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Abstract. We present an improved construction of the fundamental matrix factoriza-
tion in the FJRW-theory given in [7]. The revised construction makes the independence
on choices more apparent and works for a possibly nonabelian finite group of symmetries.
One of the new ingredients is the category of dg-matrix factorizations over a dg-scheme.

Introduction

This short note is supposed to clarify the construction of the cohomological field theory
associated with a quasihomogeneous polynomial W and its finite group of symmetries
G. Such a cohomological field theory, called the FJRW-theory was first proposed in [4].
Then, in [7] a different construction, based on categories of matrix factorizations, was
given (conjecturally, the two constructions give the same cohomological field theory).

The approach of [7] is based on constructing certain fundamental matrix factorizations
which live over the product of certain finite coverings of M g,n (the moduli of Γ-spin
structures) with affine spaces. It is this construction that we aim to clarify. More precisely,
we would like to present the construction in such a way that it would be analogous to
the construction of Ciocan-Fontanine and Kapranov of the virtual fundamental class in
Gromov-Witten theory via dg-manifolds (see [1]). The second goal that we achieve is to
present the construction without using coordinates on the vector space V on which W
lives. This has an additional bonus that we can handle the case when the group G is not
necessarily commutative (but still finite).

The construction of [7] of the fundamental matrix factorization over S ×
∏

i V
γi , where

S is the moduli space of (rigidified) Γ-spin structures with some markings (see Sec. 3.1 for
details) roughly has the following two steps. In Step 1 one considers the object Rπ∗(V)
in the derived category D(S), where π : C → S is the universal curve, V is the underlying
vector bundle of the universal Γ-spin structure, and then equips it with some additional
structure. In Step 2 one realizes Rπ∗(V) by a 2-term complex [A → B], where A and B
a vector bundles over S, such that there is a morphism

Z : X = tot(A)→
∏
i

V γi

and a Koszul matrix factorization of Z∗(
∑
Wi), where Wi = W |V γi . Then the funda-

mental matrix factorization is obtained by taking its push-forward with respect to the
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morphism (p, Z) : X → S ×
∏

i V
γi , where p : X → S is the projection. Note that here

the space X is non-canonical, so one has to check independence on the choices made.
The main idea of the present paper is to change the conceptual framework slightly by

observing that in fact one gets a dg-matrix factorization on a dg-scheme over S ×
∏

i V
γi

(the terminology is explained in Sec. 1). Namely, for a non-negatively graded complex of
vector bundles C• over S, one can define the corresponding dg-scheme over S,

[C•] := Spec(S•(C•)∨).

In our case we consider the dg-scheme

X := [Rπ∗(V)].

More concretely, if we realize V by a 2-term complex V = [A→ B] then our dg-scheme is
realized by the sheaf of dg-algebras

OX ,[A→B] := S•[B∨ → A∨],

where the complex [B∨ → A∨] is concentrated in degrees −1 and 0. Then we interpret the
additional structure on Rπ∗(V) coming from the universal Γ-spin structure as a structure
of a dg-matrix factorization on the structure sheaf of X . More precisely, we get a morphism

ZX : X →
∏
i

V γi

and a function of degree −1, f−1 ∈ O−1
X ,[A→B], such that

d(f−1) = −Z∗X (
∑

Wi).

Now the fundamental matrix factorization is obtained as the push-forward of (OX , d +
f−1 · id) with respect to the morphism X → S ×

∏
i V

γi .
The connection with the original approach is the following: for each presentation V =

[A→ B], for which the first construction works, there is a morphism q : X → X = tot(A),
such that Z ◦ q = ZX , and an isomorphism of the push-forward q∗(OX , d+ f−1 · id) with
the Koszul matrix factorization of Z∗(

∑
Wi) constructed through the first approach.

The second technical improvement we present is in the construction of f−1. The idea
is to work systematically with the categories of sheaves over pairs (scheme, closed sub-
scheme) to deal with non-functoriality of the cone construction (such categories fit into
the framework of Lunts’s poset schemes in [6]) . Namely, we work with the enhancement
of the usual push-forward with respect to the projection π : C → S to a morphism of
pairs (C,Σ) → (S,S), where Σ ⊂ C is the union of the images of the universal marked
points (see Sec. 2).

Recall that in [7], we used the fundamental matrix factorizations to construct cohomo-
logical field theories associated with (W,G) by viewing them as kernels for Fourier-Mukai
functors and passing to Hochschild homology. It seems that the approach via dg-matrix
factorizations presented here could also be useful in the development of a more general
construction in Gauged Linear Sigma Model, see [5], [2].

Throughout this work the ground field is C.
Acknowledgments. I am grateful to Felix Janda and Yongbin Ruan for organizing the
RTG Conference on Witten’s r-spin class and related topics in January 2017, where the
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results of this note were first presented. I also thank Institut Mathematique Jussieu and
Institut des Hautes Etudes Scientifiques for hospitality and excellent working conditions
during preparation of this paper.

1. Matrix factorizations over dg-schemes

1.1. Definition. We consider dg-schemes in the spirit of [1]. We fix a space S (a scheme
or a stack), and consider the structure sheaf of a dg-scheme over S to be a sheaf (O•X , d)
of Z−-graded commutative dg-algebras over OS (one can make a restriction O0

X = OS,
but it is not really necessary).

Given a function f0 ∈ O0
X we can consider the category of (quasicoherent) dg-matrix

factorizations of f0. By definition, these are Z/2-graded complexes of sheaves P = P 0⊕P 1

together with a (quasicoherent) O]X-module structure, such that OiX · P a ⊂ P i+a. In
addition P is equipped with an odd differential δ satisfying the Leibnitz identity

δ(φ · p) = d(φ) · p+ (−1)kφδ(p),

for φ ∈ OkX , p ∈ P , and the equation δ2 = f0 · idP .

Example 1.1.1. Given an element f−1 ∈ O−1
X , such that d(f−1) = f0, we get a structure

of a dg-matrix factorization on O•X by setting

δ(φ) = d(φ) + f−1 · φ.
(In checking that δ2 = 0 one has to use the fact that f 2

−1 = 0.)

The above example can be obtained from the following more general operation. Suppose
we are given a function f0 ∈ O0

X and a dg-matrix factorization (P, δ) of f0. Then for any
f−1 ∈ O0

X we can change the differential δ to δ + f−1 · idP . Then (P, δ + f−1 · idP ) will be
a dg-matrix factorization of f0 + d(f−1).

1.2. Positselski’s framework of quasicoherent CDG-algebras. More generally, we
can assume that f0 a section in O0

X ⊗ L, where L is a locally free O0
X-module of rank

1. The theory of the corresponding categories of dg-matrix factorizations fits into the
framework of quasicoherent CDG-algebras developed by Positselski (see [3, Sec. 1]).

With the data (O•X , L, f0) as above we can associate a quasicoherent CDG-algebra

B :=
⊕
n∈Z

O•X ⊗O0
X
L⊗n[−2n],

with the natural structure of a complex of sheaves (i.e., the Z-grading and the differential
d), the natural product and the global curvature element given by f0 ∈ O0 ⊗ L ⊂ B2.

Now a quasicoherent dg-matrix factorization is a quasicoherent DG-module over B,
i.e., a graded B-module M =

⊕
nMn, equipped with a differential δ = δM such that

δ2 = f0 · idM and δ satisfies the Leibnitz identity with respect to the B-action. Note that
such a DG-module necessarily has

Mn+2 'Mn ⊗ L,
so it is determined by the components M0 and M1, and we get the structure of a dg-matrix
factorization on M0 ⊕M1.
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There are several exotic derived categories associated to a quasicoherent CDG-algebra.
The one that is most relevant for the theory of dg-matrix factorizations is the category

qcoh−MFffd(f0) := Dco(B − qcohffd) ' Dco(B − qcohfl) ' Dabs(B − qcohfl),

where the superscripts ”abs” and ”co” refer to ”absolute” and ”coderived”, while the
subscripts ”fl” and ”ffd” mean ”flat” and ”finite flat dimension” (see [3, Sec. 1]).

Assume that f : (X,O•X) → (Y,O•Y ) is a morphism of finite flat dimension, L is a
locally free O0

Y -module of rank 1, W0 is a section of L. Then we have the induced section
f ∗W0 of f ∗L. In this situation we have the push-forward functor (see [3, Prop. 1.9])

Rf∗ : qcoh−MFffd(f
∗W0)→ qcoh−MFffd(W0).

1.3. Koszul matrix factorizations as push-forwards. Let V be a vector bundle over
a scheme X, and suppose we have sections α ∈ H0(X, V ∨), β ∈ H0(X, V ). With these
data one associates a Koszul matrix factorization {α, β} of W = 〈α, β〉, whose underlying
super-vector bundle is

∧•(V ). On the other hand, we have the derived zero locus of β,
Z(β)→ X, which corresponds to the dg-algebra given by the Koszul complex of β:

OZ(β) = (
∧•

(V ), d = ιβ).

Now we can view α as a function of degree −1 on Z(β) such that d(α) is the pull-back
of W . Thus, by definition, {α, β} is the push-forward of the dg-matrix factorization
(OZ(β), d+ α · id) by the morphism Z(β)→ X.

This explains why in the case when β is a regular section of V , the Koszul matrix
factorization {α, β} is equivalent to the push-forward of the structure sheaf on the usual
zero locus of β.

2. Trace maps via morphisms of pairs

2.1. Sheaves on pairs. Let ι : Y → X be a closed embedding.
We consider a very simple poset scheme in the sense of [6] for the poset consisting of two

elements α > β, so that Xα = Y and Xβ = X. Then a quasicoherent sheaf on this poset
scheme is a triple (Fα,Fβ, φ), with Fα ∈ Qcoh(Y ), Fβ ∈ Qcoh(X) and φ : Fβ → ι∗Fα
is a morphism. We denote by Qcoh(X, Y ) this abelian category, and by Coh(X, Y ) its
subcategory corresponding to Fα ∈ Coh(Y ), Fβ ∈ Coh(X). Furthermore, we have a
subcategory of locally free coherent sheaves (those with Fα and Fβ locally free).

The perfect derived category Perf(X, Y ) of bounded complexes of locally free sheaves
on (X, Y ) has a natural monoidal structure given by the tensor product, so we can also
define symmetric powers of objects in Perf(X, Y ).

Given a morphism of pairs f : (X, Y ) → (X ′, Y ′) we have a natural derived push-
forward morphism

Rf∗ : D+ Qcoh(X, Y )→ D+ Qcoh(X ′, Y ′),

where D+ denotes the derived category of bounded below complexes.
The push-forward is compatible with the tensor products in the usual way: we have

natural morphisms

Rf∗(F )⊗Rf∗(G)→ Rf∗(F ⊗G), S•Rf∗(F )→ Rf∗S
•(F ). (2.1.1)
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We have a fully faithful exact embedding j! : DQcoh(X) → DQcoh(X, Y ) sending G
to Fα = 0, Fβ = G. There is a right adjoint functor to it (see [6]),

Rj! : D+ Qcoh(X, Y )→ D+ Qcoh(X),

which is defined as the right derived functor of the functor

j! : Qcoh(X, Y )→ Qcoh(X) : F• 7→ ker(Fβ → ι∗Fα).

Note that objects F• ∈ Qcoh(X, Y ), such that Fβ → ι∗Fα is surjective, are acyclic with
respect to j!. Furthermore, every object of Qcoh(X, Y ) has a canonical resolutions by
such acyclic objects:

0→ (Fα,Fβ)→ (Fα,Fβ ⊕ ι∗Fα)→ (0, ι∗Fα)→ 0

Computing Rj! using these resolutions has a very simple interpretation: given a complex
(F•α,F•β) over Qcoh(X), the functor Rj! sends it to the complex

Cone(F•β → ι∗F•α)[−1].

In particular, there is a natural exact triangle

Rj!(F•α,F•β)→ F•β → ι∗F•α → . . .

We also have the following compatibility between Rj! and the push-forward.

Lemma 2.1.1. Let f : (X, Y ) → (X ′, Y ′) be a morphism of pairs. Assume that there
exists a finite open covering of X, affine over X ′. Then for F ∈ D+ Qcoh(X, Y ) we have
a natural isomorphism

Rj!Rf∗(F) ' Rf∗Rj
!(F) (2.1.2)

in D+ Qcoh(X ′).

Proof. Let us choose a quasi-isomorphism F → F̃ , such that all F̃ iα and F̃ iβ are f∗-acyclic
(this can be done using Cech resolutions). Then the left-hand side of (2.1.2) is represented
by the complex

Cone(f∗F̃β → ι∗f∗F̃α)[−1].

On the other hand, the terms of Cone(F̃β → ι∗F̃α)[−1] are also f∗-acyclic, so the right-
hand side of (2.1.2) is represented by the complex

f∗Cone(F̃β → ι∗F̃α)[−1],

which is isomorphic to the one above. �

2.2. Differentials on curves. Let π : C → S be a family of stable curves, pi : S →
C, i = 1, . . . , r, be sections of π, such that π is smooth along their images, and let
Σ = tipi(S). We view (C,Σ) as a poset scheme and consider the corresponding category
Coh(C,Σ) whose objects are collections (F, (Fi), (fi)), where F is a coherent sheaf on C,
Fi is a coherent sheaf on S and fi : F → pi∗Fi is a morphism. Sometimes we will omit
the morphisms (fi) from the notation and just write (F, (Fi)).

Set ωlog
C/S = ωC/S(Σ). Recall that we have natural residue maps

ResΣ : ωlog
C/S |Σ

∼- OΣ,
5



so that ker(ResΣ) is identified with ωC/S . Thus, we can view the triple

[ωlog
C/S ,Σ] := (ωlog

C/S ,OΣ,ResΣ)

as an object of the category Coh(C,Σ). Furthermore, we have

Rj![ωlog
C/S ,Σ] ' ωC/S .

Note that we have a morphism of pairs

π : (C,Σ)→ (S,S). (2.2.1)

By Lemma 2.1.1, the object Rπ∗[ω
log
C/S ,Σ] satisfies

Rj!Rπ∗[ω
log
C/S ,Σ] ' Rπ∗ωC/S . (2.2.2)

Note also that we have a morphism of exact triangles (which will be used later)

⊕ri=1OS [−1] - Rπ∗(ωC/S) - Rπ∗(ω
log
C/S) - ⊕ri=1OS

OS[−1]
? id

- OS[−1]
?

- 0
?

- OS

t

?

(2.2.3)

where t is given by the summation.
The above constructions also work in the case of a family of orbicurves with stable

coarse moduli spaces.

3. Fundamental matrix factorization

3.1. Setup and the moduli spaces of Γ-spin structures. Let us recall the setup of
the FJRW theory (see [4], [7]), or rather its slight generalization to noncommutative finite
groups of symmetries (as in [5]).

We start with a finite-dimensional vector space V equipped with an effective Gm-action
called the R-charge, such that all the weights of this action on V are positive. We denote
the corresponding subgroup in GL(V ) by Gm,R. and let W be a function of weight d on
V . Also, we fix a finite subgroup G ⊂ GL(V ) such that W is G-invariant, G commutes
with Gm,R and G contains a fixed element J ∈ Gm,R of order d.

We define Γ ⊂ GL(V ) to be the algebraic subgroup generated by G and by Gm,R. There
is a canonical exact sequence

1→ G→ Γ
χ- Gm → 1,

where χ restricts to the subgroup Gm,R as λ 7→ λd.
As in [7], we consider the moduli space of Γ-spin structures: it classifies stable orbicurves

(C, p1, . . . , pn) equipped with Γ-principal bundle P (our convention is that we have a right

action of Γ on P ), together with an isomorphism χ∗P
∼- ωlog

C \ 0. We can think of the

latter isomorphism as a morphism χP : P → ωlog
C \ 0 satisfying

χP (xγ) = χ(γ) · χP (x)
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for γ ∈ Γ.
In addition to requiring the coarse moduli of C to be Deligne-Mumford stable, we

require that for each marked point pi the morphism BAut(pi) → BΓ induced by P is
representable. By looking at the corresponding embedding Aut(pi) ' Z/mi → Γ defined
up to a conjugacy, we get a conjugacy class γi in Γ. Thus, we get a decomposition of our
moduli stack into a disjoint union of open and closed substacks Sg(γ1, . . . , γn). As in [4,
Sec. 2.2], one shows that these are smooth and proper DM stacks with projective coarse
moduli.

Let π : C → Sg(γ1, . . . , γn) be the universal curve over Sg(γ1, . . . , γn), and let V =
P ×Γ V be the vector bundle over C associated with the universal Γ-spin structure P via
the embedding Γ ⊂ GL(V ). Note that V is equipped with a Gm,R-action (through its
action on V ).

As in [7], we also consider a Galois covering Srig
g (γ1, . . . , γn) → Sg(γ1, . . . , γn) cor-

responding to choices of a rigidification at every marked point. A rigidification is an
isomorphism of the restriction of P to pi/Aut(pi) ' B〈γi〉 with Γ/〈γi〉 (viewed as a bun-
dle over B〈γi〉. There is a natural simply transitive action of the group

∏
iCG(γi) on the

set of rigidifications at p1, . . . , pn, where CG(γ) ⊂ G is the centralizer of γ ∈ G.

3.2. Construction. Let us set for now S = Srig
g (γ1, . . . , γn) and consider the pull-back

of all the objects to S (denoting them by the same symbols).
Note that we have a natural projection V/〈γi〉 → V γi . Thus, from rigidification struc-

tures we get morphisms

Zi : p∗iV → V γi ⊗OS . (3.2.1)

Hence, by adjunction we can extend V to an object

[V ,Σ] := (V , (V γi ⊗OS), (Zi))

of Coh(C,Σ).
On the other hand, we can combine χP with W into a polynomial morphism

WV : V = P ×Γ V → ωlog
C/S : (x, v) 7→ W (v) · χP (x).

We can view it as a linear morphism of vector bundles on C,

WV : S•(V)d → ωlog
C/S ,

where we grade the symmetric algebra of V using the Gm,R-action on V . Furthermore,
this morphism is compatible with the morphisms (3.2.1), so that the following diagram is
commutative

p∗iS
•(V)d

p∗iWV- p∗iω
log
C/S

S•(V γi)d ⊗OS

S•(Zi)

? Wi - OS
?
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where Wi = W |V γi . This means that we have a morphism

(WV , (Wi)) : S•[V ,Σ]d → [ωlog
C/S ,Σ] (3.2.2)

in the category Qcoh(C,Σ) (where again we take the part of weight d with respect to
Gm,R). Next, we can take the derived push-forward with respect to the morphism of pairs
(2.2.1). Together with (2.1.1) this gives us a morphism

S•(Rπ∗[V ,Σ])d → Rπ∗S
•[V ,Σ]d → Rπ∗[ω

log
C/S ,Σ] (3.2.3)

in DQcoh(S,S).
Now let us set

E := Rj!S•(Rπ∗[V ,Σ])d.

Applying Rj! to morphism (3.2.3), we obtain a morphism

E = Rj!S•(Rπ∗[V ,Σ])d → Rj!Rπ∗[ω
log
C/S ,Σ] ' Rπ∗ωC/S ,

where the last isomorphism is (2.2.2). It is easy to see that it fits into a morphism of
exact triangles

E - S•(Rπ∗(V))d - ⊕ri=1S
•(V γi)d ⊗OS - E[1]

Rπ∗(ωC/S)
?

- Rπ∗(ω
log
C/S)

?
- ⊕ri=1OS

(Wi)

?
- Rπ∗(ωC/S)[1]

?
(3.2.4)

Combining it with the morphism of triangles (2.2.3), we get a commutative diagram with
the exact triangle in the first row

S•(Rπ∗(V))d - ⊕ri=1S
•(V γi)d ⊗OS - E[1]

OS

∑
Wi

? id
- OS

τ

?

Dualizing we get a commutative diagram

E∨[−1] - ⊕ri=1S
•(V γi)∨d ⊗OS - S•(Rπ∗(V))∨d

OS

τ∨

6

id
- OS

∑
Wi

6

This implies that the pull-back Z∗(
⊕

iWi) with respect to the morphism

Z : [Rπ∗(V)]→
∏
i

V γi (3.2.5)
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induced by (3.2.1), gives the zero morphism from the structure sheaf to itself in the derived
category of quasicoherent sheaves on [Rπ∗(V)].

In fact, we can realize this functon by an explicit coboundary. For this we need a
realization of the above diagram in the homotopy category of complexes. As in [7, Sec.
4.2], the starting point is that Rπ∗(V) can realized (Gm,R-equivariantly) by a complex of
the form [A → B] in such a way that the morphism (3.2.5) is realized by a surjective
morphism A→

⊕r
i=1 V

γi ⊗OS. Then the first line of the diagram (3.2.4) can be realized
by a short exact sequence of complexes

0→ ker(S•(Z)d)→ S•(A→ B)d
S•(Z)d-

r⊕
i=1

S•(V γi)d ⊗OS → 0

where the complex S•(A→ B)d, concentrated in degrees [0, rk(B)], has form

S•(A)d → (S•(A)⊗B)d → (S•(A)⊗ ∧2B)d → . . .

Using this we get a canonical quasi-isomorphism of E with the bounded complex of vector
bundles

K• := Cone(S•(Rπ∗(V))d → ⊕ri=1S
•(V γi)d ⊗OS)[−1].

Now we want to realize the morphism τ : E → OS[−1] in the derived category by a
morphism K• → OS[−1] in the homotopy category of complexes.

By changing [A → B] to a quasi-isomorphic complex [A → B] one can achieve that
for i ≥ 1 the terms Ki satisfy Ext>0(Ki,OS) = 0 (see [7, Lem. 4.2.5]). This implies
that morphisms K → OS[−1] in the homotopy category of complexes and in the derived
category are the same.

The dual of this morphism can be interpreted as a canonical homotopy (up to a homo-
topy between homotopies) f−1 between the function Z∗(

⊕
iWi) on [Rπ∗V ] and 0. As we

have seen in Example 1.1.1, this corresponds to a structure δ = d− f−1 · id of a dg-matrix
factorization of −Z∗(

⊕
iWi) on the structure sheaf of [Rπ∗V ].

Furthermore, it carries an equivariant structure with respect to the action of the center
Z(Γ) of Γ (acting trivially on the base) and with respect to

∏
iCG(γi) (changing the

rigidifications).

3.3. Properties. The first important property is that our dg-matrix factorization over
[Rπ∗V ] is supported on the zero section in [Rπ∗V ]. Indeed, first, we recall that any
matrix factorization is supported on the critical locus of the potential. Since each Wi is
non-degenerate, we get that the support belongs to the zero locus of Z∗(

⊕
iWi). Note

also that the support can be calculated pointwise (see [7, Sec. 1.4]), so it is enough to
deal with the case of a single curve with a Γ-spin structure. Thus, we are reduced to
considering the following situation. Let C be a curve, and let V be a vector bundle over
C. Assume also we have a polynomial morphism WV : V → ωC , such that over an open
dense subset of C there exists a trivialization V ' V ⊗OC such that WV is induced by our
polynomial W on V . Then we have the induced polynomial function of degree −1 on the
dg-affine space [H0(C,V) ⊕H1(C,V)[−1]] (recall that the base is now a point), induced
by WV and by the identification H1(C, ωC) ' C. We claim that it is supported at the
origin. Indeed, we start by observing that the preimage of the origin under the gradient
morphism ∆W : V → V ∨ is still the origin (since W is non-degenerate). From this we get
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the similar assertion about the preimage of the zero section under the relative gradient
morphism ∆WV : V → V∨ ⊗ ωC . Finally, we note that the support of our function on
[H0(C,V)⊕H1(C,V)[−1]] coincides with the vanishing locus of the polynomial morphism

H0(C,V)→ H0(V∨ ⊗ ωC) ' H1(C,V)∨

induced by the relative gradient map. This implies our claim.
Next, the key gluing property satisfied by the fundamental matrix factorizations (cf. [7,

Sec. 5.2, 5.3]) holds in the situation when we consider two natural families of orbicurves

C̃
π̃- S, C

π- S, over

S := Srig
g1

(γ1, . . . , γn1 , γ)× Srig
g2

(γ′1, . . . , γ
′
n2
, γ−1),

where C is obtained by gluing two smooth points on C̃ into a node. We denote by

f : C̃ → C the gluing morphism.

In this setting there are natural Γ-spin structures P̃ (resp., P ) over C̃ (resp., C), where

P is obtained by gluing fibers of P̃ over the two points that are glued into a node, using
the rigidifications and the square root of J , J1/2 ∈ Gm,R such that χ(J1/2) = −1 (see [7,
Sec. 5.2]). The main compatibility between the push-forwards of the corresponding vector

bundles Ṽ and V is given by the cartesian diagram

[Rπ∗V ] - V γ

[Rπ̃∗Ṽ ]

?

- V γ × V γ−1

∆J1/2

?

where ∆J1/2
: V γ → V γ×V γ−1

is the twisted diagonal map: x 7→ (x, J1/2x). Furthermore,
the analysis of [7, Sec. 5.2] shows that the natural dg-matrix factorization on [Rπ∗V ] is

identified with the pull-back of the one on [Rπ̃∗Ṽ ].
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