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Abstract: The swampland distance conjecture (SDC) addresses the ability of effective

field theory to describe distant points in moduli space. It is natural to ask whether there is a

local version of the SDC: is it possible to construct local excitations in an EFT that sample

extreme regions of moduli space? In many cases such excitations exhibit horizons or insta-

bilities, suggesting that there are bounds on the size and structure of field excitations that

can be achieved in EFT. Static bubbles in ordinary Kaluza-Klein theory provide a simple

class of examples: the KK radius goes to zero on a smooth surface, locally probing an in-

finite distance point, and the bubbles are classically unstable against radial perturbations.

However, it is also possible to stabilize KK bubbles at the classical level by adding flux.

We study the impact of imposing the Weak Gravity Conjecture (WGC) on these solutions,

finding that a rapid pair production instability arises in the presence of charged matter with

q/m & 1. We also analyze 4d electrically charged dilatonic black holes. Small curvature at

the horizon imposes a bound log(MBH) & |∆φ|, independent of the WGC, and the bound

can be strengthened if the particle satisfying the WGC is sufficiently light. We conjecture

that quantum gravity in asymptotically flat space requires a general bound on large local-

ized moduli space excursions of the form |∆φ| . | log(RΛ)|, where R is the size of the mini-

mal region enclosing the excitation and Λ−1 is the short-distance cutoff on local EFT. The

bound is qualitatively saturated by the dilatonic black holes and Kaluza-Klein monopoles.
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1 Introduction

It is of interest to try to determine ways in which low-energy physics is constrained by

consistent embedding in a quantum theory of gravity. A number of conjectures have focused

on the properties of moduli spaces.

For example, the swampland distance conjecture (SDC) [1] states that homogeneous

motion over large distances in any large moduli space results in a tower of exponentially

light states descending below the cutoff of the initial EFT. A simple example of a grav-

itational theory with a large moduli space is ordinary Kaluza-Klein (KK) theory. The

energy of the KK spacetime RD,1 × S1 does not depend on the size R of the circle, and

the invariant distance between two points in the moduli space is
∫
dR/R, which diverges

logarithmically as the circle size goes to zero or infinity. If one changes the asymptotic

value of the modulus in this theory, a tower of states — either KK states or wound string

states — becomes light.

These ideas are conceptually clear, and there has been considerable recent investigation

of the SDC (see, for example, [2–11]). However, since a given EFT corresponds to fixed

asymptotic values of the moduli, it is natural to pose a complementary question: is there

a local version of the SDC? In other words, is there any limitation on localized excitations

that sample distant regions of moduli space? Such obstructions might arise in a different

way than the appearance of a tower of light states.

In fact, a number of other rather disparate classical and semiclassical examples of

this “transplanckian censorship” phenomenon are known [12–16].1 For example, in a 4d

massless scalar field theory minimally coupled to gravity, static, spherically symmetric

excursions of the scalar in regions of subplanckian curvature are bounded by O(1) in Planck

units [14]. However, this theory can also be realized as the dimensional reduction of the

5d KK theory. In the KK theory there are solutions known as KK bubbles that sample all

1This notion of transplanckian censorship is distinct from the recent conjectures in [17, 18].
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the way to R = 0 in a local region of low 5d curvature. KK bubbles are thus a concrete

example of a localized excitation sampling an infinite distance in moduli space, and it is of

interest to examine their properties in more detail.

Informally, KK bubbles describe spherical holes of size ρ0 in asymptotically KK space.

Expanding bubbles can nucleate nonperturbatively [19], and the description of this process

as tunneling under an energy barrier was elucidated in [20]. One might already take

Witten’s bubble of nothing as an indication of the inconsistency of the theory. However,

the lifetime of the ordinary KK vacuum can be exponentially long, and there are other static

bubble excitations that exhibit more dramatic behaviors. Static “Schwarzschild” bubble

solutions were first found in [21, 22], along with a larger family of static “Kerr” solutions.

Near the wall of a KK bubble, the circle radius R goes to zero, smoothly truncating the

spacetime the physical radius ρ0. The geometries therefore have the interesting property

that they sample points separated by an infinite proper distance in moduli space in well-

localized, low-curvature regions of physical space. From the perspective of dimensional

reduction, the KK scalar diverges on the surface of the bubbles. These solutions are thus

a natural laboratory for the questions raised above.2

It turns out that all of these static bubbles are classically unstable. The instability of

the static, asymptotically flat Schwarzschild bubble was demonstrated in [24] and given a

mechanical interpretation in [20]: this bubble sits at the top of the potential “hill” under

which Witten’s bubble mediates tunneling. (The static bubble is therefore also responsible

for topology change at high temperature [25], analogous to a sphaleron in gauge theories.)

Similarly, the asymptotically flat Kerr bubbles were shown to be unstable in [26], with an

equivalent relationship to a known tunneling process [27]. It was suggested in [26] that the

classically instabilities of the Schwarzschild and Kerr bubbles should be thought of as a

pathology of the type described above: distant points in moduli space are “hidden” behind

an instability.

It is also known, however, that KK bubbles can be perturbatively stabilized by em-

bedding them in spacetimes with different asymptotics, or, in asymptotically flat space, by

wrapping them in flux. In the latter case, explicit examples of bubble geometries stabilized

by 3-form flux were found in [28, 29]. These spacetimes do not appear to be particu-

larly theoretically exotic, and so it is curious that they do not seem to exhibit horizons or

instabilities.

In a different context, it has recently been shown in refs. [30–32] that potential coun-

terexamples to cosmic censorship can be avoided by imposing the weak gravity conjecture

(WGC) [33]. In short, the proposed counterexamples involve electromagnetic fields, and

when charged scalar fields satisfying q/m > 1 are added, the solutions are unstable against

scalar perturbations. (Scalar fields are used to facilitate a classical analysis; fermions are

expected to perform a similar function, but a more complicated treatment is required.)

2Casimir energies lift the moduli space in nonsupersymmetric KK theories. As usual we assume that the

classical bubble solutions provide useful approximations to solutions in theories with moduli stabilized by

additional fluxes or other objects. Ref. [23], for example, found that neutral bubble solutions persist after

adding simple stabilizing potentials.
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We will apply the idea of [30–32] to the perturbatively-stable charged KK bubble

spacetimes of [29] and argue that a new instability arises in the presence of charged matter

satisfying the WGC. Charged objects are wound strings, and one can screen some of the

bubble’s charge by throwing oppositely charged strings into it. For sufficiently large q/m,

we might expect that the vacuum will become unstable against rapid Schwinger production

near the bubble wall. We study this question with a toy model in the dimensionally reduced

theory, where the lowest wound string modes are represented by a massive charged scalar

field coupled to ordinary electromagnetic flux. We show that in this model the negatively-

charged ground state energy drops below −m for q/m & 1, signaling an instability against

pair creation, and we argue that discharge rate is typically much faster than the tunneling

rate to larger expanding bubbles. This suggests that the WGC can play a similar role in

the censorship of infinite localized field excursions.

Another interesting class of geometries is provided by charged black holes with large

moduli variations outside the horizon. We estimate the discharge rate of 4d charged dila-

tonic black holes of [34]. In these geometries, the size of the dilaton excursion from infinity

to the horizon is controlled by the charge of the black hole, diverging in the extremal

limit. Low curvature in the region of the large excursion requires |∆φ| . log(M). For

sub-extremal black holes the excursion is finite, and we find that the discharge rate is fast

if the WGC is satisfied by a light particle of mass m � 1/M . For sufficiently large black

holes M & max(e|∆φ|, 1/m) the rate is slow.

We conclude with a loose conjecture: quantum gravity in asymptotically flat

space requires a general bound on large localized moduli space excursions of the form

|∆φ| . | log(RΛ)|, where R is the size of the minimal region enclosing the excitation and

Λ−1 is a short-distance cutoff. Both neutral and charged KK bubbles have finite R and in-

finite excursions, but are strongly unstable. Dilatonic black holes in a controlled EFT also

satisfy the bound. KK monopoles provide another example: they are stable and sample

an infinite distance in moduli space, but only at a single point, so the visible excursion is

limited by the short-distance cutoff.

2 Charged KK bubbles

We begin by discussing a representative class of Kaluza-Klein bubbles perturbatively stabi-

lized by flux. We then add matter of mass m and charge q to the system and demonstrate

the existence of a rapid pair-production instability for q/m & 1.

2.1 Classical solutions

A number of static charged bubble solutions were obtained in [28, 29]. In [29], a 6D

bubble stabilized by electric and magnetic 3-form flux was constructed from a family of

5D zero-momentum initial data characterizing bubbles of different sizes. This method

is particularly convenient for assessing bubble stability against radial perturbations. We

review this construction here, simplifying to case of purely electric 3-form flux.
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Specifically, we consider 6D Einstein gravity minimally coupled to an Abelian 3-form

field strength C,

S =

∫
d6x
√
−g6

(
1

16πG
R− 1

12
CµνρC

µνρ

)
. (2.1)

An ansatz for a family of 5D spatial metrics is given by

ds2
spatial = U(ρ)dχ2 +

dρ2

U(ρ)h(ρ)
+ ρ2dΩ3 (2.2)

with

U(ρ) ≡ 1− ρ2
0

ρ2
. (2.3)

Taking ρ ≥ ρ0, this is a candidate for a family of bubble initial data. The function h will be

determined by the Hamiltonian constraint, and the periodicity of the KK circle at infinity

χ ∼ χ+ L will be determined by requiring the circle to pinch off smoothly at ρ = ρ0.

We now turn on electric 3-form flux around the bubbles, C = Q0

2π2 (?ε3), where ε3 is the

volume element of the spatial S3. Concretely, the field strength we consider is

Cρtχ =
NQ0

2π2
√
hρ3

, (2.4)

where N is the lapse function yet to be determined. This field strength satisfies the Gauss

law. The Hamiltonian constraint is

5R =
Q2

ρ6
, (2.5)

where 5R is the 5D Ricci scalar determined by the spatial metric (2.2), Q is a dimensionful

charge given by Q ≡ Q0/(2π
2M2

6 ), and M6 = (8πG)−1/4 is the 6D Planck scale. Solving

the constraint equation, we find

h(ρ) ≡ 1 +
b

3ρ2 − 2ρ2
0

− Q2

4ρ2
0ρ

2
(2.6)

where b is an arbitrary constant.

To make the geometry smooth everywhere, we impose periodicity χ ∼ χ + L on the

KK circle, where

L =
2πρ0(

1 + b
ρ2

0
− Q2

4ρ4
0

)1/2
. (2.7)

With this periodicity, space ends on a smooth cap at ρ = ρ0.

Thus far we have a family of charged bubble initial data satisfying the constraint

equations. For a given charge Q and asymptotic circle size L, it is a one-parameter family

of bubbles labeled by the radius ρ0. The energy of the family is

M = π2LM4
6

(
Q2

2ρ2
0

+ 2ρ2
0 −

4π2ρ4
0

L2

)
. (2.8)
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ρ0

M

Figure 1. The energy (eq. (2.8)) of a one-parameter family of initial data labeled by bubble radius

ρ0. From bottom to top, curves correspond to Q = 0, . . . , Q = Qmax. The most stable bubbles lie

at small Q; for Q > Qmax, no stable solution exists.

There is a stable local minimum of the energy M(ρ0) for all Q, L such that

Q < Qmax =
L2

3π2
√

3
. (2.9)

There is also an unstable maximum at larger ρ0. For Q > Qmax, there are no stationary

points.

In figure 1 we illustrate the mass of the initial data as a function of bubble radius ρ0

for 0 ≤ Q ≤ Qmax. Clearly even the perturbatively stable bubble at the local minimum is

unstable against tunneling to larger radii. At Q = Qmax, the barrier disappears completely.

On the other hand, for small Q, the barrier grows, and the rate for this transition may

become extremely slow. In the next section we will show that a new, rapid instability arises

in this limit.

In general the local minimum is a root of a cubic, equivalent to b = 0 in eq. (2.7). For

small Q it simplifies to

ρ2
0 ≈ Q/2. (2.10)

It is straightforward to verify that the local minimum is a static solution to the full Einstein

equations with spacetime metric

ds2 = −h(ρ)dt2 + U(ρ)dχ2 +
dρ2

U(ρ)h(ρ)
+ ρ2dΩ3 (2.11)

with U and h given by eqs. (2.3), (2.6) and b = 0. For this solution the lapse function is

N =
√
h and the field strength (2.4) surrounding this static bubble simplifies to

Cρtχ =
Q0

2π2ρ3
. (2.12)

The mass of the static bubble is

Mmin = π2LM4
6

(
3Q2

4ρ2
0

+ ρ2
0

)
, (2.13)

where L is given by eq. (2.7) evaluated at b = 0.
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The point in moduli space where the size R of the KK circle vanishes lies an infinite

proper distance
∫
dR/R away from any point of finite circle size. R = 0 is sampled locally

on the wall of KK bubbles, since V → 0 as ρ→ ρ0, while R = L at spatial infinity.

Typically, static neutral bubbles of nothing in asymptotically flat space have a single

unstable mode, corresponding to perturbations of the bubble radius. The solution (2.11),

lying at a local minimum of the energy, is perturbatively stabilized by the flux. It disappears

for Q = 0, leaving only the perturbatively unstable point corresponding to an ordinary

neutral static bubble. We also see from the Hamiltonian constraint that for small Q/L2,

curvatures near the bubble are of order 1/Q. Therefore there is a minimum Q, controlled

by the cutoff, for which we can study this geometry classically.

2.2 Adding charged matter

We would like to study the stability of the flux-stabilized bubble against the introduction

of probe charges. In the 6D description, charged objects are wound strings. To simplify

the analysis, we consider only the lowest states of a string with winding number one and

zero KK excitations. Formally, we can dimensionally reduce over the circle to obtain a 5D

geometry with ordinary electromagnetic flux, and we introduce a massive scalar particle

with charge q to represent the wound string. Near the bubble wall the scalar mass decreases

with the radion.

In this toy model we can study the single-particle ground states of positive and negative

charge as a function of q. For |q|/m & 1, the electrostatic potential energy of a negatively

charged particle near the bubble wall is sufficient to compensate for its rest mass energy at

infinity. The näıve vacuum in the zero-charge sector is then unstable against spontaneous

pair creation, and in the subsequent section we argue that the bubble discharge rate is

unsuppressed.

We begin by parametrizing the 6D spacetime (2.11) as

ds2 = Gµνdx
µdxν + V dχ2 (2.14)

where V = U(ρ) by comparison with (2.2). The dimensional reduction of the three-form

flux gives rise to an ordinary 5D electric field, and we choose a gauge where the field arises

from a scalar potential vanishing at infinity,

At =

√
LQ0

4π2ρ2
. (2.15)

Dimensionally reducing the worldsheet action for a wound string of tension T with no

χ excitations, the corresponding worldline action for the free particle is

m

∫
dτ
√
V
√
−Gµν∂τxµ∂τxν (2.16)

where m = TL for L� 1/
√
T . Therefore, in our toy model we introduce a charged scalar

with action

S[Φ] =

∫
d5x
√
−G

(
−Gµν(DµΦ)∗(DνΦ)−m2V |Φ|2

)
, (2.17)
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where Dµ = ∂µ + iqAµ for a particle of charge q. Here q has mass dimension −1/2. We

treat Φ as a probe, neglecting backreaction on the metric and gauge field.

The Klein-Gordon equation for Φ is

(D2 −m2V )Φ = (�+ 2iqAt∂t − q2AtAt −m2V )Φ = 0 , (2.18)

and the energy is

E =

∫
d4x
√
−G

[
−Gtt|∂tΦ|2 +Gii|∂iΦ|2 + Φ∗

(
q2GttA2

t +m2V
)

Φ
]
. (2.19)

The kinetic, mass, and gradient terms in the energy are positive, although the mass term is

suppressed by a factor of V near the bubble wall. The A2
t term, which arises from the last

term in the gauge-invariant charge density Jt = iΦ∗∂tΦ − i∂tΦ∗Φ − 2qAt|Φ|2, is negative,

indicating that small perturbations can lower the energy if this term dominates. Note,

however, that the “potential energy operator” −∇2 + q2GttA2
t +m2V differs from the fluc-

tuation operator appearing in the equation of motion by a term −2iqAt∂t. Thus negative

energy perturbations do not immediately imply complex frequencies or the exponentially

growing modes characteristic of classical instabilities.

We will look for s-wave solutions to eq. (2.18). Setting Φ = φ(ρ)eiωt we obtain

hUφ′′ +

(
Uh′ +

hU ′

2
+

3hU

ρ

)
φ′ +

(
(qAt + ω) 2

h
−m2U

)
φ = 0 . (2.20)

This equation admits bound states of finite Klein-Gordon norm (charge). The energy and

charge of a bound mode is

Eφ =

∫
d4x
√
−GGttφ∗

(
−2ω2 − 2qAtω

)
φ

Qφ = −q
∫
d4x
√
−GGttJt = − q

ω
Eφ . (2.21)

Here we have used the equation of motion and assumed Dirichlet conditions at ρ = ρ0,

which is sufficient to prevent energy or charge flux through the bubble wall and simplifies

the analysis of modes. Below we will relax this condition and allow charged matter to fall

into the bubble, annihilating some of the bubble charge.

Now we can study the single-particle ground states in the charge ± sectors as a function

of the charge to mass ratio,

w ≡ qM3/2
5 /m. (2.22)

Here M5 is the 5d Planck scale, M3
5 = LM4

6 . Before proceeding, we note that the analysis

of eq. (2.20) in the static background (2.2), (2.11) is only meaningful for the following

hierarchies of mass scales:

M �M5 � m�
√
m/L� Q−1/2 � L−1 . (2.23)

The first and second inequalities allow us to treat the bubble as a fixed classical background

on which the single particle states are a perturbation. The third inequality allows us to set

– 7 –
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Figure 2. Ground state frequencies obtained by numerical solution of eq. (2.20). Normalized to

m, the frequencies depend only on the combinations q/m, Q/Qmax, and mL. We take a point

where mL = 100 and Q/Qmax ≈ 1/4, scanning over q/m in 5d Planck units. The upper solid

line (blue) shows ω0, the ground state frequency (energy) in the charge −q sector. The lower

solid line (red) shows the ground state frequency (-energy) in the charge +q sector. The dashed

line denotes the charge +q continuum. For q = 0, ω0 ∼
√
T � m. For small positive q, ω0

crosses zero. At some q/m ∼ O(1), ω0 crosses into the positive-charge continuum. At this point the

energy of an oppositely-charged pair vanishes, and the system becomes unstable against spontaneous

pair creation.

the wound string mass to m = TL�
√
T , and the fourth imposes the requirement that the

spacetime curvature near the bubble wall is below the string scale
√
T . The final inequality

arises from eq. (2.9) and the requirement that tunneling transitions to larger bubbles are

suppressed (cf. figure 1). Subsequently we will mostly work in 5d Planck units, M5 = 1.

Since the metric functions (2.3), (2.6) are somewhat involved and the exact solution for

ρ0 is the root of a cubic, it is simplest to perform detailed analysis numerically. Normalized

to m, the eigenfrequencies depend only on the dimensionless ratios w, Q/Qmax � 1, and

mL � 1. For typical sets of parameters we can solve (2.20) numerically for the bound

states. In figure 2 we show the frequencies of the charge ±q ground states as a function of

q. We see that in this example, ω � m for q = 0 and decreases approximately linearly as

q is increased.

These properties are straightforward to understand physically. For q = 0 and vanishing

energy flux through the bubble wall, the s-wave spectrum includes a discrete set of nor-

malizable bound modes of |±ω| < m. The lowest modes have |ω| ∼
√
T , reflecting the fact

that wound strings near the cigar tip are close to becoming unwound (and indeed would

become unwound with any asymmetric perturbation). In the hierarchy (2.23), these modes

are deeply bound, |ω| � m. For small positive q, the spectrum shifts downward. Positive

frequencies, corresponding to negative charges, become more tightly bound, while their

negative frequency counterparts shift toward ω = −m. Since the modes are deeply bound,

we can approximate the electrostatic potential energy term in the Klein-Gordon equation

by its value at the bubble wall, qAt(ρ0). Then the bound mode frequencies decrease as

dω

dq
≈ − Q

2ρ2
0

≈ −1. (2.24)
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Denoting the lowest mode in the negative charge sector by ω0, for some small value of q,

the ground state energy ω0 → 0. At this point the negative charge state has binding energy

that completely cancels its asymptotic rest mass. However, because of charge conservation,

this is not yet enough to indicate an instability in the charge-zero sector. As q is increased

further the ground state energy drops below zero. Once q ∼ m, we find ω0 → −m. At this

point the bound state now has sufficiently negative energy to compensate for the rest mass

of an additional positive charge at infinity.

For larger q, ω0 cannot simply fall below −m. These solutions are unbound and

correspond to positive-charge scattering states. This situation is identical to the physics

of high-Z “over-critical” nuclei [35]. It is energetically favorable to spontaneously produce

opposite-charge pairs, and the näıve zero-particle ground state is unstable.

2.3 Discharge rate

Heuristically, the discharge process can be thought of as pair creation near the bubble wall.

The negative charge annihilates some of the bubble charge, while the positive charge tunnels

out and escapes to infinity. The whole process must conserve energy, so the energy ε+ of

the escaping positive charge must be compensated by the reduction in mass of the bubble,

ε+ = −∆M =
qQ

2ρ2
0

(2.25)

assuming q � Q in 5D Planck units. (∆M is also equal to the classical energy of a negative

charge at rest at the bubble wall, but we do not need this interpretation.)

If the escaping “positron” encounters a potential barrier, then the discharge rate is

proportional to a tunneling exponent which can be straightforwardly estimated in the

WKB approximation.

The worldline action for the positively-charged state moving in the radial direction

ρ(t) is

S =

∫
dt

(
−m
√
V
√
−Gtt −Gρρρ̇2 − qQ

2ρ2

)
. (2.26)

The Hamiltonian is

H =
−m
√
V Gtt√

−Gtt −Gρρρ̇2
+
qQ

2ρ2

=
√
−Gtt(Gρρπ2 +m2V ) +

qQ

2ρ2
(2.27)

where in the second line we have written the Hamiltonian in terms of the canonical mo-

mentum π(t). In the WKB approximation, the tunneling amplitude through classically

forbidden regions is proportional to

Γ ∼ exp (i

∫ ρ+

ρ−

πdρ) (2.28)

– 9 –
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where

π =

√√√√−Gρρ(Gtt(ε+ − qQ

2ρ2

)2

−m2V

)
, (2.29)

and ρ± are the classical turning points. In classically forbidden regions the integral is

complex, and the factor (2.28) suppresses the tunneling rate.

The turning points are located at ρ− = 0 and

ρ+ =
Qρ0

√
q2 −m2√

q2Q2 − 4m2ρ4
0

(2.30)

Since Q < 2ρ2
0, the outer turning point is only finite (and therefore the pair production

rate is only nonzero) if

q & m
2ρ2

0

Q
≈ m. (2.31)

If this inequality is satisfied, the WKB integral gives∫ ρ+

0
πdρ ≈ i

√
ρ2

0 −
Q2

4ρ2
0

(
−m+

qQ

2ρ2
0

tanh−1

(
2ρ2

0

qQ
m

))
. (2.32)

Let us first examine this exponent in the limit Q/L2 � 1. This is the limit in which the

bubble is most stable against tunneling to a larger, expanding bubble. Expanding (2.32)

in Q/L2, we find

Γ ∼ exp

(
−πmQ(−m+ q tanh−1(m/q)

mL

)
∼ exp

[
−π
(
Q

L2

)(
m2

q2

)
(mL)

]
(2.33)

where in the last step we have approximated q/m & few.

For comparison, in the small Q limit the decay rate into a larger, expanding bubble

should be well-approximated by the decay of the ordinary KK vacuum into neutral bubbles.

(For larger Q, the rate will be faster.) The rate for this process is of order

ΓWitten ∼ e−M
4
6L

4 ∼ e−M3
5L

3
. (2.34)

For q/m & 1 and recalling the hierarchies in eq. (2.23), the discharge rate (2.33) satisfies

Γ > e−mL � ΓWitten . (2.35)

We cannot take Q smaller than L/m if we want to keep curvatures everywhere below

the string scale. In this limit, the discharge rate becomes

Γ ∼ exp

(
−πm

2

q2

)
. (2.36)

In other words, when the decay rate into expanding bubbles is minimized, the discharge

process is unsuppressed, if the WGC is satisfied.

We can also assess the WKB exponent numerically for other values of the parameters.

In figure 3 we show the exponent for L/m < Q < Qmax and mL = 103 as a function of

q/m. The exponent is typically not large if q/m & few.

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
3

2 4 6 8 10
q/m0

2

4

6

8

10
WKB Exp

Figure 3. The WKB exponent in eq. (2.32) for mL = 103 as a function of q/m. From bottom

to top the curves correspond to Q = (L/m, . . . , Qmax). Higher curves (larger Q) have increasingly

suppressed discharge rates, but are increasingly unstable against tunneling to expanding bubbles.

(The top curve is completely unstable.) We see that when the WGC is satisfied by a modest amount

the exponent is generally small and the discharge rate is fast.

Determining the endpoint of the discharge process requires consideration of backre-

action effects. Qualitatively, we expect the bubble to collapse into a black string. It is

remarkable that in the limit where one instability is made small, a new one appears with

large rate.

3 Charged dilatonic black holes

The KK bubbles considered above sample an infinite distance in moduli space. We can also

consider charged dilatonic black hole spacetimes in which the dilaton excursion is finite but

can be made arbitrarily large [34].

The fields are a dilaton, an ordinary electric field, and the metric with action

S =

∫
d4x
√
−g
(
R− 2(∇φ)2 − e−2φF 2

)
. (3.1)

The electrically charged black hole solutions of the equations of motion are [34]

φ = −φ0 +
1

2
log

(
1− Q2e−2φ0

Mr

)
, (3.2)

Ftr = E =
e−2φ0Q

r2
, (3.3)

gµνdx
µdxν = −f dt2 + f−1 dr2 + r

(
r − Q2e−2φ0

M

)
(dθ2 + sin2 θdφ2) , (3.4)

where f = 1− 2M/r.
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The extremal limit is Qext =
√

2eφ0M and there is a horizon at r+ = 2M . Let us

define an extremality parameter y = Q/Qext. In terms of y the dilaton excursion between

infinity and r+ is

∆φ =
1

2
log(1− y2) . (3.5)

We see that |∆φ| is finite and large for near-extremal black holes, and ∆φ → −∞ in

the extremal limit. The Maxwell term in this theory is e−2φF 2, and it is convenient to

canonically normalize it at infinity. We define F̂ = eφ0F and Q̂ = e−φ0Q such that

Ê = Q̂/r2 and the extremal limit is Q̂ext =
√

2M . The Hawking temperature is

T =
1

8πM
. (3.6)

Despite the finite temperature, the Kretschmann scalar behaves as M−4e−4∆φ near the

horizon for |∆φ| � 1. Subplanckian curvatures thus imply |∆φ| . log(M).

Now we introduce a charged particle of mass m and charge q coupled to the gauge

field Ât = Q̂/r. The black hole may be hot (m/T . 1) or cold (m/T & 1). For simplicity

we assume a minimally coupled charged scalar field, which is meaningful if m� 1.

In the hot case, the emission probability for charges ±q is proportional to a Boltzmann

factor of the form

e
− 1
T

(
m± qQ

r+

)
= e
−m
T

(
1± q√

2m
(1−e2∆φ)

)
. (3.7)

If |∆φ| � 1, the discharge rate is fast if the WGC is satisfied and the black hole is hot.

Now we consider the case m/T � 1. Here the discharge rate is governed by the

Schwinger process, and the rate exponent can be determined by barrier penetration argu-

ments for a mode of frequency equal to the electrostatic potential energy at the horizon,

ω+ =−qQ/r+ [36]. For ω+ to be a scattering state, we must have q>
√

2m near extremality.

The Klein-Gordon equation for the s-wave mode of frequency ω+ is

Φ′′(r) +WΦ(r) = 0 , W =
q2

2
− m2r

r − 2M
+

(Me2∆φ)2

(r − 2M)2(r − 2M + 2Me2∆φ)2
. (3.8)

Here we have put the equation in normal form and taken e2∆φ � 1. The barrier W < 0

extends approximately from r ∼ 2M + e2∆φM ≡ α to r ∼ 2M
(

1 + 2m2

q2−2m2

)
≡ β. In the

WKB approximation, the barrier penetration factor is

e−2
∫ β
α

√
Wdr. (3.9)

We can approximately evaluate the WKB integral by splitting it into regions where the

last two terms in W dominate (≡ W23, valid near α) and where the first two terms in W

dominate (≡ W12, valid near β). The two regions overlap where the first and third terms

are of similar order, near r ∼ 2M + 1/
√

2q. Putting the pieces together and keeping only

the dominant terms, we find the production rate is of order

ΓEinstein ∼ e−2
∫ γ
α

√
W23dr−2

∫ β
γ

√
W12dr ≈ e

− 2
√

2πMm2√
q2−2m2 . (3.10)

– 12 –



J
H
E
P
0
1
(
2
0
2
0
)
1
3
3

This is similar to the Schwinger exponent πm2/qÊ arising from a constant field of magni-

tude Ê = Q̂/r2
+. For a large, cold black hole, the rate is exponentially small for q ∼ m.

We conclude that a large field excursion |∆φ| � 1 requires a large source. Expo-

nentially large sources are required to control curvature invariants at the horizon. In the

presence of a light particle of mass m satisfying the weak gravity conjecture, it is also pos-

sible for the black hole to rapidly discharge. Combining the requirements of slow discharge

and low curvature, we obtain the bound

M � max(e|∆φ|, 1/m). (3.11)

This is reminiscent of other indications that large localized field excursions can be sustained

around exponentially large sources [14].

Other similar dilatonic black hole solutions can be obtained, including different dilaton

couplings e−2aφF 2 and general dyonic charges [37, 38] (see also [39] for a recent analysis

in the context of the WGC).3 In some cases simple analytic solutions are known. In the

magnetic case, similar results are obtained. In the dyonic case, it is possible to have a

finite dilaton excursion in the extremal limit. However, the curvature at the horizon is still

controlled by the mass of the black hole and the amplitude of the dilaton excursion, in

such a way that analogous bounds of the form |∆φ| < log(M) still hold.

4 Discussion

Both neutral and charged KK bubbles sample infinite distances in moduli space in finite

spatial regions with size R of order the bubble radius. Neutral bubbles are classically

unstable, and we have argued that charged bubbles are destabilized in the presence of

charged matter with q/m & 1. Dilatonic black holes in a controlled EFT have a finite

excursion |∆φ| . | log(MBH)|.
We have not discussed KK monopoles [21, 22], but they provide another interesting

example. They are stable and sample an infinite distance in moduli space, but only at a

single point. The KK scalar modulus diverges as

|∆φ| ∼ | log(r/L)| (4.1)

near the center of the monopole. Access to distance scales shorter than L is required to

see the excursion, but in principle this is permissable since we do not insist on dimensional

reduction. The accessible excursion is ultimately limited by the short-distance cutoff on

the semiclassical KK theory, |∆φ| . | log(ΛL)|.
Motivated by these examples, we conclude with a loose conjecture: quantum gravity in

asymptotically flat space requires a general bound on localized, (meta)stable moduli space

excursions of the form

|∆φ| . | log(RΛ)| (4.2)

3We thank Gary Shiu for bringing these solutions to our attention.
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where φ parametrizes the modulus, R is a scale characterizing the minimal region enclosing

the excitation, and Λ−1 is a short-distance cutoff on local quantum field theory. In a sense,

the swampland distance conjecture applies to the limit R → ∞, where the moduli are

moved everywhere in space, and the bound is trivially satisfied. This bound is consistent

with the Newtonian analysis of [14], but we have seen that it is less trivial in general

relativity, and requires the WGC in some cases.

There also appears to be another connection with the SDC: large excursions are typi-

cally confined near surfaces or points, rather than being spread over finite bubble volumes.

Consequently, access to the excursion requires access to short distance scales. In the KK

examples, this also implies access to a tower of KK states scaling exponentially with the

observable excursion.
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