

FUNDAMENTAL MATRIX FACTORIZATION IN THE FJRW-THEORY REVISITED

ALEXANDER POLISHCHUK

To Rafail Kalmanovich Gordin, with gratitude

ABSTRACT. We present an improved construction of the fundamental matrix factorization in the FJRW-theory given in [7]. The revised construction makes the independence on choices more apparent and works for a possibly nonabelian finite group of symmetries. One of the new ingredients is the category of dg-matrix factorizations over a dg-scheme.

INTRODUCTION

This short note is supposed to clarify the construction of the cohomological field theory associated with a quasihomogeneous polynomial W and its finite group of symmetries G . Such a cohomological field theory, called the *FJRW-theory* was first proposed in [4]. Then, in [7] a different construction, based on categories of matrix factorizations, was given (conjecturally, the two constructions give the same cohomological field theory).

The approach of [7] is based on constructing certain *fundamental matrix factorizations* which live over the product of certain finite coverings of $\overline{M}_{g,n}$ (the moduli of Γ -spin structures) with affine spaces. It is this construction that we aim to clarify. More precisely, we would like to present the construction in such a way that it would be analogous to the construction of Ciocan-Fontanine and Kapranov of the virtual fundamental class in Gromov-Witten theory via dg-manifolds (see [1]). The second goal that we achieve is to present the construction without using coordinates on the vector space V on which W lives. This has an additional bonus that we can handle the case when the group G is not necessarily commutative (but still finite).

The construction of [7] of the fundamental matrix factorization over $\mathcal{S} \times \prod_i V^{\gamma_i}$, where \mathcal{S} is the moduli space of (rigidified) Γ -spin structures with some markings (see Sec. 3.1 for details) roughly has the following two steps. In Step 1 one considers the object $R\pi_*(\mathcal{V})$ in the derived category $D(\mathcal{S})$, where $\pi : \mathcal{C} \rightarrow \mathcal{S}$ is the universal curve, \mathcal{V} is the underlying vector bundle of the universal Γ -spin structure, and then equips it with some additional structure. In Step 2 one realizes $R\pi_*(\mathcal{V})$ by a 2-term complex $[A \rightarrow B]$, where A and B a vector bundles over \mathcal{S} , such that there is a morphism

$$Z : X = \text{tot}(A) \rightarrow \prod_i V^{\gamma_i}$$

and a Koszul matrix factorization of $Z^*(\sum W_i)$, where $W_i = W|_{V^{\gamma_i}}$. Then the fundamental matrix factorization is obtained by taking its push-forward with respect to the

Supported in part by the NSF grant DMS-1700642 and by the Russian Academic Excellence Project ‘5-100’.

morphism $(p, Z) : X \rightarrow \mathcal{S} \times \prod_i V^{\gamma_i}$, where $p : X \rightarrow \mathcal{S}$ is the projection. Note that here the space X is non-canonical, so one has to check independence on the choices made.

The main idea of the present paper is to change the conceptual framework slightly by observing that in fact one gets a *dg-matrix factorization* on a *dg-scheme* over $\mathcal{S} \times \prod_i V^{\gamma_i}$ (the terminology is explained in Sec. 1). Namely, for a non-negatively graded complex of vector bundles C^\bullet over \mathcal{S} , one can define the corresponding dg-scheme over \mathcal{S} ,

$$[C^\bullet] := \text{Spec}(S^\bullet(C^\bullet)^\vee).$$

In our case we consider the dg-scheme

$$\mathcal{X} := [R\pi_*(\mathcal{V})].$$

More concretely, if we realize \mathcal{V} by a 2-term complex $\mathcal{V} = [A \rightarrow B]$ then our dg-scheme is realized by the sheaf of dg-algebras

$$\mathcal{O}_{\mathcal{X}, [A \rightarrow B]} := S^\bullet[B^\vee \rightarrow A^\vee],$$

where the complex $[B^\vee \rightarrow A^\vee]$ is concentrated in degrees -1 and 0 . Then we interpret the additional structure on $R\pi_*(\mathcal{V})$ coming from the universal Γ -spin structure as a structure of a dg-matrix factorization on the structure sheaf of \mathcal{X} . More precisely, we get a morphism

$$Z_{\mathcal{X}} : \mathcal{X} \rightarrow \prod_i V^{\gamma_i}$$

and a function of degree -1 , $f_{-1} \in \mathcal{O}_{\mathcal{X}, [A \rightarrow B]}^{-1}$, such that

$$d(f_{-1}) = -Z_{\mathcal{X}}^*(\sum W_i).$$

Now the fundamental matrix factorization is obtained as the push-forward of $(\mathcal{O}_{\mathcal{X}}, d + f_{-1} \cdot \text{id})$ with respect to the morphism $\mathcal{X} \rightarrow \mathcal{S} \times \prod_i V^{\gamma_i}$.

The connection with the original approach is the following: for each presentation $\mathcal{V} = [A \rightarrow B]$, for which the first construction works, there is a morphism $q : \mathcal{X} \rightarrow X = \text{tot}(A)$, such that $Z \circ q = Z_{\mathcal{X}}$, and an isomorphism of the push-forward $q_*(\mathcal{O}_{\mathcal{X}}, d + f_{-1} \cdot \text{id})$ with the Koszul matrix factorization of $Z^*(\sum W_i)$ constructed through the first approach.

The second technical improvement we present is in the construction of f_{-1} . The idea is to work systematically with the categories of sheaves over pairs (scheme, closed subscheme) to deal with non-functoriality of the cone construction (such categories fit into the framework of Lunts's poset schemes in [6]). Namely, we work with the enhancement of the usual push-forward with respect to the projection $\pi : \mathcal{C} \rightarrow \mathcal{S}$ to a morphism of pairs $(\mathcal{C}, \Sigma) \rightarrow (\mathcal{S}, \mathcal{S})$, where $\Sigma \subset \mathcal{C}$ is the union of the images of the universal marked points (see Sec. 2).

Recall that in [7], we used the fundamental matrix factorizations to construct cohomological field theories associated with (W, G) by viewing them as kernels for Fourier-Mukai functors and passing to Hochschild homology. It seems that the approach via dg-matrix factorizations presented here could also be useful in the development of a more general construction in Gauged Linear Sigma Model, see [5], [2].

Throughout this work the ground field is \mathbb{C} .

Acknowledgments. I am grateful to Felix Janda and Yongbin Ruan for organizing the RTG Conference on Witten's r -spin class and related topics in January 2017, where the

results of this note were first presented. I also thank Institut Mathematique Jussieu and Institut des Hautes Etudes Scientifiques for hospitality and excellent working conditions during preparation of this paper.

1. MATRIX FACTORIZATIONS OVER DG-SCHEMES

1.1. Definition. We consider dg-schemes in the spirit of [1]. We fix a space S (a scheme or a stack), and consider the structure sheaf of a dg-scheme over S to be a sheaf $(\mathcal{O}_X^\bullet, d)$ of \mathbb{Z}_- -graded commutative dg-algebras over \mathcal{O}_S (one can make a restriction $\mathcal{O}_X^0 = \mathcal{O}_S$, but it is not really necessary).

Given a function $f_0 \in \mathcal{O}_X^0$ we can consider the category of (quasicoherent) *dg-matrix factorizations* of f_0 . By definition, these are $\mathbb{Z}/2$ -graded complexes of sheaves $P = P^0 \oplus P^1$ together with a (quasicoherent) \mathcal{O}_X^\bullet -module structure, such that $\mathcal{O}_X^i \cdot P^a \subset P^{i+a}$. In addition P is equipped with an odd differential δ satisfying the Leibnitz identity

$$\delta(\phi \cdot p) = d(\phi) \cdot p + (-1)^k \phi \delta(p),$$

for $\phi \in \mathcal{O}_X^k$, $p \in P$, and the equation $\delta^2 = f_0 \cdot \text{id}_P$.

Example 1.1.1. Given an element $f_{-1} \in \mathcal{O}_X^{-1}$, such that $d(f_{-1}) = f_0$, we get a structure of a dg-matrix factorization on \mathcal{O}_X^\bullet by setting

$$\delta(\phi) = d(\phi) + f_{-1} \cdot \phi.$$

(In checking that $\delta^2 = 0$ one has to use the fact that $f_{-1}^2 = 0$.)

The above example can be obtained from the following more general operation. Suppose we are given a function $f_0 \in \mathcal{O}_X^0$ and a dg-matrix factorization (P, δ) of f_0 . Then for any $f_{-1} \in \mathcal{O}_X^0$ we can change the differential δ to $\delta + f_{-1} \cdot \text{id}_P$. Then $(P, \delta + f_{-1} \cdot \text{id}_P)$ will be a dg-matrix factorization of $f_0 + d(f_{-1})$.

1.2. Positselski's framework of quasicoherent CDG-algebras. More generally, we can assume that f_0 a section in $\mathcal{O}_X^0 \otimes L$, where L is a locally free \mathcal{O}_X^0 -module of rank 1. The theory of the corresponding categories of dg-matrix factorizations fits into the framework of quasicoherent CDG-algebras developed by Positselski (see [3, Sec. 1]).

With the data $(\mathcal{O}_X^\bullet, L, f_0)$ as above we can associate a quasicoherent CDG-algebra

$$\mathcal{B} := \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_X^\bullet \otimes_{\mathcal{O}_X^0} L^{\otimes n}[-2n],$$

with the natural structure of a complex of sheaves (i.e., the \mathbb{Z} -grading and the differential d), the natural product and the global curvature element given by $f_0 \in \mathcal{O}^0 \otimes L \subset \mathcal{B}_2$.

Now a quasicoherent dg-matrix factorization is a quasicoherent DG-module over \mathcal{B} , i.e., a graded \mathcal{B} -module $M = \bigoplus_n M_n$, equipped with a differential $\delta = \delta_M$ such that $\delta^2 = f_0 \cdot \text{id}_M$ and δ satisfies the Leibnitz identity with respect to the \mathcal{B} -action. Note that such a DG-module necessarily has

$$M_{n+2} \simeq M_n \otimes L,$$

so it is determined by the components M_0 and M_1 , and we get the structure of a dg-matrix factorization on $M_0 \oplus M_1$.

There are several exotic derived categories associated to a quasicoherent CDG-algebra. The one that is most relevant for the theory of dg-matrix factorizations is the category

$$\mathrm{qcoh} - \mathrm{MF}_{ffd}(f_0) := D^{co}(\mathcal{B} - \mathrm{qcoh}_{ffd}) \simeq D^{co}(\mathcal{B} - \mathrm{qcoh}_{fl}) \simeq D^{abs}(\mathcal{B} - \mathrm{qcoh}_{fl}),$$

where the superscripts "abs" and "co" refer to "absolute" and "coderived", while the subscripts "fl" and "ffd" mean "flat" and "finite flat dimension" (see [3, Sec. 1]).

Assume that $f : (X, \mathcal{O}_X^\bullet) \rightarrow (Y, \mathcal{O}_Y^\bullet)$ is a morphism of finite flat dimension, L is a locally free \mathcal{O}_Y^0 -module of rank 1, W_0 is a section of L . Then we have the induced section f^*W_0 of f^*L . In this situation we have the push-forward functor (see [3, Prop. 1.9])

$$Rf_* : \mathrm{qcoh} - \mathrm{MF}_{ffd}(f^*W_0) \rightarrow \mathrm{qcoh} - \mathrm{MF}_{ffd}(W_0).$$

1.3. Koszul matrix factorizations as push-forwards. Let V be a vector bundle over a scheme X , and suppose we have sections $\alpha \in H^0(X, V^\vee)$, $\beta \in H^0(X, V)$. With these data one associates a Koszul matrix factorization $\{\alpha, \beta\}$ of $W = \langle \alpha, \beta \rangle$, whose underlying super-vector bundle is $\bigwedge^\bullet(V)$. On the other hand, we have the derived zero locus of β , $\mathcal{Z}(\beta) \rightarrow X$, which corresponds to the dg-algebra given by the Koszul complex of β :

$$\mathcal{O}_{\mathcal{Z}(\beta)} = (\bigwedge^\bullet(V), d = \iota_\beta).$$

Now we can view α as a function of degree -1 on $\mathcal{Z}(\beta)$ such that $d(\alpha)$ is the pull-back of W . Thus, by definition, $\{\alpha, \beta\}$ is the push-forward of the dg-matrix factorization $(\mathcal{O}_{\mathcal{Z}(\beta)}, d + \alpha \cdot \mathrm{id})$ by the morphism $\mathcal{Z}(\beta) \rightarrow X$.

This explains why in the case when β is a regular section of V , the Koszul matrix factorization $\{\alpha, \beta\}$ is equivalent to the push-forward of the structure sheaf on the usual zero locus of β .

2. TRACE MAPS VIA MORPHISMS OF PAIRS

2.1. Sheaves on pairs. Let $\iota : Y \rightarrow X$ be a closed embedding.

We consider a very simple poset scheme in the sense of [6] for the poset consisting of two elements $\alpha > \beta$, so that $X_\alpha = Y$ and $X_\beta = X$. Then a quasicoherent sheaf on this poset scheme is a triple $(\mathcal{F}_\alpha, \mathcal{F}_\beta, \phi)$, with $\mathcal{F}_\alpha \in \mathrm{Qcoh}(Y)$, $\mathcal{F}_\beta \in \mathrm{Qcoh}(X)$ and $\phi : \mathcal{F}_\beta \rightarrow \iota_*\mathcal{F}_\alpha$ is a morphism. We denote by $\mathrm{Qcoh}(X, Y)$ this abelian category, and by $\mathrm{Coh}(X, Y)$ its subcategory corresponding to $\mathcal{F}_\alpha \in \mathrm{Coh}(Y)$, $\mathcal{F}_\beta \in \mathrm{Coh}(X)$. Furthermore, we have a subcategory of locally free coherent sheaves (those with \mathcal{F}_α and \mathcal{F}_β locally free).

The perfect derived category $\mathrm{Perf}(X, Y)$ of bounded complexes of locally free sheaves on (X, Y) has a natural monoidal structure given by the tensor product, so we can also define symmetric powers of objects in $\mathrm{Perf}(X, Y)$.

Given a morphism of pairs $f : (X, Y) \rightarrow (X', Y')$ we have a natural derived push-forward morphism

$$Rf_* : D^+ \mathrm{Qcoh}(X, Y) \rightarrow D^+ \mathrm{Qcoh}(X', Y'),$$

where D^+ denotes the derived category of bounded below complexes.

The push-forward is compatible with the tensor products in the usual way: we have natural morphisms

$$Rf_*(F) \otimes Rf_*(G) \rightarrow Rf_*(F \otimes G), \quad S^\bullet Rf_*(F) \rightarrow Rf_* S^\bullet(F). \quad (2.1.1)$$

We have a fully faithful exact embedding $j_! : D \text{Qcoh}(X) \rightarrow D \text{Qcoh}(X, Y)$ sending \mathcal{G} to $\mathcal{F}_\alpha = 0$, $\mathcal{F}_\beta = \mathcal{G}$. There is a right adjoint functor to it (see [6]),

$$Rj^! : D^+ \text{Qcoh}(X, Y) \rightarrow D^+ \text{Qcoh}(X),$$

which is defined as the right derived functor of the functor

$$j^! : \text{Qcoh}(X, Y) \rightarrow \text{Qcoh}(X) : \mathcal{F}_\bullet \mapsto \ker(\mathcal{F}_\beta \rightarrow \iota_* \mathcal{F}_\alpha).$$

Note that objects $\mathcal{F}_\bullet \in \text{Qcoh}(X, Y)$, such that $\mathcal{F}_\beta \rightarrow \iota_* \mathcal{F}_\alpha$ is surjective, are acyclic with respect to $j^!$. Furthermore, every object of $\text{Qcoh}(X, Y)$ has a canonical resolutions by such acyclic objects:

$$0 \rightarrow (\mathcal{F}_\alpha, \mathcal{F}_\beta) \rightarrow (\mathcal{F}_\alpha, \mathcal{F}_\beta \oplus \iota_* \mathcal{F}_\alpha) \rightarrow (0, \iota_* \mathcal{F}_\alpha) \rightarrow 0$$

Computing $Rj^!$ using these resolutions has a very simple interpretation: given a complex $(\mathcal{F}_\alpha^\bullet, \mathcal{F}_\beta^\bullet)$ over $\text{Qcoh}(X)$, the functor $Rj^!$ sends it to the complex

$$\text{Cone}(\mathcal{F}_\beta^\bullet \rightarrow \iota_* \mathcal{F}_\alpha^\bullet)[-1].$$

In particular, there is a natural exact triangle

$$Rj^!(\mathcal{F}_\alpha^\bullet, \mathcal{F}_\beta^\bullet) \rightarrow \mathcal{F}_\beta^\bullet \rightarrow \iota_* \mathcal{F}_\alpha^\bullet \rightarrow \dots$$

We also have the following compatibility between $Rj^!$ and the push-forward.

Lemma 2.1.1. *Let $f : (X, Y) \rightarrow (X', Y')$ be a morphism of pairs. Assume that there exists a finite open covering of X , affine over X' . Then for $\mathcal{F} \in D^+ \text{Qcoh}(X, Y)$ we have a natural isomorphism*

$$Rj^! Rf_*(\mathcal{F}) \simeq Rf_* Rj^!(\mathcal{F}) \tag{2.1.2}$$

in $D^+ \text{Qcoh}(X')$.

Proof. Let us choose a quasi-isomorphism $\mathcal{F} \rightarrow \tilde{\mathcal{F}}$, such that all $\tilde{\mathcal{F}}_\alpha^i$ and $\tilde{\mathcal{F}}_\beta^i$ are f_* -acyclic (this can be done using Čech resolutions). Then the left-hand side of (2.1.2) is represented by the complex

$$\text{Cone}(f_* \tilde{\mathcal{F}}_\beta \rightarrow \iota_* f_* \tilde{\mathcal{F}}_\alpha)[-1].$$

On the other hand, the terms of $\text{Cone}(\tilde{\mathcal{F}}_\beta \rightarrow \iota_* \tilde{\mathcal{F}}_\alpha)[-1]$ are also f_* -acyclic, so the right-hand side of (2.1.2) is represented by the complex

$$f_* \text{Cone}(\tilde{\mathcal{F}}_\beta \rightarrow \iota_* \tilde{\mathcal{F}}_\alpha)[-1],$$

which is isomorphic to the one above. \square

2.2. Differentials on curves. Let $\pi : \mathcal{C} \rightarrow \mathcal{S}$ be a family of stable curves, $p_i : \mathcal{S} \rightarrow \mathcal{C}$, $i = 1, \dots, r$, be sections of π , such that π is smooth along their images, and let $\Sigma = \sqcup_i p_i(\mathcal{S})$. We view (\mathcal{C}, Σ) as a poset scheme and consider the corresponding category $\text{Coh}(\mathcal{C}, \Sigma)$ whose objects are collections $(F, (F_i), (f_i))$, where F is a coherent sheaf on \mathcal{C} , F_i is a coherent sheaf on \mathcal{S} and $f_i : F \rightarrow p_{i*} F_i$ is a morphism. Sometimes we will omit the morphisms (f_i) from the notation and just write $(F, (F_i))$.

Set $\omega_{\mathcal{C}/\mathcal{S}}^{\log} = \omega_{\mathcal{C}/\mathcal{S}}(\Sigma)$. Recall that we have natural residue maps

$$\text{Res}_\Sigma : \omega_{\mathcal{C}/\mathcal{S}}^{\log}|_\Sigma \xrightarrow{\sim} \mathcal{O}_\Sigma,$$

so that $\ker(\text{Res}_\Sigma)$ is identified with $\omega_{\mathcal{C}/\mathcal{S}}$. Thus, we can view the triple

$$[\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma] := (\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \mathcal{O}_\Sigma, \text{Res}_\Sigma)$$

as an object of the category $\text{Coh}(\mathcal{C}, \Sigma)$. Furthermore, we have

$$Rj^![\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma] \simeq \omega_{\mathcal{C}/\mathcal{S}}.$$

Note that we have a morphism of pairs

$$\pi : (\mathcal{C}, \Sigma) \rightarrow (\mathcal{S}, \mathcal{S}). \quad (2.2.1)$$

By Lemma 2.1.1, the object $R\pi_*[\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma]$ satisfies

$$Rj^!R\pi_*[\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma] \simeq R\pi_*\omega_{\mathcal{C}/\mathcal{S}}. \quad (2.2.2)$$

Note also that we have a morphism of exact triangles (which will be used later)

$$\begin{array}{ccccccc} \bigoplus_{i=1}^r \mathcal{O}_\mathcal{S}[-1] & \longrightarrow & R\pi_*(\omega_{\mathcal{C}/\mathcal{S}}) & \longrightarrow & R\pi_*(\omega_{\mathcal{C}/\mathcal{S}}^{\log}) & \longrightarrow & \bigoplus_{i=1}^r \mathcal{O}_\mathcal{S} \\ \downarrow & & \downarrow & & \downarrow & & t \downarrow \\ \mathcal{O}_\mathcal{S}[-1] & \xrightarrow{\text{id}} & \mathcal{O}_\mathcal{S}[-1] & \longrightarrow & 0 & \longrightarrow & \mathcal{O}_\mathcal{S} \end{array} \quad (2.2.3)$$

where t is given by the summation.

The above constructions also work in the case of a family of orbicurves with stable coarse moduli spaces.

3. FUNDAMENTAL MATRIX FACTORIZATION

3.1. Setup and the moduli spaces of Γ -spin structures. Let us recall the setup of the FJRW theory (see [4], [7]), or rather its slight generalization to noncommutative finite groups of symmetries (as in [5]).

We start with a finite-dimensional vector space V equipped with an effective \mathbb{G}_m -action called the *R-charge*, such that all the weights of this action on V are positive. We denote the corresponding subgroup in $\text{GL}(V)$ by $\mathbb{G}_{m,R}$. and let W be a function of weight d on V . Also, we fix a finite subgroup $G \subset \text{GL}(V)$ such that W is G -invariant, G commutes with $\mathbb{G}_{m,R}$ and G contains a fixed element $J \in \mathbb{G}_{m,R}$ of order d .

We define $\Gamma \subset \text{GL}(V)$ to be the algebraic subgroup generated by G and by $\mathbb{G}_{m,R}$. There is a canonical exact sequence

$$1 \rightarrow G \rightarrow \Gamma \xrightarrow{\chi} \mathbb{G}_m \rightarrow 1,$$

where χ restricts to the subgroup $\mathbb{G}_{m,R}$ as $\lambda \mapsto \lambda^d$.

As in [7], we consider the moduli space of Γ -spin structures: it classifies stable orbicurves (C, p_1, \dots, p_n) equipped with Γ -principal bundle P (our convention is that we have a right action of Γ on P), together with an isomorphism $\chi_* P \xrightarrow{\sim} \omega_C^{\log} \setminus 0$. We can think of the latter isomorphism as a morphism $\chi_P : P \rightarrow \omega_C^{\log} \setminus 0$ satisfying

$$\chi_P(x\gamma) = \chi(\gamma) \cdot \chi_P(x)$$

for $\gamma \in \Gamma$.

In addition to requiring the coarse moduli of C to be Deligne-Mumford stable, we require that for each marked point p_i the morphism $B\text{Aut}(p_i) \rightarrow B\Gamma$ induced by P is representable. By looking at the corresponding embedding $\text{Aut}(p_i) \simeq \mathbb{Z}/m_i \rightarrow \Gamma$ defined up to a conjugacy, we get a conjugacy class γ_i in Γ . Thus, we get a decomposition of our moduli stack into a disjoint union of open and closed substacks $\mathcal{S}_g(\gamma_1, \dots, \gamma_n)$. As in [4, Sec. 2.2], one shows that these are smooth and proper DM stacks with projective coarse moduli.

Let $\pi : \mathcal{C} \rightarrow \mathcal{S}_g(\gamma_1, \dots, \gamma_n)$ be the universal curve over $\mathcal{S}_g(\gamma_1, \dots, \gamma_n)$, and let $\mathcal{V} = \mathcal{P} \times_{\Gamma} V$ be the vector bundle over \mathcal{C} associated with the universal Γ -spin structure \mathcal{P} via the embedding $\Gamma \subset \text{GL}(V)$. Note that \mathcal{V} is equipped with a $\mathbb{G}_{m,R}$ -action (through its action on V).

As in [7], we also consider a Galois covering $\mathcal{S}_g^{\text{rig}}(\gamma_1, \dots, \gamma_n) \rightarrow \mathcal{S}_g(\gamma_1, \dots, \gamma_n)$ corresponding to choices of a rigidification at every marked point. A *rigidification* is an isomorphism of the restriction of P to $p_i/\text{Aut}(p_i) \simeq B\langle\gamma_i\rangle$ with $\Gamma/\langle\gamma_i\rangle$ (viewed as a bundle over $B\langle\gamma_i\rangle$). There is a natural simply transitive action of the group $\prod_i C_G(\gamma_i)$ on the set of rigidifications at p_1, \dots, p_n , where $C_G(\gamma) \subset G$ is the centralizer of $\gamma \in G$.

3.2. Construction. Let us set for now $\mathcal{S} = \mathcal{S}_g^{\text{rig}}(\gamma_1, \dots, \gamma_n)$ and consider the pull-back of all the objects to \mathcal{S} (denoting them by the same symbols).

Note that we have a natural projection $V/\langle\gamma_i\rangle \rightarrow V^{\gamma_i}$. Thus, from rigidification structures we get morphisms

$$Z_i : p_i^* \mathcal{V} \rightarrow V^{\gamma_i} \otimes \mathcal{O}_{\mathcal{S}}. \quad (3.2.1)$$

Hence, by adjunction we can extend \mathcal{V} to an object

$$[\mathcal{V}, \Sigma] := (\mathcal{V}, (V^{\gamma_i} \otimes \mathcal{O}_{\mathcal{S}}), (Z_i))$$

of $\text{Coh}(\mathcal{C}, \Sigma)$.

On the other hand, we can combine χ_P with W into a polynomial morphism

$$W_{\mathcal{V}} : \mathcal{V} = \mathcal{P} \times_{\Gamma} V \rightarrow \omega_{\mathcal{C}/\mathcal{S}}^{\log} : (x, v) \mapsto W(v) \cdot \chi_P(x).$$

We can view it as a linear morphism of vector bundles on \mathcal{C} ,

$$W_{\mathcal{V}} : S^{\bullet}(\mathcal{V})_d \rightarrow \omega_{\mathcal{C}/\mathcal{S}}^{\log},$$

where we grade the symmetric algebra of \mathcal{V} using the $\mathbb{G}_{m,R}$ -action on \mathcal{V} . Furthermore, this morphism is compatible with the morphisms (3.2.1), so that the following diagram is commutative

$$\begin{array}{ccc} p_i^* S^{\bullet}(\mathcal{V})_d & \xrightarrow{p_i^* W_{\mathcal{V}}} & p_i^* \omega_{\mathcal{C}/\mathcal{S}}^{\log} \\ \downarrow S^{\bullet}(Z_i) & & \downarrow \\ S^{\bullet}(V^{\gamma_i})_d \otimes \mathcal{O}_{\mathcal{S}} & \xrightarrow{W_i} & \mathcal{O}_{\mathcal{S}} \end{array}$$

where $W_i = W|_{V^{\gamma_i}}$. This means that we have a morphism

$$(W_{\mathcal{V}}, (W_i)) : S^{\bullet}[\mathcal{V}, \Sigma]_d \rightarrow [\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma] \quad (3.2.2)$$

in the category $\text{Qcoh}(\mathcal{C}, \Sigma)$ (where again we take the part of weight d with respect to $\mathbb{G}_{m,R}$). Next, we can take the derived push-forward with respect to the morphism of pairs (2.2.1). Together with (2.1.1) this gives us a morphism

$$S^{\bullet}(R\pi_*[\mathcal{V}, \Sigma])_d \rightarrow R\pi_*S^{\bullet}[\mathcal{V}, \Sigma]_d \rightarrow R\pi_*[\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma] \quad (3.2.3)$$

in $D\text{Qcoh}(\mathcal{S}, \mathcal{S})$.

Now let us set

$$E := Rj^!S^{\bullet}(R\pi_*[\mathcal{V}, \Sigma])_d.$$

Applying $Rj^!$ to morphism (3.2.3), we obtain a morphism

$$E = Rj^!S^{\bullet}(R\pi_*[\mathcal{V}, \Sigma])_d \rightarrow Rj^!R\pi_*[\omega_{\mathcal{C}/\mathcal{S}}^{\log}, \Sigma] \simeq R\pi_*\omega_{\mathcal{C}/\mathcal{S}},$$

where the last isomorphism is (2.2.2). It is easy to see that it fits into a morphism of exact triangles

$$\begin{array}{ccccccc} E & \longrightarrow & S^{\bullet}(R\pi_*(\mathcal{V}))_d & \longrightarrow & \bigoplus_{i=1}^r S^{\bullet}(V^{\gamma_i})_d \otimes \mathcal{O}_{\mathcal{S}} & \longrightarrow & E[1] \\ \downarrow & & \downarrow & & \downarrow (W_i) & & \downarrow \\ R\pi_*(\omega_{\mathcal{C}/\mathcal{S}}) & \longrightarrow & R\pi_*(\omega_{\mathcal{C}/\mathcal{S}}^{\log}) & \longrightarrow & \bigoplus_{i=1}^r \mathcal{O}_{\mathcal{S}} & \longrightarrow & R\pi_*(\omega_{\mathcal{C}/\mathcal{S}})[1] \end{array} \quad (3.2.4)$$

Combining it with the morphism of triangles (2.2.3), we get a commutative diagram with the exact triangle in the first row

$$\begin{array}{ccccccc} S^{\bullet}(R\pi_*(\mathcal{V}))_d & \longrightarrow & \bigoplus_{i=1}^r S^{\bullet}(V^{\gamma_i})_d \otimes \mathcal{O}_{\mathcal{S}} & \longrightarrow & E[1] & & \\ & & \sum W_i \downarrow & & \tau \downarrow & & \\ & & \mathcal{O}_{\mathcal{S}} & \xrightarrow{\text{id}} & \mathcal{O}_{\mathcal{S}} & & \end{array}$$

Dualizing we get a commutative diagram

$$\begin{array}{ccccc} E^{\vee}[-1] & \longrightarrow & \bigoplus_{i=1}^r S^{\bullet}(V^{\gamma_i})_d^{\vee} \otimes \mathcal{O}_{\mathcal{S}} & \longrightarrow & S^{\bullet}(R\pi_*(\mathcal{V}))_d^{\vee} \\ \tau^{\vee} \uparrow & & \sum W_i \uparrow & & \\ \mathcal{O}_{\mathcal{S}} & \xrightarrow{\text{id}} & \mathcal{O}_{\mathcal{S}} & & \end{array}$$

This implies that the pull-back $Z^*(\bigoplus_i W_i)$ with respect to the morphism

$$Z : [R\pi_*(\mathcal{V})] \rightarrow \prod_i V^{\gamma_i} \quad (3.2.5)$$

induced by (3.2.1), gives the zero morphism from the structure sheaf to itself in the derived category of quasicoherent sheaves on $[R\pi_*(\mathcal{V})]$.

In fact, we can realize this function by an explicit coboundary. For this we need a realization of the above diagram in the homotopy category of complexes. As in [7, Sec. 4.2], the starting point is that $R\pi_*(\mathcal{V})$ can be realized ($\mathbb{G}_{m,R}$ -equivariantly) by a complex of the form $[A \rightarrow B]$ in such a way that the morphism (3.2.5) is realized by a surjective morphism $A \rightarrow \bigoplus_{i=1}^r V^{\gamma_i} \otimes \mathcal{O}_S$. Then the first line of the diagram (3.2.4) can be realized by a short exact sequence of complexes

$$0 \rightarrow \ker(S^\bullet(Z)_d) \rightarrow S^\bullet(A \rightarrow B)_d \xrightarrow{S^\bullet(Z)_d} \bigoplus_{i=1}^r S^\bullet(V^{\gamma_i})_d \otimes \mathcal{O}_S \rightarrow 0$$

where the complex $S^\bullet(A \rightarrow B)_d$, concentrated in degrees $[0, \text{rk}(B)]$, has form

$$S^\bullet(A)_d \rightarrow (S^\bullet(A) \otimes B)_d \rightarrow (S^\bullet(A) \otimes \wedge^2 B)_d \rightarrow \dots$$

Using this we get a canonical quasi-isomorphism of E with the bounded complex of vector bundles

$$K^\bullet := \text{Cone}(S^\bullet(R\pi_*(\mathcal{V}))_d \rightarrow \bigoplus_{i=1}^r S^\bullet(V^{\gamma_i})_d \otimes \mathcal{O}_S)[-1].$$

Now we want to realize the morphism $\tau : E \rightarrow \mathcal{O}_S[-1]$ in the derived category by a morphism $K^\bullet \rightarrow \mathcal{O}_S[-1]$ in the homotopy category of complexes.

By changing $[A \rightarrow B]$ to a quasi-isomorphic complex $[\bar{A} \rightarrow \bar{B}]$ one can achieve that for $i \geq 1$ the terms K^i satisfy $\text{Ext}^{>0}(K^i, \mathcal{O}_S) = 0$ (see [7, Lem. 4.2.5]). This implies that morphisms $K \rightarrow \mathcal{O}_S[-1]$ in the homotopy category of complexes and in the derived category are the same.

The dual of this morphism can be interpreted as a canonical homotopy (up to a homotopy between homotopies) f_{-1} between the function $Z^*(\bigoplus_i W_i)$ on $[R\pi_* \mathcal{V}]$ and 0. As we have seen in Example 1.1.1, this corresponds to a structure $\delta = d - f_{-1} \cdot \text{id}$ of a dg-matrix factorization of $-Z^*(\bigoplus_i W_i)$ on the structure sheaf of $[R\pi_* \mathcal{V}]$.

Furthermore, it carries an equivariant structure with respect to the action of the center $Z(\Gamma)$ of Γ (acting trivially on the base) and with respect to $\prod_i C_G(\gamma_i)$ (changing the rigidifications).

3.3. Properties. The first important property is that our dg-matrix factorization over $[R\pi_* \mathcal{V}]$ is supported on the zero section in $[R\pi_* \mathcal{V}]$. Indeed, first, we recall that any matrix factorization is supported on the critical locus of the potential. Since each W_i is non-degenerate, we get that the support belongs to the zero locus of $Z^*(\bigoplus_i W_i)$. Note also that the support can be calculated pointwise (see [7, Sec. 1.4]), so it is enough to deal with the case of a single curve with a Γ -spin structure. Thus, we are reduced to considering the following situation. Let C be a curve, and let \mathcal{V} be a vector bundle over C . Assume also we have a polynomial morphism $W_{\mathcal{V}} : \mathcal{V} \rightarrow \omega_C$, such that over an open dense subset of C there exists a trivialization $\mathcal{V} \simeq V \otimes \mathcal{O}_C$ such that $W_{\mathcal{V}}$ is induced by our polynomial W on V . Then we have the induced polynomial function of degree -1 on the dg-affine space $[H^0(C, \mathcal{V}) \oplus H^1(C, \mathcal{V})[-1]]$ (recall that the base is now a point), induced by $W_{\mathcal{V}}$ and by the identification $H^1(C, \omega_C) \simeq \mathbb{C}$. We claim that it is supported at the origin. Indeed, we start by observing that the preimage of the origin under the gradient morphism $\Delta W : V \rightarrow V^\vee$ is still the origin (since W is non-degenerate). From this we get

the similar assertion about the preimage of the zero section under the relative gradient morphism $\Delta W_{\mathcal{V}} : \mathcal{V} \rightarrow \mathcal{V}^\vee \otimes \omega_C$. Finally, we note that the support of our function on $[H^0(C, \mathcal{V}) \oplus H^1(C, \mathcal{V})[-1]]$ coincides with the vanishing locus of the polynomial morphism

$$H^0(C, \mathcal{V}) \rightarrow H^0(\mathcal{V}^\vee \otimes \omega_C) \simeq H^1(C, \mathcal{V})^\vee$$

induced by the relative gradient map. This implies our claim.

Next, the key gluing property satisfied by the fundamental matrix factorizations (cf. [7, Sec. 5.2, 5.3]) holds in the situation when we consider two natural families of orbicurves $\tilde{C} \xrightarrow{\tilde{\pi}} S, C \xrightarrow{\pi} S$, over

$$S := S_{g_1}^{\text{rig}}(\gamma_1, \dots, \gamma_{n_1}, \gamma) \times S_{g_2}^{\text{rig}}(\gamma'_1, \dots, \gamma'_{n_2}, \gamma^{-1}),$$

where C is obtained by gluing two smooth points on \tilde{C} into a node. We denote by $f : \tilde{C} \rightarrow C$ the gluing morphism.

In this setting there are natural Γ -spin structures \tilde{P} (resp., P) over \tilde{C} (resp., C), where P is obtained by gluing fibers of \tilde{P} over the two points that are glued into a node, using the rigidifications and the square root of J , $J^{1/2} \in \mathbb{G}_{m,R}$ such that $\chi(J^{1/2}) = -1$ (see [7, Sec. 5.2]). The main compatibility between the push-forwards of the corresponding vector bundles $\tilde{\mathcal{V}}$ and \mathcal{V} is given by the cartesian diagram

$$\begin{array}{ccc} [R\pi_* \mathcal{V}] & \longrightarrow & V^\gamma \\ \downarrow & & \downarrow \Delta^{J^{1/2}} \\ [R\tilde{\pi}_* \tilde{\mathcal{V}}] & \longrightarrow & V^\gamma \times V^{\gamma^{-1}} \end{array}$$

where $\Delta^{J^{1/2}} : V^\gamma \rightarrow V^\gamma \times V^{\gamma^{-1}}$ is the twisted diagonal map: $x \mapsto (x, J^{1/2}x)$. Furthermore, the analysis of [7, Sec. 5.2] shows that the natural dg-matrix factorization on $[R\pi_* \mathcal{V}]$ is identified with the pull-back of the one on $[R\tilde{\pi}_* \tilde{\mathcal{V}}]$.

REFERENCES

- [1] I. Ciocan-Fontanine, M. Kapranov, *Virtual fundamental classes via dg-manifolds*, Geom. Topol. 13 (2009), 1779–1804.
- [2] I. Ciocan-Fontanine, D. Favero, J. Guéré, B. Kim, M. Shoemaker, *Fundamental Factorization of a GLSM, Part I: Construction*, preprint arXiv:1802.05247.
- [3] A. I. Efimov, L. Positselski, *Coherent analogues of matrix factorizations and relative singularity categories*, Algebra Number Theory 9 (2015), 1159–1292.
- [4] H. Fan, T. Jarvis, Y. Ruan, *The Witten equation, mirror symmetry, and quantum singularity theory*, Ann. of Math. (2) 178 (2013), 1–106.
- [5] H. Fan, T. Jarvis, Y. Ruan, *A mathematical theory of the gauged linear sigma model*, Geom. Topol. 22 (2018), 235–303.
- [6] V. Lunts, *Categorical resolutions, poset schemes, and Du Bois singularities*, IMRN 19 (2012), 4372–4420.
- [7] A. Polishchuk, A. Vaintrob, *Matrix factorizations and cohomological field theories*, J. Reine Angew. Math. 714 (2016), 1–122.