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Recent observations of gravitational waves from binary black holes and neutron stars allow us to probe
the strong and dynamical field regime of gravity. On the other hand, a collective signal from many
individual, unresolved sources results in what is known as a stochastic background. We here consider
probing gravity with such a background from stellar-mass binary black hole mergers. We adopt a simple
power-law spectrum and carry out a parameter estimation study with a network of current and future
ground-based detectors by including both general relativistic and beyond general relativistic variables. For
a network of second-generation detectors, we find that one can place meaningful bounds on the deviation
parameter in the gravitational-wave amplitude if it enters at a sufficiently negative post-Newtonian order.
However, such future bounds from a stochastic background are weaker than existing bounds from
individual sources, such as GW150914 and GW151226. We also find that systematic errors due to
mismodeling of the spectrum are much smaller than statistical errors, which justifies our use of the power-
law model. Regarding a network of third-generation detectors, we find that the bounds on the deviation
parameter from statistical errors improve upon the second-generation case, though systematic errors now
dominate the error budget and thus one needs to use a more realistic gravitational-wave spectrum model.
We conclude that the observation of individual sources seems to be a more powerful way to probe the
amplitude of gravitational-wave emission as predicted by general relativity.

DOI: 10.1103/PhysRevD.102.024001

I. INTRODUCTION

The detection of gravitational waves from individual
compact binary sources over the past few years have added
evidence to that existence of gravitational waves (GWs) in
accordance with Einstein’s theory of general relativity (GR)
[1–6]. These GWs allow for tests of GR as they probe the
spacetime near compact objects, otherwise known as the
strong and dynamical gravity regime [7–12]. Prior to this,
solar system tests [13], table-top experiments [14,15], radio
pulsar observations [16,17] and cosmological observations
[18–20] had been used to place constraints on modified
gravity theories.However, these tests probe theweak or static
field regime and showed little evidence for non-GR effects.
For example, even the most relativistic binary pulsar system
has an orbital velocity of v=c ∼ 2 × 10−3 [21]. The detection
of GWs from a coalescing binary system was the first step
towards probing gravity in a highly relativistic region.
Following the detectionof the firstGWsignalGW150914,

several testswere performed and showed agreement between
the GR and the detected signal [9–12], thus placing stronger
bounds on several modified theories of gravity. One useful
formalism for testingGRwithGWs in a theory-agnosticway
is the parametrized post-Einsteinian (ppE) formalism [22].
Rather than working in a specific modified theory of gravity,
the ppE formalism allows for deviations in thewaveform that

arise from those in the binding energy of a binary, Kepler’s
Law, and GW luminosity. Generally, the ppE formalism can
account for deviations in both the amplitude and phase
corrections of GWs. Known mapping exists between ppE
and non-GR parameters in a given theory [23]. For correc-
tions entering in the inspiral part of the waveform, there is a
one-to-one correspondence between ppE and generalized
IMRPhenom formalism [9,11,12] used by the LIGO/Virgo
Collaborations (LVC) [10].
While much attention has been given to individual

events, there exist binary signals whose signal-to-noise
ratios (SNRs) are too small to be detected, and make up a
stochastic GW background (sGWB) [24,25].1 The LVC has
recently placed bounds on the amplitude of this background
based on the results of the O2 run [32]. An upgraded
aLIGO [33,34] to full design sensitivity, together with
Virgo [35], and KAGRA [36,37], may aid in detecting such
a signal in the near future.2

1For an overview of sources of the sGWB, see [26]. One
example of what could be gleamed from an understanding
of the sGWB is the history of the early Universe, since GW
can propagate through spacetime without loss of information
[27–31].

2For the duration of this paper, we refer to this system of
detectors as 2nd generation or HLVK.
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While this is a good example of what can be gleamed
from the sGWB, our work here will focus on testing
GR with sGWB from stellar-mass binary black hole
(BBH) sources which can be observed in the frequency
band sensitive to ground based detectors (∼30 Hz). The
sGWB is most sensitive to ppE corrections modifying
the amplitude of a binary inspiral, rather than its phase.
This is useful for, as an example, theories with parity
violation that allows amplitude birefringence [38–40].
Additionally, extensive work has been performed in
studying alternative polarizations [41] of GWs with the
sGWB both with ground based detectors [42–45] and
pulsar timing arrays (PTAs) [46–48]. From this, upper
bounds have been placed on the amplitude for these non-
GR polarizations, thus helping to constrain certain modi-
fied theories of gravity. Additionally, one can probe
gravitational parity violation through amplitude birefrin-
gence of circular polarizations and measurement of
Stoke’s V-mode GWB [40,49–55].
The possibility of testing GR with BBH sGWB has been

proposed by Maselli, et al. [56] within the ppE framework
assuming that the non-GR correction is smaller than the
GR contribution. The authors carried out a likelihood,
model selection analysis to see what is the required non-GR
amplitude correction such that the non-GR model is more
preferred over the GR one. They mainly considered a
phenomenological inspiral-merger-ringdown waveform
[57], though they also considered a possibility of using
a simple power-law model for the sGWB spectrum. They
used a network of second-generation (2G) detectors and
focused on corrections entering at 0–1 post-Newtonian
(PN) order relative to GR. Their results indicated that
indeed non-GR effects may be seen in the sGWB signal.
The work effectively assumed that the background GR
spectrum was known a priori, when comparing with the
spectrum of theories beyond GR.
We extend this important work of [56] in various ways.

First, we carry out a parameter estimation study via the
Fisher method instead of a model selection analysis. We
include not only the ppE parameter but also GR parameters
(the amplitude and the slope of the spectrum). This means
that we do not make an assumption that we know the GR
spectrum a priori, and automatically take into account
correlations between GR and non-GR parameters. Second,
we study a wider range on PN parameters than [56] by
considering PN orders ranging in between ð−4; 4Þ. Third,
we map our results to specific theories of modified
gravity, namely noncommutative (NC) gravity [58,59]
and Varying-G (VG) theories [23,60]. Fourth, we consider
not only a network of 2G detectors, but also that of third-
generation (3G) detectors. Lastly, we estimate systematic
errors on the ppE parameter due to mismodeling of the
sGWB spectrum with a simple power-law model.
For the purpose of this work, we will make some

standard assumptions. First, we assume the sGWB is

isotropic (i.e., there is uniformity in the signal across the
sky) [61,62].3 Second, we assume that the sGWB is
stationary. That is, the information contained within the
sGWB does not vary much during the time of observation.
Third, we expect the sGWB to be Gaussian in its distri-
bution. This was shown to be a favored model when the
number of GW sources was high [31,64,65]. Though it
should be noted that if the background is dominated by
BBH mergers, the resulting signal will be non-Gaussian
[66]. Lastly, we assume that the sGWB is unpolarized. That
is, there is a statistically equal amount of plus and cross
modes in the signal.
We present the main results of our analysis in Fig. 1. We

find that assuming a power-law formalism for the sGWB
can place bounds on the ppE amplitude parameter assum-
ing the use of the HLVK ground based detectors when
the corrections enter at a sufficiently negative PN order.
However, bounds from existing individual events, such as
GW150914 and GW151226, place stronger bounds, and
the increased SNR from individual GW signals detected
with future detectors will be able to place even more
stringent bounds on the ppE parameter than can be seen
with the sGWB alone. Furthermore, we found that sys-
tematic errors on the ppE parameter due to the mismodeling

FIG. 1. Upper bound on the amplitude ppE parameter α from
sGWB (black circles) assuming a 1 yr observation with a network
of 2G detectors, compared with previous results from individual
GW events [71] (blue and orange crosses) and the previous work
of Maselli et al. [56] in magenta. The green shaded region shows
the valid region under small non-GR approximation imposed in
the ppE formalism. We see that while placing limits on α is
possible with the sGWB when the non-GR correction enters at
−1 PN order or lower, individual detections with higher SNR
allow for better measurements of ppE parameters governing the
amplitude of gravitational-wave emission. Notice we are unable
to place bounds at 0 PN due to a degeneracy.

3While there is expected to be an anisotropic component based
on the population of e.g., white-dwarf binaries within the Milky-
Way galaxy [63], we will not consider these sources here as we
restrict our analysis to ground-based detectors.
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of a power-law assumption is much smaller than statistical
errors, giving a justification of the model. We also extend
our analysis to 3G detectors, particularly the Einstein
Telescope (ET) [67–69] assumed to be located at the
current Virgo site, and Cosmic Explorer (CE) [70] located
at the Hanford site. However, the systematic errors of a
power law are too large for this setup, and a better way
to characterize the sGWB must be used for the ET-CE
analysis.
The structure of the paper is as follows: Section II

presents an introduction to the sGWB as well as the power-
law model we will use for our analysis. Section III will
present the ppE formalism and how we extend its use to the
sGWB. Here, we also discuss the mapping to two specific
modified theories of gravity. In Sec. IV we present our
formulation for Fisher analysis and discuss how this is used
to place bounds on the ppE parameters as well as how to
find the systematic error incurred from our power-law
assumption. Section V discusses the Fisher analysis results
for our analysis. Additionally, we apply these constraints to
specific modified theories of gravity to predict the bounds
on the ppE amplitude. We conclude the paper in Sec. VI
with a discussion and possible future avenues for this work.
We will make use of the metric signature ð−;þ;þ;þÞ as
presented in [72] and the unit convention of G ¼ c ¼ 1.

II. GWB SPECTRAL ENERGY DENSITY IN GR

In this section, we discuss the basics of the sGWB. We
describe how we will calculate the energy density spectrum
ΩGWB, as well as introduce the Fisher methods we will
make use of for predicting constraints we may place on the
sGWB parameters.

A. Fiducial model

We begin by defining the normalized sGWB spectral
energy density as

ΩGWB ¼ 1

ρc

dρGW
d ln f

; ð1Þ

where ρc ¼ 3H2
0=ð8πÞ is the critical density necessary to

close the Universe with H0 the Hubble constant while ρGW
is the energy density of GWs as a function of the GW
frequency f. We may show through the work of [73] that
ΩGWB from coalescing binaries may be rewritten as

ΩGWB ¼ f
H0ρc

Z
∞

0

RðzÞ
ð1þ zÞEðzÞ

dEGW½ð1þ zÞf�
df

dz; ð2Þ

where dEGW½ð1þ zÞf�=df is the spectrum of GWs emitted
by a source while accounting for the redshift z, RðzÞ is the
source frame merger rate per comoving volume, and EðzÞ is
a cosmological correction given by

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þΩΛ

q
ð3Þ

for a flat Universe.
We consider a background consisting solely of BBH

mergers. Taking the rate of these mergers to be RðzÞ, we
apply the rate model discussed in [74]. In particular, we
choose the BBH merger rate of the current Universe as
R0 ¼ 53.2þ58.5

−28.8 Gpc−3 yr−1 [75]. For the energy spectrum
dEGW½ð1þ zÞf�=df, we make use of the IMRPhenomB
waveform4 [78]. Figure 2 shows ΩGWB as a function
of frequency for various average chirp masses Mc ¼
ðm3

1m
3
2=ðm1 þm2ÞÞ1=5 with individual masses m1 and m2.

5

The average chirp mass of Mc ¼ 23.4 M⊙ corresponds to
the average chirp mass [74] for the BBHs detected in
aLIGO’s O1 and O2 runs [6]. We have included the power-
law integrated sensitivity curve for a network of 2G
ground-based detectors given 15 months of observation
time6 calculated from [79]. We assume the network of
detectors consists of the two aLIGO detectors at Livingston
and Hanford, as well as the Virgo detector in Italy and the
KAGRA detector in Japan. Our theoretical setup for the 3G

FIG. 2. ΩGWB for various average chirp masses. We include the
power-law integrated sensitivity curve consisting of the Hanford,
Livingston, Virgo, and KAGRA detectors. For simplicity, we
assumed that these detectors all have aLIGO’s design sensitivity
which can be modeled analytically as shown in [81]. We also
include our 3G setup consisting of the CE and ET detectors.
Generally, if the GW spectrum goes above the sensitivity curve in
certain frequency range, the SNR is above unity.

4Bounds on α from GW150914 were compared in [71] for the
IMRPhenomB template and a more accurate IMRPhenomD
template [76,77]. The two bounds agree when one uses only
the inspiral signal, which is effectively what we consider in this
paper.

5The average chirp mass here refers to hM5=3
c i3=5 [74].

For simplicity, we assumed all BBHs are equal-mass and non-
spinning.

6This choice was made so that the SNR of the GW spectrum
with fiducial values exceed the threshold value of 5, as we explain
later.
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configuration consists of the Einstein Telescope (ET)
[67–69] located at the current Virgo site, and Cosmic
Explorer (CE) [70] located at the Hanford site (see [40] for
more details). The sensitivity curves for the ET and CE can
be found on the LIGO Document Control Center [80]. For
simplicity, we limit our observation time for the 3G setup
to 1 year.

B. Power law model

Notice that from Fig. 2 the aspect of the sGWB spectrum
is almost linear (on a log scale) through the power-law
integrated sensitivity curve. This line resembles a power
law, which we may utilize to allow for easier computation,
rather than focusing on the more detailed and computa-
tionally intensive phenomenological waveform.
We denote such sGWB power law as [26]

ΩGWB ¼ Ω�

�
f
f�

�
n�
; ð4Þ

where Ω� is a reference amplitude at frequency f�. The
parameter n� can be calculated by considering the
Newtonian component of the binary inspiral phase, and
is found to be n� ¼ 2=3 [73]. Recent detections have
shown that for a reference frequency of 25 Hz, the energy
density of the background has an upper bound of ΩGWB <
4.8 × 10−8 [32]. In Fig. 3, we plot the power law and the
phenomenological spectrum within the sensitivity curve of
our 2G setup. Observe that the inspiral part of the latter can
indeed be approximated by the former.
Making use of Eq. (4) instead of Eq. (2) will allow for

easier parametrization when it comes to performing a
Fisher analysis, as well as expanding into the ppE formal-
ism. For higher mass systems, the full waveform will need

to be considered due to the merger frequency existing
within our 2G setup sensitivity (see Fig. 2).

III. SGWB BEYOND GR

This section will go over a formalism for constructing
the sGWB for non-GR theories in a theory-agnostic way.
We will begin with an overview of the ppE formalism
presented in [22], followed by its use for the sGWB. We
will also describe some example non-GR theories that can
be mapped to the ppE framework.

A. sGWB in ppE formalism

The ppE formalism was developed as a way to address
the bias in GWastrophysics that GR is the correct theory of
gravity. Such biases could lead to inaccurate interpretations
of observations by incorrectly associating the data with
templates and waveforms which do not describe the correct
physics (i.e., they assume GR is the “correct” theory of
gravity). The ppE formalism was developed as a way to
characterize various alternative theories of gravity and
allow for model-independent tests of GR in an effort to
overcome this inherent bias and allow for deviations of GR
to be considered.
The ppE waveform in the frequency domain for a

quasicircular coalescing binary inspiral takes the form [22]

h̃ðfÞ ¼ h̃GRðfÞð1þ αuaÞeiβub ;

where ðα; β; a; bÞ are the ppE parameters responsible for
characterizing deviations away from GR, u ¼ ðπMcfÞ1=3
is the effective relative velocity of black holes in a binary,
and a is related to the nth PN order by n ¼ a=2. Notice that
the above waveform reduces to the GR one h̃GR in the limit
ðα; βÞ ¼ ð0; 0Þ. As we will only concern ourselves with the
inspiral portion of the binary in this paper, we direct the
interested reader to [22] for more detailed explanations
concerning the areas of the merger and ringdown.
Since we are making use of the inspiral portion of our

waveform only, we may solve for dEGWðfÞ=df in Eq. (2)
assuming a quasicircular BH binary. The energy flux is
known in GR to be proportional to jh̃ðfÞj2. We use this,
along with the ppE inspiral term being smaller than the GR
one, to write the energy density as

ΩGWB ¼ ΩGR
GWBð1þ 2αuaÞ þOðα2Þ: ð5Þ

Notice that the ppE phase parameter β does not enter in the
above spectrum, and thus we are unable to place any
constraints on such a parameter from sGWB observations.

B. Mapping to example non-GR theories

One of the reasons why the ppE formalism can be useful
is because the ppE waveform can be mapped to specific
non-GR theories. See [23] for examples of such a mapping,

FIG. 3. A comparison between the power law used in this paper
and a phenomenological model for the GW spectrum. The former
is constructed such that it has the same reference amplitude Ω� ¼
2.43 × 10−9 at f� ¼ 25 Hz as the latter. Notice that in the
sensitivity region for the 2G setup, there is good agreement in
making this assumption.
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both for the amplitude and phase corrections. In this paper,
we consider noncommutative (NC) gravity [58,59,82–85]
and varying-G (VG) theories [23,60] as representative
theories. The leading ppE correction in the former enters
at a positive PN order while that in the latter enters at a
negative PN order. Below, we review these theories in turn,
together with their respective expressions for α and a.

1. Noncommutative gravity

The first example is NC gravity. The theory has been
proposed as a way to quantize spacetime coordinates (x̂α) as
proposed in [86], and therefore it seeks to find agreement
between quantum mechanics and GR. Such quantized
spacetimes arise in the low energy field theory limit of
string theory under certain backgrounds [82–85]. These
coordinate operators satisfy the canonical commutation
relation

½x̂μ; x̂ν� ¼ iΘμν; ð6Þ

where Θμν characterizes the “fuzziness” in quantized
spacetimes [59]. We may introduce a new term which
normalizes this in relation to Planck length (lp) and time
(tp) such that [59]

Λ2 ¼ Θ0iΘ0i

ðlptpÞ2
: ð7Þ

With this normalized parameter, we may place bounds on
NC gravity through the use of their relation to the ppE
amplitude parameters provided in [23] as

αNC ¼ −
3

8
η−4=5ð2η − 1ÞΛ2; aNC ¼ 4; ð8Þ

where η ¼ m1m2=ðm1 þm2Þ2 is the symmetric mass ratio
of the binary. The correction enters at 2PN order in the
waveform relative to GR. Kobakhidze et al. [59] derived
corrections to the phase and derived a bound from
GW150914 as

ffiffiffiffiffiffijΛjp
< 3.5.

2. Varying-G theories

Theories in which a time varying gravitational constant
come about often include those which violate the strong
equivalence principle due to the presence of additional
fields, like in scalar-tensor theories [60,87]. These VG
theories also induce an anomalous acceleration in binary
system [23]. Thus, given the parameters of the binary, we
may be able to investigate the outcome of a time varying
gravitational constant ( _G). In terms of a binary system, we
find the ppE correction to VG theories to be [23]7

αVG ¼ 5

512
η3=5 _G½−7M þ ðs1 þ s2ÞM

þ13ðm1s1 þm2s2Þ�; ð9Þ

aVG ¼ −8; ð10Þ

whereM ¼ m1 þm2 is the total mass of the system,mi are
the component masses, and the sensitivities are defined to
be si ¼ −ð _G=miÞÞðδmi=δ _GÞ. Here, ðδmi=δ _GÞ refers to the
variation of the component masses with _G. The above
correction enters at −4 PN order in the waveform. Current
bounds have been derived from Solar System experiments,
binary pulsar and cosmological observations as j _Gj ≲
10−14–10−12=yr [13,88–92] in units of G ¼ 1, while those
from GW observations are much weaker [10,71].

IV. PARAMETER ESTIMATION

We now explain how to perform a Fisher analysis on
sGWB, following e.g., [26,93]. The sGWB signal sðtÞ ¼
hðtÞ þ nðtÞ consists of the GW strain h and the noise n. The
former is given by h ¼ hijFij where Fij is the beam-pattern
function of a detector that depends on the sky position of
the source and the polarization angle [94]. hij is further
given by

hijðt; x⃗Þ ¼
X
A

Z
∞

−∞
df

Z
d2n̂h̃Aðf; n̂ÞeAijðn̂Þe−2πifðt−n̂·x⃗Þ;

ð11Þ

where n̂ is the direction from the detector to the GW source,
A is the polarization (þ or × in GR), and eAijðn̂Þ is the
polarization tensor for GWs.
The sGWB search is carried out by performing a cross

correlation between signals of detectors I and J using a
filter function Qðt; t0Þ as

S ¼
Z

Tobs=2

−Tobs=2
dt

Z
Tobs=2

−Tobs=2
dt0sIðtÞsJðt0ÞQðt; t0Þ; ð12Þ

where Tobs is the observation time. We assume sGWB is
isotropic, unpolarized, and stationary. Namely

hh̃�Pðf; n̂Þh̃P0 ðf0; n̂0Þi

¼ 3H2
0

32π3
δ2ðn̂ − n̂0ÞδPP0δðf − f0Þjfj−3ΩGWBðjfjÞ; ð13Þ

where the angle brackets refer to an ensemble average.
On the other hand, for stationary noise, the noise spectral
density Sn is defined as

hñ�ðfÞñðf0Þi ¼ 1

2
δðf − f0ÞSnðfÞ: ð14Þ7We assume that the time variation of G that enters in Kepler’s

law is the same as that in GW luminosity.
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Using these, the mean and variance of this correlated signal
are given by

μ ¼ hSi

¼ 3H2
0

20π2
Tobs

Z
∞

−∞
dfjfj−3γIJðfÞΩGWBðfÞQ̃ðfÞ; ð15Þ

σ2 ¼ hS2i − hSi2

¼ Tobs

4

Z
∞

−∞
dfSn;IðjfjÞSn;JðjfjÞjQ̃ðfÞj2; ð16Þ

where γIJðfÞ is the normalized overlap reduction function
(ORF) between the Ith and Jth detectors that depend on the
detector’s beam-pattern function [95,96]. Figure 4 presents
the ORF for different combinations of 2G and 3G detectors.
Q̃ is the Fourier transform of Q.
Let us next define the SNR and Fisher matrix. The SNR,

ρ ¼ μ=σ, is maximized when we choose the optimal filter
function given by

Q̃ðfÞ ∝ γIJðjfjÞΩGWBðjfjÞ
jfj3Sn;IðjfjÞSn;JðjfjÞ

: ð17Þ

Then, the SNR is given by

ρ ¼ 3H2
0

10π2
ffiffiffiffiffiffiffiffiffiffiffi
2Tobs

p �XN
I

XN
I<J

Z
∞

0

df
jγIJðfÞj2ΩGWBðfÞ2
f6Sn;IðfÞSn;JðfÞ

�1=2
;

ð18Þ

where N is the number of detectors. By maximizing the
likelihood L of the correlated signal, which is given by [97]

L ∝ exp

�
−
½μðθiÞ − μðθifidÞ�2

2σ2

�
; ð19Þ

with θifid representing fiducial values of parameters θi, one
can estimate the statistical error on parameters θi as

ΔðstatÞθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1Þii

q
; ð20Þ

where, assuming a Gaussian likelihood, the Fisher matrix is
defined by

Γij ¼ −
∂2 lnðLÞ
∂θi∂θj

				
θi¼θifid

¼ 2

�
3H2

0

10π2

�
Tobs

×
XN
I

XN
I<J

Z
∞

0

df
jγIJðfÞj2∂iΩGWBðfÞ∂jΩGWBðfÞ

f6Sn;IðfÞSn;JðfÞ
;

ð21Þ

with ∂i ¼ ∂=∂θi.8 Practically, we change the integration
range of Eqs. (18) and (21) to fmin ¼ 10 Hz and fmax ¼
200 Hz which we deem appropriate given these bounds are
outside the integrated sensitivity curve seen in Fig. 3 for a
network of 2G detectors. For our 3G detector setup, we
perform a similar analysis as with the 2G case with fmin ¼
1 Hz and fmax ¼ fm, where fm is the merger frequency of
the binary. Note that any input outside of these bounds will
not yield a signal due to the results being dominated by noise.
We will make use of Eq. (4) for our Fisher analysis using

Eq. (5). We assume a parameter space of

θi ¼ ðlnΩ�; n�; αÞ; ð22Þ

which accounts for both GR parameters ðlnΩ�; n�Þ as well
as a component beyond GR (α). This is in contrast to the

FIG. 4. The overlap reduction function (ORF) for the various
detectors in the 2G and 3G detector networks considered in this
work. Notice that the ORF for two independent interferometers in
the ET detector is a constant.

8Notice that second derivatives with respect to θi are absent in
the above Fisher expression since such terms are multiplied by
½μðθiÞ − μðθifidÞ�jθi¼θifid

which vanishes.
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previous work of [56], which effectively assumed the GR
sGWB energy density was known a priori. We use the
fiducial values of n� ¼ 2=3 and α ¼ 0, while we make use
of a phenomenological waveform at f� ¼ 25 Hz to find our
fiducial value of Ω� to be 2.43 × 10−8. We assume the
average chirp mass of 23.4 M⊙, which corresponds to
SNRs of 5.06 and 2530 for the network of 2G and 3G
detectors, respectively.
In addition to the above Fisher analysis to find statistical

errors on parameters, we perform a comparison of our
method for finding the energy density to the results of the
IMRPhenomB model to determine whether any systematic
errors occur from our power-law assumption for sGWB.
This is done to ensure the results of our initial assessment of
the power law make sense. Should these systematic errors
outweigh the statistical errors, it shows our power-law
assumption is not valid for probing GR. Extending [98] that
was originally developed for signals from isolated GW
sources, systematic errors are defined as

ΔðsysÞθi ¼ ðΓijÞ−1
�
2

�
3H2

0

10π2

�
Tobs

×
XN
I

XN
I<J

Z
∞

0

df
jγIJðfÞj2ΔΩ∂jΩGWB

f6Sn;IðfÞSn;JðfÞ
�
; ð23Þ

where ΔΩ is the difference in sGWB energy density
between two different models (in our case, the power-
law and IMRPhenomB models).

V. RESULTS

Let us now present our findings. We begin by inves-
tigating whether we can place bounds on α from the fact
that sGWB was not detected during aLIGO’s O1 and O2
run. When α is positive, the amplitude and SNR increase.
Thus, one can estimate the value of α needed such that the
SNR reaches the threshold value, which we choose to be 5.
For this analysis, we consider aLIGO’s noise spectral
density shown in [99]. We choose the observation time
to be 13 months, which corresponds to the total duration of
the O1 and O2 runs assuming the lasers were operational at
all times. We note that this is a very optimistic assumption
as the coincident observation times were only 30 days [61]
for O1 and 99 days for O2 [32] and the bounds derived here
can easily get weakened with a shorter observation period.
Figure 5 shows a bound on α assuming a threshold SNR
value of 5 for aLIGO’s O1 and O2 runs. This can be
accomplished by making use of Eq. (18) and solving for the
α value which yields an SNR of 5 for a given PN order. The
results of this calculation show that we are unable to place
constraints on our ppE parameters (given the small ppE
approximation) due to the fact that the α bound exists
outside of our allowed regime.
The rest of this section focuses on presenting our

findings on Fisher analyses with future detectors. We first

show the results for statistical errors on α with a network of
2G detectors with their sensitivities assumed to be identical
and given analytically in [81]. Since we are assuming that
the signal is consistent with GR (and thus the fiducial value
of α is 0), such statistical errors correspond to projected
bounds on α at each PN order once sGWB is detected.
Figure 1 presents such upper bounds on α at each PN order
from sGWB observations with a network of 2G detectors.
In order to find this, we ran the analysis discussed above at
each PN order separately, then compiled the results into the
figure shown. Notice that we do not show bounds on the
0PN term due to a degeneracy between the energy density
amplitude Ω� and the ppE parameter α using the power-law
approximation. Since we are working within the assumption
that the non-GR correction is smaller than the GR contri-
bution, our bound is only valid in the green-shaded region
which corresponds to jαuaj < 1 that is evaluated at the
frequency for which our power law intersects the integrated
sensitivity curve. Since there are two points, we choose the
frequency which provides more restrictive bounds on α
(hence the discontinuity in the curve at 0 PN). Figure 1 shows
that one can only placemeaningful boundswhen the non-GR
correction enters at n ≤ −1. Unfortunately, these bounds
from sGWB are weaker than those already found through a
similar Fisher analysis performed with GW150914 [71]
and GW151226 in most cases. This suggests that isolated
binaries can more efficiently probe non-GR effects in GW
amplitudes.
For completeness,wemap sGWBbounds to parameters in

NC and VG gravity described in Sec. III B and compare
themwith existing bounds, including those fromGW150914
and GW151226. The results are summarized in Table I.

FIG. 5. α bound obtained for the Fisher analysis (statistical) and
the difference between the power law and IMRPhenomB wave-
form model (systematic). We choose the fiducial value of Ω� ¼
2.43 × 10−8 and assume an observation time of 15 months.
Observe that the latter is smaller than the former, which justifies
our use of the power-law model. We also show the value of α
which may be found assuming an SNR threshold value of 5 for
the sGWB detection using the realistic noise curves provided
during the aLIGO’s O1 and O2 run [100–102].
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For simplicity, we have assumed the binary system in
question is composed of two equal-mass black holes with
a system chirp mass 23.4 M⊙ and sensitivities s1 ¼ s2 ¼ 0.
We find that our results agree with what we expect to find
from Fig. 1. No sGWB bounds can be placed on these
theories that are an improvement of the current best bound or
the bound from individual GW sources like GW150914.
We can thus say from this analysis that while our approach
may be utilized to place limits on various modified theories
of gravity, other approaches for testing GR may be more
effective in placing stronger limits. Having said this, the
sGWB bounds may not be directly compared with those
from GW150914 and GW151226, especially for _G. This is
because the former is dominated by binaries that are at
cosmological distance, while the latter are local sources, and
thus we are probing non-GR effects at different times in the
evolution history of our Universe.
We next study the amount of systematic errors on α due

to incomplete modeling of the power-law spectrum. We
here assume that the true signal follows the GW spectrum
obtained with IMRPhenomB waveform, and estimate
systematic errors on α using the power-law model instead.
Using Eq. (23), we find that the statistical error in
determining the upper bound on α is greater than the
systematic error (see Fig. 5). This shows that systematic
errors are under control and thus can be neglected.
Therefore, we are justified in making this assumption of
a power law as the GW energy density background.
It may also be useful to look at a network of 3G detectors

to determine whether any additional bounds may be placed
on α. We perform the same analysis as before, this time
however with the ET-CE configuration of GW detectors.
The sensitivity curve of our 3G detectors is shown in Fig. 2.9

Notice that with the 3G detectors we will be sensitive to
not only the inspiral, but to the merger and ringdown phases
as well. We again only consider the inspiral, and therefore
terminate our integration at the merger frequency found
from [78].

Figure 6 shows the results of our future bounds on α
considering the inspiral phase of a BBH system with the 3G
detectors observing for 1 year. We find that our small
perturbation limit of the ppE expansion is valid for all PN
values and that stronger bounds can, in principle, be placed
on the ppE amplitude than with current 2G detectors. We
also see that the bounds on α from sGWB are now much
stronger than those from GW150914 and GW151226. Of
course, once the ET-CE system is turned on, we expect to
find that individual sources are also louder and the bounds
to become stronger (like the purple curve in Fig. 6). Thus
we expect individual GW sources to be more useful for
probing non-GR effects in the amplitude of the waveform
than with sGWB even for 3G detectors.
However, one needs to go beyond the power-law model

for probing GR with sGWB using 3G detectors. This is
because the systematic error for the sGWB is greater than
the statistical error found via the Fisher analysis, as shown
in Fig. 6. The reason for this is that the statistical error is
decreased due to the increased sensitivity of the detectors
and a greater SNR of the signal. On the other hand, the
systematic error, that of making the power-law approxi-
mation over using a phenomenological waveform model,
very nearly remains constant as that used in the 2G setup.
This is because such systematic error is independent of the

TABLE I. The projected bounds on the parameters of two theories from future sGWB observations found in this
work in comparison to previous results.

Parameter sGWB (this work) GW150914 GW151226 Current boundffiffiffiffiffiffijΛjp
4.3 3.5 [59], 2.25 a 1.96 a 1.96–3.5 [59]

j _Gj [10−12=yr] 2.127 × 1018 5.4 × 1018 [10] 1.7 × 1017 [10] 0.04–1 [13,88–92]
aThis bound was found through the phase correction to the waveform obtained in [12] by making use of a

parameter estimation study where a single non-GR phase correction was allowed to vary, and calculated by making
use of the fractional NC deviation from GR presented in [59]. The bounds from [59] made use of a parameter
estimation study where multiple non-GR parameters were allowed to vary, hence the slightly weaker bound.

FIG. 6. Similar to Fig. 1 but for a network of 3G detectors. We
have also included the CE bound found via a Fisher analysis for
GW150914-like events presented in [103]. Notice that unlike the
2G case, systematic error now dominates the error budget.

9The result for the power-integrated curve differs slightly from
[40] due to the fact the noise spectrum for ET in their work was
made assuming the spectrum of CE, while we make use of more
current ET models.
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overall scaling of the detector sensitivity, and therefore we
should not expect much change in the systematics between
the 2G and 3G setups. Although direct 3G detections
generally provide stronger bounds than sGWB analyses,
there appear to be regions in PN-space where the sGWB
offers stronger bounds, provided waveform systematics can
be understood and overcome. The common choice of a
power-law model is not a fundamental requirement, and it
would be very useful to point out that future analyses
should move towards more accurate waveform models.

VI. CONCLUSIONS

We carried out a parameter estimation study involving
the energy density of the sGWB assuming a power-law
spectrum modified by a ppE correction term. Our results
show that while we may indeed place limits on the ppE
amplitude parameter by studying the sGWB, stronger
bounds may be placed by making use of individual, higher
SNR detections [71].10 To go along with this point we note
that we have neglected other non-GR effects such as
birefringence and the addition of alternative polarizations,
which may also lead to different bounds on the amplitude
corrections.
In addition to placing conservative constraints on the

amplitude correction to the GR waveform, we showed that
under the assumption of a sGWB dominated by inspiral
BBH mergers, the use of a power law for modeling the
energy density of the background is a valid assumption and
will not significantly impact any study making use of 2G
detectors. This is because the systematic errors caused by
the mismodeling of the waveform are less than the

statistical errors found on the amplitude correction to the
background.
Making use of 3G detectors allow us to place stronger

bounds on the ppE amplitude using a sGWB signal.
However, while the higher SNR from the ET-CE setup
studied here leads to tighter constraints, the power-law
assumption leads to a systematic error that dominates over
these ppE bounds, and therefore should not be used.
We may improve upon our results here by making

use of a more robust GW spectrum model, such as the
IMRPhenom waveform series [76–78,104], when dealing
with the 3G detectors. This will allow us to account for
the merger and ringdown phases of the BBH events as
well as lessen the systematic errors that were involved with
our assumption of a power-law model. It would be also
interesting to study how sGWB from other sources, such as
binary neutron star mergers [66], may affect the analysis
here. We may also carry out a similar analysis to the one
shown here for other frequency regimes and other astro-
physical sources of sGWB, such as those able to be
detected by space-based detectors and pulsar timing arrays.
Another direction for improvement is to carry out a
Bayesian analysis, which is important given that the
SNR for a network of 2G detectors considered here is
only marginally detectable.
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