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ABSTRACT
The space-borne gravitational wave interferometer, Laser Interferometer Space Antenna, is
expected to detect signals from numerous binary white dwarfs. At small orbital separation,
rapid rotation and large tidal bulges may allow for the stellar internal structure to be probed
through such observations. Finite-size effects are encoded in quantities like the moment of
inertia (I), tidal Love number (Love), and quadrupole moment (Q). The universal relations
among them (I–Love–Q relations) can be used to reduce the number of parameters in the
gravitational-wave templates. We here study I–Love–Q relations for more realistic white dwarf
models than used in previous studies. In particular, we extend previous works by including (i)
differential rotation and (ii) internal temperature profiles taken from detailed stellar evolution
calculations. We use the publicly available stellar evolution code MESA to generate cooling
models of both low- and high-mass white dwarfs. We show that differential rotation causes the
I–Q relation (and similarly the Love–Q relation) to deviate from that of constant rotation. We
also find that the introduction of finite temperatures causes the white dwarf to move along the
zero-temperature mass sequence of I–Q values, moving towards values that suggest a lower
mass. We further find that after only a few Myr, high-mass white dwarfs are well described
by the zero-temperature model, suggesting that the relations with zero temperature may be
good enough in most practical cases. Low-mass, He-core white dwarfs with thick hydrogen
envelopes may undergo long periods of H burning which sustain the stellar temperature and
allow deviations from the I–Love–Q relations for longer times.
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1 IN T RO D U C T I O N

The Laser Interferometer Space Antenna (LISA) mission is slated
to launch in the 2030s, and it is expected that LISA will detect
thousands of short-period white dwarf–white dwarf (WD–WD)
binaries in the galaxy via their gravitational wave (GW) emission
(Littenberg 2011). These binaries will be detected by fitting model
waveforms to the observed GW data to infer relevant parameters
such as orbital periods, chirp masses, and distances. The GW
signal of a WD–WD binary is given by a point-mass contribution
and small corrections due to the finite size of the WDs. These
small corrections may be measurable for binaries with sufficiently
small separations (Shah, van der Sluys & Nelemans 2012; Shah &
Nelemans 2014).

The leading-order finite-size correction to the GW signal comes
from the transfer of angular momentum from the orbit to the spins
of the individual WDs by tidal friction. In the limit of strong
tidal torques, the spins of the individual WDs may be nearly
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synchronized to the spin frequency of the orbit well before merger
(Iben, Tutukov & Fedorova 1998; Piro 2019). The strength of this
correction may be estimated by the small parameter (I1 + I2)/μa2

for perfect synchronization, where I1, 2 is the moment of inertia of
each WD, μ is the reduced mass of the binary, and a is the semimajor
axis of the binary orbit (Benacquista 2011). Thus, the moment of
inertia of both WDs enter as parameters into the GW signal from a
binary.

Higher order corrections to the GW signal appear due to the
quadrupole moments of the individual stars themselves. As each
individual star is distorted by tides and rotation, the orbital po-
tential energy is changed, and this alters the relationship between
semimajor axis and frequency away from the usual Keplerian one
(Poisson 1998; Flanagan & Hinderer 2008; Benacquista 2011); this
is often referred to as the conservative effect. Additionally, as seen
from a non-rotating frame, the quadrupoles raised on each star by
tides vary over the orbit, leading to GW radiation emitted from the
WDs themselves; this is often referred to as the non-conservative
or dissipative effect (Flanagan & Hinderer 2008). Though the
contributions from these effects to the GW signal are small, they are
likely to be measurable over the lifetime of LISA for systems with
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high signal-to-noise ratio, a low-mass (large-radius) primary, and
a high-mass companion. Thus, we have that the moment of inertia
(I), tidal Love number (Love), and rotational quadrupole moment
(Q) of each WD enter as important parameters into the gravitational
waveform for a double WD binary.

In the case of neutron stars (NSs), Yagi & Yunes (2013a, b)
found that I, Love, and Q were related to each other in a way
that was independent of the assumed equation of state (EoS),
which is currently poorly understood for NSs. These relationships
formed the so-called ‘I–Love–Q relations’, and they serve to break
the degeneracy between Q and other NS parameters, which in
turn reduces the overall measurement uncertainties on the latter.
Indeed, such universal relations, together with similar relations
(Yagi & Yunes 2016, 2017), have been applied to GW170817 by
the LIGO/Virgo Collaborations (Abbott et al. 2018; Chatziioannou,
Haster & Zimmerman 2018), which helped to improve our under-
standing of nuclear physics by constraining the relation between
pressure and density at supra-nuclear densities.

While different EoS prescriptions in the NS case may lead to
significant differences in the mass–radius relation, the WD EoS
is better understood. The EoS of the WD core is a degenerate
electron gas, allowing for arbitrarily relativistic electron velocity,
and there are small corrections due to the electrostatic interaction of
the electrons and ions, as well as due to finite temperature. Outside
the degenerate core, there is a non-degenerate envelope composed
of hydrogen and/or helium. The size of the envelope may be larger
for low-mass WDs, and for masses less than � 0.2 M�, residual
nuclear burning in a thick hydrogen envelope may significantly
slow the WD’s cooling. The composition of the WD is determined
by post-main-sequence nuclear burning as well as binary mass
transfer episodes. Low-mass WDs (M � 0.4 M�) are comprised
of a He core and H-rich envelope, while the bulk of the higher mass
WD will have a mixture of carbon and oxygen in the core, with
thin shells of He and H outside. Element diffusion acts to allow
heavy elements to sink down and light elements to rise up during
the evolution, leading to the fractionated structure. The starting
central temperature on the WD cooling track is determined by post-
main-sequence He core burning and H/He shell burning. The finite
initial core temperature, relative to the central Fermi energy, allows
some thermal pressure support, causing the WD to deviate from
the zero-temperature solution. Thus, in the case of WDs, the I–
Love–Q relations aim to relate relevant parameters of WDs to each
other across varying internal structure (such as varying composition,
rotation profile, central temperature, age, etc.) as was accomplished
in the NS case.

In the case of binary WDs, it is I, Love, and Q that encode the
effects of the finite sizes of the WDs on to the gravitational waveform
(unlike the binary NS case where it is the spin angular momentum
instead of I that is measurable). Boshkayev, Quevedo & Zhami
(2017) first studied these I–Love–Q relations in the context of WDs
and found that differences in WD compositions, and hence mean
mass per electron and Coulomb interaction effects, did not affect the
relationships between I, Love, and Q. Boshkayev & Quevedo (2018)
further studied WDs with finite and uniform temperature, finding
that finite temperature effects did cause the relations to deviate from
the zero-temperature result.

In this work, we further investigate these I–Love–Q relations
for more realistic WD models. In particular, we consider two
main extensions: (i) differential rotation and (ii) self-consistent
temperature profiles.

As WDs in close binaries may be subject to strong tidal torques
and internal angular momentum redistribution mechanisms, their

rotational angular frequency profiles may be far from uniform.
We study how this may affect the I–Love–Q relations for WDs.
Yagi et al. (2014) have already studied these relations in the
context of differentially rotating main-sequence stars (not compact
objects), and we build upon this work by studying how differential
rotation affects WD I–Love–Q relations.1 To do so, we solve
for the modification to interior structure using the Hartle–Thorne
formalism (Hartle 1967; Hartle & Thorne 1968) in which we
treat the stellar rotation as a small perturbation. The results are
compared to the uniform rotation case (see Boshkayev et al. 2017).
True differential rotation that occurs in the interiors of WDs is
a complicated process; in this work, we assume a parametrized
model and investigate possible deviations from the usual I–Love–Q
relations that could occur.

Additionally, we will be studying the effects of finite temper-
ature on WD I–Love–Q relations, extending the previous work
(Boshkayev & Quevedo 2018) by using the publicly available MESA

code (Paxton et al. 2013) that evolves a star from the pre-main
sequence to the WD cooling track and allows for nuclear burning,
as well as convective and radiative heat transport. We generate two
WD models, a low-mass He-core WD with mass M = 0.15 M� and
a more massive C/O-core WD with mass M = 0.83 M� to test if the
I–Love–Q relations hold in these two extremes. The use of MESA

models allows two improvements over the uniform temperature
used by Boshkayev & Quevedo (2018). First, the core temperature
is set by post-main-sequence burning and is not a free parameter.
Second, while WD cores are nearly isothermal a few thermal times
after formation, their envelopes have a steep outward tempera-
ture gradient, and hence for low-mass WD with thick envelopes
the uniform temperature assumption may overestimate thermal
support in the envelope. The finite temperature effects are most
pronounced in low-mass WD with thick H envelopes, which may
have residual nuclear burning for Gyr which delays the cooling of
the WD.

The Newtonian equations of inviscid fluid motion will be used
throughout this paper, although occasional contact is made with
results for NSs, which used general relativity.

The remainder of the paper is organized as follows. In Section 2,
we show how differential rotation alters the WD I–Love–Q relations
compared to that of constant rotation. In Section 3, we analyse
the effects of finite temperature on the structure of WDs and how
the I–Love–Q relations are affected. Finally, Section 4 contains a
discussion of the results and the conclusions.

2 D I FFERENTI AL ROTATI ON

2.1 The background model

For the study of differential rotation in the present section (2), it is
convenient to employ simple models of zero-temperature WDs.
The background model is constructed by solving the equations
of hydrostatic balance, interior mass, and the EoS. The EoS, or
pressure–density relation, which is assumed here is P = Pe + Pc

+ PTF, where Pe is the pressure from degenerate electrons and Pc

is due to the electrostatic attraction among electrons and nuclei,
and PTF is the correction due to non-uniform electron density in
each ion cell. The dominant contribution to the pressure is from the

1See also Bretz, Yagi & Yunes (2015) for the universal relations among
multipole moments of differentially rotating Newtonian polytropes.
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degenerate electron gas (e.g. Shapiro & Teukolsky 1986):

Pe = mec
2

8π2λ3
e

[
x
(
1 + x2

)1/2
(

2

3
x2 − 1

)
+ ln

(
x + (1 + x2)1/2

)]
,

(1)

where me is the mass of the electron, c is the speed of light,
λe ≡ �/mec is the electron Compton wavelength, and x ≡ pF/mec
� 1 for the non-relativistic case and x � 1 for the relativistic case.
The Fermi momentum pF is related to the mass density ρ by

pF =
(

3h3

8π

ρ

μemp

)1/3

, (2)

where μe is the mean mass per electron (μe = A/Z for a gas with
one ion of mass Amp and charge +Ze) and mp is the mass of the
proton. For stellar masses well above Jupiter’s mass, the Coulomb
and Thomas–Fermi corrections are a small perturbation, given by
(see e.g. Salpeter 1961)

Pc + PTF = −mec
2
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]
, (3)

where α = 1/137 is the fine-structure constant. We see that the
Coulomb correction is proportional to ρ4/3, while the degeneracy
pressure is proportional to ρ5/3, indicating that the Coulomb and
Thomas–Fermi corrections become smaller as WD central density
increases.

In this section, the WD is assumed to be made of a single
ion, and models with either 4He, 12C, or 16O will be given. Some
results are presented including PC + PTF while others ignore these
corrections. The purpose of this section is not to perform an in-
depth analysis of WD composition. Rather, the goal is to explore
the effect of differential rotation on WD models with different mass
and composition. Similarly, we choose to calculate WD parameters
outside of their physical mass ranges (C/O WDs do not exist below
roughly 0.45 M�) to show that the I–Love–Q relations hold for
WDs even in these unphysical regimes.

2.2 Differential rotation profile

The equation of hydrostatic balance is given by

0 = −∇P − ρ∇� − ρ∇U, (4)

where P and ρ are the pressure and density, � is the gravitational
potential, and U is the perturbing potential, here due to the
centrifugal force. For constant rotation, the perturbing potential
is given by

U = −1

2
�2	 2, (5)

where � is the spin frequency of the star, 	 = rsin θ is the
cylindrical radius, θ is the colatitude, and r is the spherical radius.
The resulting centrifugal force is

Fc = −∇U = �2	 �̂ . (6)

We assume the following form for � = �(	 ) (see Komatsu,
Eriguchi & Hachisu 1989):

�

�c
= A2

A2 + 	 2
. (7)

Here, �c is the central rotation frequency and A may be thought of
as a core radius of the rotation profile. The A → ∞ limit recovers
constant �, while small but non-zero A gives constant specific
angular momentum j = �	 2. Demanding that the centrifugal force
still be of the same form

Fc = − dU

d	
= �2	, (8)

gives the following potential for the differentially rotating case

U = −
∫ 	

0
�2

c

(
A2

A2 + 	 2

)2

	d	 (9)

= −1

2
�2

c

	 2

1 + 	 2/A2
. (10)

Written in this form, it is clear that in the limit that A � 	 , we
recover the results of constant rotation. In Appendix A, the perturbed
structure equations are given including the effect of differential
rotation.

Since the chief purpose of this work is to aid in modelling grav-
itational waveforms from WD binaries, we only consider leading-
order contributions to I, Love, and Q in rotation. These terms
appear in small corrections to the waveform, so spin corrections
to these terms are higher order and therefore negligible. Due to
this assumption, the moment of inertia is entirely a background
quantity, unaffected by (differential) rotation while the quadrupole
moment is proportional to spin squared. The tidal Love number
is also unaffected by rotation, which we explain in more detail in
Section 2.4.

2.3 Choice of A and �c

The core radius for differential rotation is expressed as a dimension-
less parameter As ≡ A/R, where R is the radius of the non-rotating
background star. Only a certain range of As is physically relevant;
if As � 1, then nearly the entire star has constant-j rotation, and
the entire star has uniform rotation for As � 1, a case already
studied (see Boshkayev et al. 2017). Thus, any study of the effects
of differential rotation on the I–Love–Q relations need only concern
itself with intermediate values of As. Models are presented over a
range of As between 0.1 and 10 as well as for a range of WD central
densities. We then calculated I, Q, and the tidal Love number for
each model using the perturbative approach given in Appendix A3.

As we now motivate, sequences of models with fixed J will
be used in order to study the variation of I and Q for different
As. In previous works, it was natural to fix the spin frequency of
the star at the breakup frequency

√
GM/R3 as this demonstrated

the maximum possible effect of rotation. Here, however, the free
parameter is the central spin frequency �c, which is different from
the spin frequency at the surface. We fix each WD’s value of J to
a specified Jfixed by adjusting the value of �c. Each WD structure
was first computed using a test value of �c equal to

√
GM/R3,

and its angular momentum J0 was calculated using the methods of
Section A3. The value of �c was then scaled down by a factor of
Jfixed/J0, since J ∝ �c at leading order in spin. The model was then
computed again using this new value of �c, and the parameters of
this second iteration were recorded. Had we not chosen to fix J and
instead fixed �c, the sequences of I and Q would not be physically
meaningful, e.g. for small As, most of the star would be rotating
slowly. By fixing J, we aim to compare similar stars to each other,
rather than stars rotating at significantly different rates, and by doing
so properly calibrate the effects of differential rotation.
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2.4 The Love number

In Newtonian physics (but not in full general relativity – see Mora &
Will 2004), the Love number represents the linear response of the
star to a perturbing potential, and is simply related to the quadrupole
moment. In the case of tides, the point mass gravity of star 2 gives
rise to a quadrupole tidal potential acting on star 1

U2(�x1) = −Gm2
r2

1

r3
2

P2(cos θ12). (11)

Here �x1 = (r1, θ1, φ1) are the coordinates inside star 1. The coordi-
nates (r2, θ2, φ2) describe the position of the centre of mass of star
2 as seen from the centre of mass of star 1. The angle θ12 is defined
by cos(θ12) = �x1 · �x2/(r1r2). This tidal potential will cause density
changes within star 1, causing the external potential to deviate from
the point mass value through the quadrupole moment

Q1 = λ1m2
R5

1

r3
2

, (12)

where λ1 is the quadrupolar Love number of star 1, a dimensionless
number mainly dependent on the central concentration. The case of
uniform rotation is similar. The quadrupolar centrifugal potential
is

U (�x1) = 1

3
�2

1r
2
1 P2(cos θ1). (13)

This potential has the same form as for tides, and so the Love
number, which is independent of any constants in U, must be the
same as for tides. The quadrupole moment is then only different
due to the parameters in the forcing potential, and an extra factor
of P2(0) = −1/2 for rotation axis perpendicular to the orbital plane,
giving

Q1 = 1

6G
λ1�

2
1R

5
1 . (14)

Hence in the Newtonian case, there is a simple relationship between
Love numbers and quadrupole moments, at least for uniform
rotation, and it is not necessary to consider the full I–Love–Q
relations.

Different branches of physics and astronomy refer to different
quantities by the term ‘Love number’. Here the Love number is
defined by a ratio of response potential to forcing potential for
a particular spherical harmonic component and evaluated at the
surface,

λ ≡ δ�
(R)

U
(R)
(15)

(also see Appendix A3). In this work, the main perturbing potential
we are dealing with is the centrifugal potential. However, in the
chief application of this work (GWs from binary WDs), it is rather
the tidal potential (and thus the tidal Love number) which is more
important (see Benacquista 2011). This is the ‘Love’ of the I–Love–
Q relations, as it provides information about small corrections to
the background point-mass GW signal emitted by a binary system.

In Newtonian physics assuming constant rotation, the rotational
Love number λR and the tidal Love number λT are equivalent
(Mora & Will 2004), and they are often used interchangeably. The
tidal Love number depends on the type of material being tidally
distorted; thus, WDs (which vary in polytropic index from 3/2 to
3) vary in tidal Love number depending on their density profile.
However, to leading order in spin, the tidal Love number does not
depend on the amount of rotation occurring inside the WD, so there
should be no dependence of the tidal Love number on the amount
of differential rotation occurring inside the WD.

Figure 1. The rotational Love number as a function of the dimensionless
radius αR ≡ R/A at fixed M = 0.6 M� (blue). Observe how the rotational
Love number approaches the tidal Love number (orange) as we decrease
αR. The green line labelled ‘ln fit’ and the red line labelled ‘quad’ give the
large and small αR approximations, respectively.

On the other hand, the rotational Love number does depend on
the amount of rotation. Let us estimate how λR scales with A. We
begin by looking at the response potential (see equation A42):

�
(2)
2

∣∣∣
R

∝ Q. (16)

In addition to calculating Q using the perturbed potential as in
equation (A42), one can integrate to find Q directly:

Q ∝
∫ R

0
drr4δρ, (17)

where δρ is the 
 = 2 mode of the perturbed density profile due
to rotation (see equation B5) using Lagrangian perturbation theory
(Appendix B). From equations (B22) and (B23), we know that

δρ = −dρ

dr
ξr = dρ

dr

U2

g
, (18)

where U2 is the 
 = 2 forcing potential given in equation (A5).
Combining all the terms depending on r, the rotational Love number
is roughly given by

λR = �
(2)
2

U2

∣∣∣∣
R

=
∫ R

0 h(r)f2(α)dr

f2(αR)
, (19)

where h(r) is a function of r, α ≡ r/A, αR ≡ R/A, and the function
f2(α) is defined in equation (A7). Note that λR is independent of �c,
and it only depends on rotation via the core radius A.

We now take two limits of f2(α). In the limit of small As (large
α), the function f2(α) is approximately

f2(α � 1) ∼ 1

α4
[3 − 2 ln(2α)]. (20)

Due to the logarithm, we cannot pull all A terms out from the integral
in equation (19). In the limit of large As (small α; approaching the
constant rotation limit),

f2(α � 1) = −2

3
+ 16

21
α2 + O(α4), (21)

so the correction to the Love number away from its constant-rotation
value vanishes on the order of 1/A2

s .
We affirm our above analytical estimates in Fig. 1. We show

the rotational Love number at fixed mass and varying αR ≡ R/A.
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Figure 2. The rotational Love number of differentially rotating WDs (top)
and the dimensionless quadrupole moment (bottom) as functions of WD
mass, with the different lines representing different sizes As of the uniformly
rotating region. Along with the rotational Love numbers, we show the
tidal Love number (which at leading order is independent of rotation) for
reference. Coulomb corrections are ignored for simplicity. As As becomes
larger than one, we return to the limit of constant rotation, where the
rotational Love number and tidal Love number are equal. We see that over
a span of WD masses, the normalized quadrupole moment is modestly
affected by the varying core radius.

At small αR, the rotational Love number approaches the tidal Love
number, as we expect from equation (21). At large αR, equation (20)
does not give an exact scaling with A, but we estimate some
logarithmic dependence. We attempted a fit to the data in the limit
of αR > 1 using the model λR = a + bln αR, shown in green. We
find good agreement between our fit and the data, confirming that
λR goes logarithmically in the limit of large αR. The parameters a
and b depend on the fixed mass, e.g. a = 0.29 and b = 0.22 for
M = 0.6 M�. We performed a similar fit to the low-αR data, using
the model λR = λT + cα2

R , and we find that this models the data
well for αR < 1. As in the high-αR limit, the parameter c varies
according to the fixed mass; for a 0.6 M� WD we find that c =
0.070.

We now show in the top panel of Fig. 2 rotational Love numbers
as functions of WD mass across several values of As. We also
include the tidal Love number as a function of mass as well, for
reference. We find that the rotational Love number varies greatly
across different As. For the chief application of this work (WD GW
analysis), we wish to find relations involving the tidal Love number,
rather than the rotational Love number. Throughout the remainder
of this paper, any mention of the Love number refers to the tidal
Love number, which is independent of the amount of differential
rotation at leading order.

2.5 The rotationally induced quadrupole moment

We next study how the rotationally induced quadrupole moment Q
depends on differential rotation. To illustrate this, we present in the
bottom panel of Fig. 2 how the quadrupole moment varies along
the sequence of possible WD masses with varying As. Because we
are only keeping to leading-order in spin, I and λT are entirely
background terms, so it is only Q which varies due to differential
rotation. Across the physically reasonable range of As, there is
some modest deviation of Q/MR2 away from the constant-rotation
sequence (shown by the overlapping lines for larger values of As).

Figure 3. Rotational Love number λR versus the appropriately scaled
quadrupole moment. For uniform rotation, Q and λR are related by a constant
factor (see equation 14); however, now that we have promoted the perturbing
potential U to be a function of A, there is an additional parameter necessary
to relate Q and λR (see equations A40 and A42). For reference, we also
present the relation between the rescaled tidally induced Q and the tidal
Love number λT. Observe how the relations for λR approach that for λT as
one increases As (as one approaches the constant rotation case).

As we discussed in Section 2.3, the angular momentum of each
system (across varying A and M) was fixed to the same value. As
we will show later, the value of Jfixed is irrelevant to the I–Love–Q
relations; however, it is of some relevance in Figs 2 and 4, so we
shall describe here how we fixed J. We wished to avoid creating
a WD which rotates at its centre faster than its global breakup
frequency (avoiding �c >

√
GM/R3). Thus, we chose for our

value of Jfixed the value which corresponds to (i) the lowest mass
WD we considered, (ii) with the lowest value of As we considered,
(iii) rotating centrally at its breakup frequency (�c =

√
GM/R3).

Here, the lowest mass and As we considered were 0.18 M�
and 0.1.

How are Love numbers and quadrupole moments related? For
uniform rotation the relation is given by equation (14). However, in
the case of differential rotation, the forcing potential U and hence
the rotational Love number will depend on A (see equation 10
and Section 2.4). Thus, across several values of As, λR and Q are
instead no longer related by a constant factor. We show this relation
in Fig. 3. Because the chief application of this work is to GWs
where λR does not play a primary role, we do not discuss this
further.

2.6 I–Love–Q under differential rotation

Having all the ingredients at hand, we now study the I–Love–Q re-
lations. Previous works have shown the composition-independence
of the I–Love–Q relations (Boshkayev et al. 2017), where it
was demonstrated that WDs models with and without Coulomb
corrections in the EoS followed the same set of I–Love–Q relations.
We wish to show a similar set of relations for differentially rotating
WDs at fixed J across both varying A and composition. As we have
stated before, we only keep to leading order in spin, so only Q
will vary due to varying A. We now fix the scale length A but vary
the mass and composition in Fig. 4, scaling Q and I so to make
them dimensionless. We find that, at fixed As, the dimensionless I
is related to λT independently of composition, but the same is not
true of dimensionless I and dimensionless Q.

MNRAS 492, 978–992 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/978/5679150 by U
niversity of Virginia H

ealth Sciences Library user on 24 June 2020



I-Love-Q for realistic WDs 983

Figure 4. Normalized I versus the tidal Love number (top) and normalized
Q (bottom) across a range of WD masses, now at constant As = 1 and
across several different WD compositions. We find here that the relationship
between I and λT is independent of composition. We also find that the
relationship between I and Q depends slightly on the composition of the
WD chosen across all WD masses. We have fixed J = J0 across the entire
range of WD masses, where J0 is given by the angular momentum of the
lowest mass WD with A/R = 10−3 and �c = �b, where �b is the breakup
frequency of the WD.

Previous works also found that simply normalizing I and Q
by MR2 did not make the relations composition-independent (see
Boshkayev et al. 2017). We define

Ī ≡
(

c2

G

)2
I

M3
, (22)

λ̄T ≡ 1

3

(
c2

GM/R

)5

λT , (23)

Q̄ ≡ c2Q

J 2/M
, (24)

where M, R, and I refer to the non-rotating, background com-
ponent of the star’s mass, radius, and moment of inertia (see
Yagi & Yunes 2013a). Similarly, J is only kept to first-order
in �c (see Appendix A3). Each term is now dimensionless,
and importantly, Q has had its �c dependence scaled out of it
(since Q ∼ �2

c and J ∼ �c). Previous works have found that
comparing these variables to each other results in composition-
independent I–Love–Q relations. We show in Fig. 5 these partic-
ular scalings of I, λT, and Q for differentially rotating WDs at
fixed As and angular momentum across a range of WD masses
and several different WD compositions. Clearly, these particular
scalings result in composition-independent relations at a fixed value
of As.

We now wish to know if these same composition-independent
relations hold for differing values of the As. Because we showed in
Fig. 5 that the above scalings are composition-independent, it does
not matter which composition we choose, so we ignore Coulomb
corrections (Z = 0). We show in Fig. 6 these same scalings of I and Q
across a range of WD masses, but now we choose one composition
and select a variety of core radii. Ī and λ̄T are related in a way
independent of As by assumption, but the same is not true for Q̄.
Thus, differential rotation has introduced a new degree of freedom
to the original I–Love–Q relations for WDs with constant rotation.

Figure 5. Similar to Fig. 4 but for an alternative choice of dimensionless
quantities Ī , λ̄, and Q̄ (equations 22, 23, and 24). Observe that the relations
are now universal at fixed As = 1 among various WD compositions in both
panels, with less than 1 per cent deviation in the I–Love relation and less
that 0.4 per cent deviation in the I–Q relation.

Figure 6. The dimensionless Ī versus Q̄ across a range of WD masses,
using the Chandrasekhar EoS, varied across several core radii. Across all
physically reasonable values of the core radius (between 0.1 and 10 times
the background radius of the WD), the I–Q relation is no longer universal
due to significant dependence on the core radius.

2.7 A new relation

We have shown in Fig. 6 that the constant-rotation I–Q (and similarly
Love–Q) relation does not hold in differentially rotating WDs to
leading order in rotation, acquiring an additional degree of freedom
(though it is still universal under variation in compositions). By
assumption, the I–Love relation is independent of rotation at leading
order. We therefore seek a new relation, one that accounts for the
presence of differential rotation; we seek an I–Q–As relation. If
there were no dependence on As, the relation between Ī and Q̄

would be a straight line in log space. However, now that there is
some As dependence, it is likely that there may exist some sort of
fundamental plane relating the three variables. Indeed, in Fig. 7 we
show this exact plane of Ī , Q̄, and the scaled core radius As in log
space.

We attempted a fit to the data, which we found to be accurate to
within 2 per cent across the range of As we considered. The form of

MNRAS 492, 978–992 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/978/5679150 by U
niversity of Virginia H

ealth Sciences Library user on 24 June 2020



984 A. J. Taylor, K. Yagi and P. L. Arras

Figure 7. The fundamental plane of the logarithms of Ī , Q̄, and the scaled
core radius As. The plane is insensitive to the composition of the WD
chosen. Our fit to this plane is accurate to within 2 per cent across the range
of core radii we considered. The form of the fit is in equation (25), and the
coefficients are listed in Table 1.

Table 1. Fitting constants for the I–Q–As relations. The
form of the fit is given in equation (25).

Variable Value

a1 4.127
a2 4.065 × 101

a3 9.918 × 101

a4 1.904
a5 − 3.655 × 10−1

a6 7.544 × 10−1

a7 4.962 × 10−1

n 5

the fit is

log10 Q̄ =
[
a1 + a2

log10 As − n
+ a3

(log10 As − n)2

]

×{
1 − tanh

[
a4(log10 As − a5)

]}
+ a6 + a7 log10 Ī , (25)

and the coefficients are listed in Table 1.
We note that fixing J does not affect the Ī−Q̄−As relation. Since

J ∝ �c at leading order, we may say that

J = �c × g(As), (26)

where g(As) is some function of the scaled core radius. To fix J at a
given value for any central density and core radius, all that needs to
be done is to scale �c up or down accordingly. Then, since Q ∝ �2

c ,
we may say that

Q = �2
c × h(As), (27)

where h(As) is some other function of the scaled core radius. Then,
when we scale Q by J2 to compute Q̄, the dependence on �c cancels
out, and there is only some dependence on As left. This relation
between Ī , Q̄, and As is therefore independent of the value of J we
have fixed.

Let us close this section by commenting on the universality in
the I–Love–Q relations. In the sense that I, Love, and Q share the
same relation regardless of the composition of the WD, the I–Love–
Q relations hold under differential rotation. However, in the sense

that I, Love, and Q are always related to each other in the same
way, then we say that differential rotation has broken the I–Love–Q
relations. Rather, it may be most accurate to say that in the case of
differential rotation, the original I–Love–Q relations for WDs with
constant rotation are incomplete, and we have here made them more
complete and applicable to more realistic WDs.

3 H OT W H I T E DWA R F S

We now consider a different aspect of the WD I–Love–Q relations,
namely the effect of finite temperature. Young WDs have sufficient
core temperature that thermal pressure support may be important.
Additionally, Iben et al. (1998) showed that in binary systems, tidal
friction may heat WD interiors, reversing their natural progression
along the cooling track. For WD binaries that are near merger,
this tidal heating may significantly raise the temperature of both
components (Piro 2011), so many of the systems LISA detects may
have larger-than-expected temperatures. We now investigate these
finite-temperature WDs and study whether the I–Love–Q relations
hold for such objects.

3.1 Thermal pressure support

In this section, we now relax our previous assumption that the WDs
we study are at zero temperature. The effects of finite temperature
are present in the EoS. One may characterize the strength of the
effects of finite temperature on WDs by the ratio of the thermal
energy (given by kT) to the Fermi energy of the WD. The Fermi
energy may be calculated from the Fermi momentum pF, which is
given in terms of the density

pF =
(

3π2
�

3 ρ

μemp

)1/3

, (28)

where � is Planck’s reduced constant, ρ is the mass density of the
WD (dominated by nucleons), μe is the number of nucleons per
electron in the WD (2 for most compositions), and mp is the mass of
the proton. The Fermi energy is EF � p2

F/2me for densities below
106 g cm−3 and EF � pFc at larger densities. For a M = 0.15 M�
He-core WD soon after formation,

kTc

Ef
≈ 0.03

(
ρc

105 g cm−3

)−2/3 (
Tc

107 K

)
. (29)

Higher mass C/O-core WDs (M � 1 M� corresponds to roughly
ρc ∼ 108 g cm−3) may have central temperatures as large as 108

K which raises the ratio by a factor of 2 or so, but such large
temperatures are a short-lived state, and the WD will cool down
from this value rapidly. Therefore, we expect that it is instead low-
mass WDs that will be affected the most by the introduction of finite
temperature, and even then only slightly.

Including thermal pressure leads to larger mass and radius,
and hence momentum of inertia, at fixed central density. See
Boshkayev & Quevedo (2018) and references therein for further
discussion of how the introduction of finite temperature changes
the parameters of WDs.

We here relax the isothermality assumption imposed in the pre-
vious work on the I–Love–Q relations for hot WDs (Boshkayev &
Quevedo 2018) and investigate the regime of WDs in which this
assumption is least likely to hold. It has been shown (see e.g.
Shapiro & Teukolsky 1986, chapter 4) that WDs have an isothermal
core, covered by a thin shell of non-isothermal, non-degenerate gas.
The fraction of the WD’s radius covered by this shell increases
as the mass of the WD decreases. Thus, we consider a 0.15 M�
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I-Love-Q for realistic WDs 985

Figure 8. The surface and interior temperature of the cooling WD model
for a 0.15 M� He WD, generated by the MESA code. In this plot, we have
removed all data from before the system reconfigured itself into thermal
equilibrium. The WD begins with a central temperature of a few 107 K, and
after 10 Gyr, its central temperature has dropped to 106 K.

He WD as our test case for these I–Love–Q relations with finite
temperature and a non-isothermal temperature profile.

3.2 Perturbations to the structure at fixed mass

The WD models generated by the MESA code have a certain mass.
The Hartle–Thorne formalism to compute rotational perturbations
fixes central density and computes mass as a function of rotation
rate. We also include spin corrections to order �2 in the global
variables R, M, I, and J. For these reasons, it is more convenient to
use the Lagrangian perturbation theory (see Shapiro & Teukolsky
1986, chapter 6) to solve the equations of interior structure. Under
this formalism, the mass of the WD is held constant before and after
the perturbative rotation is ‘turned on’, and the central density is
allowed to vary. See Appendix B for a thorough discussion of this
formalism.

3.3 Details of the He-core MESA models

To solve the equations of structure we use the publicly available,
stellar-interiors code MESA (Paxton et al. 2013). For the He WD
model, we modified the ‘make he wd’ test suite in the MESA

package. In this code, MESA begins by evolving a 1.5 M� pre-
main sequence model until the mass of the interior helium core has
reached the specified mass (here 0.15 M�). The mass of the helium
core is defined by the outermost location where the abundance
of hydrogen is less than one per cent. Next, MESA removes the
excess mass (�M = 1.35 M�) from the outside of the star rapidly,
leaving only the helium core. The MESA code then ‘relaxes’ the
helium abundance to 99 per cent over the star and makes all element
abundances uniform over the star. Finally, having an appropriately
massive He WD, the code allows the WD to cool in isolation.
This cooling is slowed, however, by the small amount of hydrogen
burning taking place in the centre; it is likely that real WDs have
larger hydrogen envelopes than the MESA code constructs, which
would lead to greater heat generation due to hydrogen burning,
ultimately leading to a longer cooling time-scale. We show in Fig. 8
the central and surface temperatures of this WD as a function of its

Figure 9. Radius, Ī and Q̄ as functions of age for zero-temperature models
and the MESA model for a 0.15 M� He WD. The data are colour-coded to
match the central temperature of the WD. The colourbar shows the log of the
central temperature in Kelvins. Towards the end of the evolution, the MESA

model tends to approach the zero-temperature models (red), as expected.

age. The WD begins with a central temperature on the order of 107

K, and it decreases to 106 K over 10 Gyr.

3.4 Results for the He-core MESA models

We present here the results of our calculations for hot He WDs. The
MESA-generated WD evolved for 1010 yr, and at each time-step, the
perturbations to its interior structure due to rotation were calculated
(see Appendix B). We wish to verify the results we obtained from
our numerical calculations by comparing the late-time data with
the semi-analytic zero-temperature WD models which include only
degeneracy pressure. In Fig. 9, we present the WD’s radius, as well
as the particular scalings Ī and Q̄ (see equations 22 and 24) as
functions of age. We show data from the MESA calculation, as well
as the zero-temperature data for a He WD of the same mass for
reference. Over Gyr time-scales, the WD cools sufficiently and
is well approximated by the zero-temperature model. The data
from the MESA system are colour-coded according to the central
temperature; the colourbar on the right of the figure shows the log
of the central temperature in Kelvin.

Though the numerical MESA data are well approximated by the
zero-temperature result after several Gyr, deviations do occur at
early times. Over the first Gyr, the WD cools significantly, and
its radius shrinks by a factor of a few. Therefore, we cannot say
that the I–Q relation holds in general for hot WDs. However, we
estimate that at central temperatures below a few times 106 K,
the zero-temperature model will return small enough errors that
it is considered a suitable model. In addition, the effects of non-
zero temperature are largest for low-mass WDs (see Shapiro &
Teukolsky 1986 and Boshkayev & Quevedo 2018). The WD we
have considered here has a mass of 0.15 M�, among the lowest
mass WDs to have ever been detected (Pelisoli et al. 2018). For
more massive WDs, the central temperature at which the zero-
temperature model begins to approximate the system well is higher
than we have stated here.
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Figure 10. The absolute fractional difference in the quantities Ī and Q̄

between the MESA model and the zero-temperature model for a 0.835 M�
C/O WD as a function of the age of the WD. The meaning of the colour-
coding is the same as in Fig. 9.

3.5 Finite-temperature C/O WD

We will now investigate if more massive WDs are well modelled by
the zero-temperature model at earlier ages and larger temperatures.
We used the test suite ‘make co wd’ in the MESA package, creating a
0.835 M� C/O WD that cooled in isolation. Then, as in the He WD
case, we solved for the perturbations to the background structure
provided by MESA.

We present the results of our calculations in Fig. 10. Unlike Fig. 9
for a 0.15M� He WD, we show the absolute fractional difference
between the MESA model and the zero-temperature model in the
quantities Ī and Q̄ (see equations 22 and 24). Again, the data are
colour-coded to match the WD central temperature. The colourbar
on the right shows the temperature in units of log10 Kelvin. The
WD is born at a very large temperature, since it comes from the
core of a roughly 4 M� star. For higher mass WDs, the composition
profile exhibits a carbon/oxygen core, as well a helium/hydrogen
envelope. For our zero-temperature models, we assume a constant-
composition of Z = 6.

After 10 Myr, the finite-temperature MESA model and the zero-
temperature model agree for both Ī and Q̄ within a numerical error
of a few per cent. At this age, the WD has a central temperature
of roughly 107.6 K, hotter than the He WD core at its genesis.
Thus, we have confirmed our hypothesis, that higher mass WDs are
well modelled by the zero-temperature model at larger temperatures
and smaller ages. Since it took this WD tens of Myr to cool to
approximately zero temperature (a short time-scale, astronomically
speaking), it is likely that most WDs that we have observed will be
well described by the zero-temperature model.

We find that, in the case of high-mass WDs, realistic finite
temperatures do not alter the zero-temperature I–Love–Q relations.
Up to a few per cent error (created by the MESA-evolved WD not
being precisely modelled by a constant Z = 6 interior composition),
the high-mass WD is well described by the zero-temperature model
in all observable times.

3.6 I–Q relation

In Fig. 11, we show the time evolution of Ī and Q̄ for both the
MESA-evolved He WD and C/O WD, compared to the sequence of
Ī and Q̄ of zero-temperature WDs across many central densities.

Figure 11. Ī and Q̄ over time for both the He WD and the C/O WD we
evolved using the MESA code, as well as the same variables over many central
densities in the zero-temperature model. Since the composition we choose
for our zero-temperature model does not matter (Boshkayev et al. 2017), we
choose the Chandrasekhar EoS for simplicity. The MESA results are shown by
lines because the values vary in time due to the WD temperature evolution;
the zero-temperature model is a line because the values vary across the
many different central densities we show here. Because the C/O WD is
not significantly affected by finite temperature (see Fig. 10), its trajectory
in Ī − Q̄ space is difficult to see. Rather than enlarge it so that it may
become visible, we choose to circle the surrounding region to indicate its
location while still retaining its point-like appearance. As in Figs 9 and 10,
we colour-code the MESA models according to their central temperature.

We find that the tendency is for the hot WD to begin on the right
side of the cold WD Ī − Q̄ sequence, then to fall back down to its
zero-temperature value along the sequence. This is most noticeable
in the He WD; the C/O WD is not noticeably affected by finite
temperature, and it appears as a single point in Fig. 11.

Let us compare the MESA curves and zero-temperature models in
more detail. Notice that lower masses correspond to larger Ī and Q̄

(Yagi & Yunes 2013a). In the case of the higher mass WD, there is
practically no deviation from the cold WD sequence, as we noted
previously. However, the low-mass WD deviates significantly from
its zero-temperature Ī − Q̄ point, even after astrophysically long
time-scales. We notice that the deviation is away from the cold WD
sequence and toward generally larger Q̄ than Ī , as is demonstrated
in Fig. 9.

4 SU M M A RY A N D C O N C L U S I O N S

In this work, we have studied the so-called ‘I–Love–Q’ relations
in the context of realistic WDs. The primary application of these
relations is to aid in GW analysis by reducing the overall number
of parameters necessary to produce model waveform templates.

We first studied the effect of a parametrized form of differential
rotation on these relations, where the amount of differential rotation
was characterized by a core radius A. We modified the equations
of structure governing WD interiors to account for a rotation
frequency � that varies with radius. We then solved these equations
across a range of WD masses and physical core radii, while
holding the angular momentum fixed. We found that the I–Love–Q
relations remain universal under variation in compositions even for
differentially rotating WDs. On the other hand, the I–Q and Love–Q
relations for such differentially rotating WDs deviate from those for
WDs under constant rotation. Additionally, we found that unlike the
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constant rotation case, the rotational and tidal Love numbers are not
equal under differential rotation.

Next, we studied how finite temperature affects the WD I–
Q relations. We evolved a 0.15 M� He WD using the publicly
available MESA code (Paxton et al. 2013) for 1010 yr as it cooled in
isolation. The MESA code tabulated the background data of the WD’s
interior profile, and we solved for perturbations to this background
profile due to constant rotation. We found that the WD cools and
becomes well modelled by the zero-temperature approximation over
time-scales of order Gyr. However, at its genesis, the WD was quite
poorly modelled by the zero-temperature approximation, and we
say that the I–Q relation does not hold in general for hot WDs.
We then performed a similar treatment to a C/O WD generated
by the MESA code. The program generated a 0.835 M� WD and
cooled it in isolation. We found that the WD was well described by
the zero-temperature model at all astrophysically relevant ages and
at central temperatures less than roughly 107.6 K, higher than the
central temperature of the He WD at its genesis. Thus, we argue
that for most intermediate-mass WDs, any deviations from the zero-
temperature model are unlikely to be detectable, ignoring any tidal
heating that may occur (Iben et al. 1998; Piro 2011), though we
note that at sufficiently large temperatures and low masses, the I–Q
relation is not the same as its zero-temperature counterpart.

In the case of the He WD, where finite temperature effects
were relevant on Gyr time-scales, the system deviated in its I–Q
relation from the sequence formed by cold WDs of varying masses.
Initially, the WD begins with greater Q̄ than Ī , then as it evolves,
it tend to move leftwards in I–Q space until it reaches the cold
WD sequence. The C/O WD that we considered was unaffected by
finite temperature on astrophysically relevant time-scales, and there
was no noticeable deviation of this system away from the cold WD
sequence.

Although the focus of our paper is for WDs, we here comment
on how differential rotation, finite temperatures, and deviations
from chemical equilibrium affect the I–Love–Q relations for NSs.
The effect of differential rotation on universal relations2 has been
studied in Bretz et al. (2015) within the Newtonian limit and small
differential-rotation approximation. The authors showed that the
fractional difference in the relations from the uniformly rotating
case is comparable to the fractional amount of differential rotation
over uniform rotation. On the other hand, the effect of finite
temperature (as well as the composition dependence) has been
studied in Martinon et al. (2014). The authors showed that when
proto-NSs are formed, the I–Love–Q relations are different from
the original ones for cold NSs by up to 20 per cent, which is much
larger than the EoS-variation within the relations. However, several
seconds after their births, the relations reduce to the original ones.
Similarly, just after formation of an NS, either through single star
evolution or in NS mergers, deviations from beta equilibrium may
persist for several seconds. During this time, the deviation of the
neutron-to-proton ratio from the beta equilibrium value may again
act as an additional parameter in the EoS. This effect has not been
explored yet and is left for future work.
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A P P E N D I X A : EQUAT I O N S O F S T RU C T U R E
FOR D I FFERENTI ALLY ROTATI NG WDS

Previous works (Hartle 1967; Hartle & Thorne 1968; Boshkayev
et al. 2014) have shown how the equations of structure of a rotating
Newtonian configuration may be derived using the Hartle–Thorne
formalism. These works assume that the effects of rotation are
small and work perturbatively. In this section, we will briefly go
over how the equations derived in Hartle (1967) and Boshkayev
et al. (2014) are altered to account for differential rotation within
Newtonian gravity (see Stavridis, Passamonti & Kokkotas 2007;
Passamonti, Stavridis & Kokkotas 2008 for a similar framework
for relativistic stars). See Section 2.2 for discussion on how we
implement differential rotation.

A1 Background and perturbed equations

We begin by writing down the equation of hydrostatic balance and
the gravitational Poisson equation. The gravitational potential �
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separates into its background contribution (order �0) and leading-
order perturbations (order �2), additionally selecting out the 
 =
0 and 
 = 2 spherical harmonic modes of the perturbation. Thus,
each equation becomes three separate equations. The equation of
hydrostatic equilibrium becomes

�0
c :

∫
dP

ρ
+ �(0) = const, (A1)

�2
c, 
 = 0 : ξ0

d�(0)

dr
+ �

(2)
0 + U0 = const(2), (A2)

�2
c, 
 = 2 : ξ2

d�(0)

dr
+ �

(2)
2 + U2 = 0, (A3)

where ξ is the perturbation to the radial coordinate r → r + ξ +
O(�4

c). Here, we have denoted the order in �c by a superscript
and the spherical harmonic by a subscript. The expansion of U in
spherical harmonics is not as simple as in the constant rotation case,
so we calculate the 
 = 0 and 
 = 2 components here:

U0(r) = −1

2
�2

cr
2f0(α), (A4)

U2(r) = −1

2
�2

cr
2f2(α), (A5)

where α ≡ r/A, and the functions f0(α) and f2(α) are given by

f0(α) = 1

2

∫ π

0

sin2 θ

1 + α2 sin2 θ
P0(cos θ ) sin θdθ

= 1

α3

(
α − Arcsinh(α)√

1 + α2

)
, (A6)

f2(α) = 5

4

∫ π

0

sin2 θ

1 + α2 sin2 θ
P2(cos θ ) sin θdθ

= 5

2α5

(
3α − (3 + 2α2)Arcsinh(α)√

1 + α2

)
. (A7)

The gravitational Poisson equation, which states

∇2� = 4πGρ, (A8)

becomes

�0
c : ∇2

r �
(0) = 4πGρ, (A9)

�2
c, 
 = 0 : ξ0

d

dr
∇2

r �
(0) + ∇2

r �
(2)
0 = 0, (A10)

�2
c, 
 = 2 : ξ2

d

dr
∇2

r �
(0) + ∇2

r �
(2)
r − 6

r2
�

(2)
2 = 0. (A11)

We now define two new variables p∗
0 and m∗

0 to simplify the above
equations:

p∗
0 ≡ ξ0

d�(0)

dr
, (A12)

Gm∗
0

r2
≡ d�

(2)
0

dr
. (A13)

It can be shown that, when integrated from the centre to the surface,
m∗

0 is the correction to the mass. See Boshkayev et al. (2014) for
a more explicit discussion of these new variables (our m∗

0 is their
M(2)).

These six equations plus the definition of interior mass

dm

dr
= 4πr2ρ (A14)

and the EoS (which is well known for WDs) are all that are necessary
to solve for the interior structure of a differentially rotating WD.
The stellar mass for a non-rotating configuration M is determined
from M = m(R) with the stellar radius R determined by the condition
P(R) = 0.

Let us rewrite the above equations here for completeness. The
background equations are

dP

dr
= −Gmρ

r2
, (A15)

dm

dr
= 4πr2ρ, (A16)

P = P (ρ). (A17)

The 
 = 0 equations are

dp∗
0

dr
= −Gm∗

0

r2
+ 1

2
�2

c

(
2rf0(α) + r2 df0(α)

dr

)
, (A18)

dm∗
0

dr
= 4πr2 dρ

dP
p∗

0ρ. (A19)

The 
 = 2 equations are a second-order ODE in terms of �
(2)
2 ,

which may be decomposed into two first-order ordinary differential
equation (ODEs) to be numerically integrated:

d�
(2)
2

dr
≡ g

(2)
2 , (A20)

dg
(2)
2

dr
= −4πGρ

dρ

dP

(
�

(2)
2 − 1

2
�2

cr
2f2(α)

)

+ 6

r2
�

(2)
2 − 2

r
g

(2)
2 . (A21)

We had three equations from decomposing both equations (4) and
(A8), and we added in the definition of mass and the EoS, totalling
eight equations, yet here we only have six (the two 
 = 2 equations
are really just one equation). What happened to the seventh and
eighth equations? The ‘unused’ equations are equations (A3) and
(A9), which we may use to solve for ξ 2 and �(0).

In the main part of this paper, we only kept to leading-order in
spin, so the only perturbed variable we need is �

(2)
2 , which is used

to calculate the quadrupole moment Q. However, in the interest of
being thorough, we include the equations for the 
 = 0 variables
(which tell us information about corrections to the mass, radius, and
moment of inertia) as well.

A2 Boundary conditions

It is important to have knowledge of how the above functions behave
at small r away from the centre of the star to have accurate initial
conditions. For the background variables ρ, m, and P near r = 0,

ρ(r) = ρc (free parameter), (A22)

m(r) = 4

3
πr3ρc, (A23)

P (r) = P (ρc), (A24)

where the central density ρc is a free parameter to be chosen.
For the 
 = 0 equations, we look at the leading-order terms in r in

equation (A18). It is not immediately clear what the leading-order
in r is for the first term, but the term in parenthesis is clearly of order
r (see equation A4). We assume that this is the lowest order in r for
p∗

0 . This would imply that p∗
0 ∼ r2 near the centre, which implies
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I-Love-Q for realistic WDs 989

m∗
0 ∼ r5 near the centre. Plugging this back into equation (A18)

confirms that linear order is the lowest order in r. Thus, the initial
conditions are

p∗
0(r) = 1

3
�2

cr
2, (A25)

m∗
0(r) = 4

15
πρ

dρ

dP
�2

cr
5. (A26)

For the 
 = 2 equations, we have two ODEs, so we clearly need
two boundary conditions. The first is found by noting that, near the
centre, �

(2)

 ∝ r
 to keep the solution finite at r = 0. The second

boundary condition comes by matching the values obtained from the
interior with the values obtained from the exterior at the surface of
the star. In the exterior region of the star, the potential �

(2)

 ∝ r−
−1

in order to keep the solution finite at infinity. Now, because the
differential equations are linear in �

(2)
2 and g

(2)
2 , we can say that

�
(2)
2 (r) = a(r) + b(r)�(0), (A27)

g
(2)
2 (r) = c(r) + d(r)�(0), (A28)

where a, b, c, and d are some arbitrary functions of radius, and �(0)
is assumed to be the true value of �(2) near the centre of the star.
Then, we demand that at the surface

d�
(2)
2

dr

∣∣∣∣
r=R

= −
 + 1

R
�

(2)
2

∣∣∣
r=R

= − 3

R
�

(2)
2

∣∣∣
r=R

, (A29)

which tells us that

c(R) + d(R)�(0) = − 3

R
(a(R) + b(R)�(0)) . (A30)

Then, if a, b, c, and d are known functions of r, we may then solve
for the true initial condition �(0)

�(0) = − c(R) + 3a(R)/R

d(R) + 3b(R)/R
, (A31)

which may then be substituted into equations (A27) and (A28) to
find the true functions �

(2)
2 (r) and g

(2)
2 (r). Now all that remains

is to find a, b, c, and d as functions of radius. This is done
by carefully choosing two values of �(0) and integrating the
differential equations twice. The functions a(r) and c(r) are given
by the results of an integration when �(0) is chosen to equal zero.
Similarly, b(r) and d(r) are given by the results of an integration
when �(0) is chosen to equal one and the functions a(r) and c(r)
are subtracted off.

A3 Calculating additional variables

We now seek to calculate the remaining variables necessary to
test the I–Love–Q relations. In the main body of this paper, we
only kept up to leading order in spin, so that the mass, radius, and
moment of inertia were entirely background quantities; additionally,
we considered the angular momentum proportional to �c and not
to contain higher order terms. However, in the interest of being
thorough, we derive how the corrections to I and J may be calculated
under this parametrized formulation of differential rotation.

We begin by calculating the moment of inertia, I, which is given
by the integral

I =
∫

dI =
∫

ρ(r sin θ )2dV . (A32)

It can be shown that to next-to-leading order in the perturbation,
this integral becomes (see Boshkayev et al. 2014)

I = I (0) + I (2) = 8π

3

∫ R

0
ρ(r)r4dr

− 8π

3

∫ R

0

dρ

dr
r4

(
ξ0 − 1

5
ξ2

)
dr, (A33)

where ξ 2 is found via solving equation (A3)

ξ2(r) = − r2

Gm(r)

(
�

(2)
2 (r) − 1

2
�2

cr
2f2(α)

)
, (A34)

and dρ/dr is found via the chain rule and the EoS

dρ

dr
= dρ

dP

dP

dr
= −

(
dP

dρ

)−1
Gm(r)ρ(r)

r2
. (A35)

We now wish to calculate the total angular momentum of the star J.
In constantly rotating stars, this is simply equal to I�, but we have
now promoted � to be a function of radius. Thus, it is now absorbed
into the volume integral, and we find

J (1) =
∫

ρr2 sin2 � �c
A2

A2 + r2 sin2 θ
dV (A36)

= 2π�c

∫ R

0
dr

∫ π

0
ρr4dr

sin3 θ

1 + α2 sin2 θ
dθ (A37)

= 4π�c

∫ R

0
ρr4f0(α)dr, (A38)

where we remind the reader that we have defined α ≡ r/A. We
have shown that I may be split into a background piece and a
perturbed piece of order �2

c . The same can be shown for J. What
we have calculated above is the leading-order term in J, which is of
order �1

c , hence the superscript (1). The term corresponding to the
contribution from I(2) can be shown to be

J (3) = −4π�c

∫ R

0

dρ

dr
r4

(
ξ0f0(α) + 1

5
ξ2f2(α)

)
dr. (A39)

In the main body of this paper, only the terms I(0) and J(1) were used.
Next, the rotational Love number may either be calculated using

the Clairaut equation (see Boshkayev et al. 2014) or by simply
calculating the ratio of the response potential to the forcing potential.
The apsidal motion constant k2 is given by

k2 = 1

2

�
(2)
2

U2

∣∣∣∣
R

, (A40)

and the Love number is simply λ = 2k2. In this work, we use the
latter method to calculate Love numbers. Other works vary in their
definition of the Love number (some define λ to have units – see
e.g. Boshkayev et al. 2017); here, we define the rotational Love
number as the response in the gravitational potential to the forcing
centrifugal potential, making λ unitless. There appears to be general
agreement on the meaning of the apsidal motion constant k2, so we
note that our definition of the Love number is related by a factor of
two to k2.

Finally, we wish to calculate the quadrupole moment Q. The
gravitational potential exterior to the WD is given by

�(r, θ ) = −GM

r
+ GQ

r3
P2(cos θ ). (A41)
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In how we have defined m∗
0 (see equation A13), one can see that

equation (A41) may be solved for Q:

�
(2)
2

∣∣∣
R

= GQ

R3
→ Q = R3

G
�

(2)
2

∣∣∣
R
. (A42)

Using this sign convention, Q > 0 represents an oblate object, and
Q < 0 represents a prolate object.

APPEN D IX B: EQU ILIBRIUM FLUID
C O N F I G U R AT I O N S I N W D S

In this section, we will derive formulae for the moment of inertia I
and the quadrupole moment Q of a perturbed fluid configuration. In
contrast to the Hartle–Thorne formalism, here we assume that the
mass (rather than the central density) is fixed after the perturbation
is ‘turned on’.

We begin by assuming that the background (unperturbed) quanti-
ties are known as functions of radius: pressure P, density ρ, sound-
speed squared c2

s , Brunt–Vaisala frequency N2, and interior mass m.
Now, due to some perturbing potential U, the fluid configuration
experiences small changes in these quantities away from their
background values. In general, for some arbitrary fluid variable
B, the Eulerian perturbation δB is defined by

δB ≡ B(x, t) − B0(x, t), (B1)

where B0 is the background quantity. See section 6.2 of Shapiro &
Teukolsky (1986), for a more thorough description of these pertur-
bations.

Next, we express all relevant perturbed quantities in terms of
spherical harmonics:

δA =
∑

,m

δA
m(r)Y
m(θ, φ), (B2)

with A = (P, ρ, �, ξ r, ξ h, U). Here, ξ r is the radial perturbation, ξ h

is the horizontal perturbation, and � is the gravitational potential.
One can show (e.g. Shapiro & Teukolsky 1986) that to conserve the
mass of the fluid element, the following relation must hold

δρ = −∇ · (ρξ ) . (B3)

We define the quadrupole moment via the gravitational potential �

of the fluid:

�(x) = −GM

r
− GQ

r3
P2(cos θ ) + O

(
R4

r5

)
, (B4)

where G is the gravitational constant, M is the total mass of the
fluid, r is the distance from the origin to the point at which the
gravitational potential is being evaluated, and P2(x) is the 
 = 2
Legendre polynomial in x. One can then show that Q is given by

Q =
√

4π

5

∫
δρ20(r ′)(r ′)4dr ′, (B5)

where ρ20 is the (
, m) = (2, 0) mode of the density perturbation,
using the language of spherical harmonics, rather than Legendre
polynomials.

Next, we wish to find the perturbation to the integral quantity
I. In the absence of any perturbations, the moment of inertia is
given by

I =
∫ R

0
ρ(x2 + y2)d3x. (B6)

Following the procedure of Shapiro & Teukolsky (1986), the
perturbation to I using the Lagrangian treatment is given by

dI =
∫

�(x2 + y2) × ρd3x (B7)

=
∫

ρ
(
2xξx + 2yξy

)
d3x (B8)

= 2
∫

ρξ · (x x̂ + y ŷ) d3x, (B9)

where � represents a Lagrange perturbation. To simplify the above
dot product, we rewrite the radial perturbation as the sum of its
radial and horizontal piece:

ξ = ξr,
mY
m r̂ + ξh,
mr∇Y
m. (B10)

One can show that the vector sum of x + y can be expressed as

x + y = r sin θ
(

sin θ r̂ + cos θ θ̂
)

. (B11)

Then, using the orthogonality of the gradient of spherical harmon-
ics,∫

(r∇Y
m) · (r∇Y
′m′ ) d� = 
(
 + 1)δ

′δmm′ , (B12)

one can show that the perturbation to I is given by

dI = 2
∫

ρr3dr

[
4

3

√
π

(
ξr,0(r) − 1√

5
ξr,2(r)

)

− 4

√
π

5
ξh,2(r)

]
, (B13)

where only the 
 = 0, 2 and m = 0 components survive the
integration. Here, we have dropped the m subscript, as it is zero
for all terms. Thus, we need to know ξ r, 
 and ξ h, 
.

Now, for a fluid configuration exposed to some perturbing
potential (with no oscillatory response), the equation of hydrostatic
balance becomes (to leading-order in the perturbation)

0 = −∇δP − ∇ (δρ � + ρ δ�) − ρ∇U. (B14)

The gradient operator acts both on the radial piece in the spherical
harmonic expansion as well as the spherical harmonics themselves.
Thus, we may split equation (B14) into a radial equation and a
horizontal equation. Each term in the radial equation carries a
spherical harmonic, which we may cancel from each. Similarly, the
horizontal expression carries the gradient of a spherical harmonic,
which is proportional to 
/r. We keep the 
/r and cancel the rest,
leaving us with

0 = −dδP
m

dr
− gδρ
m − ρ

(
dδ�

dr
+ dU
m

dr

)
, (B15)

0 = 


r
[δP + ρ (δ� + U )] . (B16)

For 
 = 0, the second equation tells us no information. Thus, we
must solve the equations of structure separately for the 
 = 0 and

 = 2 cases.

B1 Solving the � = 2 case

We begin with the simpler 
= 2 case. We assume that all background
quantities (P, ρ, m(r), N2, c2) are known as functions of radius. Then,
we have the three equations we discussed above (equations B3, B15,
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and B16), as well as the EoS:

δρ = δP

c2
+ ρ

N2

g
ξr , (B17)

where g is the interior gravity (equal to Gm(r)/r2), and we have
cancelled the Y
m from both sides and suppressed the 
m subscript.
For the rest of this section, the 
m subscripts are implied on all
perturbed quantities unless specifically stated otherwise. From the
horizontal hydrostatic equilibrium equation, we have that

δP

ρ
= − (δ� + U ) . (B18)

We then substitute this into the EoS to find

δρ = − ρ

c2
(δ� + U ) + ρ

N2

g
ξr , (B19)

which we may then plug into the radial hydrostatic equilibrium
equation. Some cancellation occurs, and we are left with

0 = −N2

g
ρ − ρN2ξr . (B20)

In the above simplification, we have used the definition of N2:

N2 ≡ −g

(
1

ρ

dρ

dr
+ g

c2

)
. (B21)

Thus, in radiative regions (where N2 > 0), we have that

ξr = − δ� + U

g
. (B22)

In convective regions, where N2 � 0, this relation does not hold
explicitly. Then, we may solve for δρ to yield

δρ = −dρ

dr
ξr . (B23)

We now need to invoke a fourth equation: the gravitational Poisson
equation:

∇2δ� = 4πGδρ (B24)

= 4πG

(
dρ

dr

)(
δ� + U

g

)
(B25)

= 4πGρ

(
1

c2
+ N2

g2

)
(δ� + U ) . (B26)

This is a self-consistent equation in terms of δ�, its derivatives, and
known quantities. Thus, with the proper boundary conditions, this
may be solved to find δ�, which tells us ξ r and then δρ and δP.
Once all of these variables are known, we substitute back into the
mass-conservation equation to solve for ξ h:

ξh = r


(
 + 1)

(
δρ

ρ
+ dξr

dr
+ 2ξr

r
+ 1

ρ

dρ

dr
ξr

)
. (B27)

The radial derivative of ξ r may be found by taking the derivative of
equation (B22) and carefully applying the chain rule. Since U is a
known quantity, all derivatives of terms in equation (B22) are known
explicitly. All we need now are the proper boundary conditions
for δ�. We refer the reader to the discussion in Appendix A2 on
choosing appropriate boundary conditions for �. The process is
similar: two different initial conditions near r = 0 are chosen for
δ� in order to solve for the appropriate initial condition by matching
with the values at the surface.

B2 Solving the � = 0 case

Next, we turn our attention to the 
 = 0 case. From equation (B13),
we see that we must also know the 
 = 0 mode of ξ r to properly
integrate to find the perturbations to I. The derivation above relies
on the horizontal hydrostatic equilibrium equation (equation B16),
which only applies in the case where 
 �= 0. To solve for the

 = 0 case, we must start over, using only the radial hydrostatic
equilibrium equation, the equation of mass-conservation, the EoS,
and the gravitational Poisson equation. In the previous section,
we also had the horizontal hydrostatic equilibrium equation. The
variable ξ h is zero in the 
 = 0 mode (see equation B27) to keep the
number of equations and variables equal. We define a new variable

� ≡ δP

ρ
+ δ� + U, (B28)

where as before, we have dropped the 
m subscripts (zero is assumed
for both here). We rewrite the four equations we have in terms of
this new variable, as well as for clarity:

0 = − d

dr
(ρ(� − δ� − U )) − gδρ − ρ

d

dr
(δ� + U ), (B29)

0 = δρ + d

dr
(ρξr ) , (B30)

δρ = ρ

c2
(� − δ� − U ) + ρ

N2

g
ξr , (B31)

∇2δ� = 4πGδρ. (B32)

Substituting the EoS into the radial hydrostatic equilibrium equation
and dividing by ρ, we find some cancellations, and we are left with

d�

dr
= N2

(
� − δ� − U

g
− ξr

)
. (B33)

For 
 �= 0, we have defined � = 0, so then also its derivative must be
zero. This reduces to the equation for ξ r we found in equation (B22).
Next, we substitute δρ from the EoS into the equation of constant
mass to arrive at

dξr

dr
= −ξr

(
2

r
− g

c2

)
− � − δ� − U

c2
. (B34)

Finally, we substitute δρ from the EoS into the gravitational Poisson
equation to arrive at a single equation containing derivatives of δ�.
For numerical integration, it is best to rewrite this second-order
ODE as two first-order ODEs, which we list below:

dδ�

dr
≡ δg, (B35)

dδg

dr
= 4πGρ

(
� − δ� − U

c2
+ N2

g
ξr

)
− 2

r
δg. (B36)

We now have four first-order ODEs for our four variables. We
therefore need four sets of boundary conditions in order to solve for
these entirely. Two of these boundary conditions are the restrictions
we have previously imposed on δ� and δg:

δg(r)
∣∣∣
r=R

= − 1

R
δ�(r)

∣∣∣
r=R

, (B37)

δg(r)
∣∣∣
r∼0

= 0. (B38)

The next boundary condition comes by demanding that the surface
of both the rotating and the non-rotating star have zero pressure,
asserting that �P = 0 (the Lagrangian perturbation to P; see
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Shapiro & Teukolsky 1986, chapter 6). This gives us

�(r)
∣∣∣
r=R

= (g(r)ξr (r))
∣∣∣
r=R

+ δ�(r)
∣∣∣
r=R

+ U (r)
∣∣∣
r=R

. (B39)

For the fourth boundary condition, we look at the behaviour of ξ r(r)
near the centre. Just as we needed δ� ∝ r
 for it to be finite near
the centre, we can see that we need ξ r ∝ r for it to be finite near the
centre as well. Thus, we have our fourth boundary condition:

ξr (r)
∣∣∣
r∼0

= − r

3c2
(�(r) − δ�(r))

∣∣∣
r∼0

. (B40)

We now have four ODEs for four variables with four boundary
conditions on those variable, though these boundary conditions are
given in terms of ‘free’ parameters: δ�(0), δ�(R), �(0), and �(R).
How do we find the correct values of these free parameters? We
integrate multiple times with different boundary conditions from
the surface and from the centre, matching our values at some radius
in the middle. We begin by declaring (in a similar method to what
we used in Appendix A2) that the four variables we study here are
exclusively determined by these ‘free’ parameters:

δ�(r) = a1(r) + a2(r)δ�(0) + a3(r)�(0), (B41)

δg(r) = b1(r) + b2(r)δ�(0) + b3(r)�(0), (B42)

ξr (r) = c1(r) + c2(r)δ�(0) + c3(r)�(0), (B43)

�(r) = d1(r) + d2(r)δ�(0) + d3(r)�(0). (B44)

We may rewrite these four equations in terms of a matrix (noting
that ai through di are all functions of r):

⎛
⎜⎜⎜⎜⎝

δ�

δg

ξr

�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1

δ�(0)

�(0)

⎞
⎟⎟⎠ . (B45)

We may do the same for the ‘free’ parameters at the surface:

⎛
⎜⎜⎜⎜⎝

δ�

δg

ξr

�

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a′
1 a′

2 a′
3

b′
1 b′

2 b′
3

c′
1 c′

2 c′
3

d ′
1 d ′

2 d ′
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1

δ�(R)

�(R)

⎞
⎟⎟⎠ . (B46)

Now, these ‘free’ parameters are not truly free; they have true values
that are not able to be chosen, and we wish to find these true values.
If the functions ai through d ′

i are known functions of r, then we
solve for these true values by matching at some radius in between
the centre and the surface, which we will call r1. Then, at r1, we

demand that⎛
⎜⎜⎜⎜⎝

a1 a2 a3

b1 b2 b3

c1 c2 c3

d1 d2 d3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1

δ�(0)

�(0)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a′
1 a′

2 a′
3

b′
1 b′

2 b′
3

c′
1 c′

2 c′
3

d ′
1 d ′

2 d ′
3

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

1

δ�(R)

�(R)

⎞
⎟⎟⎠ . (B47)

We have four equations for four unknowns, which we may also
express as a matrix (where all quantities other than the ‘free’
parameters are again evaluated at r = r1):⎛
⎜⎜⎜⎜⎝

a′
1 − a1

b′
1 − b1

c′
1 − c1

d ′
1 − d1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

a2 −a′
2 a3 −a′

3

b2 −b′
2 b3 −b′

3

c2 −c′
2 c3 −c′

3

d2 −d ′
2 d3 −d ′

3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

δ�(0)

δ�(R)

�(0)

�(R)

⎞
⎟⎟⎟⎟⎠ . (B48)

This matrix may be inverted, and thus the true values of the ‘free’
parameters are solved, once ai through d ′

i are known functions of r.
How do we find these functions of r? We integrate several times

with different choices of the boundary conditions. We choose to
integrate three times from the surface and three times from the
centre. In both cases (surface and centre) the choices of boundary
conditions are the same. We begin by choosing the tuple of boundary
conditions (δ�, �) = (0, 0). Then, the results of this integration
give us

δ�1(r)(known) = a1(r), (B49)

which gives us the coefficient a1 (or a′
1) as a function of radius. This

integration tells us all of the variables with subscript 1. For the next
integration, we choose the boundary condition-tuple (δ�, �) = (0,
1), giving us

δ�2(r)(known) = a1(r)(known) + a2(r), (B50)

which then tells us a2 (and similarly a′
2 and all other variables with

subscript 2). Finally, we choose the third boundary condition-tuple
(δ�, �) = (1, 0), which gives us

δ�3(r)(known) = a1(r)(known) + a3(r), (B51)

and we then know the rest of the coefficients ai through d ′
i as

functions of radius. Thus, integrating the same set of differential
equations three times (at both the centre and the surface) gives us the
coefficients, which we use to solve for the true boundary conditions
via equation (B48). Then, once the true boundary conditions are
known, the true values of all four perturbed variables may be found
using either equations (B45) or (B46).
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