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Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a
broad class of axionlike particles (ALPs). We analyze the experimental sensitivities to electromagnetically
coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment
mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis
period of early matter domination, and a period of kination. These targets are theoretically simple and
assume Oð1Þ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some
experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and
others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends
on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as
for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better
detection prospects.
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I. INTRODUCTION

The particle nature of dark matter (DM) is unknown. One
particularly well-motivated DM candidate is the QCD
axion, which also provides a solution to the strong CP
problem [1–4]. The QCD axion is a pseudoscalar boson
with an approximate shift symmetry, and its mass and
couplings are mostly controlled by a single parameter, the
axion decay constant fa. A relic cosmological abundance
can be obtained from the misalignment mechanism [5–7],
and as a result, axion DM has phenomenological properties
very different from thermally produced weakly interacting
massive particles.
More general light pseudoscalars are known as axionlike

particles, or ALPs. ALPs arise as pseudo-Nambu Goldstone
bosons (pNGBs) associatedwith the breaking of globalUð1Þ
symmetries, or as zero modes of higher dimensional gauge
fields that are generic in string theory [8–11]. Unlike the
QCD axion, ALPs do not have to interact via the strong force
and therefore they are not associated with the strong CP
problem. As a result, they exhibit a wider range of couplings

and masses and offer a compelling class of DM candidates.
For a review of ALP and axion model-building and cosmol-
ogy see, e.g., [12,13].
Recent years have seen a resurgence of interest in

searching for axions and ALPs, with a number of active
experiments and new proposals under consideration (for
reviews see, e.g., [14,15]). These include resonant cavity
experiments at various frequencies, such as ADMX
[16,17], ORGAN [18], QUAX [19], and HAYSTAC
[20,21], and also new ideas including dielectric haloscopes
(MADMAX [22,23] and photonic materials [24]), resonant
LC-circuits [25,26], detection-induced magnetic flux
oscillations (ABRACADABRA [27,28]) and NMR-based
techniques (ARIADNE [29,30] and CASPEr [31–33]).
Collectively these experiments cover many orders of
magnitude of possible ALP mass, and are sensitive to
ALP couplings to photons or nucleons depending on the
experiment. In this work, we focus on cosmological relic
populations of electromagnetically interacting ALPs. The
impact of resonant cavity searches on these ALPs has
previously been considered in [8].
Recently, the Physics Beyond Colliders Working Group

has forecast the sensitivity of future experiments to axions
and ALPs [34], building on the review [15]. For the QCD
axion, a number of groups have developed models to
expand the parameter space, classifying the possibilities for
UV-complete theories [35–37], model-building photophilic
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[38] and photophobic [39] axions, and extending the
standard misalignment mechanism [40,41]. These analyses
highlight the breadth of viable QCD axion models extend-
ing beyond the canonical Kim-Shifman-Vainshtein-Zee
and Dine-Fischer-Srednicki-Zhitnitsky scenarios, and
motivate continued experimental exploration of the axion
mass ma and the axion-photon coupling gaγγ parameter
space (the “ALP plane”).
Our aim is to map cosmological models onto the ALP

plane, identifying regions where the correct relic abun-
dance is obtained from simple assumptions about the
expansion history, the ALP model, and the initial con-
ditions. These regions of parameter space are therefore
compelling targets for experiments searching for electro-
magnetically coupled ALP DM. Since ALPs do not
necessarily couple to the strong interactions, and their
relic density depends on the expansion rate at early times,
these targets can differ significantly from the QCD axion
with a standard radiation-dominated cosmological history.
In Sec. II we consider an ALP with relic density set by

the misalignment mechanism. The final abundance strongly
depends on the expansion history of the universe before big
bang nucleosynthesis (BBN). We study ALPs that begin to
oscillate during radiation domination (as in the standard
cosmology), during an epoch of early matter domination
(EMD), or during a kination phase. ALPs in these alter-
native cosmologies have also been considered recently in
a number of papers. This includes work on using
experimental results to use ALPs as a means to probe
early-universe physics and distinguish between different
cosmological scenarios [42,43], constraining ALP proper-
ties with gravitational waves [43,44], the implications of
early-matter domination for small-scale DM structures such
as ALP miniclusters [45,46] and solving axion problems
associated with axion overproduction [47].1 This paper
builds on this previous work and extends it with a focus on
the implications for future experiments, including the pro-
vision of benchmarks. In Sec. III we study the impact of the
origin of theALPmass on the relic abundance.We determine
the parameter space favored by ALP DM with a fixed mass
during and after the onset of oscillations, amass derived from
higher-dimensional Planck-scale suppressed operators, and
ALPs with a mass that changes with temperature.
At low masses, we find that experiments will be sensitive

to ALPs with Oð1Þ initial misalignment angles well before
they are able to probe the QCD axion. At higher masses, the
cosmological models motivate continuing ALP searches to
couplings below the QCD region. In some cases, existing
proposals will have the required sensitivity, while in other
scenarios—particularly EMD—new search strategies may
be required. We present the theoretical targets, existing
constraints and experimental projections in Sec. IV, with

the main results collected in Figs. 3–5, 4, and 5. Our findings
are summarized in Sec. V. Appendixes A and B contain
details of the relic abundance calculations for different
cosmologies and ALP mass temperature-dependence.

II. ALP DARK MATTER

We take the ALP Lagrangian to be

LALP ¼
1

2
∂μa∂μa −

1

2
m2

aa2 −
1

4
gaγγaFμνF̃μν; ð1Þ

where F̃μν is the dual electromagnetic field-strength tensor.
The photon coupling gaγγ ¼ rα=ð2πfaÞ is related to the
ALP decay constant fa. r is a model-dependent constant
generically expected to be Oð1Þ; we set r ¼ 1 in this work.
The free parameters are then the ALP mass ma and photon
coupling gaγγ (or equivalently fa).
At early times, the ALP field is frozen. The relic

abundance today depends on the distribution of initial
values a0 ≡ faθ0 of the field before it begins to evolve.
Here θ0 is the initial misalignment angle. One possibility is
that the angle θ0 is uniform across all initially causally
disconnected regions that make up the observable universe
today; this is the case if the ALP exists prior to inflation.
Typically we expect θ0 ∼ 1, in which case saturating the
observed dark matter density identifies favored regions of
the ALP parameter.
An alternative initial condition is a stochastic distribution

of θ0 across all causally disconnected regions. This occurs
in pNGBmodels where the global symmetry is broken after
inflation. This scenario can be modeled by considering
an ALP with an effective average misalignment angle of
hθ0i ∼ π=

ffiffiffi
3

p
[50]. In this case, topological defects and

other large inhomogeneities formed during global sym-
metry-breaking also contribute to the present day dark
matter density; however, the magnitude of these contri-
butions is still a subject of debate. According to different
studies the inclusion of large fluctuations may increase
[51,52] or slightly decrease [53,54] the relic density
relative to that of the misalignment estimate. In what
follows, we assume that the relic density is reasonably
well-approximated by the misalignment calculation.
Therefore, both the uniform and stochastic initial con-
ditions can be studied if we vary θ0 over a sufficient range.
To avoid fine-tuning and to capture both possibilities,
we take θ0 ∈ ½0.1; 2� below.2 Accounting for topological
defects should not significantly affect our conclusions,
provided their contribution is at or below the same order
of magnitude as the misalignment contribution.

1Similar studies for WIMP and FIMP dark matter include
[48,49].

2Monodromy scenarios allow a much larger initial misalign-
ment of the ALP field—Refs. [55,56] consider displacements of
up to 103fa. This leads to larger possible values of gaγγ for a given
value of ma. Conversely, small misalignment angles are possible
in models with a Higgs-inflaton coupling [57].
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The equation of motion for the ALP zero mode in the
early universe is3

äþ 3H _aþm2
aa ¼ 0; ð2Þ

where H is the Hubble parameter

H2 ¼ ρtot
3M2

p
; ð3Þ

ρtot is the total energy density of the universe, andMp is the
reduced Planck mass. At early times the ALP field is fixed.
Oscillations begin when the Hubble parameter becomes
comparable to ma,

ma ¼ qH; ð4Þ

for some Oð1Þ value of q. In Appendix A, we give a
detailed discussion of q and list the values that give the best
fits of the analytic formulas to the results of numerical
integration. For temperature-independent ALP masses, we
find q≡ q0 ¼ 1.6 provides good precision across the
various cosmological scenarios we consider. At a given
time, the ALP energy density is

ρa ¼
1

2
ð _a2 þm2

aa2Þ ð5Þ

where again we keep only the quadratic part of the ALP
potential as an approximation. The ALP number density at
time t can be defined as

naðtÞ ¼ ρaðtÞ=maðtÞ ð6Þ

where we have allowed for the possibility of a time-varying
ALP mass.
Soon after oscillations begin, the ALP energy density

redshifts as matter. Let us denote the corresponding
temperature as Tosc. We also define a reference temperature
Tad below which the evolution of the universe is adiabatic
and the ratio of the ALP number density to entropy density
n=s is conserved. At the onset of oscillations, the ALP
number density is

naðToscÞ ¼
1

2
m2

af2aθ20: ð7Þ

Its value at Tad is given by redshifting naðToscÞ by
ðRosc=RadÞ3 (R is the FRW scale factor). The present-
day ALP density then depends on the cosmological

evolution between Tosc and Tad. The ALP relic density
today can be written

Ωa ¼
manaðTadÞ

ρc

�
T0

Tad

�
3 g�SðT0Þ
g�SðTadÞ

: ð8Þ

Here ρc ≈ 10−5h2 GeV=cm3, h ≈ 0.68, and T0 ≈ 2.7 K
[59]. In these expressions we have assumed that the
ALP mass is temperature independent. We will return to
the temperature-dependent case in Sec. III. Different
cosmological scenarios correspond to different Tad and
nðTadÞ. Below, we consider three well-motivated possibil-
ities in which the ALP begins to oscillate during a
“standard” period of radiation domination, during a period
of early matter domination followed by reheating, or during
kination. The schematic evolution of the ALP energy
density for these cosmologies is shown in Fig. 1.

A. Standard cosmology

In the conventional case, the ALP starts to oscillate
during radiation domination (RD). The total energy density
is given by

FIG. 1. Schematic evolution of the ALP energy density relative
to the total energy as a function of the scale factor R for different
cosmologies. The scale factor is normalized to unity at the start of
ALP oscillations. The lettuce, mustard and tomato lines corre-
spond to a universe with early matter (EMD), radiation, or
kination domination before primordial nucleosynthesis, respec-
tively. The transition from EMD or kination to radiation domi-
nation is denoted by the vertical dashed line. The initial ALP
density is fixed by requiring that ALP-radiation equality occurs at
the same value of R=Rosc for all three cases, such that these
models have equal DM densities at late times. Since the initial
value of the ALP energy density depends on faθ0, cosmologies
with an early period of early matter (kination) domination,
require larger (smaller) values of faθ0 to saturate the observed
dark matter relic density than in standard radiation domination,
for fixed ma.

3The m2
aa term should be replaced by V 0ðaÞ for field values

larger than OðfaÞ. In what follows, we use the approximation
above, noting that for larger initial misalignment angles, going
beyond this approximation can haveOð1Þ effects on the predicted
relic density [58].
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ρtot ¼
π2

30
g�ðTÞT4; ð9Þ

where g�ðTÞ is the effective number of relativistic degrees
of freedom (d.o.f.). Away from mass thresholds, T ∼ R−1

and so ρtot ∝ R−4, where R is the scale factor. In this
scenario, our approximate criterion for the onset of oscil-
lations is

ma ¼ q0HðToscÞ ¼ q0

ffiffiffiffiffi
π2

90

r
g1=2� ðToscÞT2

osc

Mp
ð10Þ

whereq0 ¼ 1.6, as discussed inAppendixA. BelowTosc, the
evolution is assumed to be adiabatic, so we can set
Tad ¼ Tosc. Using Eqs. (8) and (10), we find an approximate
expression for the ALP relic density today, assuming a
temperature-independent mass during and after oscillations:

Ωah2 ≃ 0.12

�
faθ0

1.9 × 1013 GeV

�
2
�

ma

1 μeV

�
1=2

×

�
90

g�ðToscÞ
�

1=4
: ð11Þ

Equation (11) typically reproduces the results from numeri-
cal solutions of the ALP equation of motion (see
Appendix B) to within about 10%-20%. The scaling with
input parameters is straightforward to understand: at the
onset of oscillations, the ALP constitutes a fraction ρa=ρtot ∼
f2a=M2

Pl of the total energy density, which immediately starts
growing sinceρa ∝ R−3 redshiftsmore slowly than radiation.
Correspondingly, larger fa leads to larger relic abundances.
Similarly, increasing ma corresponds to earlier onset of
oscillations and therefore a longer period over which
ρa=ρtot grows, so the relic density also grows with ma.

B. Early matter domination

A period of early matter domination (EMD) modifies the
conventional calculation of the axion relic density [60] (for
recent work, see Refs. [43,45–47]). EMD can be modeled
by a heavy long-lived particle or an oscillating scalar field ϕ
that dominates the energy density, such that ρtot ≈ ρϕ ∝
R−3. This scalar field can be a saxion or another scalar
modulus with small couplings that lead to long lifetimes.
The entropy injected by the decay of the scalar field dilutes
the energy density of the ALP below the reheating scale,
allowing for larger initial ALP energy densities and
reducing the tuning required in the misalignment angle
for large fa. This cosmology therefore favors a different
region of the ALP parameter space compared to the RD
case described above.
In the EMD scenario, the ALP is again initially displaced

from the origin and begins to oscillate when ma ∼ q0H ¼
1.6H if the mass is independent of temperature. Assuming
a reheating temperature around 10 MeV (near the lower

limit allowed by BBN [61,62]), oscillation occurs during
EMD for ma ≳ 10−13 eV, and during RD for smaller
masses. The initial energy fraction in the ALP at oscillation
is again of order f2aθ20=ðM2

plÞ. The key difference in the
EMD scenario is that H2 ∝ R−3 after the onset of ALP
oscillations and prior to reheating, and so the ALP energy
fraction ρa=ð3M2

PlH
2Þ remains constant during this epoch.

Accordingly, the ALP comes to dominate the energy
density later than in the radiation-dominated case, allowing
for larger fa consistent with the observed dark matter relic
density—see Fig. 1.
Assuming adiabatic expansion below TRH, the present-

day ALP density is given by Eq. (8) with Tad ¼ TRH.
Since ρaðtRHÞ ≃ ρaðtoscÞH2ðtRHÞ=H2ðtoscÞ and ρaðtoscÞ∼
θ20f

2
aH2ðtoscÞ, ρaðTRHÞ entering Eq. (8) is independent of

HðtoscÞ andma. The present-day ALP density is found to be

Ωah2 ≃ 0.12 ×

�
faθ0

9 × 1014 GeV

�
2

×

�
TRH

10 MeV

�
ð12Þ

for temperature-independent ALP mass (see Appendix A
for more details). In this case Ωa is determined by fa and
TRH, with larger fa and TRH corresponding to larger Ωa.
Note that this expression is only valid if TRH is smaller than
Tosc; otherwise, the standard radiation-dominated scenario
is obtained. An expression for Tosc is given by Eq. (40)
below, where a temperature-independent ALP mass corre-
sponds to b → 0.
We have also solved for the corresponding relic abun-

dance numerically, by considering a three fluid model
describing the modulus, the radiation energy density, and
the ALP as described in Appendix. B. These numerical
solutions agree with Eq. (12) to within about 20%-25%
across the parameter space of interest and for the values of
TRH we have checked.

C. Kination

The final cosmological scenario we consider is known as
kination [63,64]. ALP physics with an early period of
kination has previously been studied in [42,45]. As for the
EMD case, the energy density at early times is dominated
by a long-lived scalar field ϕ, but rolling in a steep potential
such that its kinetic energy dominates ρtot. For a polynomial
potential VðϕÞ ∝ ϕN , the energy density after some early
time t0 evolves as

ρϕðtÞ ≃ ρϕðt0Þ ×
�
Rðt0Þ
RðtÞ

� 6N
Nþ2

: ð13Þ

In the limit N → ∞, ρϕ dilutes as ∼R−6. We will consider
this large N limit in what follows. Assuming that radiation
comes to dominate when it reaches a temperature Tkin,
using Eq. (8) with Tad ¼ Tkin we find that
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Ωah2 ≃ 0.12 ×

�
faθ0

2.4 × 1011 GeV

�
2

×

�
ma

1 μeV

�

×
�

11

g�ðTkinÞ
�1

2

×
�
10 MeV
Tkin

�
: ð14Þ

The relic density depends linearly on ma and inversely on
Tkin, which must be larger than about 5 MeV. The
expression above only applies if Tosc > Tkin; otherwise,
one reproduces the standard RD scenario given by Eq. (11).
An expression for Tosc in the kination case is given in
Eq. (43), where b → 0 corresponds to a temperature-
independent ALP mass. Note that the fractional density
ρa=ρtot ∝ R3 grows rapidly during kination, allowing the
ALP to saturate the DM relic abundance for smaller values
of fa compared to RD and EMD scenarios considered
above. Equation (14) reproduces the numerically obtained
relic density (cf. Appendix B) to within Oð10Þ%.
As an illustration of the key differences between the

three scenarios discussed so far, we sketch the evolution of
the various relevant energy densities in Fig. 1 for the three
cosmologies. Here various parameters are fixed for illus-
trative purposes. The qualitative picture is clear: the faster
the dilution of the dominant energy component in the pre-
BBN era, the larger the final ALP abundance for fixed faθ0.
In the kination cosmology, for example, the ALP energy
fraction rises more rapidly than in radiation domination. In
contrast, in the EMD case this energy fraction remains
constant until reheating. Since—in order to saturate the
observed DM relic density—ALP-radiation equality must
occur around T ≃ 1 eV, the EMD and kination cases
require a larger and smaller initial energy fraction, respec-
tively, than in radiation domination, corresponding to larger
and smaller preferred values of faθ0 for a given mass. From
the experimental standpoint, this means that the kination
scenario will provide a compelling and more easy-to-reach
target than in the standard ALP cosmology, while a period
of early matter domination will make the ALP more
difficult to access with terrestrial experiments. However,
all relic density-preferred bands can lie above the QCD
band (i.e., at stronger coupling) for sufficiently small ALP
masses. We will detail this picture further in Sec. IV.

III. ORIGIN OF THE ALP MASS

In the previous section, we assumed that the ALP mass is
independent of temperature at the onset of oscillations. This
is the simplest class of models, and in general it seems
reasonable to remain agnostic about the origin of the ALP
mass. However, motivated by the QCD axion, we consider
two further variations.
Famously, the QCD axion appears to conflict with the

straightforward application of effective field theory prin-
ciples and the expectation that quantum gravity violates
global symmetries [65–69]. Adding Planck-suppressed
Peccei-Quinn (PQ)-violating higher-dimension operators

to the action, one finds that the axion solution to the strong
CP problem is inoperative unless the Wilson coefficients
are strongly suppressed up to operator dimension d ∼ 12.
Solutions to this problem are known; it might be the case
that all quantum gravity-induced PQ-violation is exponen-
tially small [9,10]. In the ALP case, it is also of interest to
compare the masses and couplings for which a viable dark
matter candidate is obtained with the typical mass gen-
erated by Planck-suppressed operators.
Second, the QCD axion relic abundance is nontrivially

affected by the strong temperature dependence of the
topological susceptibility of QCD. Similarly, it is imagi-
nable that the ALP mass is controlled by infrared physics
(e.g., a new strongly coupled gauge theory) that introduces
temperature dependence. As in QCD this dependence can
have important implications for the preferred regions of the
mass-coupling parameter space.

A. ALP mass from UV physics

We consider the typical contribution to the ALP mass
from a dimension-d operator,

L ⊃
cΦd

Md−4
p

þ H:c:; ð15Þ

parametrizing Φ ¼ fa expðia=faÞ. For simplicity, we sup-
pose that the Wilson coefficient c is real and that the full
potential is minimized at a ¼ 0. The contribution to the
ALP mass from Eq. (15) is

m2
a ¼ 2cd2f2a

�
fa
Mp

�
d−4

: ð16Þ

We relate the scale fa to the ALP-photon coupling gaγγ by
assuming [37]

gaγγ ¼ r
α

2πfa
; ð17Þ

where r is an anomaly coefficient that we expect to be
Oð1Þ.4 Combining Eqs. (15) and (17) we obtain

gaγγ ¼
rα

2πMp

�
m2

a

2cd2M2
p

�−1=ðd−2Þ
: ð18Þ

In the results presented in Sec. IV, we set c ¼ r ¼ 1. The
resulting mass-coupling relation for d ¼ 8, 10, 12 is shown
along with the preferred DM regions and the experimental
limits and projections in Figs. 3 and 4. To summarize, we
will find that Planck-suppressed operators below dimen-
sion 8 must be absent across all of the parameter space we
consider. In the high-fa region, even more suppression is

4Ref. [37] constructs models with r ≫ 1, leading to a large
enhancement of gaγγ .

DARK MATTER TARGETS FOR AXIONLIKE PARTICLE … PHYS. REV. D 100, 015049 (2019)

015049-5



required. For example, almost all of the viable ALP
parameter space in the standard RD scenario requires that
the Planck-suppressed contributions to the ALP potential
start at dimension 12. The viability of this possibility
depends on the specific UV model. We will discuss the
implications of these results further below.

B. T-dependent ALP masses: General considerations

We now turn to the complementary case where the ALP
mass is set by T-dependent infrared (IR) physics. First, we
outline generic properties, constraints, and requirements on
these scenarios. We then define a simple family of T-
dependent masses and compute the relic density in the
different cosmological scenarios, providing simple analytic
expressions that reproduce the results of a more complete
numerical treatment to within a few tens of percent.
First, we note that the temperature controlling the ALP

mass does not need to equal the temperature of the SM
bath. This is generically the case if the ALP mass is
generated by couplings to a hidden sector (HS) that is not in
kinetic equilibrium with the SM. For a given SM temper-
ature T we parametrize the temperature of the hidden
sector, THS, as

THS ≡ ξðTÞT: ð19Þ

In what follows, all temperatures will correspond to
temperatures of the SM photon bath, unless otherwise
stated, and factors of ξ will be used to convert to hidden
sector temperatures.
We assume that ma is primarily sensitive to the temper-

ature above a scale Λ, corresponding to a Standard Model
(SM) bath temperature TΛ. The ALP zero mode is initially
frozen at faθ0 and starts to oscillate when T ¼ Tosc. In
order for T-dependence to have an effect on Ωa, we require
ξoscTosc > Λ where ξosc ≡ ξðToscÞ.
The scale Λ cannot be arbitrarily low. In order for ma to

vary significantly with temperature, there must exist a
population of relativistic d.o.f. in the HS. The presence of
additional relativistic d.o.f. modifies the expansion rate of
the Universe, and which can alter the predictions of light
element abundances and the CMB power spectrum. These
constraints can be avoided if TΛ ≳ TBBN, where TBBN ∼
5 MeV is the temperature of the SM bath around the onset
of BBN. Otherwise, we must ensure that the effects from
radiation in the HS at temperatures above TΛ are consistent
with the measurements of the primordial abundances and
CMB. Modifications of the expansion rate are typically
parametrized by the effective number of neutrino species,
Neff . For the parameter space of interest, TΛ is always
above the temperature of recombination, so the BBN limit
is most relevant. These constraints, detailed in e.g.
Ref. [70], can be satisfied at ∼2σ confidence level provided
ΔNeff ≲ 0.5. In terms of the effective number of relativistic
d.o.f. g�HSðTBBNÞ in the HS at TBBN, we have

ΔNeff ¼
4

7

�
11

4

�
4=3

g�HSðTBBNÞξ4BBN ð20Þ

where we use the shorthand ξBBN ≡ ξðTBBNÞ. From this we
see that BBN Neff constraints can be avoided if ξBBN ≲ 0.1
for g�HSðTBBNÞ≲ 103.
While the considerations above are quite general, there

may be additional model-dependent constraints in concrete
realizations. For example, one must also ensure that the
relic abundance of any heavy states in the HS makes up a
small component of the matter density today. These can
decay or annihilate into HS radiation; however, one must
then verify that ξ remains small. Heavy hidden sector states
can also decay or annihilate to the SM, but this may require
connector particles between the HS and SM that may again
increase ξðTBBNÞ. Furthermore, their decays to the SM
must not significantly disrupt BBN or the CMB. In an effort
to be asmodel-agnostic as possiblewewill not consider these
issues further, althoughwe emphasize that they will likely be
important in concrete ALP scenarios with T-dependent
masses. For related discussions in specific strongly coupled
hidden sector models, see, e.g., Refs. [47,71–76].
Summarizing, in order for T-dependence to affect the

ALP relic density and be in agreement with Neff con-
straints, we require either

ξoscTosc > Λ; TΛ > TBBN ð21Þ

or

ξoscTosc > Λ; ξBBN ≲ 0.1: ð22Þ

If ξoscTosc < Λ, the onset of ALP oscillations proceeds as in
the T-independent case discussed earlier. The relationship
between Tosc, ma, and fa depends on the particular
cosmological scenario, as we discuss below. EMD and
kination cosmologies will have additional requirements in
order for T-dependence to be relevant.
Nontrivial temperature dependence enhances Ωa relative

to the T-independent prediction for a given ma, fa, and θ0.
The resulting abundance can be computed numerically (as
discussed in Appendix B), but simple analytic estimates
can again be used to reproduce the full results to within
Oð10%Þ in most cases. The size of the enhancement for the
different cosmological scenarios can be estimated as
follows (see also Appendix A for more details). Let us
define the enhancement factor

γ ≡ Ωa

ΩT−ind
a

ð23Þ

where Ωa is the ALP relic density assuming a T-dependent
ALP mass and ΩT−ind

a is the corresponding T-independent
result as computed in Sec. II. Both quantities are evaluated
for the same set of maðT ¼ 0Þ, faθ0. We model the
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different cosmological scenarios by assuming that the
Hubble parameter for temperatures above some scale T�
evolves as

H2 ∝ R−3ðwþ1Þ ð24Þ

where w is the equation of state parameter, ρ ¼ wp. Early
matter domination, radiation domination, and kination
correspond to w ¼ 0, 1=3, and 1, respectively. Below
T�, the evolution is assumed to be adiabatic and follows
that of a standard radiation-dominated cosmology. We
approximate the transition to radiation domination at T�
(if it occurs) as instantaneous. As in Eq. (4), the ALP begins
to oscillate when

mosc ¼ qTHosc: ð25Þ

Here the subscript T indicates that the value of q for the
T-dependent case can differ from q0 ¼ 1.6. Given these
assumptions and provided the ALP begins oscillating while
its mass is changing with temperature, a straightforward
calculation discussed further in Appendix A shows that the
enhancement factor is given approximately by

γT ≃
�
qT
q0

� 2
wþ1

�
ma

mosc

� 2
wþ1

−1
: ð26Þ

The subscript in γT indicates that this expression applies
if the mass at the onset of oscillations, mosc, differs from
ma, the low-temperature ALP mass. Ifmosc ≪ ma, the relic
density can be significantly enhanced in the RD and EMD
cosmologies. The scaling with ma=mosc is a product of two
counteracting effects: the delay in the start of oscilla-
tions and the growth of ALP mass with time. This is
made explicit in Eq. (A15) below. In the kination case,
2=ðwþ 1Þ − 1 ¼ 0 and these effects nearly cancel, so the
relic density is only enhanced if qT ≠ q0. Given our
assumptions about the origins of maðTÞ, discussed below,
this enhancement is milder than in RD and EMD, and is at
most an Oð1Þ effect.
To proceed further, we focus on a class of models with

ALP mass T-dependence similar to that of the QCD axion.
We will assume that, for THS ¼ ξðTÞT > Λ, the ALP mass
is given by

maðTÞ ¼ ma

�
Λ

ξðTÞT
�

b
ð27Þ

where ma is the zero-temperature mass, taken to be of the
form

ma ¼
Λ2

fa
: ð28Þ

For ξðTÞT < Λ, maðTÞ ¼ ma. In Eq. (27), b is a positive
exponent. In QCD-like theories, b is related to the

β-function of the gauge group and can be obtained
analytically from the dilute instanton gas approximation
(DIGA). DIGA predicts b¼ð11Nc−2NfÞ=6þNf=2−2,
whereNc andNf are the number of colors and light flavors,
respectively [77]. For QCD, b ¼ 4, and the semiclassical
approximation is in reasonable agreement with lattice
results at high temperatures [78–80]. In these simulations
the scaling predicted by DIGA appears to hold down to
ΛQCD, wherema saturates to near its zero-temperature value
and remains approximately constant at lower temperatures
[78,79]. In this sense our model of the temperature
dependence mimics QCD and generalizes it to arbitrary
Λ, b, and ξðTÞ. In our plots we will take b ¼ 4 as an
illustrative example, corresponding to the QCD-like case.
As such, we assume

g�HSðTÞ ¼
52

2

�
1þ tanh

�
10

�
1 −

Λ
ξðTÞT

���
ð29Þ

where the factor of 52 corresponds to the number of
relativistic d.o.f. for SUð3Þ with three light flavors and
the temperature T is understood to be that of the SM
radiation bath; the tanh function smoothly decouples these
d.o.f. at the transition temperature. The total number of
relativistic d.o.f. at a temperature T is then g�ðTÞ ¼
g�SMðTÞ þ ξðTÞ4g�HSðTÞ. Note that for the T-independent
predictions we take g�HS ¼ 0, as the mass ma can be set by
physics in the ultraviolet and does not necessarily require
new light d.o.f. present near the onset of oscillations.
With the form of T-dependence specified, one can show

(cf. Appendix A) that there is a maximum allowed enhance-
ment factor, γT ≤ γmax. Defining TΛ such that TΛ ¼
Λ=ξðTΛÞ (the SM temperature at which the ALP mass
saturates to its low-temperature value), if the ALP has not
started oscillating by TΛ and ma > q0HðTΛÞ, oscillations
will begin suddenly at TΛ and so qmax ¼ ma=HðTΛÞ. Thus,

γmax ¼
�

ma

HðTΛÞq0

� 2
wþ1

: ð30Þ

In this case the oscillation temperature is simply
Tosc ¼ TΛ ¼ Λ=ξosc. Note that the opposite limit in which
theALP is still frozen atTΛ andma < q0HðTΛÞ corresponds
to ξoscTosc < Λ, which reproduces the T-independent case.
One can show that this occurs when minðγT; γmaxÞ < 1.
Summarizing these considerations, the enhancement

factor can be written compactly as

γ ¼ max f1;min fγT; γmaxgg; ð31Þ

where γT and γmax are defined in Eqs. (26) and (30),
respectively. Explicit expressions for these quantities in
concrete cosmological scenarios are given below. Denoting
the predicted oscillation temperature for a given exponent b
in Eq. (27) as ToscðbÞ, the true oscillation temperature is
given by

DARK MATTER TARGETS FOR AXIONLIKE PARTICLE … PHYS. REV. D 100, 015049 (2019)

015049-7



Tosc ¼

8>><
>>:

Toscðb ¼ 0Þ; γ ¼ 1

ToscðbÞ; γ ¼ γT
Λ
ξosc

; γ ¼ γmax:

ð32Þ

Further details can be found in Appendix A. Finally, in the
EMD and kination cosmologies, if Tosc predicted by
Eq. (32) is smaller than TRH or Tkin, the results for RD
should be used.

C. Radiation domination with T-dependence

Let us first apply these results to determine the effects of
T-dependence on the standard calculation of the ALP relic
abundance, where the ALP is assumed to oscillate during
radiation domination. A related discussion can be found in
Ref. [8], which we generalize to allow for a HS at a
different temperature than the SM. In general, ξðTÞ changes
across mass thresholds as particles in both the HS and SM
annihilate. This heating typically changes ξ by at most
Oð1Þ factors unless the change in number of d.o.f. is very
large. Since the precise form of ξðTÞ is model-dependent, in
the remainder of this study we assume for simplicity that
ξðTÞ ≈ ξosc for temperatures of interest and treat ξosc as a
free parameter. In concrete models ξosc can be set by, e.g.,
the branching ratio of the inflaton into the HS relative to the
SM [81], or be equal to one for a HS in kinetic equilibrium
with the SM.

In Appendix A, we find that the predicted oscillation
temperature ToscðbÞ and enhancement in this case can be
estimated by

ToscðbÞ ≃
Λ
ξosc

�
1125M2

Plξ
4
osc

8ð2þ bÞ2π2g�ðToscÞf2a

� 1
4þ2b ð33Þ

γT ≃
�
2þ b
2

�3þb
2þb
�

5
ffiffiffiffiffi
90

p
MPlξ

2
osc

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðToscÞ

p
fa

� b
4þ2b

: ð34Þ

Meanwhile, the maximum enhancement factor γmax is
approximately

γmax ≃
�

5
ffiffiffiffiffi
90

p
MPlξ

2
osc

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTΛÞ

p
fa

�3
2

: ð35Þ

With these expressions, Eqs. (11), (31) and (32) can then
be used to estimateΩa across the ALP plane accounting for
T-dependence in the ALP mass. In the parameter space we
consider, Eq. (31) typically yields γ ¼ γT for RD.
The preferred ALP dark matter region in the T-dependent

case for ξosc ¼ 1 is shown on the left in Fig. 2 for b ¼ 4 and
g�HSðTÞ given by Eq. (29) with ξðTÞ ¼ ξosc. The region
shaded gold features an ALP with h2Ωa ¼ 0.12 for natural
values of the initial misalignment angle, θ0 ∈ ½0.1; 2�,
obtained by solving the ALP equation of motion (EOM)
numerically (cf. Appendix B). The gold dotted contours
correspond to the analytic estimates given above.

FIG. 2. Preferred regions in the ALP parameter space allowing for a temperature-dependent ALP mass given by Eq. (27) with b ¼ 4.
The left (right) panel corresponds to a hidden sector with temperature ratio ξosc ¼ 1 (ξosc ¼ 0.1) relative to the SM. The pastel shaded
regions feature an ALP that saturates the observed dark matter relic density with θ0 ∈ ½0.1; 2� for radiation domination (gold) and early
matter domination with TRH ¼ 10 MeV (green) and 500 MeV (purple), obtained via numerical solution of the evolution equations. The
dotted contours show the analytic predictions given in the text, which we find are a good match to the full numerical solutions. For
reference, we also indicate the preferred region for the RD scenario with a T-independent ALP mass between the yellow dotted contours.
In both the RD and EMD cosmologies, the relic density can be substantially increased for a fixed ma and fa if the ALP mass is
temperature-dependent during the onset of oscillations. Note that T-dependence in the EMD cosmology interpolates between the
T-independent EMD and T-dependent RD scenarios. In the left panel, the gray shaded region is excluded for the T-dependent case by
the value of Neff during BBN. These constraints are avoided in the right panel due to the lower hidden sector temperature, at the price of
a smaller enhancement of the relic abundance. Note that the scales of the vertical axes are different in the left and right panels.
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The corresponding T-independent preferred ALP DM
region, obtained by numerically solving the ALP EOM to
late times, lies between the dashed gold contours. ξosc ¼ 1
illustrates the maximum allowed enhancement of the relic
abundance in a RD cosmology. Since the HS is at the same
temperature as the SM, there are strong bounds fromNeff for
ξosc ¼ 1, and the shaded gray region on the left in Fig. 2 is
excluded by requiring ΔNeff < 0.5 (corresponding to
TΛ > TBBN ∼ 5 MeV). It is likely that in concrete models
the lower bound on TΛ will need to be somewhat higher than
5 MeV to avoid BBN constraints, and so the results shown
should be understood to correspond to the most optimis-
tic case.
On the right in Fig. 2 we show corresponding results

assuming a decoupled hidden sector with ξosc ¼ 0.1. The
enhancement of h2Ωa is smaller, however the cooler HS in
principle allows for TΛ < TBBN, since ξBBN < 0.1 (assum-
ing the number of relativistic d.o.f. in the hidden sector
does not change significantly between oscillation and the
onset of BBN). Again, one must be mindful of additional
model-dependent constraints on small-Λ scenarios, as well
as those with decoupled hidden sectors with dark radiation
or significant late-time abundances of stable relics.
Larger ξosc and b can in principle increase Ωa further,

however this often comes at the cost of additional entropy
injection after oscillation in simple models. For example, it
could be that ξosc > 1, however the large corresponding
amount of HS entropy needs to be transferred to the SM
before BBN, erasing the resulting enhancement for ξosc
much larger than 1. A hidden sector predicting b > 4 could
also increase h2Ωa somewhat, however as b increases one
also expects g�HSðToscÞ to increase in a QCD-like theory,
and so the resulting enhancement again gets washed out by
the requisite HS entropy dump for large b before BBN.
These effects are encapsulated in the g� dependence of γT
in Eq. (34).

D. Early matter domination with T-dependence

We proceed similarly for the case of early matter
domination, deriving a set of analytic expressions that
can be used to estimate the relic abundance. We again allow
the HS to be at a different temperature than the SM bath and
parametrize ALP mass temperature dependence as in
Eq. (27). The evolution of the energy densities in ϕ (the
field responsible for EMD), SM and HS radiation can be
modeled by

_ρϕ þ 3Hρϕ ¼ −Γϕρϕ ð36Þ

_ρSM þ 4HρSM ¼ þΓϕ→SMρϕ ð37Þ

_ρHS þ 4HρHS ¼ þΓϕ→HSρϕ ð38Þ

where the dot indicates a derivative with respect to time,
Γϕ ¼ Γϕ→SM þ Γϕ→HS and Γϕ→SM, Γϕ→HS are the partial

widths of ϕ into SM and HS radiation, respectively. These
equations can be solved during ϕ domination (i.e., while
Γϕ=H ≪ 1 and ρϕR3 ≈ const) and yield

ρi ¼
6

5
HMDM2

Pl

�
RMD

R

�
3=2

Γϕ→i; ð39Þ

where we assumed that the initial energy densities are
negligible compared to those produced by ϕ decays. Here i
corresponds to either HS or SM subscripts, and HMD and
RMD are the Hubble parameter and FRW scale factor at the
onset of EMD, respectively. We can use Eq. (39) to
compute the temperatures of the HS and SM radiation
baths during the epoch of matter domination. Defining the
reheating temperature as that for which ρϕ ¼ ρSM þ ρHS
and assuming Eq. (39) holds down to that temperature
allows one to relate ΓSM and ΓHS to TRH and ξosc (again
neglecting relative heating effects). We then find that the
oscillation temperature and abundance enhancement factor
can be approximated by

ToscðbÞ ≃
Λ
ξosc

�
28125M2

PlT
4
RHg�ðTRHÞξ8osc

32ð4þ bÞ2π2g2�ðToscÞm2
af4a

� 1
8þ2b ð40Þ

γT ≃
�
4þ b
4

�8þb
4þb
�
1125MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTRHÞ

p
T2
RHξ

4
osc

16π
ffiffiffiffiffi
90

p
g�ðToscÞmaf2a

� b
4þb

ð41Þ

(see Appendix A for more details). γmax in EMD is given by

γmax ≃
�
225MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTRHÞ

p
T2
RHξ

4
osc

4π
ffiffiffiffiffi
90

p
g�ðTΛÞmaf2a

�2

: ð42Þ

These expressions can be inserted into Eqs. (31)–(32) and
used along with Eq. (12) to estimate Ωa in the T-dependent
case. Again if Tosc < TRH, the RD expressions should be
used. The resulting predictions agree well with full numeri-
cal solutions of the three-fluid system of equations, dis-
cussed in Appendix B.
The preferred regions of the ALP parameter space in the

EMD scenario are illustrated in Fig. 2 for ξosc ¼ 1 and
ξosc ¼ 0.1 with b ¼ 4. We show results for TRH ¼ 10 and
500 MeV. The blue and purple shaded regions feature an
ALP with Ωah2 ≃ 0.12 for θ0 ∈ ½0.1; 2� as obtained from
the numerical solution. The corresponding dotted contours
show the analytic predictions of Eqs. (40)–(42) and are a
good fit to the numerical results. For ξosc ¼ 1, the gray
shaded region is excluded by the measured value of Neff at
BBN. This constraint is alleviated for ξosc ¼ 0.1, however
the enhancement factor γ is reduced as a result. Other
model-dependent constraints are likely to apply in the
region where TΛ < TBBN as discussed in Sec. III B.
The behavior illustrated in Fig. 2 is straightforward to

understand. First, note that the oscillation temperature is
reduced relative to TΛ ¼ Λ=ξ [see Eq. (40)] asma or fa are
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increased. If the oscillations begin below TΛ, temperature-
dependent effects are unimportant and the preferred regions
are the same as discussed in Sec. II B (i.e., γ ¼ 1). This
occurs for larger ALP masses, and the preferred value
of gaγγ is independent of ma. For small enough masses,
Tosc > TΛ so that T-dependence enhances the relic density
for a fixed ma, fa relative to the T-independent case. Here,
the ALP DM regions pick up dependence on fa, increasing
the preferred values of gaγγ in Fig. 2. At even lower values
of ma, oscillation occurs after reheating (Tosc < TRH), and
the predictions reduce to those of the T-dependent RD
scenario of Sec. II A (the gold shaded region).
Figure 2 shows that allowing for a T-dependent ALP

mass interpolates between the T-independent EMD and
T-dependent RD scenarios. Smaller values for b tilt the
interpolating region towards the left, while larger values
steepen it. Increasing TRH causes the EMD band to match
onto RD predictions at larger ma. In all cases, the preferred
ALP DM regions are bounded by the T-dependent RD and
T-independent EMD contours for a given θ0.

E. Kination with T-dependence

Finally, we comment on the kination cosmology with a
T-dependent ALP mass near the onset of oscillations. From
Eq. (26), the only enhancement comes from the slightly
different values of q defining the oscillation time. In other
words, the gain in energy from the growth of the mass is
almost completely canceled by the loss in energy from
starting to oscillate later. As explained in Appendix A, we
find

ToscðbÞ ≃
Λ
ξosc

�
10125M2

PlT
2
king�ðTkinÞξ6osc

32ð3þ bÞ2π2g2�ðToscÞmaf3a

� 1
6þ2b

; ð43Þ

γT ≃
1

3
ð3þ bÞ: ð44Þ

Meanwhile,

γmax ≃
5

ffiffiffiffiffi
90

p
MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTkinÞ

p
Tkinξ

3
osc

8π
ffiffiffiffiffiffiffiffiffiffiffi
maf3a

p
g�ðTΛÞ

: ð45Þ

In most realistic models, one expects b ∼Oð1Þ, and so
typically γ ¼ γT. The enhancement is milder than in RD
and EMD as it only depends on the exponent b.
Nevertheless, allowing for mosc ≠ ma changes the ALP
oscillation temperature. Since Tosc > Tkin in order for
the period of kination to modify the ALP evolution,
T-dependence will change the regions of the ALP plane
where kination is relevant for fixed Tkin.
In our results below we will take Tkin ¼ 10 MeV. Since

the preferred regions on the ALP parameter space assuming
kination with and without T-dependence are similar for
Tkin ¼ 10 MeV, we do not show predictions for kination in

Fig. 2. However, we provide the corresponding T-
dependent predictions in Fig. 5. Again we find that the
analytic estimates above provide a good fit to the numerics
(cf. Appendix B) across the parameter space considered.

IV. PROJECTIONS AND RESULTS

We now investigate the potential for current and future
ALP direct detection experiment and astrophysical obser-
vations to explore these natural ALP darkmatter targets. The
present status is summarized in Fig. 3, and future prospects
are shown in Figs. 4 (for temperature-independent masses)
and 5 (for temperature-dependentmasses). These figures also
show the preferred regions in the three cosmological histories
considered in Secs. II and III: the standard cosmology, early
matter domination (EMD) with TRH ¼ 10 MeV, and
kination with Tkin ¼ 10 MeV. TRH and Tkin are the temper-
atures at which the universe transitions to standard radiation-
dominated evolution; temperatures of 5–10MeV correspond
to the lowest values compatible with BBN. In each case the
bands are obtained by varying the initial misalignment angle
θ0 between 0.1 (bottom edge of each band) and 2 (upper edge
of each band). The ALP regions can be extended to smaller
values of gaγγ at the cost of fine-tuning θ0 < 0.1. The gray
dotted lines in Figs. 3–5 show the ALP mass-coupling
relation if the masses are generated by Planck-suppressed
operators of various dimensions as discussed in Sec. II. For
the temperature-dependent results in Fig. 5 we have assumed
b ¼ 4 in Eq. (27) and taken g�HS as in Eq. (29) with ξ ¼ ξosc.
The left-hand plot in Fig. 5 shows the case where the hidden
sector is in thermal equilibrium the SM, and the right-hand
plot the case where the HS is decoupled from the SM with a
lower temperature, 0.1 × TSM.
Axionlike particles can be constrained by a variety of

astrophysical measurements. These limits include the
results from CAST [82]; cooling of Horizontal Branch
(“HB” in Fig. 3) stars, massive stars [83,84], and SN1987A
[85–87]; nonobservation of a γ-ray excess from SN1987A
[88]; the extragalactic background light [89,90]; searches
for spectral irregularities in γ rays with HESS [91] and
Fermi-LAT [92], and in X-rays with Chandra [93–96].5
These limits are shown in Fig. 3 as pastel-colored shaded
regions.
The ALP parameter space is also constrained by a

number of resonant cavity experiments. We show the
regions excluded by ADMX [16,17] and ADMX Sidecar
[98], Phase 1 of HAYSTAC [21], the ORGAN Pathfinder
[18], QUAX [19] and the older UF [99] and RBF [100,101]
experiments in dark blue in Fig. 3. These experiments target

5ALPs can also be constrained by observations of near-extremal
black holes and the resulting constraints on superradiance [97].
However, these constraints are strongly model-dependent in that
they are sensitive to the properties of the ALP self-interactions.
Accordingly we omit them from our plots, noting that they impact
the region of parameter space ma ≲ 10−11 eV.
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the classical QCD axion DM window for ma between 10−6

and 10−4 eV. We see in Fig. 3 that the resonant cavity
experiments are already probing significant regions of the
kination-favored parameter space and are just beginning to
extend into the QCD axion window.

We turn now to near-term prospects for direct detection
in the ALP parameter space. The past few years have seen a
renaissance in ideas for searching very light DM, including
coherent bosonic candidates like ALPs. We show in Fig. 4 a
summary of the impact these new experiments will have on

FIG. 3. Theoretical targets (colored bands) and current experimental constraints (filled regions) on the ALP-photon coupling gaγγ as a
function of the ALP mass ma. The shaded bands show regions where the ALP saturates the observed DM relic abundance for the
standard (yellow), early matter-dominated (green) and kination (red) cosmologies for initial misalignment angles of θ0 ∈ ½0.1; 2�. For the
latter cosmologies, we take the reheating/kination temperature to be 10 MeV. We also show the QCD axion band, which does not have a
relic density requirement imposed, in blue. The gray dotted diagonal lines correspond to ALPs which get their mass from dimension
8, 10 and 12 Planck-suppressed operators. Further discussion can be found in Sec. IV.

FIG. 4. Theoretical targets (colored bands) and projected experimental reach (colored lines) in the ALP-photon coupling gaγγ as a
function of the ALP mass ma. The shaded bands show regions where the ALP saturates the observed DM relic abundance for the
standard, early matter-dominated, and kination cosmologies for initial misalignment angles of θ0 ∈ ½0.1; 2�. For the latter cosmologies,
we take the reheating temperature to be 10 MeV. We also show the standard QCD axion target in blue and existing experimental
constraints in solid gray. The gray dotted diagonal lines correspond to ALPs which obtain mass from dimension 8, 10 or 12 Planck scale
suppressed operators. Further discussion can be found in Sec. IV.
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the ALP parameter space for temperature-independent ALP
masses, and in Fig. 5 a similar summary for temperature-
dependent ALP masses. In many cases, allowing for
T-dependence the experimental prospects are even more
promising, although constraints on new relativistic d.o.f.
generating the ALP potential can exclude some of the
parameter space. We emphasize that these considerations
are model-dependent and that specific scenarios could
feature even more stringent constraints on the hidden sector
than those considered. Each experiment is capable of ruling
out the region above the corresponding solid line.
Some future experiments are extensions of resonant

microwave cavities technique, as in upgrades to ADMX
[102], CAPP [103], KLASH [104,105], and, at higher
frequencies, ORGAN [18]. These experiments provide
a broader sensitivity in the QCD axion region ma ∼ 10−6 −
10−5 eV extending to lower values of gaγγ. More recently,
new ideas based on dielectric stacks have appeared which
are sensitive to higher mass ALPs, as in MADMAX [22]
and photonic materials [24] (“Dielectric Stack” in Figs. 4
and 5). We also show the sensitivity of the proposal for a
large-scale helioscope, IAXO [106], which will extend the
reach of CAST, and the projections for the ALPS-II light-
shining-through-walls experiment [107], which is currently
under construction at DESY and will have sensitivity
above gaγγ ∼ 10−11 GeV−1.
It is also possible to look for ALPs through radio

emissions from astrophysical systems. Observations of
galaxies with SKA can potentially reach sensitivity com-
parable to ALPS-II for ma ∈ ½4 × 10−7; 3 × 10−4� eV by
searching for stimulated decay of relic ALPs in galactic
magnetic fields [108,109]. Dark matter ALPs can also
convert to radio photons in the magnetospheres of neutron

stars, leading to constraints in the μeV mass-range
[110,111]. We show the limits from Ref. [110] that could
be obtained with 100 hours of observation of the magnetar
SGR J1745-2900 under the assumptions of an NFW dark
matter density profile (“NSM” in Figs. 4 and 5), and also a
spike profile (“NSM Spike”) which would lead to stronger
bounds. We note, however, that the sensitivity of such a
search to ALP parameters strongly depends on neutron star
modelling and the telescope used [112]. At large ALP
masses the intensity line-mapping experiment SPHEREx
[113] will be able to probe to the bottom of the kination
region.
At very low masses, the ABRACADABRA suite of

experiments (the region we show is the union of the
broadband and resonant searches) and DM-Radio promise
to cover a large amount of parameter space down to very
small values of gaγγ . Other recent proposals at low mass
make use of birefringence in the presence of an ALP
background and include the interferometer concept [114],
ADBC [115], and an experiment based on optical ring
cavities [116]. We also note that there is the BEAST
proposal [117] which could be relevant at low masses. The
BEAST limits would rule out gaγγ > 2.35 × 10−12 GeV−1

for 2.08 × 10−11 ≤ ma ≤ 2.2 × 10−11 eV, reaching just
below the bound from SN1987A. However, since the
BEAST experiment is a topic of current discussion in
the literature [118–121] we do not show them on our plot.
We also do not show other limits from other as-yet-
unpublished proposals, such as [122–126].
While these will be able to explore new parts of

parameter space, we find that they will not be sensitive
to the kinds of ALP dark matter we study in this paper. We
find that DM-Radio will be able to probe ALP dark matter

FIG. 5. As in Fig. 4, but for a T-dependent ALP mass. In the left panel, the hidden sector responsible for generating the ALP potential
is assumed to be in thermal equilibrium with the SM, while in the right panel we assume the hidden sector is decoupled with temperature
given by 0.1 × TSM. In both cases b ¼ 4 was assumed in Eq. (27). Note that there may be additional important constraints on the hidden
sector, as discussed further in the text. On the left, the EMD band assumes TRH ¼ 10 MeV, while on the right TRH ¼ 500 MeV. In both
cases Tkin ¼ 10 MeV. The parameter space on the left is constrained by ΔNeff at BBN, since there are necessarily new HS states in
equilibrium with the SM bath at TΛ. The ALP target regions assume that g�HS ¼ 52 above TΛ, corresponding to the expected value for a
SUð3Þ hidden sector with 3 light flavors.
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up to ma ∼ 10−6 eV assuming a standard cosmology or a
period of kination in the early Universe. ABRACADABRA
will be able to discover (or rule out) ALP dark matter in all
of the cosmological scenarios we have considered with
masses below ∼4 × 10−7 eV. If the ALP mass is generated
by a new strongly coupled gauge sector, the signal at
ABRACADABRA for a given mass is likely to be even
larger.

V. SUMMARY AND CONCLUSIONS

We have investigated the implications of current and
future direct detection experiments for ALP dark matter with
mass 10−12 ≤ ma ≤ 1 eV in a variety of well-motivated
cosmological scenarios. We have presented simple analytic
expressions for the corresponding relic density from mis-
alignment in the standard cosmological scenario with
radiation domination (RD), as well as allowing for a period
of early matter domination (EMD) and kination, in
Eqs. (11), (12), and (14), respectively. These results apply
to ALPs for which the mass is independent of the temper-
ature between the onset of oscillations and today. A T-
dependent ALP mass of the form in Eq. (27) enhances
the relic abundance relative to these predictions so that
Ωa ¼ γΩT−ind

a , with the enhancement factor γ given by
Eq. (31) and Eqs. (34)–(35) for RD, Eqs. (41)–(42) for
EMD, and Eqs. (44)–(45) for kination, respectively.
While ALP dark matter is currently relatively uncon-

strained, future experiments have the ability to probe much
of the well-motivated ALP parameter space. ALPs that
obtain their masses from Planck-suppressed operators will
be thoroughly tested by future experiments (provided they
can saturate the observed dark matter relic abundance). The
amount of suppression required for a viable ALP dark
matter candidate depends on the cosmological scenario
under consideration. It is possible for an ALP associated
with d ¼ 12 operators to be consistent with the DM relic
density in a standard cosmological scenario for masses
above 10−2 eV. In other cases, such as a period of kination
down to temperatures of a few MeV, an ALP with mass set
by d ¼ 8 Planck-suppressed operators can provide a viable
dark matter candidate, a significantly less stringent require-
ment than that for the QCD axion (which requires Planck-
suppressed PQ-breaking operators to arise at d ¼ 12 or
higher).
ALP dark matter can be easier to detect than the

QCD axion. For low masses (below the standard QCD
axion window for a fixed fa) experiments such as
ABRACADABRA and DM-Radio will have sensitivity
to ALP dark matter before they are sensitive to the QCD
axion. In particular, the ABRACADABRA experiments
can constrain the existence of ALPs in the various cosmol-
ogies we have considered for ma ≲ 4 × 10−7 eV down to
10−12 eV. Below 10−11 eV black-hole superradiance com-
plements the ABRACADABRA and DM-Radio sensitivity,

although the precise details aremodel dependent. If therewas
a period of kination in the early Universe down to temper-
atures near the BBN scale, or if the ALP mass at the onset
of oscillations is smaller than its present day value,
ABRACADABRA and DM-Radio can be more sensitive
to ALP dark matter than to the QCD axion across their entire
mass sensitivity ranges. At higher ma, the experimental
prospects are more positive in the kination and T-dependent
RD cases as well. We find that resonant cavity experiments
(such as ADMX, CAPP and ORGAN), as well as
MADMAX, can also probe ALPs in these more optimistic
scenarios before they reach the QCD axion window.
For even larger masses, ma ≳ 10−4 eV, ALP dark matter

becomes more difficult to detect than the QCD axion in all
of the scenarios we have considered. However, some
proposed experiments using terahertz frequency resonators,
dielectric stacks, or line-intensity mapping targeting the
QCD axion in this mass range can also probe ALP DM that
begins oscillating during kination (for low Tkin) and come
close to the standard ALP prediction with Oð1Þ initial
misalignment angles and T-dependent masses for ma up to
an eV. For ALPs in the standard RD and EMD cosmologies
with masses set in the UV, this high-ma region will be
difficult to access with existing experimental proposals.
However, other probes of this parameter space beyond
direct detection experiments may exist in some cases. For
example, a period of early matter domination can also lead
to the formation of ALP miniclusters, which can have
interesting astrophysical consequences [45,46,127]. Future
inquiry along these lines, and new ideas to access this
region experimentally, are worth continued investigation.
ALPs can provide a compelling and viable dark matter

candidate, behaving much like the QCD axion in the early
Universe, but in many cases allowing for larger couplings
to photons. ALP dark matter, therefore, can be easier to
detect than the QCD axion, especially at low masses. More
generally we emphasize the importance of vigorously
pursuing the axion direct detection program, targeting a
wide range of masses and exploring the ALP parameter
space beyond the canonical QCD axion window.
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APPENDIX A: ANALYTIC ESTIMATES
FOR THE RELIC DENSITY

In this Appendix we derive analytic estimates of the ALP
DM number density.
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1. Temperature-independent ALP mass

First we consider cases where ma is fixed to its zero-
temperature value at times before the onset of ALP
oscillations. The relic density is then given by Eq. (8),
reproduced here for convenience:

Ωa ¼
manaðTadÞ

ρc

�
T0

Tad

�
3 g�SðT0Þ
g�SðTadÞ

: ðA1Þ

Tad is a reference temperature below which the evolution of
the universe is adiabatic and T0 is the temperature today.
Tosc is the SM temperature at the onset of ALP oscillations,
and we have _θðtoscÞ ≃ 0 and naðToscÞ ¼ 1=2maf2aθ20. Below
Tosc the comoving ALP number density is assumed to be
conserved, so that

naðTadÞ ¼
1

2
maf2aθ20

�
Rosc

Rad

�
3

: ðA2Þ

Combining Eqs. (A1)–(A2) yields a general expression for
the relic density,

Ωa ¼
1

2

m2
af2aθ20
ρc

�
Rosc

Rad

�
3
�
T0

Tad

�
3 g�SðT0Þ
g�SðTadÞ

: ðA3Þ

To obtain Ωa we therefore need to determine Tosc=Tad
and/or Rosc=Rad in the various cases.
We parametrize the relationship at oscillation between

the Hubble parameter and ALP mass as

Hosc ¼ ma=q0 ðT-independentÞ: ðA4Þ

Here q0 is a positive number that should be chosen to
accurately reproduce the numerical predictions, described
in Appendix B. In our final estimates we will take q0 ¼ 1.6;
the reasoning behind this choice is explained below. At the
time when oscillations begin, it is assumed that the universe
is dominated by a fluid with equation of state p ¼ wρ (for
which H2 ∝ R−3ðwþ1Þ), and then later transitions instanta-
neously to radiation domination at some T ¼ T�:

H2
osc

�
Rosc

R�

�
3ðwþ1Þ

≃
π2

90M2
Pl

g�ðT�ÞT4�: ðA5Þ

In all cases we consider (RD, EMD, and kination), we can
take

Tad → T�: ðA6Þ

Henceforth we will refer only to T�. In RD, we can also set
T� ¼ Tosc. In EMD, T� ¼ TRH, and in kination T� ¼ Tkin.
Combining Eqs. (A4)–(A5), we obtain Rosc=R� in terms of
T� and ma. Plugging in to Eq. (A3) and setting q0 ¼ 1.6
yields the final result for the relic density for each case,
given in the main text as Eqs. (11), (12), and (14). Note that

in the kination case we could have instead taken Tad ¼ Tosc
and used the conservation of comoving entropy to relate
Tosc to Tkin. This yields the same result.
We now discuss q0 in more detail, which will be

particularly relevant when the ALP mass is T-dependent.
First we inspect the form of solutions to the ALP EOM.
Consider the EOM during a period with equation of state

p ¼ wρ, such that R ∼ t
2

3ðwþ1Þ. With θðtÞ≡ aðtÞ=fa we have

θ̈ þ 2

ðwþ 1Þt
_θ þm2

aθ ¼ 0 ðA7Þ

which has solutions

θðtÞ ¼ tr½c1JrðmatÞ þ c2YrðmatÞ�: ðA8Þ
Here r ¼ 1

2
− 1

1þw, c1;2 are integration constants, and JrðxÞ,
YrðxÞ are Bessel functions of the first and second kind.
Given that the Bessel functions only exhibit oscillatory
behavior when their arguments are Oð1Þ or larger, we see
that ALP oscillations begin when

ma ≃ A=t; ðA9Þ
with A an Oð1Þ number. Since H ≃ 2=ð3tð1þ wÞ, we
define the onset of oscillations as

ma≃
3Að1þwÞ

2
Hosc: ðT-independentALPmassÞ ðA10Þ

For EMD (w ¼ 0), RD (w ¼ 1=3), and kination (w ¼ 1),
we obtainma≃f3=2;2;3g×AHosc, respectively. Comparing
our analytic and numerical solutions, we find that choosing
A such that ma ≃ 1.6Hosc reproduces the numerical results
to within a few tens of percent across the parameter space
considered in the various cosmologies. (This appears con-
sistent with the discussion of Ref. [12], which found ma ∼
2Hosc is a better choice thanma ∼ 3Hosc in the RD scenario.)
This value of q0 can be adjusted to yield slightly better
agreement in each cosmology, but for simplicity we take a
common value. Therefore, introducing the parametrization
(A10) was not really necessary in this case; however, a
similar parametrization is useful when considering temper-
ature-dependent masses, so we keep it for comparison.
Summarizing, we take q0 ¼ 1.6 for all cosmologies, or in
the parametrization (A10),

A ¼

8>><
>>:

16
15
; EMD

4
5
; RD
8
15
; kination:

ðA11Þ

2. Temperature-dependent ALP mass

We can proceed similarly when maðTÞ varies near the
onset of oscillations. As discussed in the main text, the
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temperature controlling the ALP mass does not need to
equal the temperature of the SM bath. We parametrize the
temperature of the hidden sector THS as

THS ≡ ξðTÞT ðA12Þ

where T is the temperature of the SM photon bath. We
take an instanton-motivated class of models in which
maðTHSÞ ¼ ðΛ=THSÞbma for T > Λ. Subsequently, all
temperatures will correspond to SM temperatures, unless
otherwise stated, and factors of ξ will be used to convert to
hidden sector temperatures.
Denoting the ALP mass at the onset of oscillations as

mosc and the mass today as ma, the relic density can be
expressed as:

Ωa ≃
1

2ρc

�
Rosc

R0

�
3

mamoscf2aθ20

≃
1

2ρc

�
Rosc

R�

�
3 g�sðT0ÞT3

0

g�sðT�ÞT3�
mamoscf2aθ20: ðA13Þ

Here we have again assumed that at the time when
oscillations begin, the universe is dominated by a fluid
with equation of state p ¼ wρ (for which H2 ∝ R−3ðwþ1Þ),
and then later transitions instantaneously to radiation
domination at some T ¼ T� so that Eq. (A5) applies.
We parametrize the oscillation time in the case of temper-
ature-dependent ALP masses via

Hosc ¼ mosc=qT ðT-dependentÞ ðA14Þ

generalizing Eq. (A4). qT should again be a positive
number chosen so that the analytic formulas provide a
good approximation to the numerical results. Note that qT
and q0 can be different.
For a fixed ma, fa and θ0, we can compare the relic

densities in the T-dependent and T-independent cases.
From Eqs. (A3), (A5), and (A13) we have

γ ¼ Ωa

ΩT-ind
a

≃
mosc

ma

�
HT-ind

osc

Hosc

� 2
wþ1

≃
mosc

ma

�
qTma

q0mosc

� 2
wþ1

¼
�
qT
q0

� 2
wþ1

�
ma

mosc

� 2
wþ1

−1
: ðA15Þ

Thus, to determine Ωa in the T-dependent case, we can use
the T-independent results of Eqs. (11), (12), and (14),
multiplying by γ (assuming that T-dependence is relevant at
the time of oscillations) and using the value of Tosc
predicted for T-dependent masses. To do so, we must
determine mosc and appropriate choices of qT in each case.
How should qT be chosen? Consider the ALP EOM for

times when maðTÞ ¼ maðΛ=ξðTÞTÞb. During a period of
adiabatic evolution dominated by a fluid with equation of
state ρ ¼ wp, the temperature evolves as

T ∝ R−1 ∝ t−
2

3ðwþ1Þ ðA16Þ

away from mass thresholds. As a result, the T-dependent
mass term in the ALP EOM can be written in terms of t so
that the EOM becomes

θ̈ þ 2

ðwþ 1Þt
_θ þm2

a

�
Λ
Ti

�
b
t

4b
3ðwþ1Þθ ¼ 0 ðA17Þ

where Ti is a constant (neglecting the T-dependence of g�
and ξ). The solutions of this equation are sightly more
complicated than in the T-independent case, but can still be
written in terms of Bessel functions with arguments

3ð1þ wÞt
3ð1þ wÞ þ 2b

mat
2b

3ð1þwÞ

�
Λ
Ti

�
b
: ðA18Þ

The solution starts to oscillate when the above quantity
∼Oð1Þ≡ A. Using H ¼ 2=ð3ð1þ wÞtÞ and maðtÞ ¼
mat

2b
3ð1þwÞðΛ=TiÞb, oscillations begin when

mosc ≃
Að3þ 3wþ 2bÞ

2
Hosc ðRD; kinationÞ: ðA19Þ

Since we have assumed adiabatic evolution, this result
applies to our radiation-dominated and kination scenarios.
For the EMD cosmology, entropy is injected into the

bath from decays. However, we can still derive an approxi-
mate time-temperature relation from Eq. (39) (again
neglecting T-dependence in g� and ξ). The ALP EOM
in this case is approximately

θ̈ þ 2

t
_θ þm2

a

�
Λ
Ti

�
b
t
b
2θ ¼ 0: ðA20Þ

Proceeding as before, we find that the onset of oscillations
occurs when

mosc ≃
3Að4þ bÞ

8
Hosc ðEMDÞ: ðA21Þ

Eqs. (A19) and (A21) reduce to the results from Eq. (A10)
when b ¼ 0, as they should. Taking the same values for A
as in Eq. (A11), we obtain

qT ¼

8>>><
>>>:

2
5
ð4þ bÞ; EMD

4
5
ð2þ bÞ; RD
8
15
ð3þ bÞ; kination

ðA22Þ

When comparing to our numerical solutions, we find that
neglecting the b-dependence in qT for b ¼ 4 typically
results in ∼70% − 100% discrepancies from the numerics.
The disagreement becomes worse for larger values of b, in
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which case choosing the correct value of qT becomes
particularly important.
Finally, we obtain the oscillation temperature from

mosc ¼ qTHosc, assuming that maðTÞ ¼ maðΛ=ξTÞb at
oscillation. We refer to this oscillation temperature as
ToscðbÞ to distinguish it from the T-independent prediction.
To obtain ToscðbÞ, we must specify HðTÞ. In RD this is
simple. In kination, the temperature of the radiation bath is
given by conservation of the comoving entropy density
once Tkin is specified, and the scale factor evolution from
Tkin to Tosc is determined by Eq. (A5). For EMD, one can
use the late-time solution for the radiation energy density,
Eq. (39), along with Eq. (A5), to write the Hubble
parameter in terms of the temperature. Solving for
ToscðbÞ in this way yields Eqs. (33), (40), and (43).
Inserting these temperatures into maðTÞ and Eq. (A15)
yields Eqs. (34), (41) and (44) for γT.
This is not quite the end of the story for the temperature-

dependent scenarios. Our results for qT, ToscðbÞ, and γT
followed from inspecting solutions to the ALP EOM with
maðTÞ ¼ maðΛ=ξTÞb. Therefore, they only apply if
qTHΛ ≤ ma, where HΛ is the Hubble parameter at TΛ ¼
Λ=ξðTΛÞ, when the mass saturates to its T-independent
value. If instead qTHΛ > ma, oscillations begin after the
mass has already saturated to ma, and the ALP EOM
solution is given by Eq. (A8). Then there are two
possibilities we must consider. First, if q0HΛ > ma, we
recover the T-independent case. Second, if q0HΛ < ma, at
TΛ the ALP will start to rapidly oscillate across this
threshold, and Hosc is given by

maðToscÞ¼ma; Hosc≃HΛ; q¼ qmax≡ma

HΛ
: ðA23Þ

In this sudden-oscillations case, Tosc ¼ TΛ ¼ Λ=ξosc and γ
is given by

γmax ¼
�

ma

HΛq0

� 2
wþ1

; ðA24Þ

which yields Eqs. (35), (42), and (45).
Summarizing, we have derived the enhancement factor

relevant for T-dependent ALP masses of the formmaðTÞ ¼
maðΛ=ξTÞb for three qualitatively different regimes. If
qTHΛ ≤ ma, γ ¼ γT . If instead, qTHΛ > ma > q0HΛ,
oscillations begin suddenly at TΛ, and γ should instead
be taken as γmax. The condition qTHΛ > ma > q0HΛ
corresponds to γT > γmax. Finally, if qTHΛ, q0HΛ > ma,
one reproduces the T-independent case, and γ ¼ 1. This
case occurs when both γT , γmax < 1. Therefore, the correct
value of γ is given compactly by

γ ¼ max f1;min fγb; γmaxgg: ðA25Þ

The temperature Tosc should be specified as in Eq. (32). If
the resulting Tosc < TRH or Tkin, the results for radiation

domination should be used. Using the above expressions
typically reproduces the numerical results to within a few
tens of percent across the parameter space.

APPENDIX B: NUMERICS

To fit coefficients in some of the analytical expressions,
and to determine their accuracy, we solve the ALP EOM

θ̈ þ 3H _θ þm2
aðtÞθ ¼ 0 ðB1Þ

numerically for the EMD, RD, and kination scenarios. We
consider times between t0 and tf with θðt0Þ ¼ θ0. The
initial time t0 is chosen sufficiently above tosc [defined
implicitly by Eq. (32)] to capture the start of ALP
evolution, while tf is taken large enough so that we can
subsequently approximate the ALP number density as
redshifting like nonrelativistic matter. To obtain the relic
density today, we use

Ωa ¼
1

ρc

�
T0

TðtfÞ
�

3 g�sðT0Þ
g�sðTðtfÞÞ

naðtfÞ ðB2Þ

where naðtfÞ is the ALP number density at the time tf:

naðtfÞ ¼
f2a

2m2
aðtfÞ

½_θ2ðtfÞ þm2
aðtfÞθ2ðtfÞ�: ðB3Þ

The various cosmologies predict different relations for
HðtÞ andmaðtÞ entering Eq. (B1). The ALP contribution to
H is negligible at times near oscillation in the parameter
space of interest. We therefore neglect it and model the
matter, radiation, and kination components as perfect fluids
with equation of state parameters w ¼ 0; 1

3
, and 1, respec-

tively. Furthermore, we treat the SM and HS radiation (if
any) as a single fluid with temperatures related by ξðTÞ,
which is assumed to be approximately constant and set by
ξosc, taken as an input parameter. In the standard RD
cosmology, we can simply use

HðtÞ ¼ 1

2t
¼ πffiffiffiffiffi

90
p

MPl

ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
T2 ðB4Þ

to determine TðtÞ. In the kination scenario, we have

HðrÞ ¼ πffiffiffiffiffi
90

p
MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTkinÞ

p
T2
kinr

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r−2

p
ðB5Þ

where r≡ R=Rkin is the ratio of the FRW scale factor to its
value at Tkin, defined as the temperature for which the
radiation and kination field energy densities are equal. The
parameter r is related to t through

t ¼ t0 þ
Z

r

r0

dr0

r0Hðr0Þ ðB6Þ
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where t0 should be taken before ALP oscillation and during
the kination phase so that r0 can be defined via
Hðr0Þ ¼ 1=ð3t0Þ. The resulting rðtÞ yields HðtÞ through
Eq. (B5), while TðtÞ is defined from

g�ðTÞT4 ¼ g�ðTkinÞT4
kinr

−4ðtÞ: ðB7Þ

In modeling a period of early matter domination, the
radiation and matter densities are coupled and given as a
function of time by numerically solving the system

_ρϕ þ 3Hρϕ ¼ −Γϕρϕ ðB8Þ

_ρR þ 4HρR ¼ þΓϕρϕ ðB9Þ

with H ¼ 1=ð ffiffiffi
3

p
MPlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ þ ρR

p
and Γϕ chosen so that

ρR ¼ ρϕ at a temperature TRH. The temperature is defined
from the radiation energy density ρR ¼ π2=30g�ðTÞT4 in
the usual way. The final time is chosen to correspond to
temperatures below TRH so that Eq. (B2) can be used.
It is worth noting that the numerical treatment of the

radiation bath outlined above is technically not entirely
correct: near the QCD phase transition (or when the
relativistic HS DOFs annihilate) the radiation bath
equation of state can deviate somewhat from ρ ¼ 1=3p.
Conservation of comoving entropy density can instead be
used in this case to track the evolution of ρR with t.
However, we find that the corresponding effects are rather
small and so we neglect them in our analysis.

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977).

[2] R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791
(1977).

[3] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
[4] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
[5] L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983).
[6] M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).
[7] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,

127 (1983).
[8] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J.

Redondo, and A. Ringwald, J. Cosmol. Astropart. Phys.
06 (2012) 013.

[9] P. Svrcek and E. Witten, J. High Energy Phys. 06 (2006)
051.

[10] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,
and J. March-Russell, Phys. Rev. D 81, 123530 (2010).

[11] M. Cicoli, M. Goodsell, and A. Ringwald, J. High Energy
Phys. 10 (2012) 146.

[12] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[13] A. Hook, arXiv:1812.02669.
[14] P. W. Graham, I. G. Irastorza, S. K. Lamoreaux, A.

Lindner, and K. A. van Bibber, Annu. Rev. Nucl. Part.
Sci. 65, 485 (2015).

[15] I. G. Irastorza and J. Redondo, Prog. Part. Nucl. Phys. 102,
89 (2018).

[16] S. J. Asztalos et al. (ADMX Collaboration), Phys. Rev.
Lett. 104, 041301 (2010).

[17] N. Du et al. (ADMX Collaboration), Phys. Rev. Lett. 120,
151301 (2018).

[18] B. T. McAllister, G. Flower, E. N. Ivanov, M. Goryachev, J.
Bourhill, and M. E. Tobar, Phys. Dark Universe 18, 67
(2017).

[19] D. Alesini et al., Phys. Rev. D 99, 101101 (2019).
[20] B. M. Brubaker et al., Phys. Rev. Lett. 118, 061302

(2017).

[21] L. Zhong et al. (HAYSTAC Collaboration), Phys. Rev. D
97, 092001 (2018).

[22] A. Caldwell, G. Dvali, B. Majorovits, A. Millar, G. Raffelt,
J. Redondo, O. Reimann, F. Simon, and F. Steffen
(MADMAX Working Group), Phys. Rev. Lett. 118,
091801 (2017).

[23] P. Brun et al. (MADMAX Collaboration), Eur. Phys. J. C
79, 186 (2019).

[24] M. Baryakhtar, J. Huang, and R. Lasenby, Phys. Rev. D 98,
035006 (2018).

[25] S. Chaudhuri, P. W. Graham, K. Irwin, J. Mardon, S.
Rajendran, and Y. Zhao, Phys. Rev. D 92, 075012 (2015).

[26] M. Silva-Feaver et al., IEEE Trans. Appl. Supercond. 27,
1400204 (2017).

[27] Y. Kahn, B. R. Safdi, and J. Thaler, Phys. Rev. Lett. 117,
141801 (2016).

[28] J. L. Ouellet et al., Phys. Rev. Lett. 122, 121802 (2019).
[29] A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 113,

161801 (2014).
[30] A. Geraci et al., Springer Proc. Phys. 211, 151 (2018).
[31] P. W. Graham and S. Rajendran, Phys. Rev. D 88, 035023

(2013).
[32] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and

A. Sushkov, Phys. Rev. X 4, 021030 (2014).
[33] A. Garcon et al., Quantum Sci. Technol. 3, 014008 (2017).
[34] J. Beacham et al., arXiv:1901.09966.
[35] L. Di Luzio, F. Mescia, and E. Nardi, Phys. Rev. Lett. 118,

031801 (2017).
[36] L. Di Luzio, F. Mescia, and E. Nardi, Phys. Rev. D 96,

075003 (2017).
[37] P. Agrawal, J. Fan, M. Reece, and L.-T. Wang, J. High

Energy Phys. 02 (2018) 006.
[38] M. Farina, D. Pappadopulo, F. Rompineve, and A. Tesi,

J. High Energy Phys. 01 (2017) 095.
[39] N. Craig, A. Hook, and S. Kasko, J. High Energy Phys. 09

(2018) 028.

DARK MATTER TARGETS FOR AXIONLIKE PARTICLE … PHYS. REV. D 100, 015049 (2019)

015049-17

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1088/1475-7516/2012/06/013
https://doi.org/10.1088/1475-7516/2012/06/013
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1007/JHEP10(2012)146
https://doi.org/10.1007/JHEP10(2012)146
https://doi.org/10.1016/j.physrep.2016.06.005
http://arXiv.org/abs/1812.02669
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1016/j.ppnp.2018.05.003
https://doi.org/10.1016/j.ppnp.2018.05.003
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1103/PhysRevD.99.101101
https://doi.org/10.1103/PhysRevLett.118.061302
https://doi.org/10.1103/PhysRevLett.118.061302
https://doi.org/10.1103/PhysRevD.97.092001
https://doi.org/10.1103/PhysRevD.97.092001
https://doi.org/10.1103/PhysRevLett.118.091801
https://doi.org/10.1103/PhysRevLett.118.091801
https://doi.org/10.1140/epjc/s10052-019-6683-x
https://doi.org/10.1140/epjc/s10052-019-6683-x
https://doi.org/10.1103/PhysRevD.98.035006
https://doi.org/10.1103/PhysRevD.98.035006
https://doi.org/10.1103/PhysRevD.92.075012
https://doi.org/10.1109/TASC.2016.2631425
https://doi.org/10.1109/TASC.2016.2631425
https://doi.org/10.1103/PhysRevLett.117.141801
https://doi.org/10.1103/PhysRevLett.117.141801
https://doi.org/10.1103/PhysRevLett.122.121802
https://doi.org/10.1103/PhysRevLett.113.161801
https://doi.org/10.1103/PhysRevLett.113.161801
https://doi.org/10.1007/978-3-319-92726-8
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1088/2058-9565/aa9861
http://arXiv.org/abs/1901.09966
https://doi.org/10.1103/PhysRevLett.118.031801
https://doi.org/10.1103/PhysRevLett.118.031801
https://doi.org/10.1103/PhysRevD.96.075003
https://doi.org/10.1103/PhysRevD.96.075003
https://doi.org/10.1007/JHEP02(2018)006
https://doi.org/10.1007/JHEP02(2018)006
https://doi.org/10.1007/JHEP01(2017)095
https://doi.org/10.1007/JHEP09(2018)028
https://doi.org/10.1007/JHEP09(2018)028


[40] P. Agrawal, G. Marques-Tavares, and W. Xue, J. High
Energy Phys. 03 (2018) 049.

[41] R. T. Co, L. J. Hall, and K. Harigaya, Phys. Rev. Lett. 120,
211602 (2018).

[42] L. Visinelli and P. Gondolo, Phys. Rev. D 81, 063508
(2010).

[43] N. Ramberg and L. Visinelli, Phys. Rev. D 99, 123513
(2019).

[44] L. Visinelli, Phys. Rev. D 96, 023013 (2017).
[45] L. Visinelli and J. Redondo, arXiv:1808.01879 [Phys. Rev.

D (to be published)].
[46] A. E. Nelson and H. Xiao, Phys. Rev. D 98, 063516

(2018).
[47] P. Draper, J. Kozaczuk, and J.-H. Yu, Phys. Rev. D 98,

015028 (2018).
[48] F. D’Eramo, N. Fernandez, and S. Profumo, J. Cosmol.

Astropart. Phys. 05 (2017) 012.
[49] F. D’Eramo, N. Fernandez, and S. Profumo, J. Cosmol.

Astropart. Phys. 02 (2018) 046.
[50] E.W. Kolb and M. S. Turner, Front. Phys. 69, 1 (1990).
[51] T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi,

Phys. Rev. D 85, 105020 (2012); 86, 089902(E) (2012).
[52] M. Gorghetto, E. Hardy, and G. Villadoro, J. High Energy

Phys. 07 (2018) 151.
[53] V. B. Klaer and G. D. Moore, J. Cosmol. Astropart. Phys.

11 (2017) 049.
[54] M. Buschmann, J. W. Foster, and B. R. Safdi, arXiv:

1906.00967.
[55] J. Jaeckel, V. M. Mehta, and L. T. Witkowski, J. Cosmol.

Astropart. Phys. 01 (2017) 036.
[56] J. Berges, A. Chatrchyan, and J. Jaeckel, arXiv:

1903.03116.
[57] R. T. Co, E. Gonzalez, and K. Harigaya, J. High Energy

Phys. 05 (2019) 162.
[58] M. S. Turner, Phys. Rev. D 33, 889 (1986).
[59] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[60] T. Banks and M. Dine, Nucl. Phys. B505, 445 (1997).
[61] M. Kawasaki, K. Kohri, and N. Sugiyama, Phys. Rev. D

62, 023506 (2000).
[62] S. Hannestad, Phys. Rev. D 70, 043506 (2004).
[63] M. Joyce, Phys. Rev. D 55, 1875 (1997).
[64] P. G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503

(1998).
[65] S. M. Barr and D. Seckel, Phys. Rev. D 46, 539 (1992).
[66] R. Holman, S. D. H. Hsu, T. W. Kephart, E. W. Kolb, R.

Watkins, and L. M. Widrow, Phys. Lett. B 282, 132 (1992).
[67] R. Holman, S. D. H. Hsu, E. W. Kolb, R. Watkins, and

L. M. Widrow, Phys. Rev. Lett. 69, 1489 (1992).
[68] M. Kamionkowski and J. March-Russell, Phys. Rev. Lett.

69, 1485 (1992).
[69] M. Kamionkowski and J. March-Russell, Phys. Lett. B

282, 137 (1992).
[70] N. Aghanim et al. (Planck Collaboration), arXiv:

1807.06209.
[71] J. L. Feng and Y. Shadmi, Phys. Rev. D 83, 095011 (2011).
[72] J. M. Cline, Z. Liu, G. Moore, and W. Xue, Phys. Rev. D

90, 015023 (2014).
[73] K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. P. Tait,

Phys. Rev. D 89, 115017 (2014).

[74] Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker,
Phys. Rev. Lett. 113, 171301 (2014).

[75] L. Forestell, D. E. Morrissey, and K. Sigurdson, Phys. Rev.
D 97, 075029 (2018).

[76] A. Berlin, N. Blinov, S. Gori, P. Schuster, and N. Toro,
Phys. Rev. D 97, 055033 (2018).

[77] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod.
Phys. 53, 43 (1981).

[78] S. Borsanyi et al., Nature (London) 539, 69 (2016).
[79] S. Borsanyi, M. Dierigl, Z. Fodor, S. D. Katz, S. W. Mages,

D. Nogradi, J. Redondo, A. Ringwald, and K. K. Szabo,
Phys. Lett. B 752, 175 (2016).

[80] M. Dine, P. Draper, L. Stephenson-Haskins, and D. Xu,
Phys. Rev. D 96, 095001 (2017).

[81] P. Adshead, Y. Cui, and J. Shelton, J. High Energy Phys. 06
(2016) 016.

[82] V. Anastassopoulos et al. (CAST Collaboration), Nat.
Phys. 13, 584 (2017).

[83] D. Cadamuro and J. Redondo, J. Cosmol. Astropart. Phys.
02 (2012) 032.

[84] A. Friedland, M. Giannotti, and M. Wise, Phys. Rev. Lett.
110, 061101 (2013).

[85] G. G. Raffelt, Stars as Laboratories for Fundamental
Physics (University Press, Chicago, 1996).

[86] M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer, and K.
Schmidt-Hoberg, J. High Energy Phys. 12 (2017) 094.

[87] J. S. Lee, arXiv:1808.10136.
[88] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi,

and A. Ringwald, J. Cosmol. Astropart. Phys. 02 (2015)
006.

[89] E. Masso and R. Toldra, Phys. Rev. D 55, 7967 (1997).
[90] J. M. Overduin and P. S. Wesson, Phys. Rep. 402, 267

(2004).
[91] A. Abramowski et al. (H.E.S.S. Collaboration), Phys. Rev.

D 88, 102003 (2013).
[92] M. Ajello et al. (Fermi-LAT Collaboration), Phys. Rev.

Lett. 116, 161101 (2016).
[93] D. Wouters and P. Brun, Astrophys. J. 772, 44 (2013).
[94] L. Chen and J. P. Conlon, Mon. Not. R. Astron. Soc. 479,

2243 (2018).
[95] M. Berg, J. P. Conlon, F. Day, N. Jennings, S. Krippendorf,

A. J. Powell, and M. Rummel, Astrophys. J. 847, 101
(2017).

[96] M. C. D. Marsh, H. R. Russell, A. C. Fabian, B. P.
McNamara, P. Nulsen, and C. S. Reynolds, J. Cosmol.
Astropart. Phys. 12 (2017) 036.

[97] A. Arvanitaki, M. Baryakhtar, and X. Huang, Phys. Rev. D
91, 084011 (2015).

[98] C. Boutan et al. (ADMX Collaboration), Phys. Rev. Lett.
121, 261302 (2018).

[99] C. Hagmann, P. Sikivie, N. S. Sullivan, and D. B. Tanner,
Phys. Rev. D 42, 1297 (1990).

[100] S. De Panfilis, A. C. Melissinos, B. E. Moskowitz, J. T.
Rogers, Y. K. Semertzidis, W. Wuensch, H. J. Halama,
A. G. Prodell, W. B. Fowler, and F. A. Nezrick, Phys. Rev.
Lett. 59, 839 (1987).

[101] W. Wuensch, S. De Panfilis-Wuensch, Y. K. Semertzidis,
J. T.Rogers,A. C.Melissinos,H. J.Halama,B. E.Moskowitz,
A. G. Prodell, W. B. Fowler, and F. A. Nezrick, Phys. Rev. D
40, 3153 (1989).

BLINOV, DOLAN, DRAPER, and KOZACZUK PHYS. REV. D 100, 015049 (2019)

015049-18

https://doi.org/10.1007/JHEP03(2018)049
https://doi.org/10.1007/JHEP03(2018)049
https://doi.org/10.1103/PhysRevLett.120.211602
https://doi.org/10.1103/PhysRevLett.120.211602
https://doi.org/10.1103/PhysRevD.81.063508
https://doi.org/10.1103/PhysRevD.81.063508
https://doi.org/10.1103/PhysRevD.99.123513
https://doi.org/10.1103/PhysRevD.99.123513
https://doi.org/10.1103/PhysRevD.96.023013
http://arXiv.org/abs/1808.01879
https://doi.org/10.1103/PhysRevD.98.063516
https://doi.org/10.1103/PhysRevD.98.063516
https://doi.org/10.1103/PhysRevD.98.015028
https://doi.org/10.1103/PhysRevD.98.015028
https://doi.org/10.1088/1475-7516/2017/05/012
https://doi.org/10.1088/1475-7516/2017/05/012
https://doi.org/10.1088/1475-7516/2018/02/046
https://doi.org/10.1088/1475-7516/2018/02/046
https://doi.org/10.1103/PhysRevD.85.105020
https://doi.org/10.1103/PhysRevD.86.089902
https://doi.org/10.1007/JHEP07(2018)151
https://doi.org/10.1007/JHEP07(2018)151
https://doi.org/10.1088/1475-7516/2017/11/049
https://doi.org/10.1088/1475-7516/2017/11/049
http://arXiv.org/abs/1906.00967
http://arXiv.org/abs/1906.00967
https://doi.org/10.1088/1475-7516/2017/01/036
https://doi.org/10.1088/1475-7516/2017/01/036
http://arXiv.org/abs/1903.03116
http://arXiv.org/abs/1903.03116
https://doi.org/10.1007/JHEP05(2019)162
https://doi.org/10.1007/JHEP05(2019)162
https://doi.org/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/S0550-3213(97)00413-6
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.62.023506
https://doi.org/10.1103/PhysRevD.70.043506
https://doi.org/10.1103/PhysRevD.55.1875
https://doi.org/10.1103/PhysRevD.58.023503
https://doi.org/10.1103/PhysRevD.58.023503
https://doi.org/10.1103/PhysRevD.46.539
https://doi.org/10.1016/0370-2693(92)90491-L
https://doi.org/10.1103/PhysRevLett.69.1489
https://doi.org/10.1103/PhysRevLett.69.1485
https://doi.org/10.1103/PhysRevLett.69.1485
https://doi.org/10.1016/0370-2693(92)90492-M
https://doi.org/10.1016/0370-2693(92)90492-M
http://arXiv.org/abs/1807.06209
http://arXiv.org/abs/1807.06209
https://doi.org/10.1103/PhysRevD.83.095011
https://doi.org/10.1103/PhysRevD.90.015023
https://doi.org/10.1103/PhysRevD.90.015023
https://doi.org/10.1103/PhysRevD.89.115017
https://doi.org/10.1103/PhysRevLett.113.171301
https://doi.org/10.1103/PhysRevD.97.075029
https://doi.org/10.1103/PhysRevD.97.075029
https://doi.org/10.1103/PhysRevD.97.055033
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1038/nature20115
https://doi.org/10.1016/j.physletb.2015.11.020
https://doi.org/10.1103/PhysRevD.96.095001
https://doi.org/10.1007/JHEP06(2016)016
https://doi.org/10.1007/JHEP06(2016)016
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1088/1475-7516/2012/02/032
https://doi.org/10.1088/1475-7516/2012/02/032
https://doi.org/10.1103/PhysRevLett.110.061101
https://doi.org/10.1103/PhysRevLett.110.061101
https://doi.org/10.1007/JHEP12(2017)094
http://arXiv.org/abs/1808.10136
https://doi.org/10.1088/1475-7516/2015/02/006
https://doi.org/10.1088/1475-7516/2015/02/006
https://doi.org/10.1103/PhysRevD.55.7967
https://doi.org/10.1016/j.physrep.2004.07.006
https://doi.org/10.1016/j.physrep.2004.07.006
https://doi.org/10.1103/PhysRevD.88.102003
https://doi.org/10.1103/PhysRevD.88.102003
https://doi.org/10.1103/PhysRevLett.116.161101
https://doi.org/10.1103/PhysRevLett.116.161101
https://doi.org/10.1088/0004-637X/772/1/44
https://doi.org/10.1093/mnras/sty1591
https://doi.org/10.1093/mnras/sty1591
https://doi.org/10.3847/1538-4357/aa8b16
https://doi.org/10.3847/1538-4357/aa8b16
https://doi.org/10.1088/1475-7516/2017/12/036
https://doi.org/10.1088/1475-7516/2017/12/036
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevD.91.084011
https://doi.org/10.1103/PhysRevLett.121.261302
https://doi.org/10.1103/PhysRevLett.121.261302
https://doi.org/10.1103/PhysRevD.42.1297
https://doi.org/10.1103/PhysRevLett.59.839
https://doi.org/10.1103/PhysRevLett.59.839
https://doi.org/10.1103/PhysRevD.40.3153
https://doi.org/10.1103/PhysRevD.40.3153


[102] T. M. Shokair et al., Int. J. Mod. Phys. A 29, 1443004
(2014).

[103] E. Petrakou (CAPP/IBS Collaboration), EPJ Web Conf.
164, 01012 (2017).

[104] D. Alesini, D. Babusci, D. Di Gioacchino, C. Gatti, G.
Lamanna, and C. Ligi, arXiv:1707.06010.

[105] C. Gatti et al., in 14th Patras Workshop on Axions,
WIMPs and WISPs (AXION-WIMP 2018) (PATRAS 2018)
Hamburg, Germany (Verlag Deutsches Elektronen-
Synchrotron, Hamburg, 2019).

[106] I. Irastorza et al. (IAXO Collaboration) (2013).
[107] R. Bähre et al., J. Instrum. 8, T09001 (2013).
[108] A. Caputo, C. P. Garay, and S. J. Witte, Phys. Rev. D 98,

083024 (2018); 99, 089901(E) (2019).
[109] A. Caputo, M. Regis, M. Taoso, and S. J. Witte, J. Cosmol.

Astropart. Phys. 03 (2019) 027.
[110] A. Hook, Y. Kahn, B. R. Safdi, and Z. Sun, Phys. Rev. Lett.

121, 241102 (2018).
[111] F. P. Huang, K. Kadota, T. Sekiguchi, and H. Tashiro,

Phys. Rev. D 97, 123001 (2018).
[112] B. R. Safdi, Z. Sun, and A. Y. Chen, Phys. Rev. D 99,

123021 (2019).
[113] C. Creque-Sarbinowski and M. Kamionkowski, Phys. Rev.

D 98, 063524 (2018).
[114] W. DeRocco and A. Hook, Phys. Rev. D 98, 035021 (2018).

[115] H. Liu, B. D. Elwood, M. Evans, and J. Thaler, arXiv:
1809.01656 [Phys. Rev. D (to be published)].

[116] I. Obata, T. Fujita, and Y. Michimura, Phys. Rev. Lett. 121,
161301 (2018).

[117] B. T. McAllister, M. Goryachev, J. Bourhill, E. N. Ivanov,
and M. E. Tobar, arXiv:1803.07755.

[118] J. Ouellet and Z. Bogorad, Phys. Rev. D 99, 055010 (2019).
[119] M. Beutter, A. Pargner, T. Schwetz, and E. Todarello,

J. Cosmol. Astropart. Phys. 02 (2019) 026.
[120] Y. Kim, D. Kim, J. Jung, J. Kim, Y. C. Shin, and Y. K.

Semertzidis, arXiv:1810.02459.
[121] M. E. Tobar, B. T. McAllister, and M. Goryachev, arXiv:

1809.01654.
[122] M. Goryachev, B. Mcallister, and M. E. Tobar, arXiv:

1806.07141.
[123] D. J. E. Marsh, K.-C. Fong, E. W. Lentz, L. Smejkal, and

M. N. Ali, arXiv:1807.08810.
[124] Z. Bogorad, A. Hook, Y. Kahn, and Y. Soreq, Phys. Rev.

Lett. 123, 021801 (2019).
[125] R. Janish, V. Narayan, S. Rajendran, and P. Riggins,

arXiv:1904.07245 [Phys. Rev. D (to be published)].
[126] T. D. P. Edwards, M. Chianese, B. J. Kavanagh, S. M.

Nissanke, and C. Weniger, arXiv:1905.04686.
[127] N. Blinov, M. J. Dolan, P. Draper, and J. Kozaczuk (to be

published).

DARK MATTER TARGETS FOR AXIONLIKE PARTICLE … PHYS. REV. D 100, 015049 (2019)

015049-19

https://doi.org/10.1142/S0217751X14430040
https://doi.org/10.1142/S0217751X14430040
https://doi.org/10.1051/epjconf/201716401012
https://doi.org/10.1051/epjconf/201716401012
http://arXiv.org/abs/1707.06010
https://doi.org/10.1088/1748-0221/8/09/T09001
https://doi.org/10.1103/PhysRevD.98.083024
https://doi.org/10.1103/PhysRevD.98.083024
https://doi.org/10.1103/PhysRevD.99.089901
https://doi.org/10.1088/1475-7516/2019/03/027
https://doi.org/10.1088/1475-7516/2019/03/027
https://doi.org/10.1103/PhysRevLett.121.241102
https://doi.org/10.1103/PhysRevLett.121.241102
https://doi.org/10.1103/PhysRevD.97.123001
https://doi.org/10.1103/PhysRevD.99.123021
https://doi.org/10.1103/PhysRevD.99.123021
https://doi.org/10.1103/PhysRevD.98.063524
https://doi.org/10.1103/PhysRevD.98.063524
https://doi.org/10.1103/PhysRevD.98.035021
http://arXiv.org/abs/1809.01656
http://arXiv.org/abs/1809.01656
https://doi.org/10.1103/PhysRevLett.121.161301
https://doi.org/10.1103/PhysRevLett.121.161301
http://arXiv.org/abs/1803.07755
https://doi.org/10.1103/PhysRevD.99.055010
https://doi.org/10.1088/1475-7516/2019/02/026
http://arXiv.org/abs/1810.02459
http://arXiv.org/abs/1809.01654
http://arXiv.org/abs/1809.01654
http://arXiv.org/abs/1806.07141
http://arXiv.org/abs/1806.07141
http://arXiv.org/abs/1807.08810
https://doi.org/10.1103/PhysRevLett.123.021801
https://doi.org/10.1103/PhysRevLett.123.021801
http://arXiv.org/abs/1904.07245
http://arXiv.org/abs/1905.04686

