FUNDAMENTAL MATRIX FACTORIZATION IN THE FJRW-THEORY
REVISITED

ALEXANDER POLISHCHUK

To Rafail Kalmanovich Gordin, with gratitude

ABSTRACT. We present an improved construction of the fundamental matrix factoriza-
tion in the FJRW-theory given in [7]. The revised construction makes the independence
on choices more apparent and works for a possibly nonabelian finite group of symmetries.
One of the new ingredients is the category of dg-matrix factorizations over a dg-scheme.

INTRODUCTION

This short note is supposed to clarify the construction of the cohomological field theory
associated with a quasihomogeneous polynomial W and its finite group of symmetries
G. Such a cohomological field theory, called the FJRW-theory was first proposed in [4].
Then, in [7] a different construction, based on categories of matrix factorizations, was
given (conjecturally, the two constructions give the same cohomological field theory).

The approach of [7] is based on constructing certain fundamental matriz factorizations
which live over the product of certain finite coverings of Mgﬁn (the moduli of T'-spin
structures) with affine spaces. It is this construction that we aim to clarify. More precisely,
we would like to present the construction in such a way that it would be analogous to
the construction of Ciocan-Fontanine and Kapranov of the virtual fundamental class in
Gromov-Witten theory via dg-manifolds (see [1]). The second goal that we achieve is to
present the construction without using coordinates on the vector space V' on which W
lives. This has an additional bonus that we can handle the case when the group G is not
necessarily commutative (but still finite).

The construction of [7] of the fundamental matrix factorization over S x [[, V", where
S is the moduli space of (rigidified) I'-spin structures with some markings (see Sec. 3.1 for
details) roughly has the following two steps. In Step 1 one considers the object R, (V)
in the derived category D(S), where 7 : C — S is the universal curve, V is the underlying
vector bundle of the universal I'-spin structure, and then equips it with some additional
structure. In Step 2 one realizes Rm.(V) by a 2-term complex [A — B|, where A and B
a vector bundles over S, such that there is a morphism

Z: X =tot(A) = [V

and a Koszul matrix factorization of Z*(>_ W;), where W; = W/|y». Then the funda-
mental matrix factorization is obtained by taking its push-forward with respect to the
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morphism (p, Z) : X — & x [[, V", where p : X — S is the projection. Note that here
the space X is non-canonical, so one has to check independence on the choices made.

The main idea of the present paper is to change the conceptual framework slightly by
observing that in fact one gets a dg-matriz factorization on a dg-scheme over S x [[, V™
(the terminology is explained in Sec. 1). Namely, for a non-negatively graded complex of
vector bundles C* over S, one can define the corresponding dg-scheme over S,

[C*] := Spec(S*(C*)Y).
In our case we consider the dg-scheme
X = [Rm.(V)].

More concretely, if we realize V by a 2-term complex V = [A — B] then our dg-scheme is
realized by the sheaf of dg-algebras

O)(7[A_)B} = S.[BV — Av],

where the complex [BY — AY] is concentrated in degrees —1 and 0. Then we interpret the
additional structure on Rm,()) coming from the universal I'-spin structure as a structure
of a dg-matrix factorization on the structure sheaf of X. More precisely, we get a morphism

ZX:X—>HV%'

and a function of degree —1, f_; € (’);(l[A_)B], such that

d(f-1) = =Z3(Y_ W)

Now the fundamental matrix factorization is obtained as the push-forward of (Oy,d +
f-1-id) with respect to the morphism X — & x [[, V7.

The connection with the original approach is the following: for each presentation V =
[A — B], for which the first construction works, there is a morphism ¢ : X — X = tot(A),
such that Z o ¢ = Zy, and an isomorphism of the push-forward ¢.(Ox,d + f_; - id) with
the Koszul matrix factorization of Z*(>_ W;) constructed through the first approach.

The second technical improvement we present is in the construction of f_;. The idea
is to work systematically with the categories of sheaves over pairs (scheme, closed sub-
scheme) to deal with non-functoriality of the cone construction (such categories fit into
the framework of Lunts’s poset schemes in [6]) . Namely, we work with the enhancement
of the usual push-forward with respect to the projection 7 : C — S to a morphism of
pairs (C,%) — (S,S), where ¥ C C is the union of the images of the universal marked
points (see Sec. 2).

Recall that in [7], we used the fundamental matrix factorizations to construct cohomo-
logical field theories associated with (W, G) by viewing them as kernels for Fourier-Mukai
functors and passing to Hochschild homology. It seems that the approach via dg-matrix
factorizations presented here could also be useful in the development of a more general
construction in Gauged Linear Sigma Model, see [5], [2].

Throughout this work the ground field is C.
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1. MATRIX FACTORIZATIONS OVER DG-SCHEMES

1.1. Definition. We consider dg-schemes in the spirit of [1]. We fix a space S (a scheme
or a stack), and consider the structure sheaf of a dg-scheme over S to be a sheaf (0%, d)
of Z_-graded commutative dg-algebras over Og (one can make a restriction 0% = Og,
but it is not really necessary).

Given a function fy; € O% we can consider the category of (quasicoherent) dg-matriz
factorizations of fy. By definition, these are Z/2-graded complexes of sheaves P = P& P!
together with a (quasicoherent) Og(—module structure, such that O% - P* C P In
addition P is equipped with an odd differential § satisfying the Leibnitz identity

(¢~ p) = d(¢) - p+ (=1)*¢d(p),
for ¢ € O%, p € P, and the equation §% = f; - idp.

Example 1.1.1. Given an element f ; € Oy', such that d(f_;) = fo, we get a structure
of a dg-matrix factorization on O% by setting

6(0) = d(¢) + f-1- ¢.
(In checking that 62 = 0 one has to use the fact that f%, =0.)

The above example can be obtained from the following more general operation. Suppose
we are given a function fy € O% and a dg-matrix factorization (P, ) of fy. Then for any
f-1 € O% we can change the differential § to § + f_; -idp. Then (P,d + f_; -idp) will be
a dg-matrix factorization of fo + d(f_1).

1.2. Positselski’s framework of quasicoherent CDG-algebras. More generally, we
can assume that f; a section in O% ® L, where L is a locally free O%-module of rank
1. The theory of the corresponding categories of dg-matrix factorizations fits into the
framework of quasicoherent CDG-algebras developed by Positselski (see [3, Sec. 1]).
With the data (O%, L, fo) as above we can associate a quasicoherent CDG-algebra

B:= P 0% ©0q L*"[—2n],

neL

with the natural structure of a complex of sheaves (i.e., the Z-grading and the differential
d), the natural product and the global curvature element given by fo € O° @ L C Bs.

Now a quasicoherent dg-matrix factorization is a quasicoherent DG-module over B,
ie., a graded B-module M = €, M,, equipped with a differential § = 0, such that
5% = fy -idy; and § satisfies the Leibnitz identity with respect to the B-action. Note that
such a DG-module necessarily has

Mn+2:Mn®L7

so it is determined by the components My and M7, and we get the structure of a dg-matrix

factorization on My @ M.
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There are several exotic derived categories associated to a quasicoherent CDG-algebra.
The one that is most relevant for the theory of dg-matrix factorizations is the category

qeoh — MF14(fo) := D(B — qcohz4) ~ D®(B — qcohy;) ~ D®*(B — qeohy),

where the superscripts ”abs” and ”co” refer to ”absolute” and ”coderived”, while the
subscripts "fI” and ”ffd” mean ”flat” and "finite flat dimension” (see [3, Sec. 1]).
Assume that f : (X,0%) — (Y,0%) is a morphism of finite flat dimension, L is a
locally free OY-module of rank 1, W is a section of L. Then we have the induced section
f*Woy of f*L. In this situation we have the push-forward functor (see [3, Prop. 1.9])

Rf. : qcoh — MFf4(f*Wp) — qecoh — MF ¢4(W).

1.3. Koszul matrix factorizations as push-forwards. Let V' be a vector bundle over
a scheme X, and suppose we have sections a € H°(X,VV), 8 € H*(X,V). With these
data one associates a Koszul matrix factorization {«a, 8} of W = (a, ), whose underlying
super-vector bundle is A*(V). On the other hand, we have the derived zero locus of 3,
Z(p) — X, which corresponds to the dg-algebra given by the Koszul complex of £:

Oz = (\ (V). d = 1p).

Now we can view « as a function of degree —1 on Z(/3) such that d(«) is the pull-back
of W. Thus, by definition, {«, 3} is the push-forward of the dg-matrix factorization
(Oz(g),d + « -id) by the morphism Z(3) — X.

This explains why in the case when 3 is a regular section of V', the Koszul matrix
factorization {«, 5} is equivalent to the push-forward of the structure sheaf on the usual
zero locus of .

2. TRACE MAPS VIA MORPHISMS OF PAIRS

2.1. Sheaves on pairs. Let ¢ : Y — X be a closed embedding.

We consider a very simple poset scheme in the sense of [6] for the poset consisting of two
elements a > 3, so that X, =Y and X3 = X. Then a quasicoherent sheaf on this poset
scheme is a triple (Fq, Fg, ¢), with F, € Qcoh(Y), Fg € Qcoh(X) and ¢ : Fz — t.F,
is a morphism. We denote by Qcoh(X,Y’) this abelian category, and by Coh(X,Y) its
subcategory corresponding to F, € Coh(Y), Fg € Coh(X). Furthermore, we have a
subcategory of locally free coherent sheaves (those with F, and Fjp locally free).

The perfect derived category Perf(X,Y") of bounded complexes of locally free sheaves
on (X,Y) has a natural monoidal structure given by the tensor product, so we can also
define symmetric powers of objects in Perf(X,Y").

Given a morphism of pairs f : (X,Y) — (X',Y’) we have a natural derived push-
forward morphism

Rf,: DT Qcoh(X,Y) — DT Qcoh(X',Y"),
where DT denotes the derived category of bounded below complexes.

The push-forward is compatible with the tensor products in the usual way: we have
natural morphisms

Rf.(F)® Rf.(G) = Rf.(F®G), S°Rf.(F)— Rf.S*(F). (2.1.1)
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We have a fully faithful exact embedding j; : D Qcoh(X) — D Qcoh(X,Y) sending G
to Fo =0, F3 = G. There is a right adjoint functor to it (see [6]),
Rj': D' Qcoh(X,Y) — D Qcoh(X),
which is defined as the right derived functor of the functor
7' Qeoh(X,Y) — Qcoh(X) : Fo = ker(Fs — 1.Fn).

Note that objects Fo € Qcoh(X,Y), such that Fg — 1. F, is surjective, are acyclic with
respect to j'. Furthermore, every object of Qcoh(X,Y) has a canonical resolutions by
such acyclic objects:

0 — (Fa,Fp) = (Fa, Fs @ tuFa) = (0,0.Fs) — 0

Computing Rj' using these resolutions has a very simple interpretation: given a complex
(Fa, F3) over Qeoh(X), the functor Rj' sends it to the complex

Cone(F3 — w.F5)[—1].
In particular, there is a natural exact triangle
Rj (Fo, F5) — F§ = tu.Fa — ...
We also have the following compatibility between Rj' and the push-forward.

Lemma 2.1.1. Let f : (X,Y) — (X, Y') be a morphism of pairs. Assume that there
exists a finite open covering of X, affine over X'. Then for F € DT Qcoh(X,Y") we have
a natural isomorphism

Rj'Rf.(F) ~ Rf.Rj(F) (2.1.2)
in DT Qcoh(X").

Proof. Let us choose a quasi-isomorphism F — F , such that all .71:& and ]?23 are f,-acyclic
(this can be done using Cech resolutions). Then the left-hand side of (2.1.2) is represented
by the complex

Cone(foFs — tufoFa)[—1].

On the other hand, the terms of Cone(Fs — 1,F,)[—1] are also f,-acyclic, so the right-
hand side of (2.1.2) is represented by the complex

fs Cone(]?g — 1, Fa)[-1],

which is isomorphic to the one above. U

2.2. Differentials on curves. Let 7 : C — S be a family of stable curves, p; : § —
C,i=1,...,r, be sections of 7, such that = is smooth along their images, and let
Y = U;pi(S). We view (C, X)) as a poset scheme and consider the corresponding category
Coh(C, X)) whose objects are collections (F, (F;), (f;)), where F'is a coherent sheaf on C,
F; is a coherent sheaf on S and f; : ' — p; F; is a morphism. Sometimes we will omit
the morphisms (f;) from the notation and just write (F, (F;)).

Set wéo/gs = weys(X). Recall that we have natural residue maps

., Jlog ~
Resy, : wc/8|g — Oy,
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so that ker(Resy) is identified with we/s. Thus, we can view the triple
[w(ljo/gs, Y] = (wlco/gs, Os, Resy)
as an object of the category Coh(C,¥). Furthermore, we have
Rj![wlco/gs, 3] ~ weys-
Note that we have a morphism of pairs
7:(C,X) = (S,S). (2.2.1)
By Lemma 2.1.1, the object R, [w(ljo/gs, Y] satisfies
Rj!RW*[wlco/gs, Y] ~ Rmweys. (2.2.2)

Note also that we have a morphism of exact triangles (which will be used later)

®;_,0s[—1] — Rm.(we/s) — R, (wlco/gs) — @;_,0s

t (2.2.3)
id
Og[—1] —— Og[—1] 0 Os
where ¢ is given by the summation.

The above constructions also work in the case of a family of orbicurves with stable
coarse moduli spaces.

3. FUNDAMENTAL MATRIX FACTORIZATION

3.1. Setup and the moduli spaces of I'-spin structures. Let us recall the setup of
the FJRW theory (see [4], [7]), or rather its slight generalization to noncommutative finite
groups of symmetries (as in [5]).

We start with a finite-dimensional vector space V' equipped with an effective G,,-action
called the R-charge, such that all the weights of this action on V' are positive. We denote
the corresponding subgroup in GL(V') by G,, z. and let W be a function of weight d on
V. Also, we fix a finite subgroup G C GL(V') such that W is G-invariant, G commutes
with G,, r and G contains a fixed element J € G, g of order d.

We define I' € GL(V) to be the algebraic subgroup generated by G and by G,, g. There
is a canonical exact sequence

1-G—-I-2+G,, —1,

where y restricts to the subgroup G,, g as A — A%
Asin [7], we consider the moduli space of I'-spin structures: it classifies stable orbicurves
(C,p1,...,pn) equipped with I-principal bundle P (our convention is that we have a right

action of T' on P), together with an isomorphism y,P —— wi® \ 0. We can think of the

latter isomorphism as a morphism xp : P — wlcog \ 0 satisfying

xp(ry) = >§(7) - xp(z)



for y € T

In addition to requiring the coarse moduli of C' to be Deligne-Mumford stable, we
require that for each marked point p; the morphism B Aut(p;) — BI" induced by P is
representable. By looking at the corresponding embedding Aut(p;) ~ Z/m; — I' defined
up to a conjugacy, we get a conjugacy class v; in I'. Thus, we get a decomposition of our
moduli stack into a disjoint union of open and closed substacks Sy(71,... ,7,). As in [4,
Sec. 2.2], one shows that these are smooth and proper DM stacks with projective coarse
moduli.

Let m : C — Sy(m,...,7) be the universal curve over Sy(vi,...,7,), and let V =
P xr V be the vector bundle over C associated with the universal I'-spin structure P via
the embedding I' C GL(V'). Note that V is equipped with a G,, g-action (through its
action on V).

As in [7], we also consider a Galois covering Sy¢(vy1,...,7m) = Sg(71,... ,7m) cor-
responding to choices of a rigidification at every marked point. A rigidification is an
isomorphism of the restriction of P to p;/ Aut(p;) ~ B{(~;) with I'/{7;) (viewed as a bun-
dle over B(v;). There is a natural simply transitive action of the group [[, C(7;) on the
set of rigidifications at py, ... ,p,, where Cg(7y) C G is the centralizer of v € G.

3.2. Construction. Let us set for now § = S;ig (71, -+ ,7) and consider the pull-back
of all the objects to S (denoting them by the same symbols).

Note that we have a natural projection V/(v;) — V7. Thus, from rigidification struc-
tures we get morphisms

Zi:piV = V" ® Os. (3.2.1)
Hence, by adjunction we can extend V to an object
V. 2] = OV, (V" @ 0s), (%))
of Coh(C, ¥).

On the other hand, we can combine yp with W into a polynomial morphism
Wy:V=PxprV — wéo/% s (z,0) = W () - xp(2).
We can view it as a linear morphism of vector bundles on C,
Wy 0 §*(V)a = wefs,

where we grade the symmetric algebra of V using the G,, g-action on V. Furthermore,
this morphism is compatible with the morphisms (3.2.1), so that the following diagram is
commutative

* Qe p:WV % lo
piS*(V)a piwé/gis

S*(Zi)

Wi
S*(V7)q ® Os Os
7




where W; = W |y~ . This means that we have a morphism
(W, (W) = S°[V, 5la — [wefs: ¥ (3.2.2)

in the category Qcoh(C,>) (where again we take the part of weight d with respect to
G, r). Next, we can take the derived push-forward with respect to the morphism of pairs
(2.2.1). Together with (2.1.1) this gives us a morphism

S*(Rm.[V,5))a = Rm.S*[V, 5]y — Rm.Jwgls, Y (3.2.3)
in D Qcoh(S, S).

Now let us set
E = Rj'S*(Rm.[V,%])4.
Applying Rj' to morphism (3.2.3), we obtain a morphism

E = Rj'S*(Rm.[V,%))a — Rj' Rm.Jwgfs, ¥] ~ Rm.weys,

where the last isomorphism is (2.2.2). It is easy to see that it fits into a morphism of
exact triangles

E S*(Rm.(V))g — @7_,S*(V"); @ Os E1]
(Wi)
(3.2.4)
R, (wes) — R?T*(wlco/gs) ®i=10s R (weys)[1]

Combining it with the morphism of triangles (2.2.3), we get a commutative diagram with
the exact triangle in the first row

S*(Rme(V))a — @im5*(V7)a © Os —— ET1]

2. Wi T

id
Os '

Os

Dualizing we get a commutative diagram

EY[=1] — @i, S*(V7)g @ Os — S*(Rm. (V)

TV Z Wz
id
03 ! OS
This implies that the pull-back Z*(€D, W;) with respect to the morphism
Z: [Rr.(V)] = [V (3.2.5)
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induced by (3.2.1), gives the zero morphism from the structure sheaf to itself in the derived
category of quasicoherent sheaves on [Rm.(V)].

In fact, we can realize this functon by an explicit coboundary. For this we need a
realization of the above diagram in the homotopy category of complexes. As in [7, Sec.
4.2], the starting point is that Rm.()) can realized (G,, g-equivariantly) by a complex of
the form [A — B] in such a way that the morphism (3.2.5) is realized by a surjective
morphism A — @;_, V7 ® Og. Then the first line of the diagram (3.2.4) can be realized
by a short exact sequence of complexes

0 — ker(S*(Z)q) — S*(A = B)a 24 (B 5* (V)4 Og — 0
i=1
where the complex S*(A — B)y, concentrated in degrees [0, rk(B)], has form
S*(A)g — (S*(A) ® B)y — (S*(A) @ A’B)y — ...

Using this we get a canonical quasi-isomorphism of £ with the bounded complex of vector
bundles
K* := Cone(S*(Rm.(V))g — &;_,S* (V") ® Og)[—1].

Now we want to realize the morphism 7 : £ — Og[—1] in the derived category by a
morphism K* — Og[—1] in the homotopy category of complexes.

By changing [A — B] to a quasi-isomorphic complex [A — B] one can achieve that
for i > 1 the terms K’ satisfy Ext”®(K? Os) = 0 (see [7, Lem. 4.2.5]). This implies
that morphisms K — Og[—1] in the homotopy category of complexes and in the derived
category are the same.

The dual of this morphism can be interpreted as a canonical homotopy (up to a homo-
topy between homotopies) f_; between the function Z*(€, W;) on [Rm, V] and 0. As we
have seen in Example 1.1.1, this corresponds to a structure 6 = d — f_; -id of a dg-matrix
factorization of —Z*(@), W;) on the structure sheaf of [Rm,V].

Furthermore, it carries an equivariant structure with respect to the action of the center
Z(I') of I' (acting trivially on the base) and with respect to [[, C(v:) (changing the
rigidifications).

3.3. Properties. The first important property is that our dg-matrix factorization over
[Rm,V] is supported on the zero section in [Rm,)]. Indeed, first, we recall that any
matrix factorization is supported on the critical locus of the potential. Since each W; is
non-degenerate, we get that the support belongs to the zero locus of Z*(p, W;). Note
also that the support can be calculated pointwise (see [7, Sec. 1.4]), so it is enough to
deal with the case of a single curve with a I'-spin structure. Thus, we are reduced to
considering the following situation. Let C' be a curve, and let V be a vector bundle over
C. Assume also we have a polynomial morphism Wy, : ¥V — w¢, such that over an open
dense subset of C' there exists a trivialization V ~ V ® O such that Wy, is induced by our
polynomial W on V. Then we have the induced polynomial function of degree —1 on the
dg-affine space [H°(C, V) ® H'(C,V)[—1]] (recall that the base is now a point), induced
by Wy and by the identification H'(C,w¢) ~ C. We claim that it is supported at the
origin. Indeed, we start by observing that the preimage of the origin under the gradient

morphism AW : V' — V'V is still the origin (since W is non-degenerate). From this we get
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the similar assertion about the preimage of the zero section under the relative gradient
morphism AWy : V — VY @ we. Finally, we note that the support of our function on
[H°(C, V)@ H'(C, V)[—1]] coincides with the vanishing locus of the polynomial morphism

HY(C,V) = H' VY @ we) ~ HY(C, V)Y

induced by the relative gradient map. This implies our claim.
Next, the key gluing property satisfied by the fundamental matrix factorizations (cf. [7,
Sec. 5.2, 5.3]) holds in the situation when we consider two natural families of orbicurves

C-—"+5, C-—+8, over
S = SeB (s V) X S (Vs Vs 7T,
where C' is obtained by gluing two smooth points on C into a node. We denote by
f: C — C the gluing morphism. N B
In this setting there are natural I'-spin structures P (resp., P) over C' (resp., C'), where

P is obtained by gluing fibers of P over the two points that are glued into a node, using
the rigidifications and the square root of J, J'/? € G,,  such that x(J?) = —1 (see [7,
Sec. 5.2]). The main compatibility between the push-forwards of the corresponding vector

bundles V and V is given by the cartesian diagram

[R,V] Vo

AJ1/2

[R7 V] — VY x V7
where A7? 1 V7 — V7 x V7" is the twisted diagonal map: z + (x, J'/2z). Furthermore,
the analysis of [7, Sec. 5.2] shows that the natural dg-matrix factorization on [Rm.))] is
identified with the pull-back of the one on [R7, V).
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