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ABSTRACT
At the core of Network Functions Virtualization lie Network Func-

tions (NFs) that run co-resident on the same server, contend over
its hardware resources and, thus, might suffer from reduced perfor-
mance relative to running alone on the same hardware. Therefore, to
efficiently manage resources and meet performance SLAs, NFV orches-
trators need mechanisms to predict contention-induced performance
degradation. In this work, we find that prior performance prediction
frameworks suffer from poor accuracy on modern architectures and
NFs because they treat memory as a monolithic whole. In addition, we
show that, in practice, there exist multiple components of the mem-
ory subsystem that can separately induce contention. By precisely
characterizing (1) the pressure each NF applies on the server’s shared
hardware resources (contentiousness) and (2) how susceptible each
NF is to performance drop due to competing contentiousness (sensi-
tivity), we develop SLOMO, a multivariable performance prediction
framework for Network Functions. We show that relative to prior
work SLOMO reduces prediction error by 2-5× and enables 6-14%
more efficient cluster utilization. SLOMO’s codebase can be found at
https://github.com/cmu-snap/SLOMO.
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1 INTRODUCTION
Network Function Virtualization (NFV) entails implementing

Network Functions (NFs) in software on shared, general-purpose
infrastructure [5, 41]. In this vision, NF instances are spun up and
down and migrated between servers. In order to reduce cost and
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be resource efficient, multiple virtualized NFs are co-resident on the
same server hardware.

Unfortunately, co-resident NFs can interfere with each other
as they share hardware resources, primarily in the memory sub-
system [47–49]. As a result, NF performance (i.e., throughput and
latency) can degrade relative to when they run alone.

This contention-induced performance drop suggests that to en-
sure that Service Level Agreements are met, NFV orchestration
systems (e.g., AT&T Domain 2.0 [3]) need suitable performance
predictionmechanisms. Such predictions can inform NFV orchestra-
tion tasks such as NF provisioning, deployment, and auto-scaling.
For example, before launching a new NF on a server that is already
running other instances, knowing if and by how much the per-
formance of each one of the co-runners will suffer can help make
better run-time decisions. Given the infeasibility of profiling all
possible combinations of NF configurations ahead of time, we need
systematic contention-aware techniques for performance prediction.

Prior works in NFV performance prediction build on the obser-
vation that the memory subsystem is the root cause of performance
degradation [24, 38, 39]. These works use linear models to correlate
a variable associated with cache utilization of a competitor (e.g.,
working set size or cache access rate) with net slowdown for a com-
peting target NF. However, we observe that under newer hardware
architectures and line rates reaching up to 100Gbps, this line of
prior work proves to be inadequate, with prediction errors as high
as 70% (§2). This motivates us to systematically analyze the mem-
ory subsystem and understand the various sources of contention
to enable better prediction.

Our analysis (§3) indicates that with state-of-the-art servers
and NFs, contention manifests simultaneously and independently
at three different chokepoints across the memory subsystem: the
packet I/O subsystem that delivers packets into the last-level cache
(LLC), evictions from the last-level cache, and the main memory ac-
cess bandwidth. Thus, we argue that we need to revisit contention
aware modeling, exploring both what metrics we use to measure
cache utilization of the competitor and what models we use to cor-
relate these metrics with slowdown – now from a more challenging,
multivariable perspective.

To guide our exploration, we follow a blueprint from the archi-
tecture community [38, 39, 49, 50] based on the (1) contentiousness
that captures the pressure a NF places on shared hardware and (2)
sensitivity or how susceptible a NF is to performance degradation
as a function of the competitors’ aggregate contentiousness. The
blueprint, however, leaves open three key technical challenges: iden-
tifying suitable domain-specific metrics for capturing contentious-
ness; evaluating models for measuring sensitivity; and ensuring
composability of the contentiousness metrics, i.e., that given the
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Figure 1: Contention-induced throughput drop (Maximum observed drop
across experiments with real competitors).

independent contentiousness of an 𝑁𝐹𝐴 and an 𝑁𝐹𝐵 , one can com-
pute the combined contentiousness of 𝑁𝐹𝐴 and 𝑁𝐹𝐵 imposed upon
a third 𝑁𝐹𝐶 . Indeed, because this blueprint is so generalizable, prior
NF performance prediction approaches can be viewed as adhering
to this blueprint as well [20, 24, 38].

Using a data-driven approach, we tackle the above technical
challenges as follows.
Contentiousness Metrics: As contention happens simultaneously and
independently at multiple points across the memory subsystem,
contentiousness should be measured across multiple dimensions.
We show that a carefully selected set of hardware counters, mea-
suring resource utilization at CPU-socket- and server-level gran-
ularities are sufficient to quantify the contentiousness of a mix of
competing NFs.
Sensitivity Modeling: While the overall sensitivity of a NF is a non-
linear and non-continuous function of a multivariable contentious-
ness vector, we show that it can be accurately modeled as a piece-
wise function of linear models using ensemble techniques from the
machine learning literature [22, 54].
Composition: Aggregate contentiousness metrics can be composed
using simple (e.g., avg, addition) functions allowing us to estimate
the combined contentiousness of any combination of real NFs.

Building on these insights, we design a new NFV performance
prediction framework called SLOMO. Our results show that SLOMO’s
throughput predictions are accurate, with an average end-to-end
prediction error ≤ 8%, while reducing by half the prediction error
of prior work. Furthermore, we demonstrate that SLOMO’s predic-
tion can improve cluster efficiency by 6-14% when combined with
cluster schedulers designed to meet SLA guarantees.

2 BACKGROUND AND MOTIVATION
We begin by describing the NFV performance prediction problem

(§2.1). Then, we show that prior work suffers poor accuracy with
modern hardware and line rates (§ 2.2).

2.1 NFV and Contention
We consider an operator managing a modern NF cluster frame-

work (e.g., E2 [41], OPNFV [10], AT&T Domain 2.0 [2]). The cluster
framework manages and deploys a library of software-packaged
NFs of different types such as firewalls [40], intrusion detection
systems (IDS) [45], WAN optimizers [36], etc. The operator may
purchase similar software from different vendors (e.g., an IDS by
Palo Alto Networks or an open-source Suricata IDS) and for each
such function, they have a desired configuration and an expected

traffic profile over which the function is expected to run. For the
rest of this paper, when we refer to NF i , we refer to one software
package along with its expected configuration and a traffic profile.1
We also assume that the cluster has a few server configurations
Archk (e.g., Intel Broadwell, Skylake etc.) [17, 33, 38]. Since most
cluster deployments standardize these configurations in practice
we only have a handful of possible options for Archk .

Network Functions that are scheduled to co-run on shared hard-
ware may experience slowdown as a result of contention for the
hardware’s shared resources [47–49]. Figure 1 illustrates the through-
put drop that NFs (presented in Table 1) experience as a result of
resource contention. The performance degradation is measured
relative to the performance each NF achieves when run in isolation
and can sometimes be as high as 35%.2

The NF performance prediction problem is defined as follows.
Given as input a set of NFs 𝑆 = {𝑁𝐹𝑖 }, a targetNF target ∈ 𝑆 (i.e., a NF
whose performance drop we would like to estimate), a competing
workload Compj = {𝑆 \NF target } (e.g., the set of NFs the target may
be co-located with) and the hardware configuration Archk , our goal
is to estimate the expected throughput of NF target when it is run
together with Compj on a server instance of Archk .
What is special about NFV workloads? A large body of prior
work in the architecture community focuses on performance predic-
tion [16]. A natural question then is, why should NF performance
prediction be any different?

General workloads can contend for a wide range of system
resources such as memory capacity, storage bandwidth, CPU re-
sources (integer/floating point compute units), or the CPU-socket
interconnection network [20]. However, given the common NFV
deployment practices (e.g., running NFs on dedicated and isolated
cores, maintaining NUMA- and interrupt-core affinity etc. [25, 51]),
NF performance almost exclusively depends on contention in the
memory subsystem. Furthermore, NFs exhibit idiosyncratic and
extreme interactions with the cache hierarchy, with very little data
reuse for packet data, but very high reuse for data structures (e.g.,
rule or routing tables) which are accessed for every packet.

In short, general-purpose frameworks focus attention on mod-
eling system components which are not important to NFs, while
at the same time paying little attention to the intricacies of mem-
ory. Consequently, we observe in §2.2 and §7 that general-purpose
approaches have substantial error when applied to NFV workloads.

2.2 Existing Approaches
Prior work addresses contention-related performance degrada-

tion either through performance prediction or through hardware
resource isolation. Below, we discuss each approach.
Performance Prediction: Dobrescu et al. [24] identified that per-
formance variability is a critical obstacle to the adoption of software-
based packet processing. In this early but forward-looking work,
the authors carefully identified that memory contention was the
key source of slowdown in software NF implementations.

1We use the terms NF and NF instances interchangeably.
2In both cases we run the NF in its own core and dedicate the same amount of resources.
We delay a more detailed description of our setup to §3.
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Application Description Configuration Mpps
Stateless Firewall Stateless firewall (Click) 1K sequential rules 8.70

IP Router IP router with RadixIPLookup (Click) 130K rules 5.75
FlowStats Flow Statistics with AggregateIPFlows (Click) 3600 sec Flow Timeout 0.91

VPN VPN with IPSec elements (Click) Encryption & Authentication 0.36
Maglev LB Maglev Load Balancer (NetBricks [42]) Default Netbricks configuration [42] 7.50

Snort IDS in Intrusion Detection mode Snort3.0 Community Ruleset [13] 0.45
Suricata IDS in Intrusion Detection mode Suricata-5.0.1 Ruleset [15] 0.97
PFSense Open Source stateful Firewall 1K rules 0.150

Table 1: NFs used in SLOMO. The reported throughput corresponds to a solo run of the NF on a Broadwell architecture with 64B packets and 400K unique flows.
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Figure 2: Prediction Error of a general-purpose performance prediction
model [39] and Dobrescu’s CAR-based prediction framework [24]

This prior work modeled memory as a monolithic source of con-
tention which could be quantified through a singlemetric, using the
cache access rate (CAR) of the competing NFs as the only quantifier
of contention. This echoed prior work, BubbleUP, a general-purpose
framework which also modeled memory contention and its rela-
tionship to performance using a single metric, using the working
set size of the competing work loads instead [39]. Figure 2 illus-
trates the corresponding prediction error of these techniques when
replicated on modern servers and NFs. In the following sections, we
explain the differences between NFs that result in different levels
of performance drop.

As we discuss in §3, modern memory architectures are complex
and hence it is insufficient to represent this contention through a
single metric. Indeed, in §3.1 we demonstrate that by combining
both metrics proposed by Dobrescu and Mars – CAR and working
set size – one can achieve better predictions than either metric alone.
Furthermore, these two metrics alone are incomplete – in §3.2 and
§3.3 we show that neither CAR nor working set size can measure
the impact of contention over the DDIO cache, nor contention over
bandwidth to main memory.
Performance Isolation: ResQ by Tootoonchian et al. [51] argues
in favor of isolating shared resources to prevent contention-specific
performance degradation. This work leverages Intel’s Cache Allo-
cation Technology (CAT) and DPDK packet buffer sizing in order
to provide dedicated, non overlapping LLC partitions to the co-
running NFs. However, we find that isolation is an incomplete
solution to managing contention-induced slowdown because par-
titioning tools (e.g., CAT) fail to completely isolate all sources of
contention. In addition, we show that isolation can lead to ineffi-
cient resource utilization.

Figure 3 illustrates these observations through the aggregate
throughput of co-running Click-based IP routers when runwith and
without LLC isolation. Each line indicates the aggregate observed
throughput as a function of the number of co-runners. With only 4
co-running identical NF instances and equally-sized dedicated LLC
partitions, we observe 24% lower aggregate throughput compared
to when the NFs share the entire LLC, highlighting the loss of
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Figure 3: LLC partitioning leads to inefficient utilization and does not elim-
inate slowdown
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Figure 4: System resources traversed by a network packet
statistical multiplexing of the LLC and consequently reduced system
efficiency. Furthermore, we observe that the total throughput can
be up to 11% lower than ideal linear scaling, which we would expect
to observe as a result of perfect isolation among the co-runners.
This shows that even if CAT isolated the LLC perfectly, it does
not isolate all possible sources of contention. In §7, we show that
ResQ’s approach can be combined with a performance prediction
technique to predict contention-induced slowdown in the presence
of CAT and, in that case, provides better predictability than either
performance prediction or isolation on its own.

3 SOURCES OF CONTENTION
While prior work argues that the memory subsystem is charac-

terized by one primary source of contention, our analysis shows
that, operating at high rates on a modern architecture, contention is
instead multifaceted. To expose the different sources of contention,
we look at the life of a packet i.e., the system components it tra-
verses on its way to the NF. Figure 4 visualizes this process at a high
level. During I/O, a packet arriving at the NIC will traverse the PCIe
bus and will be DMA’ed either to DRAM or directly to the LLC,
if the server supports DDIO [7]. The NF will read the incoming
packet from the memory hierarchy and the NF will apply its packet
processing logic to it. Depending on the nature of the NF, data from
auxiliary data structures stored in the memory hierarchy might be
requested. Ultimately, the packet will be written back to the NIC
following the reverse process.

Along these datapaths, we identify three independent sources of
contention; (1) contention in the LLC (i.e., contention that compro-
mises fast access to auxiliary data structures containing necessary
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Figure 5: Target NF throughput as a function of the LLC occupancy of the
competing NFs.

data for packet processing), (2) contention for DDIO resources dur-
ing packet I/O (i.e., contention that slows down packets on the direct
path between the NICs and the LLC), and (3) contention for main
memory bandwidth (i.e., contention that increases the latency to
service a LLCmiss frommain memory). In what follows, we present
the underlying mechanisms of each contention source and argue
why using multiple metrics can accurately quantify contention.
Experimental setup: We experiment with two 𝑥86 architectures:
(1) Intel Xeon E5-2620 v4 (Broadwell) and (2) Intel Xeon Silver 4110
(Skylake). Both server architectures are equipped with two physi-
cal NICs (XL710-40Gbps NIC for Broadwell, Mellanox MT27700 -
100Gbps for Skylake) that were partitioned among co-running NFs
using SR-IOV [14]. We relied on DPDK for packet acceleration for
all NFs except PFSense which does not support packet acceleration.

We ran our evaluation on a range of NFs shown in Table 1 drawn
both from research prototypes (e.g., Click [32], NetBricks [42])
and popular software (e.g., Snort [13], Suricata [15], PFSense [19]).
These NFs span a broad spectrum in terms of complexity of packet
processing, ranging from simple NFs (e.g., stateless Firewall) to
more complex ones (e.g., Snort). To the extent it was possible, we
configured NFs with public rulesets (100s-1000s of rules) [13, 15].

In this section, we measure slowdown of real NFs under competi-
tion with a few carefully crafted artificial competing NFs, designed
to illuminate each form of contention independently. Note that
the point of these examples is not to demonstrate that the causes
of contention always occur independently: in practice they may
have correlated causes – e.g., an increase in overall request rates
increases both cache access rate and memory bandwidth. Nonethe-
less, the fact that each bottleneck can be contended independently
motivates the need for models that capture all causes of bottlenecks.

3.1 Contention in the last level cache
Prior approaches to modelling memory contention focus solely

on contention in the LLC, which increases packet-processing time
due to evictions of NF data structures to main memory. Both Do-
brescu et al. and BubbleUp focus on this category of contention, but
model it using different metrics. Dobrescu et al. measure the rate
at which a competing NF accesses the cache (CAR), but BubbleUp
measures the working set size or cache occupancy of the competing
NF. We find that on our servers, measuring both provides the best
insight into slowdown.

Observation 1: LLC contention depends both on cache occu-
pancy and the rate at which the competing NFs accesses the
last level cache.
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Figure 6: Performance drop as a function of DDIO space occupied by com-
petition

We run a Click-based IP Router (see Table 1) against one Click-
based synthetic competitor that, for every packet it receives, per-
forms a configurable number of reads to a data structure of con-
figurable size in the LLC. The IP-router in isolation occupies ap-
proximately 8MB of cache space. To guarantee isolation from other
sources of contention, we ensure (1) that the allocated packet buffers
don’t introduce DDIO contention (see § 3.2) and (2) that the com-
peting NFs use separate memory channels.

Figure 5 visualizes the experiment results for these two configura-
tion parameters of the synthetic workload. When cache occupancy
is low – less than the red line marking exhaustion of the available
LLC space – occupancy is the best predictor of performance. After
the cache is saturated, CAR becomes the dominant factor although
we still observe a downward trend correlated with occupancy.3

3.2 Contention during packet I/O
Modern x86 Intel architectures offer Data Direct I/O (DDIO),

an optimization to DMA that copies packets directly between the
NIC and a dedicated slice of the LLC [7, 23, 34]. DDIO essentially
partitions the LLC into a primary cache and an I/O cache; at startup
every NF allocates a fixed number of buffers in the I/O cache to
store the packets for that NF. Contention can occur when the total
number of packets concurrently in the system exceeds the amount
of space in the I/O cache – even though the remainder of the LLC
remains relatively underloaded.4 Consequently, we need to model
contention in the slice of the cache dedicated to DDIO separately
from modeling the remainder of the LLC.

Observation 2: DDIO contention depends both on the utiliza-
tion of the DDIO space by the competing NFs and the rate at
which they access it.

We find that while not all target NFs are equally sensitive to
DDIO-contention, all NFs (irrespective of packet size or number
of allocated buffers) suffer some level of DDIO-related slowdown.
In Figure 6, we illustrate an instance of a Stateless Firewall that
competes with a simple Click-based, L2-forwarding NF. In the top
graph, the Firewall has 524KB buffers allocated and in the lower
graph it has 3MB of buffers allocated. The contending L2 forwarder
is configured to ensure minimal LLC contention outside the DDIO
slice, and process traffic at rates up to 100Gbps/NF. In the L2 for-
warder NF, we vary (i) the size of the buffers allocated (occupancy)

3Dobrescu’s analysis assumed that the NF is highly contended and hence the occupancy
of the competing NFs far exceeded the size of the LLC – to the right of the red line.
4ResQ addresses this problem just like contention in the LLC: by partitioning and
hence isolating sub-components of the I/O cache. They achieve this through careful
allocation of buffers sized not to exceed the overall cache space. This worked well at
10Gbps speeds, but pushing towards 100Gbps, the number of concurrent packets can
exceed space in the I/O cache leading to packet loss and performance slowdown.
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and (ii) the size of the packets sent to the L2 forward, and hence
the rate of packet arrivals and memory accesses. Just as in Figure 5
which describes LLC contention, we see that slowdown in the I/O
slice of the cache is a function of both occupancy and access rate.
As a result, for accurate predictions we need to measure access rate
and occupancy of the I/O slice of the cache in addition to access
rate and occupancy of the overall LLC.5

3.3 Contention for memory bandwidth
Until now, we have focused on how NFs suffer slowdown due

to data structures being evicted from the LLC or packets being
evicted from the I/O slice of the cache. We now discuss how the
cost of eviction can vary as competitors increase their bandwidth
utilization between the cache and main memory.

Observation 3: Main memory latency depends on the aggre-
gate memory bandwidth consumption of the competing NFs.

We observe that a target NF (Click IP router) can experience up
to 18% of throughput drop as a result of main memory bandwidth
contention. To ensure that contention is limited in main memory
bandwidth utilization we use Intel’s Cache Allocation Technology
(CAT) [6] to partition the last level cache of a Broadwell server in
two segments, one for the target NF (2MB) and the second (18MB)
for the competitors. The competitors consisted of aggressive Click-
based competitors that have a high cache miss rate and hence
generate large amounts of memory traffic. The target NF executes
a fixed number of accesses.

Figure 7 shows the performance of the target NF as a function
of the total memory bandwidth utilization and observe the clear
correlation between the two metrics. Additionally, we confirm that
first, slowdown is uncorrelated with contention in the LLC as the
target NF LLC miss rate stays relatively stable and second, that LLC
isolation is not sufficient for eliminating contention.

4 SLOMO OVERVIEW
SLOMO conceptually follows a blueprint for performance pre-

diction based on contentiousness and sensitivity [20, 21, 38, 39].
Specifically, contentiousness measures the pressure a NF places

5While DDIO space is fixed, isolation between DDIO and the rest of the LLC is not
perfect i.e., packet buffers can still evict LLC data and vice versa. This is orthogonal to
our claim that the two sources of contention can be independent of each other.

on shared hardware; sensitivity models how susceptible a NF is to
performance degradation due to the competitors’ aggregate con-
tentiousness.

Building on these concepts, we realize a practical workflow for
SLOMO that conceptually consists of two logical parts: (1) an offline
component that is responsible for characterizing contentiousness
and modeling sensitivity of the available NF instances; and (2) a pre-
diction component responsible for making performance predictions
given a target NF instance and a mix of real competitors.

4.1 Offline Profiling
Given a set of NFs 𝑆 = {NF i . . .} and a server architecture Archk ,

SLOMO first runs a constant number of offline profiling operations
to characterize (1) the sensitivity and (2) the contentiousness of the
different (NF i, Archk) tuples. To do so, the operator runs each NF i
on the server with multiple configurations of a tunable synthetic
workload, configured to apply different amounts of pressure to the
system resources and, thus, contend with NF i . For each synthetic
configuration 𝑥 , 𝑥 ’s contentiousness is represented by a vector 𝑉𝑥 .
In §5, we discuss our choice of synthetic workload and in §5.1, we
discuss our methodology for choosing the contentiousness metrics
in 𝑉 .

To profile for sensitivity, we measure, on every architecture,NF i’s
performance 𝑃𝑥

𝑖
in response to each synthetic contentiousness

vector 𝑉𝑥 . The dataset consisting of all pairs {(𝑉𝑥 , 𝑃𝑥𝑖 ), . . .} is used
to train a sensitivity model𝑀𝑖 : 𝑉 → 𝑃 to predictNF i’s performance
in response to any real contentiousness vector.We discuss SLOMO’s
sensitivity models in §5.2.

To profile for contentiousness, the operator collects a set of vectors
{𝑉 𝑥

i }, where each vector characterizes NF i’s contentiousness asso-
ciated with every synthetic run 𝑥 . Said differently,𝑉 𝑥

i measures the
pressure that NF i applies on the shared resources in the presence
of 𝑥 , as if NF i were an additional competitor. In §5.3, we describe
how we use the individual contentiousness vectors to compose the
contentiousness of any mix of real competitors.

These profiling datasets are specific to a particular NF type, con-
figuration, traffic workload and server architecture. In practice, a
typical cluster may use only one or a small number of server archi-
tectures which do not change frequently. However, it is possible
that, after deployment, an NF’s ruleset or its traffic workload might
change. In §6 we discuss how SLOMO can adapt its existing mod-
els 𝑀𝑖 to extrapolate NF i’s performance as a result of changing
operating conditions.

Even though prior work [24, 39] followed a similar workflow,
they used only linear models for sensitivity with one solitary met-
ric for contentiousness. Given our analysis in §3, we take a first-
principles approach to learn multivariable models and metrics. In
§5, our data-driven approach to contentiousness characterization
and sensitivity modeling.

4.2 Online Predictions
At run time, the operator uses the pre-computed 𝑉𝑖 ’s and𝑀𝑖 ’s

for predictions. In the most basic scenario, the operator has two
NFs, 𝑁𝐹𝐴 and 𝑁𝐹𝐵 which they want to run side-by-side on the

274



same server. To predict 𝑁𝐹𝐴’s throughput while running along-
side 𝑁𝐹𝐵 , the operator simply takes 𝑁𝐹𝐵 ’s contentiousness vector
𝑉𝐵 and plugs it into 𝑁𝐹𝐴’s sensitivity model 𝑀𝐴 to produce the
performance slowdown 𝑃𝐵

𝐴
.

Nonetheless, some predictions are more challenging. Consider
an operator nowwith three NFs: 𝑁𝐹𝐴 , 𝑁𝐹𝐵 , and 𝑁𝐹𝐶 . The operator
now wants to run all three NFs side by side, and once again wants
to predict 𝑁𝐹𝐴’s throughput under this deployment. The problem
here is that, although the operator has pre-computed 𝑉𝐵 and 𝑉𝐶 ,
the operator does not know 𝑉𝐵,𝐶 – the contentiousness upon 𝑁𝐹𝐴
when running alongside both 𝑁𝐹𝐵 and 𝑁𝐹𝐶 .

SLOMO provides a function for composition𝐶𝐹 : 𝑉𝐵,𝑉𝐶 → 𝑉𝐵,𝐶 ,
this allows the operator to compute 𝑉𝐵,𝐶 offline based on the pre-
computed contentiousness vectors of each NF. After composing
𝑉𝐵 and 𝑉𝐶 , the operator can use this for prediction just as in the
basic scenario. Dobrescu’s approach that used competing CAR as
the sole metric of contentiousness, implemented composition by
summing together each competitor’s CAR values when run solo on
the hardware. In §5.3, we discuss why measuring contentiousness
during a solo run introduces prediction inaccuracies and discuss
SLOMO’s implementation of 𝐶𝐹 .

5 SLOMO IN DEPTH
Having laid out the three key components to SLOMO (con-

tentiousness characterization, sensitivitymodeling, and contentious-
ness composition), we now describe how we design each of these
components, taking a data-driven approach. Seen in this light, mod-
eling sensitivity is a model fitting process (§5.2). Similarly, choosing
contentiousness metrics is as feature selection process whose goal
is to identify metrics that quantify the competition’s pressure on
the shared hardware and have strong predictive power in the con-
text of a sensitivity model (§5.1). Finally, composition is a simple
regression modelling problem (§5.3).
Candidate contentiousness metrics: We choose our candidate
contentiousness metrics to be those exposed by the Intel PCM
framework, a performance monitoring API enabling real-time col-
lection of architecture-specific resource utilization metrics [8]. The
resulting PCM vector contains an extensive pool of metrics (e.g.,
main memory traffic, the LLC hit rate etc.) that characterize re-
source usage at core-, CPU-socket- and system-level granularities.
That said, a natural limitation of SLOMO is that it is limited by the
pool of metrics exposed by PCM. For instance, PCM does not pro-
vide visibility into the internals of a NIC. Thus, any congestion for
NIC resources (e.g., increased NIC queue occupancy from incoming
traffic) will not be taken into consideration.
Synthetic competition: Our profiling methodology assumes the
presence of a representative training dataset that adequately sam-
ples the large space of contentiousness vectors {𝑉 }. To produce
this dataset, and following general guidelines discussed in prior
work [39], we exercise the effects of contention on each NF with
a synthetic workload of tunable intensity that samples the space
of possible contentiousness values that a NF could generate. To
that end, we designed an artificial Click-based NF that covers the
contentiousness space by applying incremental pressure (1) to the
I/O datapath through the number of allocated packet buffers and

Metric Definition CC
IPC Instructions/Cycle 0.78
INST Instructions Retired 0.78
L3MISS LLC Misses 0.893
L3MPI LLC Misses/Instruction 0.88
L3HIT LLC Hit Rate 0.8
L3OCC LLC Occupancy 0.82
LMB Local NUMA Bandwidth 0.88
L2HIT L2 Cache Hit Rate 0.68
L2MPI L2 Misses/Instruction 0.75
L2MISS L2 Misses ≡ CAR 0.72
READ Memory read traffic 0.89
WRITE Memory write traffic 0.68
LLCMISSLAT LLC Read Miss latency 0.9
RMB Remote NUMA Bandwidth 0.24
QPI QPI utilization 0.18
FREQ CPU frequency 0.06

Table 2: PCM metrics with high correlation with performance. The CC
column shows the mean correlation coefficient across experiments.

(2) to the packet-processing datapath by performing configurable
numbers of memory operations (i.e., random Reads and/or Writes)
to a data structure of configurable size stored in the LLC. SLOMO
exercises these configurations for various traffic patterns (i.e., rate,
packet sizes and flow counts) and number of co-running instances
of the synthetic NF. SLOMO profiles each NF with more than 1000
different configurations of the synthetic workload and the resulting
dataset consists of the following sets of measurements: (1) PCM
values when the synthetic workload and NF under test run solo; (2)
PCM values when both the synthetic workload co-runs with the NF
under test; and (3) Performance of target NF when running with the
synthetic competitor. In the rest of the section, we show how we
use each one of these datasets. Note that the synthetic competing
workloads are only used during offline profiling and not in runtime.
Assumptions on NF Deployment: SLOMO follows best prac-
tices established by prior work that optimize performance stability
for software packet processors [4, 11, 12]. Specifically, we run NFs
on dedicated and isolated cores that use local memory and NICs
(NUMA affinity), we ensure interrupt-core affinity is maintained
in cases where packet acceleration is not used, we disable power-
saving features of the CPU (e.g., idle states, frequency scaling) and
disable transparent huge pages.

5.1 Contentiousness Metrics Selection
A simple way to select contentiousness metrics would be to use

the entire PCM vector (∼600 metrics). Doing so, however, is “noisy”
as it includes metrics that are unrelated to plausible sources of
contention (e.g., metrics of unused CPU sockets) and, thus, hurts
model accuracy and interpretability [29].

Ideally, we need to identify a subset of expressive PCM metrics
i.e., metrics with strong predictive power in the context of a sensi-
tivity model. Given that we don’t have a model at this point, we opt
for model-free techniques to enable this process. Among the many
available techniques e.g., the Pearson correlation coefficient [18],
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Metric Definition CC

WRITE Memory Write traffic 0.90
READ Memory Read traffic 0.88
IPC Instructions/Cycle 0.88
L3OCC LLC Occupancy 0.80
L2MPI LLC Accesses/Instruction 0.76
L3HIT LLC Hit Rate 0.40
LMB Local NUMA bandwidth 0.20

Table 3: DDIO Contentiousness

Metric Definition CC
L3MISS LLC Miss Rate 0.98
L3OCC LLC Occupancy 0.87
L3HIT LLC Hit Rate 0.79
LMB Local NUMA bandwidth 0.76
L2MISS CAR 0.76
L2HIT L2 Hit Rate 0.36
RMB Remote NUMA bandwidth 0.13

Table 4: LLC Contentiousness

Metric Definition CC
READ Memory Read traffic 0.81
WRITE Memory Write traffic 0.81
LMB Local NUMA bandwidth 0.80
L3MISS LLC Miss Rate 0.79
L3OCC LLC Occupancy 0.77
L3HIT LLC Hit Rate 0.67
RMB Remote NUMA bandwidth 0.15

Table 5: Memory Contentiousness

information gain [52] or PCA, we use Pearson’s correlation coef-
ficient to analyze the statistical dependency between the various
PCM metrics and the observed performance of each target NF.

Observation 4: PCMmetrics at CPU-socket- and System- level
granularities adequately capture aggregate contentiousness.

Table 2 lists the metrics that consistently exhibit high correlation
to performance across all experiments. Our first key observation
is that these metrics correspond to CPU-socket- or System-level
granularity (instead of core-level metrics). That is because per-
formance degradation is the result of the competition’s aggregate
contentiousness which is naturally captured at these granularities.6

We also observe that as there is no clear winner among the
chosen metrics in terms of the magnitude of correlation coefficient,
indicating that contentiousness entails multiple variable. This is
in agreement with §3 that argued for different sets of metrics for
different sources of contention. To confirm this hypothesis, we
revisit the experiments of §3 and identify the best metrics for each
type of contention.

Observation 5: Different sources of contention are best cap-
tured by differentmetrics. As NFs can depend onmultiple con-
tention sources, contentiousness should be quantifiedwith an
ensemble of metrics.

Tables 3, 4, and 5 show the highest rankedmetrics for each source
of contention. We see that:
1. DDIO contention We find that DDIO contention is best quan-

tified through memory bandwidth utilization metrics. As DDIO
operations are managed by the socket’s DMA engine, packet
buffer evictions are not captured by LLC utilization metrics
and as such they prove to be uncorrelated to this source of
contention.

2. LLC contention In contrast to DDIO contention, LLC con-
tention is best captured through LLC-related metrics. The LLC
occupancy of the competition, its cache access rate, LLC miss
rate and LLC misses per instruction exhibit the highest correla-
tion with performance.

3. Memory Bandwidth Finally, with respect to memory band-
width contention we find that the key contentiousness metrics
are, unsurprisingly, memory bandwidth utilization metrics (e.g.,
Read/Write bandwidth) as well as the Local NUMA node band-
width utilization.

6In a setup that only uses one CPU socket, the correlation values at socket and system
level granularities coincide.
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Figure 8: 2D rendering of sensitivity curves for VPN (left) and FlowStats
(right). Y axis is normalized performance.

In all, we conclude that out of the initial pool of ∼ 600 PCM
metrics, the ∼ 15 aggregate PCM metrics can capture the con-
tentiousness from the key chokepoints we previously identified.
These metrics will also serve as the input to a target’s sensitivity
model to predict performance.

5.2 Modeling Sensitivity
Sensitivity captures the relationship between the contentious-

ness of the competition and the performance of the target NF. Mod-
eling sensitivity, therefore, can be viewed as a regression problem as
its input (contentiousness of the competition) and output (target
NF performance) are both continuous variables.

Our first observation is that sensitivitymodeling needs to happen
on a per NF-basis instead of having a global sensitivity model.
Indeed, with different NFs responding differently to the various
sources of contention, the importance of each metric in the context
of a sensitivity model is NF specific.

We train sensitivity models using synthetic, NF-specific con-
tentiousness observations, created as described in §5.1. At run time,
we replace the synthetic inputs with the aggregate contentiousness
of the real competitors. For testing, we generate for each NF and
architecture a dataset of real experiments where each target NF is
co-run with various combinations of NFs drawn from our pool of
NF instances with replacement. Each target NF is run 5 times on
each architecture with 150 different configurations of competitors.

Observation 6: Sensitivity can be a complex function that can-
not be captured by simple regression models.

We find that sensitivity is a non-linear and non-continuous func-
tion of its multivariate input and as such, it cannot be accurately
modeled with techniques such as regressions (linear/polynomial
etc.), decision trees, simple neural nets etc. Nonetheless, a com-
mon pattern that we detect across sensitivity functions are phase
transitions i.e., sharp changes in the properties of sensitivity as
a result of increasing contentiousness. For instance, for a fixed
value of competing CAR, low (competing) LLC occupancy values
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naturally trigger few evictions of target NF data. As a result, the
target’s performance decreases slowly as a function of the competi-
tor’s increasing occupancy. However, as soon as the aggregate LLC
occupancy of the target NF and its competitors exceed a critical
threshold i.e., the available cache space, the probability of target NF
evictions sharply increases and with that the rate of performance
degradation for the target NF (Figure 8).

Observation 7: Sensitivity can bemodeled as a piecewise func-
tion of its inputs. Gradient Boosting Regression, an ensemble
modeling technique enables accurate sensitivity modeling.

This observation introduces our key insight behind sensitivity
modeling in SLOMO. By viewing sensitivity as a piecewise func-
tion of contentiousness, we can model the different sub-spaces of
sensitivity separately and then combine the resulting models into
a larger, comprehensive one. Fortunately, the machine learning
literature offers a class of methods, namely ensemble methods, that
are designed for that exact purpose by combining, into a compre-
hensive robust model, many smaller models that focus on specific
areas of the sensitivity space [22, 54].

Ensemble methods build a family of base estimators, with each
estimator focusing on a subsection of the function to be modeled.
These weaker base estimators are then aggregated to obtain a strong
learner that performs better. Among the several variations of ex-
isting ensemble techniques (e.g., bagging, boosting, stacking), we
choose Gradient Boosting Regression (GBR) [27].7 In §7 we quanti-
tatively show that its predictions outperforms a large collection of
other well-known modeling tools.

In summary, our modeling technique captures the intricacies of
a complex sensitivity function and improves on prior work which
uses simpler linear models.

5.3 Measuring Contentiousness
In §4.2, we introduced the example of three co-running NFs,

𝑁𝐹𝐴 , 𝑁𝐹𝐵 , and 𝑁𝐹𝐶 where we wanted to predict the performance
of 𝑁𝐹𝐴 running alongside 𝑁𝐹𝐵 and 𝑁𝐹𝐶 . We now discuss (a) how
𝑁𝐹𝐵 and 𝑁𝐹𝐶 ’s contentiousness vectors, (𝑉𝐵 , 𝑉𝐶 ) are measured in
detail, and (b) how to compute their combined contentiousness,
𝑉𝐵,𝐶 from measurements, extracted during offline profiling.
Measuring NF i’s contentiousness: A starting point might be to
measure the PCM counters for a given 𝑁𝐹𝑖 while this 𝑁𝐹𝑖 runs
alone on the server. However, this is inaccurate because an NF’s
resource utilization (and hence its vector 𝑉𝑖 ) changes in the pres-
ence of competition (e.g., by as much as 5× for metrics like LLC
occupancy). That is, in the case of 𝑁𝐹𝐵 , we need to estimate 𝑉𝐶

𝐵
i.e., its contentiousness while competing with 𝑁𝐹𝐶 . We make two
key choices to estimate this vector.
(1)We measure contentiousness for 𝑁𝐹𝑖 while it is running against
the various synthetic competitors 𝑁𝐹𝑥 – many times over. Each
time𝑁𝐹𝑖 is subjected to a unique𝑉𝑥 , we measure𝑁𝐹𝑖 ’s contentious-
ness resulting in a set of potential 𝑉𝑖 ’s

7GBR is a technique that produces strong predictors with lower bias, by sequentially
fitting weak learners in an adaptive way, giving more importance to observations in
the dataset that were badly handled by previous models in the sequence.
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Figure 9: FlowStats’s sensitivity changes with the number of concurrent
flows

(2)We then group the𝑉 𝑥
𝑖
’s based on howmany co-runners (utilized

cores) our synthetic competitor was simulating. For our example
above, we group all 𝑉 𝑥

𝐵
where 𝑁𝐹𝐵 ran against one simulated co-

runner; we then take the average of all such vectors. This value is
our estimate of 𝑉𝐶

𝐵
.

Hence, in reality, during the profiling phase we do not generate
one contentiousness vector for each NF. Instead, we measure one
contentiousness vector per configuration of the synthetic competi-
tor and during runtime, we select the appropriate subset of these
measurements based on the number of competitors.
Composition: Having estimated the individual contentiousness
of NF𝐵 and NF𝐶 in the presence of two competitors, the next step is
to compose them in order to get an estimate of𝑉𝐵,𝐶 . Composition is
possible because the aggregate contentiousness metrics we wish to
estimate are by definition the sum or average of the constituent per-
core metrics (e.g., the CAR of a CPU-socket is the sum of each core’s
CAR within the socket) [1]. Thus, having estimated the individual
contentiousness of each competitor, composing the aggregate boils
down to applying the appropriate linear operator for each metric.
§7 evaluates the prediction accuracy of using this compositional
model versus observed actual aggregate contentiousness across
experiments and shows that our composition mechanism adds less
than 5% additional prediction error.

6 EXTRAPOLATING SENSITIVITY
So far, we have considered a rather strict definition of NF i that

includes its type (e.g., firewall, IDS etc.), configuration and traffic
profile. While this definition has simplified the exploration of the
sensitivity/contentiousness design space, NF i might experience
modifications during its lifecycle (e.g., migrations across servers,
changes in configuration or changes in traffic profile) which will
effectively lead to the creation of a new, unknown, NF instance,
NF ′i . A natural concern for operators is whether SLOMO’s design
is general enough to enable them to extrapolate quick-yet-accurate
performance predictions for NF ′i , without triggering a slow offline
profiling operation immediately after NF i is modified. In other
words, having the ability to extrapolate NF ′i ’s performance predic-
tions by leveraging existing profiles of NF i can save the operator
time and thus enhance SLOMO’s usability. In this section, we use
a running example to present empirical heuristics to extract NF ′i s
sensitivity as well as their limitations.

We consider the example of FlowStats, an NF that is heavily sen-
sitive to memory contention and explore its changes in sensitivity
as a function of the number of unique traffic flows it receives (all
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other parameters of configuration, traffic and competition remain
fixed). In our experiment, we first reduce the number of traffic flows
by 50K from 400K to 350K (∼ 12%) and observe that as that number
decreases (1) the NF becomes less sensitive to the same amount
of contention and (2) its solo throughput increases. By the same
token, when we increase the flow count by the same amount (from
400K to 450K), we observe the opposite behavior.

To explain this behavior, we look at the resulting change in the
NF’s shared resource utilization. In the case of FlowStats, which
keeps per-flow state, the reduction in concurrent flows leads to
a smaller hash table in memory and hence a reduced probability
of contention over the LLC. Figure 9 visualizes the effects of this
change across two key dimensions of FlowStats’ sensitivity, com-
peting LLC occupancy and competing CAR.

We observed similar effects in other NFs. For instance, changes
in the size of the ruleset of an IP Router (±20%) also resulted in a
change the LLC utilization of the router and corresponding change
in the NF’s sensitivity curve.8 This leads to our key observation:

Observation 8: Changes in NF i’s traffic profile of configura-
tion translate in changes in NF i’s reliance on shared memory
resources and thus to its sensitivity.

Recall from §5.2 that we use an ensemble of linear models as
our prediction function. Our insight for extrapolation, therefore,
is to modify each linear model to adjust to changes in the LLC
utilization of the target – whether due to traffic or ruleset variation
– as follows.
Slope with respect to CAR: As the LLC occupancy of the target
NF goes down, there is less opportunity for the competition and
the target to contend over the same cache line. Hence, we expect
that as LLC occupancy of the target goes down, the same value of
CAR for the competition would result in fewer evictions. Assuming
that our initial model of competitor’s CAR and target’s throughput
has a slope 𝛼 , we model the new slope 𝛼 ′ as the ratio of the new
cache occupancy of the target to the original cache occupancy of

the target: 𝛼 ′ =
𝑂𝐶𝐶new

target

𝑂𝐶𝐶old
target

𝛼 .9

X-shift with respect to Occupancy: The slowdown for the tar-
get NF with regard to cache occupancy is really a function of the
total cache occupancy. In particular, we consistently see an inflec-
tion point in the sensitivity curve when the sum of the target and
competition’s cache occupancies surpass the total available LLC
space. If the target’s occupancy reduces, we hence expect to see this
inflection point at a higher level of occupancy by the competition.
Hence, we shift the sensitivity function along the x-axis (occupancy
of competition) relative to the difference in the occupancy of the
target 𝛿 = 𝑂𝐶𝐶new

target −𝑂𝐶𝐶old
target.

Y-shift with respect to solo performance: Finally, when the
occupancy of the target changes, the baseline, solo throughput of
the NF may shift. To account for this, we shift along the y-axis
(performance) by 𝛽 , for 𝛽 = SoloPerfnewtarget − SoloPerfoldtarget.

8Throughout these experiments, we ensured that incoming traffic would touch the
entirety of the ruleset and thus, the addition of rules would not be redundant
9In reality, the relationship between CAR and probability of evicting target NF data
follows a geometric distribution and should be modeled as such [24].

Scope of extrapolation: So far, our discussion about extrapola-
tion heuristics is based upon the assumption that NF i’s change is
“small” and thus there is overlap between the sensitivity profiles
of NF i and NF i′ . We find this to be a reasonable assumption as it
allows us to “transfer” the knowledge of NF i’s sensitivity profile
to NF ′i without a significant loss of accuracy. On the other hand,
in cases where configurations or traffic profiles differ significantly
(e.g., a firewall with 1 vs. 10K rules), there is little to no overlap be-
tween the respective sensitivity profiles and, as a result, accurately
extrapolating performance drop is not possible.

In §7, we demonstrate the promise of our simple extrapolation
scheme. We show that despite the inherent complexity of the sensi-
tivity function, our approach on average adds 3 percentage units to
the error, and significantly outperforms the accuracy of predictions
where extrapolation was not used.

7 EVALUATION
In this section we evaluate our approach and show that:

1. SLOMO is accurate, with a mean prediction error of 5.4%, re-
ducing Dobrescu’s 12.72% error by 58% and BubbleUp’s 15.2%
average error by 64% (7.1).

2. SLOMO’s predictions are robust across operating conditions
(7.1).

3. The design decisions behind each of SLOMO’s components
contribute to improved accuracy (7.2).

4. SLOMO is efficient and enables smart scheduling decisions in
an NFV cluster (7.3).

5. SLOMO is extensible, allowing the accurate extrapolation of the
sensitivity function of new NF instances to account for changes
in an NF’s traffic profile or configuration (7.4).
For each experiment we choose the target NF (i.e., type, configu-

ration and traffic profile), the number and type of (real) contenders
and the architecture the NFswill run on. For NF profiling and testing
we use the methodology described in §5. Unless mentioned other-
wise, we estimate performance using the composed contentiousness
of the competition (i.e., we always assume a cold start scenario).
SLOMO fully profiles each NF type on two architectures (Broadwell
and Skylake) and for 6 different configurations of traffic profile
(i.e., 64/1500B and 40K/400K/4M traffic flows, uniformly distributed
across the space of possible destination IPs). The NFs processed the
maximum traffic until we saturated the corresponding core. For the
Click-based IP Router and Stateless Firewall, we also experimented
with 2 ruleset sizes (small/large).

7.1 Accuracy
What is the end-to-end prediction accuracy of SLOMO?We

compare SLOMO’s absolute mean prediction error against (1) Do-
brescu’s CAR-based prediction model [24] and (2) the more general-
purpose BubbleUp prediction framework byMars et al. [39]. Overall,
SLOMO reduces the absolute mean prediction error with respect to
Dobrescu’s model and BubbleUp by 57% and 64% respectively.

Figure 10 shows SLOMO’s end-to-end average absolute predic-
tion error for all experiments across NF types. We make the follow-
ing observations. First, SLOMO’s both average prediction error and
error variance are across the board lower than those of prior work.
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Cases where the prediction errors between SLOMO and prior work
are similar (e.g., VPN, stateless firewall, Maglev) correspond to NFs
that do not show high dependence on thememory subsystem, either
because they are CPU bound (e.g., VPN) or because their rulesets
impose little memory overhead (e.g., stateless firewall). For instance,
in the case of a stateless firewall that co-ran with 7 competitors,
its observed throughput was 4.12Mpps, SLOMO’s was 4.10Mpps,
Dobrescu’s 4.02Mpps and that of BubbleUP 4.02Mpps. However, for
IP Router, a NF that depends heavily on the memory subsystem,
its observed throughput was 3.46Mpps, SLOMO’s prediction was
3.30Mpps, Dobrescu’s 2.79Mpps and that of BubbleUP 3.00Mpps.
We note, however, that FlowStats and IP Router exhibit higher error
variance. We revisit this observation later in this subsection.
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Figure 10: End to End prediction error by NF type

Does SLOMO under/overestimate performance? To see if
SLOMO over- (positive error) or under-predicts (negative error)
performance, we show the signed prediction error across NF types
in Figure 11. We observe that there is no clear trend in favor of
either sign, indicating SLOMO’s prediction error is unbiased. On
the other hand, we observe that predictions made with the CAR-
based model tend to overestimate the amount of performance drop
the target NF experiences.
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Figure 11: Signed prediction error for IP Router, FlowStats, VPN.
How robust are SLOMO’s predictions? To evaluate SLOMO’s

robustness, we look at how both its signed and/or unsigned predic-
tion error changes as a function of key data dimensions as described
in the following points:
1. The absolute error follows an increasing trend as a function of

the number of competing NFs (Figure 12). We attribute this to
an additive, composition-related error factor that is introduced
for every additional competitor.

2. SLOMO occasionally over-predicts the performance drop in
cases where memory sensitive NFs (e.g., IP Router, FlowStats)
are co-run with up to two contenders. We attribute this error
to a gap in our training dataset that did not sufficiently cover
areas of low contentiousness. We still observe, however, that this
error is substantially lower than that of the CAR-based model
(Figure 13).

3. SLOMO’s absolute error follows an increasing trend as a func-
tion of the unique flow count of the traffic received by the target
NF (Figure 14). Indeed, a higher number of unique flows will

result in higher utilization of the target NF’s auxiliary structures,
which also explains the error variance of FlowStats and IPRouter.
These NFs are not sensitive to contention when the number of
traffic flows is low, hence their prediction error is very small.
As the flow count increases, performance degradation increases
and so does the associated error.

4. SLOMO’s average prediction error does not change significantly
as a function of packet size processed by the target NF (Figure 14).
However, we observe a slightly higher variance in SLOMO’s
prediction errors which we trace back to a number of experi-
ments where SLOMO overestimated the performance drop of
NFs that due to their lower packet rate (as a result of the higher
packet size) did not experience any performance drop.

5. Finally, from Figure 14 we observe that SLOMO’s error, also
appears largely independent of the competing traffic rate (load
offered to the system). This highlights that SLOMO’s design
can adapt to different types of competitors that apply varying
amounts of contention to the shared resources.
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Figure 12: End to End prediction error by number of competing NFs
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Figure 14: Prediction error as a function of traffic profile

7.2 Factor Analysis
We now examine design decisions behind SLOMO’s components.
How does our choice of contentiousness metrics impact

accuracy?We first experimentally estimate the number of metrics
needed to accurately capture contentiousness. We train each model
with one metric at a time and measure the prediction error of the
resulting model on our testing dataset. The leftmost column of
Table 6 (Top 1) shows the absolute error for the best 1-metric model
for each NF. We observe that the error is consistently larger than
SLOMO’s, which validates our choice of using multiple metrics. The
second column further corroborates this observation by showing
the drop in prediction error that is observed with the best (NF-
specific) 3-metric sensitivity model.
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We then look at the specific metrics that need to be consid-
ered in the ensemble to improve accuracy. Recall that in §5 we
found that different sources of contentiousness are captured by
different metrics. Given that, we measure the prediction error of a
sensitivity model fitted (1) with LLC-specific metrics and (2) with
main-memory metrics only (columns 3 and 4). We observe that
while both subsets of metrics improve the accuracy against a single
metric model, error is further reduced when they are combined
in one model (final column). This observation shows that our en-
semble of contentiousness metrics adequately captures the various
sources of contention in the memory subsystem.

NF Top 1 Top 3 LLC Mem SLOMO
FlowStats (B) 17.9% 8.7% 5.5% 7.1% 7.5%
IP Router (B) 8.6% 3.1% 6.2% 4% 3.2%
Maglev LB (B) 3.2% 1.2% 1.5% 2% 1.2%
Suricata (B) 23.7% 12.7% 15.5% 13.2% 10.4%

Table 6: Absolute prediction error for different sets of contentiousness metrics

How do key contentiousness metrics change across NF-
s/architectures? Table 7 contains the top 3 metrics for a collection
of NF instances. For the same NF,the corresponding set of metrics
changes across architectures (Broadwell, Skylake). We notice, how-
ever, that in the Skylake server, Memory Writes are a metric that
appears commonly in the top-3 of contention-prone NFs. In our
effort to understand the explanation behind this observation, we
found that Skylake and Broadwell architectures differ significantly
in the organization of their memory hierarchy. Specifically, Skylake
servers have a substantially smaller LLC (11MB vs. 20MB) and a
non-inclusive10 write-back cache policy that for NFV workloads
results in producing large amounts of writes to main memory [9].

NF Metric 1 Metric 2 Metric 3
FlowStats (B) LMB LLC MISS LLC OCC
FlowStats (S) LLC OCC CAR MEMWRITE
IP Router (B) LLC OCC MEM READ CAR
IP Router (S) MEM WRITE LLC HIT LLC OCC
Snort (B) MEM WRITE CAR MEM READ
Snort (S) MEM WRITE CAR LLC MISS

Table 7: Top 3 metrics per NF

HowdoesGradient BoostingRegression compare to other
candidate techniques for sensitivitymodeling? Figure 15 eval-
uates our choice to capture the complex piece-wise nature of sen-
sitivity with Gradient Boosting Regression. We compare GBR’s
prediction error on the same dataset with that of a large set of
modeling techniques and we find that GBR is the only technique
that achieves an average prediction error of less than 10% and
outperforms other techniques by up to 2 orders of magnitude.
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Figure 15: Average prediction error for various common modelling tech-
niques including GBR

10A non-inclusive cache writes back every modification or eviction that happens in L2
cache to the LLC

How does prediction error change when composition is
used? To evaluate the accuracy of composition, Figure 16 com-
pares SLOMO’s prediction error in the following scenarios; (1)
when contentiousness is directly measured from the server (i.e.,
no composition is needed), (2) when the contentiousness vector
is composed with the PCM metrics of each competitor when run
solo and (3) when contentiousness is composed using SLOMO’s
methodology. We find that our composition mechanism introduces
an overhead that the worst case does not introduce more than 5% of
additional error. On the other hand, using the solo contentiousness
of the competitors to compose the aggregate contentiousness vector
can increase the error by up to 20%. We note that composition does
not introduce additional time overheads during online prediction.
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Figure 16: SLOMO’s prediction error when contentiousness vector is observed
versus composed.

7.3 SLOMO use cases
To demonstrate SLOMO’s practical benefits, we first show that

SLOMO can enable efficient online scheduling in an NFV cluster.
Then, we demonstrate how SLOMO can enable better resource
partitioning using CAT[6].
Scheduling with SLOMO: We consider an online scheduling sce-
nario where the operator periodically receives NF scheduling re-
quests, containing the NF’s description and an SLA (i.e., maximum
throughput drop relative to solo). The operator’s goal is to maxi-
mize resource utilization while minimizing SLA violations. Given
that the optimal algorithm for this task is NP-complete [37], we opt
for a greedy incremental algorithm that evaluates for every node
whether the addition of the NF will lead to SLA violations [51]. If
there’s no feasible schedule then we provision an additional server.

We run 10 simulations of 1000 scheduling requests, where an
NF is picked randomly from the pool of profiled NFs and is given a
throughput SLA in the 5 − 30% range. We exhaustively run all
possible combinations of requests in our deployment to deter-
mine the feasible schedules and those result in SLO violations.
We compare SLOMO’s schedules with those derived using Do-
brescu’s CAR-based model and ResQ, a contention aware scheduler
by Tootoonchian et al. [51]. Table 8 presents the simulation results
in terms of how many additional machines (%) with respect to the
optimal schedule each approach requires and the associated SLO
violations (% of requests).

System Resource overhead (%) SLO violations
SLOMO 1.5% 0
ResQ [51] 6% 3%

Dobrescu [24] 14% 0
Table 8: Resource requirements and SLO violations in online NF scheduling.
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SLOMO and CAT: We test our NFs on the Broadwell architecture
(Skylake does not support CAT) and allocate 25% of the LLC (5MB)
to the target NF. The competitors contend for the remaining LLC
space. Table 9 shows the average absolute mean prediction error for
the target NF using SLOMO against the percentage difference in the
target’s throughput from its solo performance in the same partition
of the LLC. We categorize our target NFs as sensitive vs. insensitive
to contention. We observe that SLOMO’s prediction error is ∼ 3×
lower that the "error" an operator would make assuming that CAR
achieves perfect isolation and linear performance scaling.

NF SLOMO error Observed drop
Not sensitive <1% <1%
Sensitive 4.5% 13.8%

Table 9: SLOMO Prediction error in the presence of CAT

7.4 Extrapolation
Finally, we show the promise of extrapolation. We use 5 NF

types (IP Router, FlowStats, VPN, Snort and Maglev LB) and at
each experiment we change either the number of unique traffic
flows or the ruleset size by a factor of up to ±20%. For example,
for Flowstats, the initial NF processed 400K of unique flows. Our
new configurations were in the [320K-480K] range. That is because,
intuitively, one can only extrapolate when the NF’s behavior is not
expected to change drastically. Considering the discussion in §7.1
about the behavior of FlowStats being radically different for 40K
and 400K flows, extrapolating this change would be unwise.

Figure 17 shows the absolute mean prediction error broken down
across NFs that are sensitive to contention (IPRouter, FlowStats,
Snort) with that of non-sensitive NFs. For contention sensitive
NFs, using the extrapolated sensitivity adds on average 3% to the
prediction error compared to the average error when the sensitivity
function is already known. Without extrapolation i.e., when we use
the old sensitivity function, the prediction error on average doubles.
For non-sensitive NFs, the difference in error is marginal.
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Figure 17: Prediction error of extrapolated sensitivity functions

8 DISCUSSION
What if NF i does not use packet acceleration? In cases of NFs
that do not use packet acceleration, we find that the kernel-based
network stack will become the major performance bottleneck and
determine NFs’ sensitivity [35]. However, as competing NFs run on
dedicated cores and with appropriate core-interrupt affinity, NF i’s
contentiousness can still be characterized using SLOMO.

Can SLOMO account for other sources of contention? Addi-
tional sources of contention fall within SLOMO’s scope as long as
PCM exposes utilization metrics about these resources. For instance,
relaxing the one NF per core assumption might lead to contention
in the L2 cache, breaking NUMA affinity might result in contention
at the QPI interconnect, and multiple traffic flows might contend for

NIC resources [46]. Because PCM exposes data about L2 hit rates
and QPI bandwidth, we would expect SLOMO to perform well in
this scenario. On the other hand, SLOMO cannot currently address
contention at the NIC because PCM does not measure resources
at the NIC. We leave an exploration of what metrics to collect in
scenarios beyond the scope of PCM to future work.

9 RELATEDWORK
Performance prediction: Prior work in the architecture com-
munity identifies performance degradation due to shared-resource
contention [26, 47, 48]. The focus here is to inform processor de-
signs that can dynamically reallocate their shared resources during
runtime without offline profiling of each process. These works are
complimentary to ours as the focus is on the architectural design
that enables insights similar to SLOMO’s.

NF management: Work in NFV management acknowledges the
degradation problem and suggested workarounds via NF placement;
e.g., E2 [41] and CoMB [44] consolidate NFs to avoid cross-switch
traffic. However, these works do not model contention-related per-
formance degradation. Other works have also looked at scaling NFs
based on observable triggers such as congestion, long tail latency
or packet drops [28, 31]. Using SLOMO for performance prediction
can improve the utilization and SLAs for these efforts.

NF isolation: Recent efforts explore ways to provide performance
isolation between NFs on the same host; e.g., Netbricks [42] and
ResQ [51]. These efforts are complementary to SLOMO which can
be used to inform the design of isolation policies.

Prediction and verification via symbolic execution: Recent
work by Pedrosa et al. [43] uses symbolic execution to understand
the execution paths a NF can take and uses a cache simulator to iden-
tify adversarial workloads. This requires access to NF source code,
whereas SLOMO can work with blackbox NF realizations. Similar
works rely on symbolic execution either to provide performance
contracts or to verify the correctness of Network Functions [30, 53].

10 CONCLUSIONS
Providing performance guarantees when NFs share hardware

remains an elusive goal in NFV. The ability to accurately predict
the potential performance for a future colocation configuration
can inform the provisioning and placement decisions in today’s
NFV orchestration frameworks. While prior work identified the
memory contention problem in NFV, it treated memory as mono-
lithic whole and cannot provide sufficient accuracy in today’s NFV
landscape. In this work we systematically investigate the memory
subsystem and the sources behind contention-related slowdown.
Our insights enable the development of SLOMO, a performance
prediction framework for NFV. We show that relative to prior work
SLOMO reduces prediction error by 2-5× and enables 6-14% more
efficient cluster utilization.
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