribution similarity than
baselines. Although less competitive, both FATR and Reg models
can improve the distribution similarity to some degree compared
with BPR.

As for the second question, we show F1@k, RSP@k, and REO@k
comparison between all methods over all datasets in Figure 6 and
Figure 7. On the one hand, from the leftmost three figures in both
Figure 6 and Figure 7, we can observe that DPR-RSP and DPR-REO
preserve relatively high F1@k from BPR and outperform other
baselines significantly. On the other hand, from the rightmost three
figures, we are able to see that DPR-RSP and DPR-REO enhance RSP
and REO to a great extent respectively, which also outperform other
debiased methods considerably. Besides, one potential reason for
better recommendation quality for DPR on Yelp is that the intrinsic
bias in Yelp is small, thus DPR can promote unpopular groups and
keep the original high rankings for popular groups simultaneously,
leading to better recommendation performance.

5.5 RQ3: Impact of Hyper-Parameters

Finally, we investigate the impact of three hyper-parameters: (i)
the number of layers in the MLP adversarys; (ii) the adversary trade-
off regularizer «; and (iii) the KL-loss trade-off regularizer f. For
conciseness, we only report experimental results on ML1M dataset,
but note that the results on other datasets show similar patterns.
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Figure 9: F1@15, RSP@15 and REO@15 of DPR-RSP and DPR-
REO w.r.t. different « over ML1M.

Impact of Layers in Adversary. First, we experiment with the
number of layers in MLP adversary varying in {0, 2,4, 6, 8}, and the
other parameters are the same as introduced in Section 5.2 including
that the number of neurons in each MLP layer is still 50. Generally
speaking, with more layers, the adversary is more complex and
expressive, which intuitively results in better bias reduction perfor-
mance. The F1@15 results of DPR-RSP and DPR-REO w.r.t. different
numbers of layers are shown at the left in Figure 8, and RSP@15
and REO@15 results are presented at the right in Figure 8. From
these figures, we can infer that with a more powerful adversary, the
recommendation quality drops more; however, the bias reduction
effect first gets promoted but then weakened due to difficulty of
model training. The best value is around 2 to 4. Besides, we can
also find that it is easier to augment the metric REO than RSP with
less recommendation quality sacrificed, which is consistent with
the observation in Section 5.3.

Impact of a. Then, we vary the adversary trade-off regularizer
a and plot the results in Figure 9, where the x-axis coordinates
{ag, a1, ..., a5} are {1000,3000, 5000, 7000, 9000, 11000} for DPR-
RSP and {200, 600, 1000, 1400, 1800, 2200} for DPR-REO. The left
figure demonstrates the F1@15 results with different a, which
shows that with larger weight for the adversary, the recommenda-
tion quality decreases more. For the bias reduction performance, as
presented at the right in Figure 9, with larger , both DPR-RSP and
DPR-REO first decrease the bias, but then increase it again, which
is most likely due to the dominating of adversary over KL-loss in
the objective function. To balance the recommendation quality and
recommendation bias, setting & = 5000 for DPR-RSP and & = 1000
for DPR-REO are reasonable choices.
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Figure 10: F1@15, RSP@15 and REO@15 of DPR-RSP and DPR-
REO w.r.t. different f over ML1M.

Impact of f. Last, we study the impact of the KL-loss trade-off
regularizer  and vary the value in the set {0, 10, 20, 30, 40, 50, 60, 70}.
The left figure in Figure 10 shows the change tendency of F1@15,
which implies that larger f leads to lower recommendation quality.
The bias mitigation performance of DPR-RSP and DPR-REO with
different f are shown at the right in Figure 10, from which we
can observe that with higher f, the bias is mitigated better, and
converges to a certain degree. However, the impact of f is not as
strong as that of « (the value changes of RSP@15, and REO@15 in
Figure 10 are smaller than those in Figure 9).

6 CONCLUSION AND FUTURE WORK

In this paper, we study the issue of item under-recommendation
bias in the personalized ranking task. We first propose two bias
metrics designed specifically for personalized ranking recommen-
dation tasks based on well known concepts of statistical parity and
equal opportunity. Then we empirically show that the influential
Bayesian Personalized Ranking model is vulnerable to the inher-
ent data imbalance and tends to generate biased recommendations
w.r.t. the proposed bias metrics. Next we propose a novel debiased
personalized ranking model incorporating adversarial learning to
augment the proposed bias metrics. At last, extensive experiments
show the effectiveness of the proposed model over other state-of-
the-art alternatives.

In our future work, we are interested in investigating position-
aware bias metrics, which take the ranking order into account when
evaluating the recommendation bias. We are also interested in ex-
ploring concepts well studied in the supervised learning community
- such as equalized odds, disparate treatment, and disparate impact
- in the context of personalized ranking systems.

ACKNOWLEDGMENTS

This work is, in part, supported by NSF (#IIS-1939716 and #IIS-
1841138).

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: a system for large-scale machine learning.. In OSDI, Vol. 16.
265-283.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Control-
ling popularity bias in learning-to-rank recommendation. In Proceedings of the
Eleventh ACM Conference on Recommender Systems. ACM, 42-46.

Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2019. Managing
Popularity Bias in Recommender Systems with Personalized Re-Ranking. In The
Thirty-Second International Flairs Conference.

Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Li Wei, Yi Wu, Lukasz Heldt, Zhe
Zhao, Lichan Hong, Ed H Chi, et al. 2019. Fairness in Recommendation Ranking
through Pairwise Comparisons. arXiv preprint arXiv:1903.00780 (2019).

™
=

=

458

[5

l6

[10

[11

[12

[13

=
&

[15

[16

(17]

[18

(19]

™
=

[21

[22

[23

[24

&
2

[26

[27

[28

[29

[30

[31

[32

[33

SIGIR 20, July 25-30, 2020, Virtual Event, China

Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. 2017. Data decisions and
theoretical implications when adversarially learning fair representations. arXiv
preprint arXiv:1707.00075 (2017).

Alex Beutel, Ed H Chi, Zhiyuan Cheng, Hubert Pham, and John Anderson. 2017.
Beyond globally optimal: Focused learning for improved recommendations. In
Proceedings of the 26th International Conference on World Wide Web.

Robin Burke, Nasim Sonboli, and Aldo Ordonez-Gauger. 2018. Balanced Neigh-
borhoods for Multi-sided Fairness in Recommendation. In Conference on Fairness,
Accountability and Transparency. 202-214.

Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. [n.d.]. Fairness-
Aware Ranking in Search & Recommendation Systems with Application to
LinkedIn Talent Search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’19).

Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in
supervised learning. In Advances in neural information processing systems.

F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) (2016).
Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. ACM, 161-169.

Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized rank-
ing from implicit feedback. In Thirtieth AAAI Conference on Artificial Intelligence.
Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
personalized ranking for recommendation. In The 41st International ACM SIGIR
Conference.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173-182.

Neil Hurley and Mi Zhang. 2011. Novelty and diversity in top-n recommendation—
analysis and evaluation. ACM Transactions on Internet Technology (TOIT) (2011).
Toshihiro Kamishima and Shotaro Akaho. 2017. Considerations on Recommen-
dation Independence for a Find-Good-Items Task. (2017).

T Kamishima, S Akaho, H Asoh, and J Sakuma. 2013. Efficiency Improvement of
Neutrality-Enhanced Recommendation.. In Decisions@RecSys.

Toshihiro Kamishima, S Akaho, H Asoh, and J Sakuma. 2018. Recommendation
Independence. In Conference on Fairness, Accountability and Transparency.

T Kamishima, S Akaho, H Asoh, and I Sato. [n.d.]. Model-based approaches
for independence-enhanced recommendation. In 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30-37.

Adit Krishnan, Ashish Sharma, Aravind Sankar, and Hari Sundaram. 2018. An
Adversarial Approach to Improve Long-Tail Performance in Neural Collaborative
Filtering. In Proceedings of the 27th ACM CIKM Conference.

Lori Lorigo, Maya Haridasan, Hronn Brynjarsdottir, Ling Xia, Thorsten Joachims,
Geri Gay, Laura Granka, Fabio Pellacini, and Bing Pan. 2008. Eye tracking and
online search: Lessons learned and challenges ahead. Journal of the American
Society for Information Science and Technology 59, 7 (2008), 1041-1052.

Gilles Louppe, Michael Kagan, and Kyle Cranmer. 2017. Learning to pivot with
adversarial networks. In Advances in Neural Information Processing Systems.
Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings of
the 38th International ACM SIGIR Conference.

Tien T Nguyen, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and Joseph A
Konstan. 2014. Exploring the filter bubble: the effect of using recommender
systems on content diversity. In Proceedings of the 23rd international conference
on World wide web. ACM, 677-686.

M Nilashi, D Jannach, O bin Ibrahim, Mohammad D Esfahani, and H Ahmadi. 2016.
Recommendation quality, transparency, and website quality for trust-building in
recommendation agents. Electronic Commerce Research and Applications (2016).
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press.
Harald Steck. 2018. Calibrated recommendations. In Proceedings of the 12th ACM
Conference on Recommender Systems. ACM, 154-162.

Sujith Xavier. 2016. Learning from below: Theorising Global Governance through
Ethnographies and Critical Reflections from the Global South. Windsor YB Access
Just. (2016).

Sirui Yao and Bert Huang. 2017. Beyond parity: Fairness objectives for collabora-
tive filtering. In Advances in Neural Information Processing Systems. 2921-2930.
Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating un-
wanted biases with adversarial learning. arXiv preprint arXiv:1801.07593 (2018).
Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-Aware Tensor-Based
Recommendation. In Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. ACM, 1153-1162.



	Abstract
	1 Introduction
	2 Related Work
	3 Bias in Personalized Ranking
	3.1 Bayesian Personalized Ranking
	3.2 Bias Metrics
	3.3 BPR is Vulnerable to Data Bias

	4 Debiased Personalized Ranking
	4.1 Enhancing Score Distribution Similarity
	4.2 Individual User Score Normalization
	4.3 Model Training

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup
	5.3 RQ1: Effects of Model Components
	5.4 RQ2: Comparison with Baselines
	5.5 RQ3: Impact of Hyper-Parameters

	6 Conclusion and Future Work
	Acknowledgments
	References



