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Chao Zhang,1 Xiang Zhao,' Anzhong Wang " Bin Wang,z’3 Kent Yagi . Nicolas Yunes,’
Wen Zhao,ﬁ’7 and Tao Zhu®
'GCAP-CASPER, Physics Department, Baylor University, Waco, Texas, 76798-7316, USA
Center for Gravitation and Cosmology, Yangzhou University, Yangzhou 225009, China
3School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
4Department of Physics, University of Virginia, Charlottesville, Virginia, 22904, USA
5Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
°cAs Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy,
University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, China
"School of Astronomy and Space Science, University of Science and Technology of China,
Hefei 230026, China
¥Institute for Theoretical Physics & Cosmology, Zhejiang University of Technology,
Hangzhou 310032, China

® (Received 2 December 2019; accepted 10 January 2020; published 5 February 2020)

We study gravitational waves emitted by a binary system of nonspinning bodies in a quasicircular
inspiral within the framework of Einstein-aether theory. In particular, we compute explicitly and
analytically the expressions for the time-domain and frequency-domain waveforms, gravitational wave
polarizations, and response functions for both ground- and space-based detectors in the post-Newtonian
approximation. We find that, when going beyond the leading order in the post-Newtonian approximation,
the non-Einsteinian polarization modes contain terms that depend on both the first and the second
harmonics of the orbital phase. We also calculate analytically the corresponding parametrized post-
Einsteinian parameters, generalizing the existing framework to allow for different propagation speeds
among the scalar, vector, and tensor modes, without assumptions about the magnitude of its coupling
parameters, and meanwhile, allowing the binary system to have relative motions with respect to the aether
field. Such results allow for the easy construction of Einstein-aether templates that could be used in

Bayesian tests of general relativity in the future.
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I. INTRODUCTION

The detection of the first gravitational wave (GW) from
the coalescence of two massive black holes (BHs) by
advanced LIGO marked the beginning of the GW era [1].
Following this observation, a few tens of GW candidates
were identified by the LIGO/Virgo scientific Collaboration
[2].l The LIGO and Virgo detectors are sensitive to GWs
with frequencies between 20 and 2000 Hz [4], since at
frequencies lower than 20 Hz they are limited by the
Newtonian ground noise. As a consequence, LIGO and
Virgo are only able to observe GWs produced in the late
inspiral and merger of low-mass compact binaries, such as
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lRecently, various GWs have been detected after LIGO/Virgo
resumed operations on April 1, 2019, possibly including the
coalescence of a neutron-star (NS)/BH binary. The details of
these detections have not yet been released [3].
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binary black holes (BBHs), BH-NSs, and binary neutron
stars (BNSs).

One of the many remarkable observational results
obtained so far is the discovery that the BBHs can be
composed of objects with individual masses much larger
than what was previously expected, both theoretically and
observationally [5-7], leading to the proposal and refine-
ment of various formation scenarios [8,9]. A consequence
of this discovery is that the early inspiral phase may also be
detectable by space-based observatories, such as LISA,
TianQin, Taiji, and DECIGO, for several years prior to their
coalescence [10,11]. The analysis of the BBHs’ population
observed by LIGO and Virgo has shown that such space-
based detectors may be able to see many such systems, with
a variety of profound scientific consequences.

In particular, multiple observations with different detec-
tors at different frequencies of signals from the same source
can provide excellent opportunities to study the evolution
of the binary in detail. Since different detectors observe at
disjoint frequency bands, together they cover different

© 2020 American Physical Society
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evolutionary stages of the same binary system. Each stage
of the evolution carries information about different physical
aspects of the source. Technically, it also provides early
warnings for an upcoming coalescence, so that ground-
based detectors could know the sky localization of the
source and its time to coalescence well in advance.
Combining high- and low-frequency GW detections of
the same source can also help identify the astrophysical
channel responsible of BBH formations. Different scenar-
ios in fact result in different masses, mass ratios, spins, and
eccentricity distributions of the detected sources [12—17].
Because of the GW circularization, BBHs may have small
eccentricity in the LIGO/Virgo band, regardless of their
formation channels. However, space-based detectors will
be able to observe GW signals from BBHs that did not have
enough time to fully circularize, allowing for measurements
of eccentricities in excess of 1073 [13]. In addition, stellar-
mass BBHs observed in the space-based detector bands
provide a very promising class of standard sirens (see, e.g.,
[18]). In the absence of a distinctive electromagnetic
counterpart, it was estimated [19] that LISA might measure
the Hubble constant within a few percent error, thus helping
in the resolution of the discrepancy between the local
measurement of this quantity [20] and that obtained from
the cosmic microwave background (CMB) [21] (Note that
using ground-based detectors, e.g., alLIGO, the Hubble
constant could also be measured with good precisions even
if we do not identify electromagnetic counterparts [22,23]).
In addition, multiband GW detections will enhance the
potential to test gravitational theories in the strong, dynami-
cal field regime of merging compact objects [24-29].
Massive systems will be observed by ground-based detec-
tors with high signal-to-noise ratios, after being tracked for
years by space-based detectors in their inspiral phase. The
two portions of signals can be combined to make precise
tests for different theories of gravity. In particular, joint
observations of BBHs with a total mass larger than about 60
solar masses by LIGO/Virgo and space-based detectors can
potentially improve current bounds on dipole emission from
BBHs by more than 6 orders of magnitude [24], which will
impose severe constraints on various theories of gravity [30].
All the above work, however, depends crucially on the
accurate description of GWs in order to track the signal
during the early inspiral phase all the way to the merger
phase. During the inspiral phase, GWs can be modeled
using the post-Newtonian (PN) formalism [31]. Within
general relativity (GR), waveforms at low PN orders (i.e., at
or below the 2PN order) are sufficiently accurate for an
unbiased recovery of the source parameters [32]. As the
signal-to-noise ratio increases, however, our ability to test
GR will be systematically limited by the accuracy of our
waveform models.
In recent work, some of the present authors generalized
the PN formalism to certain modified theories of gravity
and applied it to the quasicircular inspiral of compact

binaries. In particular, we calculated in detail the wave-
forms, gravitational wave polarizations, response functions,
and energy losses due to gravitational radiation in Brans-
Dicke (BD) theory [33] and screened modified gravity
(SMG) [34-36] to the leading PN order, with which we
then considered projected constraints from the third-
generation detectors. Such studies have been further
generalized to triple systems in Einstein-acther theory
[37,38]. When applying such formulas to the first relativ-
istic triple system discovered in 2014 [39], we studied the
radiation power and found that the quadrupole emission has
almost the same amplitude as that in GR, but the dipole
emission can be as big as the quadrupole emission. This can
provide a promising window to place severe constraints on
the Einstein-aether theory with multiband gravitational
wave observations [24,27].

In this paper, we study the gravitational waves emitted by
a compact binary during its quasicircular inspiral within
Einstein-aether theory. This is, of course, not the first time
that gravitational waves have been studied in this theory.
The first studies were carried out by Foster in the mid 2000s
[40,41], who computed the gravitational waves and the
radiative losses of a generic binary through a multipolar
decomposition. Using these results, Yagi, et al. [42,43]
calculated the effects of such waves on the rate of change of
the orbital period of binary pulsars, placing stringent
constraints on a sector of the theory. Following this work,
Hansen, et al. [44] calculated the GW polarizations and
response function in the time and frequency domain for a
compact binary during its quasicircular inspiral, but again
in a restricted sector of the theory. More recently, more
severe constraints were placed on the Einstein-aether theory
[45,46], using the recent binary NS observation by LIGO,
which constrained the speed of gravity to better than one
part in 105 [44].

We here revisit some of these calculations without
imposing any restrictions on the parameter space. First,
we compute, once more, the gravitational waves emitted by
abinary system and its associated radiative energy loss for a
generic binary system in the PN approximation without
assumptions about the magnitude of its coupling param-
eters. We then specialize this calculation to a compact
binary in a quasicircular inspiral and compute the time-
domain response function both for ground- and space-
based detectors. In doing so, we discover that previous
expressions for the GW polarizations that compose the
time-domain response function [47] are not applicable to
Einstein-aether theory due to the different speeds of
propagation of its scalar and vector modes. This implies
that the results of [44] are corrected by terms that depend on
these different speeds; in particular, this generates terms in
the non-Einsteinian polarizations that depend explicitly
on the speed of the center of mass of the binary with respect
to the aether field. With these waveforms computed, we
then calculate their Fourier transform in the stationary
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phase approximation (SPA) [47—49] and map the results to
the parametrized post-Einsteinian (ppE) framework [48]
that was extended to allow for different propagation speeds
among different polarization modes [47]. Our results,
therefore, allow for the straightforward construction of
waveform templates with which to carry out tests of
Einstein-aether theory using Bayesian theory and matched
filtering in the future.

The remainder of this paper presents the results summa-
rized above. In particular, in Sec. II, we give a brief
introduction to Einstein-aether theory (& theory for short),
and in Sec. III, we calculate the GW polarizations and energy
loss rate and correct some typos in the literature. In Sec. IV,
we study the GW polarizations and response function for an
inspiraling binary. In Sec. V, we calculate the response
function and its Fourier transform for both ground- and
space-based detectors using the SPA [47-49]. In Sec. VI, we
map the results of the last section to the parametrized post-
Einsteinian (ppE) framework [47-49], while in Sec. VII,
we summarize our main results and present discussions
and concluding remarks. The paper also include four
Appendixes, and in the Appendix A, we present a brief
review on the SPA, while in Appendixes B, C, and D, we
provide some additional mathematical formulas. We follow
here the conventions of Misner, Thorne, and Wheeler [50]
and use units in which ¢ = 1.

II. EINSTEIN-AETHER THEORY

In @ theory, the fundamental variables of the gravita-
tional sector are [51]

(G- ', 2), (2.1)

where g, denotes the four-dimensional metric of spacetime
with a signature (—, 4, +, +) [40,52], u* the aether field,
and A a Lagrangian multiplier that guarantees that the aether
field is always timelike and at unity,

wu, = —1. (2.2)

In this paper, we adopt the following conventions: all
repeated Latin letters represent spatial indices that are to be
summed over from 1 to 3, while repeated Greek letters
represent spacetime indices to be summed over from O to 3,
regardless of whether they are superindices or subindices.

The general action of the theory is given by [53],

S=Sg+ S (2.3)

where S,, denotes the matter action, and S, is the
gravitational action of & theory, given, respectively, by

S, :/,/——gd“x[ﬁm(gﬂy,u“;wmﬂ,
1

S p—

€ 161G,

/ V=9d*x[R(g) + Lo(G u™ 2)].  (2.4)

Here, v, collectively denotes the matter fields, R and g are,
respectively, the Ricci scalar and the determinant of g,,,
and

Lo = —M“ﬁﬂb(Dau”)(Dﬂu”) + ﬂ(gaﬂu“uﬂ +1), (2.5)

where D, denotes the covariant derivative with respect to
- The tensor M, is defined as

M* = c1g*g,, + 625,‘555 + 63535{4} - cqu®u’g,,. (2.6)

Note that here we assume that the matter fields couple
not only to g,, but also to the aether field «*, in order to
model effectively the radiation of a compact object [37,41],
such as a neutron star [54]. The current theoretical and
observational constraints on the four dimensionless cou-
pling constants c¢;’s were given explicitly in [45]. It was
found that

0<cy £25%x107, leis] < 10715, (2.7)

where ¢;; = ¢; + ¢;. The constraints on other parameters
depend on the values of c¢y4. In particular, for 0 < ¢y <
2x 1077 and 2x107% < ¢y £2.5%x 1073, they read,
respectively, as [45] (see also [55]),

(1) O§C14S2X 10_7, C14§C2§0.095,
(i) 2 % 107 < ¢4 <25 x 1075,

OSCZ_CM §2X 10_7. (28)

In the intermediate regime of ¢4 (2% 1077 < ¢4 <2x1079),
the results are obtained only numerically and shown
explicitly in Fig. 1 of [45].

The coupling constant G, is related to the Newtonian
gravitational constant G via the relation [56],

Ge

GN:71 1 .
—2C14

(2.9)

Strong field effects can be important in the vicinity of a
compact body, such as a neutron star or a black hole, and
need to be taken into account. Following Eardley [54],
these effects can be included by considering the test-
particle action [41],
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Sa = _/dTAmA[}’A]
= —ﬁlA/dTA [1 +oa(1=7a)
+

(oa+o03+3)(1=ya)*+...|,  (2.10)

N =

where y, = —u"v and v is the 4-velocity of the body,
defined as v, = dx Y/ dty. The index A labels the body, and
7, 1s its proper time. We also note that 71, in (2.10) has the
dimension of mass; o, and 6, are defined as

__dIniny[ya]
o =— — ,
dIn YA ra=1
d*In i
Gy = ATl m*‘[y{‘] : (2.11)
d(IHYA) 7a=1

which can be determined by considering asymptotic proper-
ties of perturbations of static stellar configurations [43].

The variations of the total action with respect to g, and
ut yield, respectively, the field equations [37],

1
W= ¢UR = S = 82G T, (2.12)

E, = 812G, T,, (2.13)

with the constraint of Eq. (2.2). Here, we have [41]

Sap = Duld" @ttp) + J @t = upJ o]
+ c1[(Dguty ) (Dpu) = (Dyytg) (D )]
+ cqanap + Auguy — %gaﬂJ‘saDéu",
E,=D,J, + csa,D,u” + duy,

THY = 2 5(\/ _gﬁm)
AVamt') 59/41/

= abaAletoy + 245ut0t)],
A

1 8(/~=9L,)
T, =- ZmAéAA oA,
H /—_g (SM” H

(2.14)

with parentheses in index pairs denoting index symmetri-
zation and

J% =M, Dy, a* =u*Du*, (2.15)

and

(64 + 0% +5,4)
%[(uﬂvf\)z_ 1],

(64 + 0% +64) () + 1),
5g (x X4)

UA\/E

From Eq. (2.13) and the normalization condition, we also
find that

Al=1+0,4+

2 —
Al=—g,—

(2.16)

A= ugD JY + c,a* — 87G T u°, (2.17)

where a® = a,a’.

III. GRAVITATIONAL WAVE POLARIZATIONS
AND ENERGY LOSS OF BINARY SYSTEMS
IN EINSTEIN-AETHER THEORY

The linear perturbations of Einstein-aether theory over a
Minkowski background were studied by several authors
[38,40,43,51]. For the sake of convenience, in this section,
we first give a brief review of the relevant materials,
following mostly [37]. For more details on the PN
approximations for many bodies in Einstein-aether theory,
we refer the reader to [37,40,43,51]. Readers familiar with
Einstein-aether theory may skip the first two subsections
and go directly to the third section if they wish, in which we
apply previous results to binary system.

Let us first note that

w =g, (3.1)

9w = NMuw»

satisfies the Einstein-aether field equations in Eqgs. (2.12)
and (2.13) in the coordinates x* = (t, x,y, z), where N =
diag(—1,1,1,1) is the Minkowski metric [57]. Clearly,
Eq. (3.1) shows that the aether field u* is at rest in this
Minkowski background,” so any motion with respect to this
coordinate system also represents motion with respect to
the aether field. In addition, as far as the aether field is
concerned, the timelike vector u# is invariant under the
general spatial diffeomorphism x"=x"(x'),(i,j=1,2,3).
Later, without loss of generality, we will use this gauge
freedom to choose the plane of the binary system to
coincide with the (x, y) plane.
Now, we consider the linear perturbations,

h/w = Y — N> w0 =ul - L, wi= Mi, (32)

“In cosmology, the aether field is often chosen to be comoving
with the CMB [53]. Thus, it is consistent here to choose the
aether to be comoving with the Minkowski coordinate system
X = (t,x,9,2).
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where 7, w" and w' are decomposed into the forms [40],

hoi =vi +7.

1
hij = & +§Pij[f] + 20 j) + bij-

w; =VU; + 1/’[,
(3.3)

with P;; = §;;A — 0,0;, where A = §0,0;. In addition, the
vector and tensor fields satisfy the conditions,

'y =0y =d¢; =0,

To the linear order in perturbation theory, it is convenient to
define a nonsymmetric tensor,

™ =T —TH, (v # ), (3.5)
which satisfies the conservation law,
&7, = 0. (3.6)

Defining the center-of-mass (COM) coordinate and its
velocity as

X = M’ (3.7)
>oama
. dX!
Vi= , 3.8
o (3.8)
we find that conservation of momentum requires
avi ‘
y7i 0, = V' = Constant. (3.9)

A. Linearized Einstein-aether field equations

Substituting the above expressions into the linearized
Einstein-aether field equations, we find that the tensor,
vector and scalar parts can be written as follows [37]. For
the tensor part, we have

(3.10)

1.
C—%¢U - A¢” - 1671'G83T?;-T,

with

, (3.11)

where ¢, = ¢|3 = ¢ + c3, and “TT” stands for the trans-
verse-traceless operator acting on the tensor.

For the vector part, we have®

Vo o i i
— @ +7) - AW +7)

Cy
167G, ,
:m[cwﬂo—(l —c3) T, (3.12)
A(ciy; +7i) = =162G, 7}, (3.13)
where

2¢y — ci3¢C

2 _ <€ 13C-
cy=E— i, 3.14
v 2(1 —cy3)ciy ( )

with c_ = ¢; — c3, and the T above stands for the transverse
operator acting on the vector.
For the scalar part, we have

1. 167G, c 2
_ZF — AF = T Tetld (Tkk +—"700
Cy 2—cy Ci4
2+3
_2F3ates ”131@(), (3.15)
C123
A(F - C14h00) = —1671'633700, (316)
[(1+ ) F + c13A¢] ; = 162G, 7%, (3.17)
where F'= Af, and
72—
cé — ( C14)C123 ’ (3.18)

(2+3c,+cp3)(1 —cy3)c1a

with ¢;jx = ¢; + ¢; + ¢4, and the L above stands for the
longitudinal operator acting on the vector. In addition, the
constraint in Eq. (2.2) gives

hoo = 2W0. (319)
From these equations, we can easily infer that the tensor,

vector, and scalar modes propagate with speeds ¢y, ¢y, and
cg, respectively.

B. Gravitational wave polarizations and energy loss

To consider the polarizations of gravitational waves in
Einstein-aether theory, let us consider the timelike geodesic
deviation equation. In the spacetime described by the
metric, g,, = 1, + hy,, the spatial deviation vector, {;,
satisfies

S
§i = —Roioj8’ =5 Py’ (3.20)

*Notice that the last term of Eq. (3.12) corrects a sign error in
Eq. (44) of [40].
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where ¢, describes the four-dimensional deviation vector
between two nearby trajectories of test particles, and

1
Rojoj =~ 5 (hojoi + hoioj = hijoo = hoo.ij)

PR —15 O,

50, (3.21)

1. 1l
= 5 ¢l j lP
where P, @V, and ®! are the gauge-invariant quantities
defined in [37]. In particular, we have ®' = F/2.
In the wave zone,

the source and X is the vector pointing to the observer from
the COM, we have

— 2C13

(I,IV — CDH,
2ci4(ci3—1)
7 L E N | 3.22
= (3.22)
and
1 [
\Pi,j — —c—lP,N/,
1%
1 .
ol = - —d''N,, (3.23)
, Cs

where N, denotes the unit vector along the direction
between the source (the COM) and the observer, and ‘P}
is another gauge-invariant quantity defined in [37] via the
relation,

Then, inserting the above expressions into (3.20) and
(3.21), we obtain

2ci3
Pii=¢;——->—YLN,
ij = bij (1—cp3)ey @)
-2
- CHTEL QNN 4 5@ (325)
cia(crz — 1)03

Assuming that (ey, ey, e,) are three unit vectors that
form a set of orthogonal basis with e, = N, so that (ey, ey)
lay on the plane orthogonal to the propagation direction N
of the gravitational wave, we find that, in the coordinates
x* = (t,x'), these three vectors can be specified by two
angles, d and ¢, via the relations [58],

ey = (cosdcos @, cosdsin g, —sin ),
ey = (—sing,cos¢,0),

e, = (sindcos ¢, sinJ sin @, cos I). (3.26)

Then, we can define the six GW polarizations hy’s by

1 1
h, = 3 (Pxx — Pyy), hy = 3 (Pxy + Pyx)-
1
hy, = 5 (Pxx + Pyy). hy, =Pz,
1 1
hy = 3 (Pxz + Pzx), hy = 3 (Pyz +Pzy), (3.27)

where Pyp = Pijege{g, with A, B = {X,Y,Z}. However,
in FEinstein-aether theory, only five GW polarizations are
independent. With the help of Eq. (3.21) and some related
equations, we find that the above expressions can be written
explicitly in the form,

7_¢lje+’ ¢lje><’
1
hb:EF’ hy = (1+25,)h,
1 . .
hy = Eﬂlyleio hy = iﬂly’e’y, (3.28)

ko= ok ol _ ok k= ok ,l ki
where ¢!l = ekel, — ebel, and eX! = ekel, + ebel, and

2¢
h=-" p=-

cy 2e14(1 = cy)es”

Cla = 2¢; (3.29)

Observe that these equations for the GW polarizations
are quite similar to those found for generic modified gravity
theories in Chatziioannou, et al. [47] [see e.g., Eq. (8)
in [47]]. The main difference here is that Chatziioannou,
et al., following Poisson and Will [58], made the implicit
assumption that all GW modes travel at the same speed, and
this speed is equal to the speed of light. As we saw in the
previous subsection, this is not the case in Einstein-aether
theory, with some speeds already stringently constrained
but others essentially unconstrained: —3 x 10715 < ¢y —
1 <7x107'% due to GW170817 [45], which leads to
i3] = [ey| S 1075, but ¢y ~ (¢)/c14)"/? > 1 and cg~
(c3/c14)"/? > 1 and are essentially unconstrained. There-
fore, the results of Chatziioannou, et al. [47] cannot be
straightforwardly applied to the Einstein-aether theory, but
rather they would have to be extended to allow for modes
with different and arbitrary speeds.

In order to calculate the waveforms, let us first assume
that the observers (or detectors) are located in a region far
away from the source, R = |X| > d. Notice that R used here
is not the Ricci scalar used in the previous section, but
rather the distance to the source. In this region, we have a
useful mathematical method to solve the wave equations.
That is, for equations in the form,

1
— W — Ay = 1677, (3.30)
US
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where v, v,, and 7 denote the field that we are going to
solve for, the speed for the corresponding field, and a
source term, respectively, we have the following asymptotic
solution [59]:

4 =)
7= _ R/ ¥
R[ Py AL
Coxh\ "
x(x” E) x] + O(R7?). (3.31)
Then, in the gauge [40],
¢, =0, v=y=0, (3.32)

we find that the wave equations given in the last subsection
have the solutions,

2Gy , -
i = R (Qij)TT,
o 2G.’£ 1 C13 N
e (2¢1 —ci3c)R [Cv <1 —C13 Qi
.. . . T
_Qij - V,’j)NJ + 2Zl:| 5 (333)
Vi = —C13l;;,
_ G 4 167 1), NINT 4271
R 2 —Cl4 J
I N N — Z’N’}, (3.34)
C14C5 C14Cg
1 1
hoy =20 = —F,  p———12p  (335)
Cl4 €123
where

o 1
IijEZmAxi\x,]A’ I =1, Qi =1;;—56;1,
A

3
o 1
I;=) oamxixy,  I=I,  Q;=1, ~39,7.
A
Zi = _ZGAmAUfA’ V,] = 220/'\’;;1/\1}%)(1]2’ (336)
A A
and
7 = (al - 2(12)(1 B C+) , (337)
3(2c; —c14)
_ 8(ciciy —c_ci3)
GH=-——">=
2C] —C_C13
(c14a = 2¢13)(3cs + ¢ 13+ c1y)
0 =—a; + - . 3.38
2T C123(2—Cl4) ( )

Finally, we note that for any symmetric tensor S;;, we have
Sg = Ajj Sk and ST =P, S, where A;; i, and P;; are the
projection operators defined, respectlvely, by Egs. (1 .35) and
(1.39) in [60].

Inserting Eqs. (3.33)—(3.35) into (3.28) and using the
above equations, we find that

G.. . G.. .
+ = %leelﬁ’ hy = kale];l’

C14Gge |: o P .
hy=———"—13(Z—-1)Q;;e,e, + ZI
b R(2—014) ( ) I AYA
4 .
- 25— I N’ }
C14Cg 014Cs
Ciq—2¢13 }
hy = |1 —————1hy,
- { ca(ers = 1)cg
By — 2Cl3Gac
o (2¢1 = cp3c_)eyR
el <
x |-% = Vi | =2%:| ek,
[CV <1 e Ql] Ql} lj> 1] Cx
hy = 2¢13G,

(2¢; = c3c_)eyR
e% 13 . ..
<[ (72 00m00-v) -4

The above expressions differ from the work of
Hansen, et al. [44] because the latter built on the work
of Chatziioannou, et al. [47], which as already explained,
cannot be applied to Einstein-aether theory. Note, however,
that although some of the dependence of the modes on the
coupling constants c; are different, the general structure of
the solution found by Hansen, et al. [44] remains correct.
For example, as found in that paper, and shown again by the
above equations, the scalar longitudinal mode #; is propor-
tional to the scalar mode %, which then means that out of
the six possible GW polarizations, only five are indepen-
dent. Moreover, as shown again in Hansen, et al. [44] and
also in the equations above, the breathing and longitudinal
modes are suppressed by a factor ¢4, < O(107°) [45] with
respect to the transverse-traceless modes /2, and h,," while
the vectorial modes hy and &y are suppressed by a factor
Clz3 o O( 0_15> [45]

With the GW polarizations at hand, we can now move to
the calculation of the energy flux. Using the Noether
current method described in [41,61], we find that the
energy loss rate is given by

(3.39)

“The overall ¢4 cancels with 1/¢ 4 in the last two terms inside
the square brackets of &, in Eq. (3.39). However, Z; and 7, ; in
these terms are proportional to ¢ ~ s. The sensitivity s scales with
a; and a, [see Eq. (3.47)], which scale with c¢;4, when ¢;3 ~0.
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: ] 1.
E, = — AQR? | —— g ..
"~ 162G, < / {267 Pijdij

2c; — 1- .
+( 1 C13C—)( 013)1)11;,

Cy
2 — Cla = - .
+—=FF|)+0, (3.40)
4CSC14
where an overhead dot stands for a time derivative, € is the
solid angle, and the angle brackets stand for an average over
one period, defined by

H(1) = - /0 " (e, (3.41)

P,

with P, the orbital period [62]. The last term O will be
omitted from now on, since its purpose is just to cancel
secular terms that arise from the other terms in this
equation, as discussed in detail in [41,43]. Using the
mathematical tricks presented in [60], we find that
Eq. (3.40) becomes

Eb__Gae<?lQijQij+?2QijQij+?3QijQij

where
1 2c4C3 3c14(Z - 1)?
Al=—+ C14€13 . cia( ) ’
cr (2c; —cpne)ey  2(2-cig)cy
A . 2C13 2(2—1)
: (201—013C—)C%/ (2—014)C§’
1 2
Ay = + ,
’ 26’140%/ 3014(2—014)0?9
C1422 V4
Bi=——"—, B=-—"———,
: 4(2 = ci4)cs ? 3(2 = ca)cy
1
Bi=—————,
’ 9C14(2—Cl4)0§
4 4 1
C= 5 5, D= <. (3.43)
3cucy  3c14(2 = cug)cy 6ciycy

Note that in the above expressions, we corrected a simple
typo (minus signs in A,) in previous work [43], which
originates from the sign error in [41], and which has been
corrected in Eq. (3.12) as already mentioned.

C. Binary systems

In this subsection, we apply the general formula devel-
oped in the last two subsections to a binary system. Before
doing so, let us first note that such a problem has already
been considered in Hansen, et al. [44], as discussed earlier.

The work in this subsection differs from that of Hansen,
et al. in that (i) we include in the calculation of the GW
polarization modes the fact that the different fields of
Einstein-aether theory travel at different velocities, and
(i) we allow for the COM to not be comoving with the
aether, i.e., we allow V? # (. The latter condition is more
general than that adopted previously in the literature,
thus allowing for the possibility that the aether flow may
be in a different direction as compared to the motion of
the COM.

With the above in mind, we first assume that the binary
components are in a quasicircular orbit. By “quasicircular”
we mean that the two celestial bodies are rotating in a fixed
plane and the orbit for its one-body effective model is
almost a circle within one period [63]. In addition, we also
assume that o, < w?, where o, = 21/P, denotes the
orbital angular frequency of the orbit [60]. Then, to leading
(Newtonian) order in the PN theory, we have

0
r r

vivizg—m {1 —I—O(g—m)},
r r

where r = |x} — x| is the distance between the two bodies
and # = r'/r = (x} — x5)/r and m is the total mass. Here,
the relation between G and Gy is given by

1}1

(3.44)

1}2

(3.45)

G=Gn(1=s57)(1 —s57), (3.46)
where s, is related to o4 via the relation, s, = 6,/(1 + 6,4).
In [43], the sensitivities for neutron stars were calculated
numerically for various choices of the coupling constants
¢;’s. Unfortunately, all of those choices are out of the
currently physically viable region defined in Eq. (2.8). In
[41], an analytical expression in the weak-field approxima-
tions was given,

2 Q 2
SA = (0{1 —§a2> A + O(Glzlm> N (347)

nmy

where , is the binding energy of the Ath body5 and we
recall d represents the characteristic size of the system.
This expression is only valid for weakly gravitating bodies,
and thus, strictly speaking, it does not apply to neutron
stars or to black holes when considering strong-field effects;
for neutron stars, the sensitivities are about an order of
magnitude larger and they depend on the equation of state,

>Note that there is an extra factor ¢4 appearing in Eq. (70) of
[41] in the published version, which has been corrected in the
arXiv version.

044002-8



GRAVITATIONAL WAVES FROM THE QUASICIRCULAR ...

PHYS. REV. D 101, 044002 (2020)

while for black holes, they may be identically zero, as is the
case in khronometric gravity within a parameter space that is
of physical interest [32].

Since the choice of coordinates x* comoving with the
aether [cf. Eq. (3.1)] is fixed only up to the spatial
diffeomorphism x" = x’/(x¥), as mentioned earlier, we
can use this remaining gauge freedom to choose the spatial
coordinates so that the binary system is always on the (x, y)
plane. This then implies that ¥ can be parametrized via

|

# = cos ®i + sin @j, (3.48)

where O (1

ft

system, and 1, J, k are unit vectors along the x, y, and z

t")d? is the orbital phase of the binary

directions, respectively, with k = ix]j.

Substituting the above expressions into Eq. (3.39) and
only keeping terms up to relative O(v?), where V' is
assumed to be of O(v), we find

2G 2G,
hy = —T&Muz(l + cos?9) cos(20) + e mVkyiekl (3.49)
—_————
4G G
hy, = T&Muz cos 9sin(20) + —EmVkviek, (3.50)
[N —
2G 2A
hy, = S2e > V5 Md sin 9 sin ©
R 2—cy4 [cracs
28 3 -1 4A i ATi
c1a(Z—1)cg MULsin28 cos(20) — S2 0> MU(VIN') sin 9 sin ©
c14cs C14Cyg
3 z-1)-28 .. . 28 - i
| CI4CS( ) mVIVININ/ + mVIN! + mV'V! , (351)
C14Cy C14Cg
C14 —2¢13 ]
P ’ 3.52
t [ cia(1 = c13)c3 ’ | !
G 1
hy = _ﬁ]R&Zc —y [—ZAsnl/SMUcosﬁsinG)
1= C13
1 ) 2As 1/5
S—l " MU? sin(29) cos(20) ——r] MU(sin 9 + cos INY)V' sin ©
Cv —Ci3
2
- (S C—) ViVielNi —28'mei Vi (3.53)
Cy 1 - C W
1
hy = _biGe —2Asn'/S MU cos ©
R 2C1 — C13C_
2 2A
——<S ik >Mu2 sin(8) sin(20) — a n'/> MU(sin 8 sin ©el, + cos ON') V'
cy 1 —cp3 Cy
2
_=m (3/ _ C_> ViViel, Ni —28'mei,Vi|, (3.54)
cy l—c, N
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where

my

m=my + my, Pa=- " U= pipiom,
0 z%, M=mpl5, U= (GMa,)'?,  (3.55)
and
As =51 — 52, S = s1p0 + sop,
O=¢p-, S =514 + sos. (3.56)

Now several comments are in order. First, the above
expressions for the plus and cross polarization modes
[Egs. (3.49) and (3.50)] reduce to those of GR® [44,47],
when ¢;’s and s;’s are set to be zero. The quantity ¢
determines the coalescence phase, whose value can be
chosen arbitrarily. References [44,47] use the convention
@ = 0, which will be adopted in this paper. Second, these
expressions are also similar to those found in Hansen, et al.
[44] to the leading order in the PN expansion. However,
since Hansen, et al. [44] used a formalism that implicitly
assumed the speed of all modes is the speed of light, which
is not the case in Einstein-aether theory, there are factors of
|

. GG ulm?
Eb:_ﬂ

(cr, cy, cg) missing in that work, which we correct here.
Third, the underbraced terms have not appeared in the
literature previously. However, they will be safely
neglected for our current studies, since they are time
independent and lead to no contributions to the geodesic
deviation equation [Eq. (3.20)], as can be seen from
Egs. (3.20)—(3.25). Fourth, the above expressions contain
terms that are subleading in the PN approximation [i.e.,
they are of O(v) smaller than the leading-order modifica-
tions], and these have also never appeared in the literature.
This is not just because they are subleading in the PN
approximation, but also because they depend on the COM
velocity V', which is typically assumed to be of the order
10~3 with respect to the CMB rest frame [41] and thus is
much smaller than the relative velocity of binary constitu-
ents before coalescences. These terms, however, cannot be
neglected as they are time dependent and proportional to
cos ®, sin ®. Fifth, strictly speaking, Eqs. (3.49)—(3.54)
should be evaluated at the retarded time ¢,, where
t, =1t — R/cy, with ¢y being any of (cz, ¢y, cs), depend-
ing on the mode under consideration.

With the above in mind, substituting (3.44), (3.45),
(3.36), and (3.48) into Eq. (3.42), we find that

X <% (A + SA; + S2A4;) (1207 = 117) + 4(By + SB, + §78B3)i?

+ gAs[S(Az + 28 A3) (3 = 2F ) + 60(B, + 28B3) i |V

+ As? Kg As + 3685 — 2D> (#V)? + (% As + ZD> ViV C} >

It is interesting to note that this result reduces identically
to that found by Yagi, et al. [43], since in that work, no
assumption was made on the speed of the propagat-
ing modes.

Equation (3.57) includes Einstein-& ther corrections
both at —1 PN (E, « #®) and 0 PN (E, « v'°) orders.
When deriving this equation, we only considered the
Newtonian contribution in the conservative sector in
Egs. (3.44) and (3.45). Formerly, the 1 PN correction to
the conservative dynamics can affect E » at 0 PN order. This
is because such 1 PN effect can couple to the —1 PN dipole
radiation in Eq. (3.42) to give rise to a OPN effect in
Eq. (3.57). We do not include such corrections in this paper
since they can never become a dominant correction (as they
are 1PN correction to the —1 PN effect). On the other hand,
the OPN effect included in Eq. (3.57) can dominate the

®There is a simple transcription typo in [44], which acciden-
tally dropped a factor of #'/° in these modes.

(3.57)

—1 PN effect when, e.g., s; ~ s, and the dipole radiation is
suppressed.

IV. EVOLUTION OF THE ORBITAL
ANGULAR FREQUENCY

The emission of gravitational waves causes the
separation of the two bodies in a binary system to shrink,
which thus leads the orbital frequency to grow, until
coalescence. In this section, we find the evolution of the
orbital angular frequency w, through the use of the energy
loss rate. Note that there is a different, yet equivalent, way
to get the same result through the virial theorem (see,
e.g., [60,64]).

The evaluation of the time-domain waveform requires
that one solves the equations of motion in Einstein-aether
theory. As explained in the previous section, these equa-
tions take on a Newtonian-like form, and their solution can
be described effectively by Eq. (3.48). All one needs to
prescribe now is the evolution of the orbital angular
frequency, which we study here to the leading PN order.
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This equation can be obtained through the Einstein-aether
version of Kepler’s law [60],

gm
which yields
3E
Os 2% (4.2)
Wy 2 Eh

where E;, in the denominator is the binding energy [43],
namely

_Gum
2r

Substitution of Egs. (4.3), (3.57), (4.1), and (3.48) into
Eq. (4.2) leads to

E, = (4.3)

dw
2. 2 UWs
(Gm)a, = (Gm)>
= k1 (Gmw) "Bl + e (Gmaw,) 3], (4.4)
where
_ 48’1(2 - 014) 2
Kl_5(1—S1)(1—S2)(A1+8A2+S .A3), (45)
.= As?
TTU32(A +SA, + SPA;)
—(3A4; +908; — SD)(V3)2 + 5C]. (4.6)

We also note that we have used the quasicircular condition.

Solving Eq. (4.4) exactly is not possible, but a good
approximation to the solution can be obtained when ¢, is
small enough, i.e., when ¢, < 1. Since 4, is O(1) and S, as
well as S, are suppressed by the sensitivities according to the
definition in Eq. (3.56), the contribution of the denominator
of Eq. (4.6) is O(1). Moreover, by using Eq. (3.43), we see
that the coefficients of the Vi-related terms are all of
O(c14 ¢i%), while C is of O(c7y ¢y + ¢j¢5?). Now recall
that for |c3] <1071 we have cg=~O(cy/c14)"? and
cy = O(cy/c14)"?, as one can see from Eqs. (3.14) and
(3.18). Thus, because V' is assumed to be of O(v) or smaller
(see [41]), the contribution from the numerator is of
O(As*C). Putting everything together and using the expres-
sions for C, we first find that

5 _ _
e < AsPc (e + .

<o (@)

Observe that if As? < 1, either because s; = 0 = s, (as
may be the case in black hole binaries) or because s; = s,

(equal-mass neutron star binaries), then ¢, is always
small and the approximation is automatically well justified.
Moreover, if we insert the weak-field limit for the sensitivities
in Eq. (3.47), the above expression could be further written as

605 5/ (Q] Q

€, <—c ——
* 216 14 m; mp

2
) (7 +c7)<T%x1075, (4.8)
where we have used that ¢4, $2.5x 107 and ¢, 2 ¢y
from Eq. (2.8), and that Q, < m,. Clearly then, the above
analysis justifies the search for a perturbative solution to
Eq. (44)ine, < 1.

Even though the requirement that e, <1 is satisfied
when one saturates current constraints on the theory, a
perturbative solution to Eq. (4.4) actually requires

€, < (Gmaw,)*3, (4.9)
which may be more severe when the binary’s orbital
velocity is small enough. Notice, however, that this implies
that » = 0.05, which is true in the regime of interest of the
second-generation ground-based gravitational wave detec-
tors. In such a region, we can perturbatively expand the
solution to find

w, (1) 2 k57 (Gm) ™31, — 1)/

3 quafte—n\'V*
x[l 1062 (Qm> . (4.10)

where

_ 1287’](2—C14) )
S (1 -y TSRS

(4.11)

and ¢, is the time of coalescence. Clearly, the above results
reduce to the well-known expression [60],

o) =g (1) Gmr e -,

in the GR limit.

Figure 1 shows the difference between the GR and
@-theory evolution of the orbital angular frequency’ for
the inner binary in the hierarchy triple system PSR J0337 +
1715 (denoted JO337 henceforth) [39,66]. Specifically, we
setm; = 1.4378 Mg, my = 0.19751 My, and w(t = 0) =
0.0000446 Hz, where t = 0 stands for the time that J0337
was first observed. Moreover, we choose the coupling

"In plotting Fig. 1, we just used the time coordinate 7, instead
of the retarded time, 4 = r — R/c, [65]. Since ; is a function of
(t. — 1), there is no difference, as ¢, —t = (t, — R/cy) — (r —
R/cy) = t}.— 1} (the subscript “A” here is to distinguish the
different kinds of propagation modes: scalar, vector, and tensor).
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FIG. 1. Evolution of the orbital angular frequency w;(¢) of the

inner binary in the hierarchy triple system J0337 starting at 01-
04-2012 to the binary’s final stage [39], as given by Eqs. (4.10)
and (4.12) for @ theory and GR, respectively. It is clear that the
orbital angular frequency grows and becomes unbounded at the
coalescence time. Note, however, that the coalescence time for
the two theories is different (¢, ~ 9 x 10'® and 9% ~ 2 x 1019 ),
because the additional polarization modes of Einstein-aether
theory cause the binary to lose binding energy faster than in
GR, thus forcing the binary to merge earlier.

constants to be ¢; =4x 1073, c;=9x 1073, ¢, =-2x107>
and c¢; = —c; as in [37], which satisfies all constraints [45].
For the COM velocity, we choose V = (0.002,0.01,0.03),
which satisfies the constraints given in [41]. The sensitiv-
ities of neutron stars are not known in this region of
parameter space, so for illustrative purposes only, we use
there the weak-field expression of Eq. (3.47), with
QA/mA:GNmA/RA and (RlvRZ) = (127,633 X 104) km.
These parameter choices satisfy the perturbative condition
€,(Gmw,)™*3 < 1 for about 1/1000 of its life time, i.e.,
the duration from the date JO337 was first observed in 2012

5.x1073 T
4.x102% - A% !
i
=3.x107% A H
£ i
E ACR I
O 2.x10°%} A
< A 'y
T p
S 7 _
< __ e E T T T
1.x 1078 T T -
1x10"®  3x10"™ 5x10'® 7x10"® 9x10'® 1.1x10"°

t(s)

to its future merger. Because the time to merger is so long,
the parameter choices satisfy the perturbative condition
e,(Gmw,)™?3 <« 1 during a time much longer than the
designed observing window of LISA-like detectors.

Once w, is known, one can insert it into Eqs. (3.49)—
(3.54) to find the GW polarizations. Given the large number
of cycles present in these time-domain waveforms, how-
ever, it is impractical to plot them straight as functions of
time. A better alternative is to decompose the signals into
an amplitude and a phase, via

h, = A, cos(20),
h, = A, sin(20),
hy, = Ay cos(20) + Ay, sin(0),

hy =A;,c08(20) + A; sin(©). (4.13)
Recall that the phase ® here is defined from the orbital
phase @ through Eq. (3.56). Figures 2 and 3 show the time-
domain amplitudes and orbital phase for a binary with the
same parameters as those chosen in Fig. 1. In addition, we
have here chosen 9 = 39.254°, according to [39], and ¢ =
70° as an illustrative example. To more clearly see the
difference between the GR and the @-theory evolution, we
also plot the amplitudes in the GR limit [see also Eq. (4.29)
of [60].].

These figures deserve several comments. First, notice
that with the choice of parameters, we have made to make
these figures (specifically, with ¢35 = 0), the Ay, modes
vanish identically. Even if we had saturated current con-
straints by setting c;3 = 10715, the amplitudes of these
vector modes would be suppressed by at least 15 orders of
magnitude relative to the plus and cross modes. The
implication then is clear: GW interferometers will never
be able to detect these modes directly. Second, observe that

—— 10°Ap

5.x 10—26,

32.x10728¢

1.x107%8}

5.x107%"

5x10®  7x10®  9x10®

t(s)

1x10®  3x107

FIG. 2. Temporal evolution of the amplitudes of the GW polarizations for the inner binary in the hierarchy triple system J0337 [39].
The left panel shows the + and x modes in GR and in @ theory. The right panel shows the breathing and longitudinal modes in @ theory,
where the subscript 1 and 2 correspond to the harmonic number. Observe that the second harmonic is rescaled by a factor of 10° relative
to the first harmonic, which implies the latter is much larger. Observe also that the amplitudes in @ theory diverge faster than in GR

because the binary inspirals more rapidly.
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of
= -1 x1033_
E
% _2x10%}
=
g
®© -3x10%%} \
\
\
_4x1033_ \,
0 2x10"®  4x10"™  6x10"™  8x10"
t(s)
FIG. 3. Temporal evolution of the phases of the GW polar-

izations for the inner binary in the hierarchy triple system J0337
[39] in GR and in @ theory. Note that the phases here are different
from the orbital phases in Eq. (3.56), although the differences are
trivial.

the scalar modes £, ; are suppressed relative to the tensor
modes &, , by a factor of 10°. This then implies that it will
be extremely difficult for GW detectors to measure these
modes directly. However, we observe from the figures that
the amplitude and the phase of the tensor mode is clearly
modified, and this is a feature that could be constrained
with GW instruments. This is true especially for BNSs
since the approximation in Eq. (3.47) is better in that case,
as discussed previously. Therefore, in the case of Einstein-
aether theory, it is clear that constraints on the temporal (or
frequency) evolution of the tensor modes are much more
constraining than any polarization test that proves that GW
signals only contain + and x modes.

V. RESPONSE FUNCTION

Gravitational waves emitted by massive binary systems
have attracted a lot of attention recently, as they could be
ideal sources for both ground- and space-based detectors,
such as LIGO, Virgo, KAGRA, LISA, TianQin, Taiji, and
DECIGO [10]. Therefore, in this section, we consider the
response function for both kinds of detectors.

A. Ground-based L-shape detectors

With the expressions for the GW polarization modes in
the coordinate space in hand, we are ready to calculate the
response function /(f) and its Fourier transform A(f).
In this subsection, we shall focus on L-shape detectors,
such as LIGO, Virgo, and KAGRA [67]. From [47,58],
we find

h(t) =Y Fn(0..y)hy(0), (5.1)
N

where

(1 + cos? @) cos 2¢ cos 2y — cos @ sin 2¢ sin 2y,
(1 + cos? 0) cos 2¢ sin 2y + cos O sin 2¢ cos 2y,

1 1
F,= —Esin2 Ocos2¢p, F; = Esin2 0 cos2¢,

Fy = —sin0(cos 0 cos 2¢h cos yr — sin 2¢p siny),

Fy = —sin6(cos 0 cos 2¢ siny + sin 2¢h cos y). (5.2)

Here, {0, ¢,y } are the three angles (polar, azimuthal, and
polarization angles) that specify the relative orientations of
the detector with respect to the source [note that the angle ¢
here is not the same as the metric perturbation ¢ used in
Eq. (3.3)]. Their definitions can be found in [58] (see, e.g.,
Fig. 11.5 in that reference). To calculate the Fourier
transform (FT) of the response function k(z), we shall
adopt the SPA [34,47,49]. In Appendix A, we present a
brief summary of this method. For more details, we refer
readers to [34,47,49] and references therein.
Let us first write Eq. (5.1) in the form,

h(t) = Hy(1), (5.3)
N

where Hy(t) = Fyhy(t), and N ranges over all the
polarization modes, i.e., N € (+,x,b,L,X,Y). We can
then define the Fourier transform A(f) as

h(f) = / n(r)e iide = SOHy(f),  (54)

where Hy(f) is the Fourier transform of Hy(t). Note that
the above definition is slightly different from the one used
in [37,38]. For computational convenience, let us also
rewrite Hy(t) as

Hy (1) = [gn(1) c0S(2®) + gy ) sin(20)]w;”

+ [qn(3) cos @ + g4 Sin Dlws’, (5.5)

where w, and @ are all functions of time, and g, are time
independent8 and given explicitly in Appendix B.

To apply the SPA to our problem, we need to find 7 and
a, as functions of w,. Inverting Eq. (4.10) perturbatively in
€, < 1, we find

8For detectors, such as LIGO, Virgo, and KAGRA, one can
treat g ;) as time independent, since their observation windows
are very short [68]. However, for detectors like LISA, this
approximation needs to be relaxed, as we will discuss in the
next subsection.
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31
K1

I—t. = (gmwx)—S/fv

x (1= g eu(Gmo) 2 + O(Gman ]|

(5.6)

But note very importantly that the time-domain waveform is
to be evaluated at retarded time, thus r — ¢t — R/cy when
|

evaluating the orbital phase in the integrand of the Fourier
integral. Typically, the factor of R/cy is re-absorbed in the
time of coalescence 7. because it is a constant, but in & theory,
this constant will be different for each of the modes present in
the response function, and thus, more care must be taken.

With the results given in Egs. (4.4) and (5.6), we are now
able to apply the SPA to Eq. (5.5) by following the
procedure outlined in Appendix A. After simple but tedious
calculations, we find

il(f) _ Z{g (Gm)1/3xl_1/2( N+ qu )(gﬂmf) -7/6 |:1 __(g”mf) 2/3¢ :|e—12nfR(1 b i‘P(2>’

N

\/.

where N € (+,x,b,L,X,Y) and ¢, =c,=cr, ¢, =cp =g,
cx = ¢y = ¢y The e 27R1-¢3) term exists because of
the retarded time argument discussed above (see also
Appendix A for a more detailed discussion). The Fourier
phases ¥(;) and ¥ ), corresponding to the first and second
harmonics of the orbital period, respectively, are given by

¥y = 507 @)1= @)

9
20"

- T
+2nf1, —20(t,) — e

Yoy = 490 11 (2Gam )53 {1——<2gnmf> e }

+2xfi, — ®(t,) —%, (5.8)
where we have redefined the coalescence time via
f.=t.+R.

Note that the above expressions are different from the
ones given in Egs. (66)—(74) in [44] because here we do not
assume the different polarization modes travel all at the
speed of light. Moreover, in our calculation of the Fourier
amplitudes, we have included Einstein-aether corrections
of O(v) relative to the leading-order correction. Therefore,
while in [44] the nontensor modes are all proportional to
the first harmonic, here we also have contributions that are
proportional to the second harmonic, i.e., g5 x.y(1) # 0 #
4.1 x,v(2)- Finally, Eq. (5.7) contains a term proportional to
exp[—2zifR(1 — 1/cy)], which was absent from previous
studies because all modes were assumed to travel at the
speed of light.

We would also like to note that in the present case since
now the breathing and longitudinal modes are degenerate

°Note that the ¢, here is the speed of plus mode instead of the
constant c¢;3 as in (3.11).

(gm)Z/%K] I/Z(C]N( 3 + qu )(gﬂmf) 3/2{ 5 (2g”mf)_2/3€x} e—i27rfR(1—L-&1)ei‘¥(l) }’

(5.7)

|
[cf. Eq. (3.28)], the g,(;) and g ;) terms in Eq. (5.7) can be
combined together to simplify the results,

sty = 9(i) + 9Ly = 9bi) (1 — asL), (5.9)
where Egs. (B1), (B3), and (5.2) had been used and a,; is
given by (BS).

B. Space-based equilateral-shape detectors

In this subsection, we calculate the response function for
a space-based equilateral-shape detector, such as LISA,
TianQin, Taiji, and DECIGO [69-72]. Because all such
detectors share many similarities in their construction, we
will mainly focus on calculations for LISA; similar work
applicable to TianQin can be found in [70,73] for GR.

Following [74], we can cast the response function of
LISA in the following form, which is similar to Eq. (5.3):

0 =L w0

where N € (+, x, b, L, X, Y), and where H)(t) is given by

(5.10)

Hy(1) = gy

+ y() SIN2P + Ppy(2) )]s

cos(2® + Ppy(2))
23

[qN cos(® + @pyi ))

+ Gy SIn(@ + Ppyy(y))ws”, (5.11)

and the ¢/, 0 expressions are explicitly given in Appendix C.

Note that the latter are now functions of time, unlike for
ground-based L-shape detectors, as mentioned previously.
This is due to the fact that the observational windows of LISA
is relatively long and sometimes comparable to the orbital
period of the detector.

044002-14



GRAVITATIONAL WAVES FROM THE QUASICIRCULAR ...

PHYS. REV. D 101, 044002 (2020)

The quantities ®py ;) and @py ) are the corresponding
Doppler phases due to the motion of the detector around the
Sun; gravitational waves reach LISA and the Solar System
barycenter at different times [74]. Using the geometry of
LISA, we can show that to the first order of r,,/4y, where
Ay is the wavelength of the Nth mode [74] and r,, is the
radius of the center of mass of LISA, which is equal to
1 AU, we have'®

2 - _
Dpypo) = ? Iso Sin 6 cos[®(1) — ],
N

Dpy1y = &rm sin @ cos[®(t) — ¢). (5.12)
N

The quantities 6 and ¢ are generated in the same way as

in Fig. 11.5 of [58] (see also [74]). The quantity ®(¢) is the

orbital phase of the center of mass of LISA in its orbit
around the Sun, which is given by

D(t) = Dy + —, (5.13)

where @, is a constant and T is the period of LISA around

the Sun, which is equal to the sidereal period of Earth [75].

Since detector-related quantities should be evaluated at

the current time ¢ and source-related quantities should be
|

to+R/ey T iQN(z)

iz’(f)=§Z{%Qm>“%r“2m~m

where again N € (4, x,b,L,X,Y), the ¥, are given by
Eq. (5.8), and t,; and ?,, are the stationary points
[cf. Appendix A]. From Egs. (5.6) and (4.4), we find

3 1

8k1@;(t41)

4
X 1‘§€x(gmws(ta1,z))_2/3 ,

tagp =t = (Gma(1,12))73

(5.17)

where w(t,,) = znf and w,(t,;) = 2xf.

Justlike in Eq. (5.7), the Q;(;y and Oy (;) terms in Eq. (5.16)
could be combined together, too, since the breathing and
longitudinal modes are degenerate [cf. Eq. (3.28)],

Ostiy = Qviy + Q1) = Qo (1 — ap), (5.18)

OFor the basic construction of LISA, readers are referred to
Figs. 1 and 2 of [74].

evaluated at the retarded time, one finds that Eq. (5.11)
needs to be modified to

2/3
Hiy (1) = On, - [0 cos(20)]],
+ Ol - [w3 sin(2)]
+ O+ [0 cos @],

| LN

+ Onals - [0 sin @], (5.14)
where
Ongy = [Clﬁv(l) cos Dpyp) + qﬁv(z) sin q)DN(Z)]’
Oni2) = —ldyq) SN Pon) = diya) €0s Pon)].
Oni) = [%(3) cos Dpy (1) + ‘Z;v(4) sin q)DN(l)]’
Ona) = _[CI§V(3> sin Dpn(1) — lev(4) Cos q)DN(l)]7 (5.15)

with t,y =t —R/cy.

With the above expressions, we are now in the position to
calculate the Fourier transform of LISA’s response function
using Eq. (5.4) and the SPA technique introduced in
Appendix A. The final result is

1 . s
1ot Rjey) (Grmf) /6 [l _E(gﬂ'mf>_2/3€x:| e~i2nfR(1-c3!) %)

— . — 1 - —i2r —ch i
(Qm)2/31<1 1/2[QN(3)|tal+R/cN+lQN(4)|ta1+R/cN]<g”mf) 32 {1 —E(ZQn’mf) 2/364 e~ i2n/R(1=¢y)e \y“)}» (5-16)

|
where Eqgs. (C1), (B3), and (5.2) have been used and a,,; is
given by (B5).

VI. PARAMETRIZED POST-EINSTEINIAN
PARAMETERS

By using the results given in the previous section, we are
ready to calculate the ppE parameters of @ theory
[44,47.48]. Since the calculations for LISA-like detectors
are too complicated, we will just focus here on the ground-
based response functions. What is more, since the LIGO
constraint on the speed of tensor modes ¢z is so stringent,
in this section, we will set ¢; = c.

A. Generalized ppE scheme

One of the generalizations of the simplest ppE wave-
forms to theories with multiple polarizations can be written
in the form [47],11

"This is different from its original form of [47], in order to
accommodate different propagation speeds, as mentioned above.
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A 7 T - bppl:'
h (f) — hGR (f) (] + cppEﬁppEulz’ppb+5 ) elzﬂppliuz
MZ

w@ bppE
+ 7@{;7/281\1’(0; e 2prilh"" (1 — K;/ZCPPE,BPPEU;]WEJFS)[G+F+<1 +cos? 9) + a, F, cos I]

MZ

~7/2_w® g 1/’rrE bppe+S
+ TL{2 e!Yir e2Pppelty (1 + K3CppEﬂm,EU2 )

x {2 MR-, F\ sin2 9 + a, F, sin? 9] 4 >R [ay Fy sin(28) 4 ay Fy sin 9]}

MZ

— ) bppE b 5
+n'7 R ulg/zeleRelﬁ””Eu‘“)E<1 ‘|‘KSCPPEﬁppEZ/{lWEJr )

x {ePHRO=¢D [y, Fy sin + y, F sin 9]

+ eiZ”fR(l_C;/IJ [7X1FX cosd + yXZFX sin 9 + leFY + 7Y2FY sin 19]},

where [47]
~GR 5” 2 2 .
ht(f) = - %GN[F+(1 + cos*9) + 2iF, cos 9]
2
x MTUZ” e, (6.2)

and
W = 2 (GurMp)S 4 2mf7, — 20(1,) ~

GR 128 ¢ o) Ty
pl) 3 -5/3 - m

GR — R(zGNﬂ'Mf) +2ﬂf[c —q)(lc) —Z, (63)

with U, = (2zGy M f/1)'/3. Note that ¢ in (6.2) has been
set to zero to agree with those in [44,47].

Comparing Eq. (5.7) with Eq. (6.1), we see immediately
that there is a mismatch. This is because the gravitational
constants in @ theory that control binary motion are G and
G, and thus, these constants appear in Eq. (5.7), while the
ppE formalism is parametrized in terms of the gravitational
constant observed on Earth, Gy, which is why this constant
appears in U, in Eq. (6.1). The relation between G and G
is given explicitly in Eq. (3.46), where we see that
G =Gy + O(sy, 5,). Similarly, from Eq. (2.9), we see that
G. =Gy + O(c14). The ppE formalism, however, is
defined only in the limit of small deformations away from
GR, and since s;, — 0 and ¢y4 — 0 in the GR limit, one
should really insert Egs. (3.46) and (2.9) into Eq. (5.7), then
reexpand in small deformations, and then compare to
Eq. (6.1), keeping only terms of the leading order in the
coupling parameters and to the leading order in the PN
approximation. To be specific, in the procedure of finding
ppE parameters, we are going to apply the following
approximations so that we can match Eqgs. (5.7) and (6.1):

(T =cp)" (1 —=s5)(1 =)

= [1+ O(sy, 52)][1 + O(c14)] =1, (6.4)

(6.1)

[

where n; and n, are arbitrary real numbers and the
neglected contribution of O(sy,s,) and O(cy4) enters at
higher order in terms of the small coupling constants in the
waveform.

The resulting Fourier transform of the response function
in @& theory is still different from that in [47] because the
former contains the factors of exp|[—2zifR(1—1/cy)]
discussed earlier. Therefore, in theories which contain
additional polarization modes with different propaga-
tion speeds, we must generalize the results of [47] by
replacing every appearance of Fy in Eq. (6.1) with
Fyexp[—2zifR(1 —1/cy)].

If we can recast Eq. (5.4) into the form of Eq. (6.1), then
we can read off the set of ppE parameters {c,,z. b,k
ﬂppEiaJrvax’ab’aL’aX’aY’be/Lval1yX2’lev}/Y2}- FirSt,
we observe that

2 _
W) = lP<Gz)e + U5y,

Wy = Wk 5 U, (65)
where
b=y PR e (66)
with
k3 =A; +SA, + S As,. (6.7)

Note that Eq. (6.4) has been used above and the
f-dependent terms in ¢; are omitted to keep only the
leading PN correction. With Egs. (6.4) and (6.5) at hand,
we could write Eq. (5.4) as the desired form, i.e., Eq. (6.1).
Here, we will omit the devilishly tedious expression for
h(f). Instead, we will first find the full expression of /(f)
and then read off the ppE parameters. The results are
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224
CppE = 737
bppe = =T,
Booe = 5 = = 13555 5%,
a+—r@G% 5 = D
o = _ig/\S[_ZGzzveiz"’( 37 = 1)ga
b= 8—\/3_765K3_1/2G12\/€i2¢9 15
| = 8_\/3__767K3—1/2G12Vei24;g -
¥ _8—\/}_76[’(;1/2%6"2‘”9 |
ay = —ig—\/j__ZK;l/zG]zveiz‘/'g ,
Yo = f}— 3_1/2 TGRE (gby + gba)
YL = ;/j—_ﬂ 3_1/2 G (gra + gra)s
Yxi = —lg 3_1/2 “3GRe (gx2 + gxa),
Yx2 = _lg/ﬁ K5 Ge gy,
Yy1 = ;/j_f 3P SGhe (gys + gya).
Yv2 = ;3/? K5 P 3 Ge gy, (6.8)

where {9, gx, 9p124 91124 Ix1234> Gr1234) are func-
tions given in Appendix D. Note that g,;4, 9124 9x234
and gy, 34 « 1'/>. In other words, the 7 terms in ay and 7
actually have the same power, namely, 0. Also note
that ¢, ,r, which corresponds to the ratio between the
amplitude and phase ppE corrections, agrees with that
given in [47,76].

Additionally, since the degenerate breathing and longi-
tudinal modes, in Eq. (6.1) we can put these terms together
by introducing the quantities,

(6.9)

Ag = ab(l - abL),

where Egs. (D2), (6.8), and (5.2) had been used and a,; is
given by (B5).

B. Fully restricted ppE approximation

Now, we move to the regime of the fully restricted ppE
approximation by mainly following [44]. We generalize
[44,47] to allow for different propagation speeds of scalar,
vector, and tensor modes. This time, Eq. (5.4) is written in
the form of

— 1,
= 2 X aninei . (610)
N=S.V.T [=1
where
Is ppE
AT () = A [1+u,“ Za,,,,“uz } (6.11)

(6.12)

Here, [ stands for the /th harmonics and quantities with a
GR subscript referring to expressions in the GR limits as in

the last subsection. We also note that al’l\go #0 and

B;I),EO # 0, which means that the terms proportional to

20 20
U,"" and U, correspond to the term that enters at leading
(lowest) PN order. We can choose ¢y = 1 since this effect
has been absorbed by the redefinition of the coalescence
time. Notice that when cg = ¢y = ¢y = 1, the phase is
common to all of the scalar, vector, and tensor modes, and
the above formulation agrees with that in [47].

The restricted ppE waveform consists of amplitude
corrections truncated to the leading PN order (which
corresponds to —1 PN in our case) while phase corrections
are kept to higher PN orders. In this paper, we consider the
fully restricted ppE waveform, in which we only consider
the dominant / = 2 harmonic mode. Then, the above
expressions can be reduced to

)= 32 AN (A D (6.13)
N=S.V.T
with
(
AZY(f) = AZ ()1 + Uy a2 (6.14)
5, SN
WM () = WEF) + Uy S B W),
k=0
—27fR(1 = cy'). (6.15)

Here, W), is given by Eq. (6.3) while A} is given by
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5
AD) =/ ’6’/\; (GyaMf)/6G?,

X [Fy (14 cos?9) + i2F, cos 9. (6.16)

Let us now determine the ppE parameters in Einstein-
aether theory. Rewriting the waveform in Eq. (5.7) for the
[ =2 terms in a form given by Eq. (6.13), the ppE phase
parameters can be extracted as

7(2) _
bppE——7,

2/5
ﬂppEo ¢ = 224K3 ’7 / €y,
(2
ﬂ;;ZE.l =0,

_ 3 2 1
ﬁppm:_@ —3(31 +52) —5614+(’<3 -1l

(6.17)
Notice that /3’;21350 is different from ﬁf;E in Eq. (6.8) by a
factor of 2 due to a prefactor 2 in front of ﬂfg g in Eq. (6.1).

When deriving B;zgg,z» we kept O(s, 55, ¢14) contribution
in Eq. (6.4) for consistency. Next, the ppE amplitude
parameters are extracted as

~(2) _

appr = =2,
_(2,T L iy
S28) _ e gp1 Fpsin®9 + g, | Fsin?8

PPEO = EppED § F (1 4 cos29) — gy Fy cos &

_ L g Fpsin?9(1 — ay;)
PPEO U TE (1 4 cos28) — igy Frcos 8
Fy sin(29) — igy, Fysin 9

o (e ey v BNCAD)

ppE, PPES g F (1 + cos*9) — ig, F cos 9

The above F and d dependence on the ppE amplitude
parameters for the scalar and vector modes seem to be a

generic feature, as predicted in [47]. We note that even if the

=(2.5)

denominator g, F_ (1 4 cos®9) — ig Fcosd in @, .,

_(.V
and a;p E)O becomes 0, the scalar and vector mode correc-

tions to the waveform amplitude do not diverge since the ppE

parameters are multiplied by AG2 ,)e, which contains the same

factor that cancels the denominator of a( SE)O and af p?o

Let us now compare the results presented here against
those in [44,76]. First, p? spE agrees with that in [44,76],

while ai, 13 ¢ agrees with that in [76], which corrected [44].
Second, in [44], the aether field is assumed to be aligned
with the CMB frame and V ~ 1073, which is much slower
than the relative velocity of the binary constituents before

coalescence. In this case, the dominant contribution in €, in

Eq. (4.6) arises from the term proportional to C. Moreover,
the denominator A; + SA, + S>A; originates from fac-
toring out the OPN contribution in @, in Eq. (4.4). If we
neglect the Einstein-aether correction at OPN order, this
factor can be simply set to the GR value of 1 (and one can
take the similar limit in x3). Then, the leading ppE phase

,Bfg £o in Eq. (6.17) agrees with that in [44,76] within the

~(2)
YppE,
leading ppE amplitude correction in [76] under the small

approximation in Eq. (6.4). Similarly, @, . , reduces to the

coupling approximation. On the other hand, BEJZIZE,Z in
Eq. (6.17) corrects that in [44].

VII. CONCLUSIONS

In this paper, we have studied the waveforms and
polarizations of GWs emitted by a binary system in
Einstein-aether theory, which contains four dimensionless
coupling parameters c;’s. We focused on the inspiral phase,
adopted the PN approximations and assumed that the
Einstein-aether coupling constants are small. In & theory,
all the six polarization modes of GWs, referred to as
hy(N = +,%x,b,L,X,Y), are present, although only five
of them are independent, as the breathing and longitudinal
modes (4, and h; ) are proportional to each other. In the GR
limitof ¢; — 0 (i = 1, 2, 3, 4), only the “+” and “x” modes
remain, and they reduce to those of GR as expected.

Gravitational waveforms and GW polarizations emitted
by a binary system in the inspiral phase in @& theory were
already studied in [44]. In the current paper, we have first
rederived these formulas and corrected some typos, by
keeping all the terms to O(v?). In particular, we have
shown explicitly that the nonrelativistic GW modes &, ; xy
contain not only the first harmonic terms of the orbital
phase, as shown in [44], but also the second harmonic ones
when one includes higher PN order terms.

Note also that in deriving the expressions of the GW
polarization modes hy’s [cf. (3.49)—(3.54)], we have not
assumed that COM of the binary system is always
comoving with the aether field. In fact, in cosmology
the aether field is normally assumed to be comoving with
CMB [53]. As a result, individual compact objects in the
Universe, such as galaxies and massive stars, are in general
expected to have peculiar velocities with respect to the
CMB. A typical velocity of compact objects in our own
galaxy in this frame is about V2 ~ 107, for which Foster
had shown that the PN approximations adopted here are
valid [41].

Using the SPA method [34,47,49], we have also calcu-
lated the response function and its Fourier transform for
both ground- and space-based GW detectors. We then
generalized the ppE framework to allow for different
propagation speeds among scalar, vector, and tensor modes.
The ppE parameters within this new framework is given by
Egs. (6.8), (6.17), and (6.18), which depend on all six
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polarization modes. The leading ppE phase correction at
—1 PN order agrees with that in [44,76] under the small
coupling approximation and within the CMB frame.
Similarly, the leading ppE amplitude correction agrees
with that in [76] under the same approximation. On the
other hand, the next-to-leading ppE correction in the
phase at OPN order corrects the corresponding expression
in [44].
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APPENDIX A: THE STATIONARY
PHASE APPROXIMATION

SPA is a useful method for dealing with the Fourier
transform (FT) of the response functions. The details of this
method can be found in [34,47,49]. Here, we will provide a
brief introduction to this technique.

For real go(t), wo(t), ag, by, and y,, we have the
following approximation to gy(#)’s Fourier integral [77,78]:

b .
lim Io(y()) = ‘(1)1_1;20/‘ ! go(t)e‘yw/o(t)dt

Vo—> 00
20 0

~ hm go([a)eiy()wo(fa)i%

yo—>©0
I VIT(1/1)
x 0 ;.
Yolwo (ta)]

(A1)

where 1//(()1)(1) denotes the Ith derivative with respect to .

I'(x) denotes the gamma function [79]. 7, refers to the
stationary point that is determined by the conditions,

v (1) = wy (1) = .. =y (1) =0,
(A2)

and we will choose “+” for (A1) when z//(()l)(ta) > 0, and

“_”for (A1) when y{’ (1,) < 0. Besides, the validity of this
approximation requires

by
/ golt)d
agp

and y () is not a constant on any interval U € [ag, by). As
an example, we will use SPA to calculate the FT for the
response function,

(A3)

< 00,

H,(1) = q,05"(1,) cos(20(1,)), (Ad)

where ¢, = t — R/ vy is the retarded time with v, denoting
the speed of the wave.

To make sure that the approximation (Al) is valid for
the calculation of the FT of (A4), we need to assume that

dlIn(g,0)]/dt < d®/dt and d*®/di* < (dD/di)>.
Then, using (5.4) and Euler’s formula, we find

N |
() = 5 4ue™

o /w§/3[ei(—2!1>+275f1) + /2242210 4r (AS)

Since d(2® + 2zf1)/dt = 0, we find ®(1,) = —zf, which
leads to a nonphysical frequency f and thus can be
discarded. Conversely, from the first term in (AS5), we find
®(t,) = zf by d(=2® + 2z ft)/dt|, = 0. Thus, we obtain
w,(t,) = D(1,) = zf and [ =2 for (Al). Now we write

H,(f) as

F1,(F) = 54,0 /71,(f). (A6)

where
L(f) = / /204200 1. (A7)
Note that there is no summation in (A6) with

respect to n. At the same time, from (4.4), we find
that — d*(=2®@ + 2xf1)/dr*|, = -2®(t,) = —20(t,) ~
—w''3(1,) < 0, which helps us to determine the sign in
(Al). With all of these in hand, we can apply the
approximation (Al) to (A7) and find that
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1 2/3 T _in
1 ~—wy " (t 2eifvn=%, A8
) 2500 1), [p T < 26 (a9)
where
20(t
w,(t)=— ) + 2xt. (A9)

Note that in the above expression there is an additional
factor of 2, which originates from the analysis of [49].
Substituting (A8) into (A6), we find

1,(1) = Y 4,107 1) 1 )]e™. (A10)
where
R
¥, =-20(t,) + 2xft, + 2z T (A11)
vS
Next, using the relation,
ta d[-2®(t) + 2z ft
[—20(t) + 2z f1]];* = / [ (;t“L i dt, (Al12)
te

and the fact that w,(#,) — oo, we can carry out the integral
on the right-hand side of (A12) approximately and finally
obtain

W, = ki (Gamf)- 5/3{ = (Gamf) e,

=20

R V4
+27zf(tc+vs> —2d(¢,) 1 (A13)

where the asymptotical form of the @, and @&, had
been used.
Similarly, using the relation,

(w3 (t)aos 2 (1))l =

/ dle 2/3(’)t SOl A

and w,(7.) — oo, we can also carry out the integral on the
right-hand side of (A14). Finally, we find

1, () = Y (Gm) g, (G )7

X |1 == (Gamf) e, |e™n, (A15)

1
2

where ¥, is given by (A13). The calculations for (5.5) can
be obtained by following the same stepslz.

APPENDIX B: THE EXPRESSIONS OF gy,

In (5.5) we introduced g (;), which are given explicitly by

d1) = d. cos(2p)F .,
qi) =d, sin(2p)F
q+(3) = q+4) = 0,

Gx(1) = dx sin(2¢)F
Gx(2) = —dyx cos(2@)F,
dx(3) = qx4) =0,

du(1) = dp1 cos(2¢)F,

dp(2) = dp1 Sin(20) F,

qp3) = (dpy + dpy) sin @Fy,
qp(s) = —(dyy + dps) cos @F,
qray =dp cos(29)Fy,

qL2) = dy sin(2)F,

qr) = (dpo +dpy) singFp,
—(dpp +dpg) cos F,
dy, cos(2¢)Fy,

qr4) =
qx(1) =
dx(2) = dxi sin(2¢) Fx,

(dxa + dxy) sin @Fy,
qx(4) = —(dx + dx4) cos pF y,
qy(1) = dy sin(2)Fy,

qy(2) = —dy; cos(2¢)Fy,

qx(3) =

qy3) = [(dys + dys) cos ¢ + dys sing|Fy,
qy4) = [(dys + dys) sin @ — dys cos @] Fy, (B1)
where
2G
d, = —Jg2/3M5/3(1 + cos? 9),
4G,
d, = cos 9, (B2)

2of course, there is a difference between the demonstration
here and the calculations in Sec. V. That is, in Sec. V, the phase
(A13) is fixed for the first and second harmonic terms. At the
same time, the term that related to v, is absorbed into the
amplitude part. Logically, this seems to be a big change.
Nevertheless, mathematically, this modification is actually trivial.
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2G, ¢y —3ep(Z-1)ct+28

d,, =
bl R 2—cy 6146‘%
x G*3M3/3 sin? 9,
2G 2A
dy, =2 Ci4 S n'/5G\3 M*/3 sin 9,
R 2—ciycyes
2G 4A o
db4 = _ ez Cla s n1/591/3/\/l4/3 sin 9NV,

2
R 2 —cyycyycs

diy=apdy,  dpy=apdy,  (B3)

dpy = aprdp,

/G, 1 1

dyy = — _
H R 2¢i—cp3c_cy
13 2/3 A45/3
X (8 ——— )G M/ sin(29),
1—C13
G
dy, = 2/)]1 £ Asn'/SGV3 M3 cos 9,
R 2C1 — C13C_
dx4 EﬁlG& 1 &nl/sgl/SM“/fﬁ
R 2Cl — C|3C_ Cy
X (sin ek, + cos IN')V',
ﬂng 1 2
€l —C3C_Cy
x(§——1 G*3 M3 sin 9,
1—C13
dyy = 2 $1Ge 1 Asyl/SG13 M3,
R 2C1 — C13C_
dys _P1Ge 1 &nl/SQIBM‘%N"V",
R 2cy—cy3c- ¢y
dys = PG ] &n1/5g1/3M4/3
R 2c¢y—ci3c_ ¢y
x sin 9e}, V', (B4)
and
ap, =1+ 2p,. (BS)

Note that the all dy’s and dy’s are proportional to f; and
therefore, proportional to c¢q3.

F' (1) E%
Pl =y
() = —%sinz O] sin20(1)),  FL() =

F' () = —sin[0(1)]{cos[0(7)] sin[2¢(1)] cos[y (1)

APPENDIX C: THE EXPRESSIONS OF qjv(”

In (5.11), we introduced q?v(l)’s, which are given by

q'y 1) = dy cos(29)F'y (1),

q'y (o) = dysin(29)F) (1),
@iy = 9oy = 0.

q(1) = dx sin(29) Fi (1),

Q) = —dx cos(2) FL (1),
Ta(a) = Dy = O

Ty(1) = dp1 cos(29) F (7).
q;,(z) = d,, sin(2¢)F) (1),

Ty(3) = (dpo + dps) singF (1),

(1;](4) = —(dpr + dps) cos @F (1),
q’L(l) = dy cos(2p)F (1),
q/L(g) =dp, sin(Zgo)F'L(t),

qp3) = (dia + dpa) singF (1),
—(dpa + dpg) cos pF (1),
dy, cos(2¢)Fh (1),

I (2) = dx18in(2) Fx (1),

I (3) = (dxa + dxa) sin@Fy(1),
—(dxy + dx4) cos pF' (1),
dyy sin(29) Fy (1),

9L

q;((l)

Tx(a)

q,Y(l)
q’Y(z) = —dy, cos(2¢)F} (1),
[(dys + dys) cos @ + dys sin | Fy (1),

‘1/)/(3)

‘13/(4) [(dys + dys) sin @ — dys cos | Fy (1),

where dy, are given by (B2)-(B4) and,

[1 4 cos? 0(1)] sin[2¢(1)] cos[2y ()] + cos[O(1)] cos[2¢(1)] sin[2y ()],

[1 4 cos? O(1)] sin[2¢(1)] sin[2y ()] — cos[0(1)] cos[2¢(2)] cos[2y (1)),

%sin2 [0(1)] sin[2¢(1)].
] + cos[2¢(1)] sin[y (1)},

Fiy (1) = sinfo(1)]{— cos[0(r)] sin[2¢h(1)] sinly (1)] + cos[26h(1)] cosl (1)]}.

The angles 6(7), ¢(t) and w(z) are given by
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O(t) = cos™! {; [cos @ — /3 cos(¢p — D) sin 9]}

¢(t) = —tan™! {%csc@csc((} — ®)[v/3cos 0 + cos(¢p — @) sin 9]} + A,

w(t) = —tan™'{[v/3 cos ¢(cos i sin ® — cos & sin i cos P)
— sin 7 (sin @ + v/3 cos O sin ¢ sin ®) — /3 sin ¢ cos i cos D]

x [v/3(cos 0 cos ¢ cos i — sin ¢ sinir) cos ®

+ cos r(sin @ + /3 cos sin ¢ sin @) + /3 cos ¢ sin i sin B},

where [74]

2xt
A=A —_—
0+T0

(C4)

which is the phase for the rotation of the three satellites
around the COM of LISA with A, being a constant, and ®
is provided in (5.13). Just like in (5.13), Ty here is equal to
the sidereal period of the Earth. Here, 0, (}5 and y are the
three angles related to the center of the binary with respect
to the Sun (note that their definitions are different from the
general Euler angles [80]), defined explicitly in [74] and
Sec. 11.5 of [58], and can be treated as constants. Note that
once the detector is specified, e.g., LISA, ¢ and & in q?v( )
will be determined by {0, ¢, '}, i.e., {0, ., 9, ¢} are not
independent.

APPENDIX D: THE EXPRESSIONS OF gy

In (6.8), we use the factors gy (gy € {g+. 9x: Gp12.4-
911245 9x123.45 9v12.34}), Which are given as follows:

(D1)

(C3)
[
2014 —3C14(Z — l)Cé + 25
91 = 71— ¢ 7 s
14 C14Cyg
2c14 2As 2c14 4As o
Ip2 = LS gy = —2171/5N’V’,
2 —cycpycy 2 —cigciycy
grL1 = Apr9p1>,  9r2 = Apr9p2,  9r4 = ApLY9p4 (DZ)
1
9x1 = 1 .
2C1—C13C_CV 1—C13
9x2 ELAWIW,
2C1 — C13C_
14 285 s i
o= Vi
9x3 2C1 — C|3C_ Cy " ¢
gra = P28 sy
201 — C13C_ Cy
14 2 €13
= — | S- ,
In 2C1—C13C_CV 1—C13
9y2 = 25 AS'Il/s,
2C1 — C13C_
ﬁl 2AS 1/5 f .
o= Vi,
9r3 2¢; —cpe. cy n'tey
2A .
Gys = b —Snl/SN’V’. (D3)
2¢y —cj3c_ ¢y
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