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A methodology is presented based on wavelet techniques to approximate fast and slow dynamics present in time-series
whose behavior is characterized by different local scales in time. These approximations are a useful to understand the
global dynamics of the original, full systems, especially in experimental situations, where all information is contained
in a one-dimensional time-series. Wavelet analysis is a natural approach to handle these approximations because each
dynamical behavior manifests its specific subset in frequency domain; for example, with two time scales the slow and
fast dynamics are present in low and high frequencies, respectively. The proposed procedure is illustrated by the analysis
of a complex experimental time-series of iron electrodissolution, where the slow, chaotic dynamics is interrupted by
fast irregular spiking. The method can be used to first filter the time-series data, and then separate the fast and slow
dynamics even when clear maxima and/or minima in the corresponding global wavelet spectrum are missing. The
results could find applications in the analysis of synchronization of complex systems through multi-scale analysis.

Complex behavior in natural systems are often gener-
ated by interactions of periodic phenomena with largely
different time-scales. For example, heart rate variations
can be affected by neuronal firings, breathing, or sleep-
wake patterns. When the time-scales of such processes are
well separated and the behavior is highly periodic, the sig-
nals can be analyzed with simple low and high-pass filters.
In this work, we consider a very complex electrochemical
behavior, the corrosion of iron in an acid. A wavelet-based
methodology is presented, where the slow and fast time
scales can be separated even with chaotic slow and irregu-
lar fast spiking.

I. INTRODUCTION

Systems with different processes taking place over sepa-
rate time scales are ubiquitous in a large range of phenomena
in areas such as physics (e.g. lasers1,2, forced Van der Pol
oscillators3, Faraday waves4), chemistry (e.g.,homogeneous
reactions5 and electrochemical phenomena6), biology (e.g.,

a)magrini@ifsp.edu.br
b)margarete.domingues@inpe.br
c)elbert.macau@unifesp.br
d)izkiss@slu.edu

neural activity7,8, cardiac9 and β-pancreatic10 cells) and
other11–13. In the most common scenario there are fast and
slow dynamics, where the slow variable acts as a slowly vary-
ing ’parameter’ in the fast subsystem. With oscillatory dy-
namics, the time series consist of fast, repetitive bursting inter-
rupted by slow, acquiescent, dynamics where the oscillations
are smooth and the wavelength is large in comparison with
the bursting. System description and technological applica-
tions require the separation of the system time scales. This is
the case, for example in neuronal and climate systems and the
corresponding control applications. In particular, this separa-
tion is of importance to characterize synchronization phenom-
ena in nonlinear systems14–18. Several studies have investi-
gated approaches to separate the fast and slow dynamics19–21.
For example, one can take advantage of the known eigenval-
ues and eigenvectors of the full system19 or apply compu-
tational methods based on identification of low dimensional
surface trajectories in phase space20. Separation can help con-
struction of slow invariant manifolds with fast relaxations21

to overcome the numerical difficulties of integration of stiff
systems22. Therefore, with experimental data, it is essential to
properly extract the fast and slow dynamics so that accurate
models can be formulated. When the underlying dynamics
are relatively simple (e.g., simple periodic oscillations with a
well-defined frequency), combination of low-pass, high-pass,
and band-pass FFT filters can be used to process data23. How-
ever, when the underlying dynamics are more complex (e.g.,
chaotic or oscillations with largely varying frequencies and
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amplitudes), automatic processing of large amount of data can
be challenging. In this paper, a wavelet-based technique is
presented that allows the proper separation of slow and fast
dynamics from experimental data, as well as de-noise the sig-
nal at the same time. The method was developed aiming the
analysis of an electrochemical process, the iron dissolution in
sulfuric acid, which exhibits fast periodic spiking in a large
frequency range with a highly complex, chaotic slow dynam-
ics. The data was collected from a coupled pair of oscillators
with different coupling strengths. The occurrence of the ir-
regular bursting activities, affected by the coupling, along the
chaotic trajectories demanded a versatile technique to sepa-
rate noise, and fast and slow oscillations. The method is based
on wavelet transform, exploiting its remarkable characteristic
that allows time-scale analysis for performing the identifica-
tion of different behaviors in time-domain24 associating then
with different frequency sub-bands. The article is organized
as follows. Section II presents the proposed approach to sep-
arate fast and slow dynamics. The data collection details are
described in Sections V and III. Section IV illustrates the
application in details and discusses the results. Finally, the
conclusions are in Section V.

II. METHODOLOGY

This section describes the proposed methodology to unveil
fast and slow dynamics embedded in a time series. Our ap-
proach is based on a continuous wavelet transform (CWT)
that is used to reliably identify dynamics in the frequency
of the time-series I(t). In the first step, noise is removed
from the time series using non-linear filtering25. In the se-
quence the wavelet analysis is performed applying the contin-
uous wavelet transform (CWT) with L1 norm in the frequency
domain according to26:

Wψ
I (a, τ) =

1

a

∫ ∞
−∞
F(I;ω)F∗(ψ;ω, a, τ)(eiωτ ) dω, (1)

where τ is a translation parameter in time domain,
F(I;ω) denotes the Fourier transform of the signal I(t),
F∗(ψ;ω, a, τ)(aω) is the conjugate of wavelet function ψ(t),
defined in frequency domain and calculated at aω for each
real positive value, a, called scale and related to the central
pseudo-frequency27 given by ω =

ωc
a∆t

, where ∆t is the sam-

pling time for the measurement signal I(t), and ωc the cen-
tral frequency of wavelet ψ(ω). The wavelet function con-
sidered here is the Morse wavelet, defined in the frequency
domain28–31 by:

ψ(β, γ, ω) = 2(eγβ)(β/γ) U(ω) ωβ e(−ω
γ), (2)

where γ and β are real positives dimensionless parameters that
control the waveform, regulating the frequency-domain and
time-domain decay, respectively31, U(ω) is the Heaviside step
function. Morse wavelet function is analytic, therefore in a
time-frequency analysis of any real signal all non-positive fre-
quencies are zero. This property is important because it avoids

the detection of small spurious negative frequencies that could
influence our results. It is important to highlight that the real
parameters γ and β in Equation (2) are similar to the param-
eters scale a and translation τ used in the usual definition of
the CWT given by Equation (1). The chosen parameters are
γ = 3 and β = 20. The value γ = 3 is suggested in the
literature as standard value for analysis of oscillatory signals,
as it is highly related with Gaussian with zero skewness29–31.
The parameter β = 20 controls the wavelet length in time-
domain. Consequently, usually large values are considered.
This choice implies that the wavelet function is highly oscilla-
tory in time-domain and therefore the resolution in frequency
domain is increased31. More details about the choice of pa-
rameters γ and β can be found in references29–31. Figure (1)
shows Morse wavelet in time- and frequency-domain. No-
tice that the behavior in frequency-domain is related with the
Gaussian distribution and, in time-domain exhibits an oscilla-
tory behavior. The magnitude scalogram defined by absolute

FIG. 1. Morse wavelet with β = 20 and γ = 3 in time-domain (left)
and, in frequency-domain (right).

value of measures Wψ
I (a, τ) allow us to calculate the global

wavelet spectrum G(ω):

G(ω) =

∫ ∞
−∞
|Wψ

I (ω, τ)|2 dτ. (3)

As it was previously noted24 the high frequency bursts could
not be easily extracted using the Fourier spectrum, but the
global wavelet spectrum provides a better approach. (Indeed,
roughly speaking, the global wavelet spectrum can be seen
as a smooth version of the Fourier spectrum32–34). The cen-
tral idea in our approach is that by a careful analysis of G(ω)
it is feasible to localize sub-bands Ωslow and Ωfast, whose
content corresponds to each time scale. These sub-bands of
the wavelet transform are used to reconstruct time domain
signals associated with the underlying time scales using the
inverse continuous wavelet transform (ICWT). For this pur-
pose, it is necessary to know the upper and lower extremes
of the intervals Ωslow and Ωfast (Hz). Ideally, the fast and
the slow oscillations generate a global wavelet spectrum with
two dominant frequency peaks. Let ωslowmax and ωfastmax be the
frequencies where global wavelet spectrum G(ω) exhibits the
largest peaks related with the slow and the high frequency
content. If the amplitude of the these two peaks are suffi-
ciently large, then there will be a local minimum at a fre-
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quency mslow ≥ ωslowmax . Similarly, at the peak correspond-
ing to the fast time scale, there will be a minimum just be-
low the dominant peak mfast ≤ ωfastmax . The slow dynamics
thus can be represented by the frequency components from
zero up to mslow: Ωslow =]0,mslow] . The fast dynamics
contains frequencies from mfast to the maximum frequency
ωmax : Ωfast = [mfast, ωmax] . See general scheme in
Figure 2. After a careful analysis of a large body of col-
lected experimental data, we found that in some examples
mslow, mfast and/or the peaks ωslowmax and ωfastmax cannot be
well-defined in the global wavelet spectrum. In these cases,
two alternative strategies can be followed. If the value mslow

cannot be determined by analysis of global wavelet spectrum
G(ω) then 2ωslowmax was chosen as upper extreme for interval
Ωslow. The choice for 2ωslowmax was done empirically: we an-
alyzed each case and possible choices for ωslow; the value
2ωslowmax presented better results for the slow dynamics approx-
imation process. In this case, the lower extreme is equal to
smallest frequency ωslow detected in time-frequency analysis.

If it is not possible to localize well-defined peak ωfastmax in
G(ω) then the lower extreme for Ωfast must be chosen at an
inflection point in G(ω). In this case, the upper extreme is
equal to largest frequency ωfast detected in time-frequency
analysis. After determining Ωslow and Ωfast, the approxima-
tions Islow(t) and Ifast(t) to slow and fast dynamics present
in the signal I(t) are obtained using the ICWT considering
the frequency bands Ωslow and Ωfast, respectively. Then, we
considered the computation in each case as a possible approx-
imation for each different dynamics. We note that for identifi-
cation of repetitive fast spiking events, one has to set a thresh-
old amplitude at which the event is relevant (limiarization).
Such additional step is unavoidable to discard isolated spike
or other behaviors close to discontinuities in the time domain.

III. DATA COLLECTION AND EXPERIMENTAL SETUP

The experimental time series was collected during iron
electrodissolution in 1 mol/L sulfuric acid. The experiments
were performed in an electrochemical cell consisting of 0.5
mm diameter iron working, Hg/Hg2SO4 / sat. K2SO4 refer-
ence, and Pt counter electrodes. When the potentiostat ap-
plies constant circuit potential V with respect to the refer-
ence electrode, the current I(t) can be measured with zero
resistance ammeter at a sampling rate of 1000 Hz. In a pre-
vious study6, it was shown that bursting current oscillations
can occur when 1 kOhm external resistance is attached to the
iron wire. The time-series data exhibited slow chaotic vari-
ations, which were interrupted with high-frequency bursting.
Here we consider an even more complex system, where two
iron wires dissolve simultaneously. The electrodes were con-
nected to the potentiostat through two individual parallel re-
sistors (Rind) and one series collective resistor (Rcoll), in such
a way that the total resistance Rtot = Rind + 2Rcoll was kept
constant, but the collective resistance fraction ε = 2Rcoll/Rtot
was changed. The collective resistance introduces electrical
coupling between the wires, whose strength can be controlled
with ε. Such coupling can greatly enhance the complexity of

the individual time series of the chaotic system. As shown in
Table I such experiments were performed, and two time series
were collected for wires 1 and 2, respectively. The coupling
strength ε was varied between 0 (no coupling) and 1 (strong
coupling).

IV. RESULTS AND DISCUSSIONS

This Section presents the results obtained with the applica-
tion of the proposed methodology in the computation of ap-
proximations for fast and slow dynamics of the experimental
data set described in Section III.

A. Scalograms with two well-defined peaks

The top panel in Figure 3 shows the typical behavior of
time-series with chaotic slow dynamics and irregular burstings
over the fast dynamics (only the initial ten seconds are shown
for better visualization). Visual inspection of the scalogram
(bottom panel in Figure 3) reveals that the fast subsystem (the
bursting intervals) corresponds to frequencies larger than ap-
proximately 30 Hz and the slow subsystem corresponds to the
frequencies between 3 Hz and 10 Hz, approximately. These
frequency ranges can be better inferred from the the global
wavelet spectrum (right plot in bottom panel); the spectrum
exhibits two different and well-defined peaks: One around 4
Hz and other around 60 Hz (the exact values are 3.91 Hz and
58.37 Hz, respectively). Note that the system exhibits com-
plex dynamics, whose behavior cannot be localized to nar-
row frequency bands. Instead, some contribution to the slow
and the fast subsystems occur with frequencies above and be-
low 100 Hz and 3 Hz, respectively. In Figure 4 the scalo-
grams are shown for the first 10 s of the time-series listed
in Table I: While the complexity of the time series is cer-
tainly different, the fast and slow dynamics manifest, approx-
imately, in the same frequency ranges. The separation of the
fast and slow dynamics using the wavelet transform, in the
most trivial case is explained with dataset A (see Figure 3 for
the time series). In this example, there are well-defined min-
ima below the fast (mfast = 34.7 Hz) and above the slow
(mslow = 7.2 Hz) peaks in the global wavelet spectrum G(ω)
as can be seen in Figure 5. Therefore, the fast and slow dy-
namics corresponds to frequency sets Ωfast = [34.7, 434.1]
Hz and Ωslow =]0, 7.2] Hz. In order to generate the ap-
proximations to dynamics, namely Ifast(t) and Islow(t), the
ICWT was performed using the sets Ωfast = [34.7, 434.1]
Hz and Ωslow =]0, 7.2] Hz and considering zero all others
frequency contents. The results can be seen in Figure 6.
The slow approximation Islow(t) captures very well the be-
havior of largest amplitude, slow oscillations in time-domain;
for example, comparison of panels A and C in Figure 6 re-
veals that the number of oscillations and their shapes are pre-
served. The analysis for fast dynamics is more subtle: notice
that the repetitive fast oscillations are correctly localized in
B, although there are small amplitude burstings that are not
easy to recognize in the original current I(t). These spuri-
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FIG. 2. General scheme to found sets Ωslow and Ωfast in typical case.

FIG. 3. Typical behavior in time-domain to current in data A with
ε = 0.0 and respective scalogram with Fourier (gray) and global
wavelet spectrum (black). Shifted for better visualization.

ous small burstings correspond to regions in the original data
whose time behavior is very similar to a single isolated spike.
As such, we do not consider them as bursting regions. A pos-
sible way to eliminate such regions is to limiarize Ifast(t):
The CWT of Ifast(t) is performed, the scalogram is inte-
grated over frequency. The Figure 7 shows that this procedure
is able to detect the seven bursting regions in the given time
series. The time series of two of these bursts are shown Fig-
ure 8. The original (top) and the reconstructed (bottom) burst-
ings are similar in the sense that they have the same number
of cycles and the cycles have similar waveforms.

B. Scalograms without two well-defined peaks

While one could expect that the above described procedure
can be routinely applied to data sets with fast and slow dy-
namics, the difficulties of separating the two time scales are
illustrated using data C in Table I; the global wavelet spec-
trum is shown in Figure 9. In this case, the maximum of
the slow peak is well-defined with ωslowmax = 5 Hz. However,
there is no clear minimum above the slow peak that could de-
fine mslow. In such examples, we found that very good re-
construction of the slow dynamics can be achieved by setting

mslow = 2ωslowmax , i.e., in this example mslow = 10 Hz. The
analysis of the high-frequency region is even more compli-
cated, because there is no clear maximum. However, notice
that there is an inflection point in the global wavelet spec-
trum at around F = [70, 110] Hz. In such examples, we
found that the fast dynamics can be reconstructed assuming
that mfast = 90 Hz (basically, we used the mean between
the 110Hz and 90Hz), and thus the reconstruction is made
with all the frequencies above this threshold. Using subsets
Ωslow =]0, 10] Hz and Ωfast = [90, 434.1] Hz the approxi-
mations were calculated (see Figure 10); with these ranges the
largest oscillations were preserved in slow approximation and
the burstings were correctly identified in fast approximation.
Figure 11 shows that the waveform and number of spikes in
burstings in fast approximation are the same that in the exper-
imental current.

C. Pitfalls of finding frequency intervals

Finally, we must emphasize, that the broad-range frequen-
cies are essential to properly characterize the complex dy-
namics of the system. In other words, a simple pass-through
filter can dramatically change the waveform of oscillations,
which can misrepresent the corresponding dynamics. For ex-
ample, the waveform deformation is illustrated with dataset A
in Figure 12. If the range range [2.4, 7.2] Hz is used instead
of the proposed ]0, 7.2] Hz, the slow dynamics can exhibit
spurious oscillations close to bursting dynamics or during a
quite acquiescence period (e.g., see time domains I, II, and
III). In relation to fast approximation, similar effect can be ob-
served if high-frequency components are discarded. Figure 13
shows two bursting regions in dataset E, where the proposed
[47, 434.1] Hz range is replaced with a narrower, [47, 88] Hz
range around the maximum. Notice that the bursting regions
in the narrow band approximation (panel C) do not preserve
waveform and number of spikes, that is, the approximation
to fast dynamics is not correct. Table I summarizes which ap-
proximations were applied to reconstruct the slow and fast dy-
namics from the experimental data. (The time and frequency
values are rounded to the nearest integer.) Out of the sixteen
data sets, only three exhibited well defined maximum and sur-
rounding minima in the global wavelet spectrum that could
be used for the approximations (datasets A, H, M). In one
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FIG. 4. Scalograms to time-series described in Table I. The frequency band, time and colorbar ranges are the same of Figure 3.

FIG. 5. Sets Ωfast and Ωslow to fast and slow approximations to
data A whose ε = 0.0: frequency range ]7.2, 34.7[ Hz is not used to
build approximations.

example, (dataset B), only mfast was missing. In a typical
data set (11 examples), mslow was not used, and thus we used
mslow = 2ωslowmax . With the the most difficult dataset C, only
ωslowmax could be identified. Nonetheless, as described above,
with the proposed methodology presented, we succeeded in
reconstructing the fast and slow dynamics with an automated
range identification based on the global wavelet spectrum.

V. CONCLUSION

The proposed analysis was found to be useful in locating fre-
quency intervals, by which the slow and fast dynamics of the
complex multi-scale system can be separated. The method can
be used to first filter the time-series data, and then separate the
fast and slow dynamics even when clear maxima and/or min-

FIG. 6. The experimental current (I) and approximations to fast
and slow dynamics (II and III) reconstructed using Ωfast =
[34.7, 434.1] Hz and Ωslow =]0, 7.2] Hz. For better visualization
only initial ten seconds are plotted and the approximation time-series
are shifted. Representation using data A with ε = 0.0.

ima in the corresponding global wavelet spectrum are missing.
The method was applied to the chaotic iron electrodissolution
system, where the chaotic, slow dynamics made the identifi-
cation of the fast bursting regions challenging. It was demon-
strated that with such broad-frequency dynamics, application
of simple pass-through filters are problematic. The method-
ology could facilitate analysis of synchronization of bursting
oscillations, where separate analysis could be performed for
the synchronization of the slow and the fast oscillations.
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Time-Series Length (seconds) Coupling Strength
(ε)

Peaks Local Minima Approximation Sets
ωslow
max ωfast

max mslow mfast Ωslow (Hz) Ωfast (Hz)
A 60 0.0 4 62 7 33 ]0, 7] [33, 434]
B 60 0.0 4 36 14 * ]0, 14] [36, 434]
C 235 0.2 5 * * * ]0, 10] [90, 434]
D 235 0.2 4 88 * 50 ]0, 8] [50, 434]
E 150 0.4 4 66 * 47 ]0, 8] [47, 434]
F 150 0.4 5 76 * 66 ]0, 10] [66, 434]
G 55 0.6 5 176 * 143 ]0, 10] [143, 434]
H 55 0.6 4 134 5 101 ]0, 5] [82, 434]
I 82 0.7 5 94 * 82 ]0, 5] [82, 434]
J 82 0.7 5 101 * 82 ]0, 5] [82, 434]
K 120 0.8 5 94 * 82 ]0, 5] [82, 434]
L 120 0.8 5 101 * 82 ]0.5] [82, 434]
M 100 0.9 4 88 8 44 ]0, 8] [44, 434]
N 100 0.9 4 88 * 41 ]0, 8] [41,434]
O 80 1.0 4 67 * 36 ]0, 8] [36, 434]
P 80 1.0 4 67 * 36 ]0, 8] [36, 434]

TABLE I. Results summary to data set analyzed. Asterisks indicates values that can not be obtained from the global wavelet spectrum. We
notice that time-series with the same coupling strength are not independents.

FIG. 7. The largest peaks (bottom panel) permits identify real burst-
ings in fast approximation to original current (top panel). Represen-
tation using data A with ε = 0.0.

FIG. 8. Comparison between burstings in original current (I) and fast
approximations (II) in time intervals [0.64, 0.72] (s) and [3.83, 3.90]
(s) using data A with ε = 0.0

FIG. 9. Sets Ωfast and Ωslow to fast and slow approximations to
data C with ε = 0.2.
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FIG. 10. The experimental current (I) and approximations to fast and
slow dynamics (II and III) reconstructed using Ωfast = [90, 434.1]
Hz and Ωslow =]0, 10] Hz (degenerate case). For better visualization
only initial ten seconds are plotted and the approximation time-series
are shifted. Representation using data C with ε = 0.2.

FIG. 11. Comparison between burstings in original current (I)
and fast approximations (II) in time intervals [32.9, 33.3] and
[38.04, 38.09]. Representation using data C with ε = 0.2.

FIG. 12. Deformation regions (R, S and T) in slow approx-
imation (III) computed with maximum peak region in low fre-
quency ([2.4, 7.2] Hz) and (II) computed with proposed methodol-
ogy (]0, 7.2] Hz). Compare with experimental current (I)). Repre-
sentation using data C with ε = 0.2.

previous authorization by co-author IZK. Further details of the
experiments are given in the previous publication6.

FIG. 13. Bursting regions in fast approximation (III) computed with
maximum peak region in fast frequency ([47, 88] Hz) and (II) com-
puted with proposed methodology (]47, 434.1] Hz). Compare with
experimental current (I) to data E with ε = 0.4 according to Table I.
The approximations are shifted to better visualization.
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