Nanoparticle orientation distribution analysis and design for polymeric piezoresistive sensors
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1 ABSTRACT
Piezoresistive sensors, with polymer matrices and conductive nanoparticles, are a

relatively new addition to the sensor class, with the potential to transform such fields as wearable
sensors and the internet of things. The unusual inverse piezoresistive behavior of the sensors has
been modeled using quantum tunneling and percolation theory. However, the impact of the
distribution of conductive particles in the matrix, and specifically their relative orientation, has
not been well studied. The initial and deformed distribution of orientations greatly influences the
sensor behavior, since the quantum tunneling model is highly sensitive to the polymer gaps
between nanoparticles; the evolution of these gaps under deformation is strongly dependent upon
the relative orientation of neighboring particles, and determines electron transport properties, and
overall sensor response. In this paper a simple analytical model for isotropic orientation
distribution and subsequent Poisson-based gap evolution is compared with a more sophisticated
finite element and random resistor network analysis. The new numerical model was able to
explain previously unexplained physical behavior and is used to design sensors with specific
desired characteristics. The appropriateness of the previously assumed percolation behavior is
also examined via the model and generalized effective medium theory.

Keywords: piezoresistive sensor, percolation theory, finite element analysis (FEA),
nanocomposite

2 INTRODUCTION

There is a rapidly increasing demand for wearable sensors in medical and consumer
goods. Traditional metal foil sensors do not have adequate flexibility for biomechanical
applications. Piezoresistive polymer composites represent an exciting new technology to fill the
need for flexible sensors. Rubber-like polymers (PDMS [1-5], natural rubbers [6, 7]) can be
made into conductive polymer composites and / or sensors by the addition of a conductive filler
(e.g., carbon black [1, 2, 8-10], carbon nanotubes [4, 8, 9, 11-13], graphene [3, 14-16] or metal
nanowires [17, 18]). A variety of such sensors were classified and summarized in reviews by
Amyjadi [19], Fiorillo [20], and Duan [21]. Examples of applications for such sensors include
measuring range of motion for joints [12, 16, 22, 23], pulse [17], and breathing [7, 16]. Another



important application for these sensors is sensing improvements for robotic applications [5, 20,
24].

However, the response of these sensors to deformation is significantly more complex
than that of metal foil technology, making sensor optimization more difficult, and often reliant
upon empirical testing. Since the matrix polymer is fundamentally an insulator, electrical
conductivity across such materials depends upon the presence of connected networks of the
conductive filler. The electrical resistance between the particles is usually the dominant
contributor to the overall material resistivity. If the gaps between neighboring particles are on the
order of a few nanometers, electricity can flow via quantum tunneling. This paper will consider
only sensors where this phenomenon is present. The evolution of gaps between neighboring
particles, and the characteristics of the percolating particle network, control the piezoresistive
response. This paper builds upon previous modeling efforts by applying a finite element analysis
(FEA) to determine the gap evolution between particles and combining it with a random resistor
network to determine macro-scale electrical response. Various insights into the relationships
between particle geometrical distribution and sensor response are obtained. The responses
considered in this paper are for quasi-static situations and do not include consideration of
dynamic response, including viscoelastic and hysteresis effects.

In particular, we have chosen to investigate the response of nanocomposite sensor
comprised of a silicone matrix with nickel nanostrand filler particles. Modeling the unusual
(negative) piezoresistive behavior of this material presents a challenge [25, 26], with the
combined complexity of quantum tunneling behavior between neighboring conductive filler
particles and percolative behavior across the sample. Quantum tunneling is described by
quantum mechanics and explains how an electron can cross a potential energy barrier that would
block electrical flow by classical theories. Each gap between two neighboring nanoparticles (that
have presumably been pushed together by the manufacturing process, while being held slightly
apart by the long-chain polymer molecules) can be considered as a potential location for
quantum tunneling [11, 24, 25, 27-32]. Equation 1 shows the tunneling resistivity across a gap
between two nanoparticles, where p is tunneling resistivity, / is Planck’s constant, e is the charge
of an electron, m. is the mass of an electron, A is barrier height, and s is the junction gap distance

[33].
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Barrier height (1) is the electrical potential difference between the two nanoparticles and
junction gap distance (s) is the distance between the two nanoparticles. Both of these parameters
were experimentally measured for polymer matrices using the procedure described by Koecher
[26]. Values for junction gap distance used in this work were 0.47 eV for Sylgard 184 and 0.27
eV for Ecoflex, which correspond to two silicone polymer matrix materials which have
previously been reported for this type of sensor [25, 26, 34]. Values between 0.2-1 eV are typical
of polymers [35].

In addition to exhibiting quantum tunneling behavior, conductive nanocomposites also
represent a quintessential percolation-type system because of the large distance in resistivity
between the insulative matrix and conductive polymer. The overall electrical resistance through
the material is dominated by the presence of connected paths of filler. As the volume fraction of
filler increases, a critical volume fraction, ¢, is reached, when connected pathways begin to form
and conductivity increases rapidly [36]. Similar changes in resistance happen by changing the
size or type of the nanoparticles [37].




For the sensing material of interest to this paper, the volume fraction of filler remains
constant, but the distribution of gap distances between particles evolves with strain, thus
modifying the conductivity of potential pathways across the sensor. It has been hypothesized that
the dramatic change in gap conductivity when the sample is strained is analogous to increasing
(or decreasing) the volume fraction of conductive segments in the material, leading to a
percolation-type behavior, with a critical strain at which conductivity increases rapidly [38]. One
objective of this paper is to determine whether a percolation-based model reflects the actual
behavior of the system.

The generalized effective media equation (GEM) [38] is one way to model the
percolative behavior. The GEM equation combines effective media (EM) theories with
percolation theory to calculate the overall conductivity of a composite with an insulating matrix
and conductive filler [39]. Effective media theories combine the electrical properties of each
component in the composite as shown in Equation 2 where ¢ is the volume fraction of filler, o,
is the conductivity of the neat polymer matrix, oris the conductivity of the filler material, oy 1s
the conductivity of the bulk material, and # is the dimension.
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The GEM equation includes a threshold, ¢., as well as critical exponents s and ¢ (see
Equation 3) that all relate to the idea that in a percolative system there is a dramatic increase in
conductivity past a certain percolation threshold. 4 is a constant related to the percolation
threshold (see Equation 4). The GEM equation in this form assumes perfect conductivity
between filler particles that touch each other (i.e. no quantum tunneling gaps). The fit of the
GEM and EM equations will be compared with the composite system studied here to test the
accuracy of using a percolation model.
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Many conductive nanocomposite models use the GEM equation [40-46]. However,
previous research has also highlighted the fact that the resistance across the percolating network
is not defined simply by the resistance of the filler particles [47-49]. The actual resistance of the
filler is orders of magnitude smaller than the resistance of the nano-scale polymer gaps between
particles; i.e. the network resistance is dominated by the quantum tunneling resistance across
these tiny gaps. Hence a revised model is required that somehow accounts for the distribution of
gaps rather than the volume fraction of filler.

Several models combine percolation theory and quantum tunneling into one model [25,
47,48, 50, 51]. Johnson, et al. [25] combined quantum tunneling with Equation 3 by assuming
that, for a given volume fraction of filler, there is a certain distribution of gaps between filler
particles that can be thought of as a lattice of switches between components of the filler network.
The number fraction of tunneling junctions in this lattice is given by Q, and a critical number
fraction of tunneling junctions (Q.) is used in the percolation theory, rather than the filler volume
fraction (¢) and critical volume fraction (¢:). Equation 3 was used to calculate the resistivity of
the matrix across the gap (o) as a function of barrier height.



Another important aspect of a piezoresistive model involves the change of the geometry
between two filler particles with strain. The resistance of a particular gap has an exponential
relationship with gap size according to Equation 1, so small changes in gap distance have a large
impact on the overall resistance. Simplified models of the piezoresistive behavior have been
reported — in particular, a framework that simulates evolution of distance between particles using
a Poisson contraction assumption, and combines it with a percolation approach [25]. This model
assumed a random distribution of particle orientations that remained constant when the material
was strained (i.e. the vector connecting the two closest points between a pair of neighboring
particles did not change direction under strain). Gaps that aligned with the tensile direction were
lengthened, while gaps in a perpendicular direction were shortened according to the Poisson’s
ratio. This model will be referred to as the Simple Poisson Contraction model (or SPC) in this
work.

The SPC model would be approximately correct if the filler particles and matrix had
similar elastic modulae, and if only small strains were assumed. However, for many
nanocomposite materials (including the specific sensor material under consideration), the filler
particles (i.e., nickel particles) are stiffer than the matrix material (silicone) by several orders of
magnitude, causing severe realignment of the particles (and affiliated gaps) under large strains.
Finite element analysis (FEA) is required in order to better estimate the subsequent gap evolution
and resultant conductivity. For example, Kale [52] found that accounting for filler alignment
significantly impacted the percolative model. In addition to having a more complete model for
evolution of particle gap with strain, another important benefit of more detailed analysis is the
potential to design a sensor to behave in a desired way. For example, a study of the relationship
between initial particle alignment and resultant sensor behavior could motivate a sensor design
with optimized particle orientation in order to achieve a high gauge factor, or a specific
characteristic resistance.

This paper assesses the accuracy of the assumptions of the SPC model through
comparison with a more sophisticated FEA model; it also evaluates the potentially increased
accuracy of a modified SPC model that incorporates the percolative nature of the piezoresistive
response of the sensor material (i.e., a percolative SPC model) by applying a random resistor
network model to capture the underlying resistive behavior. The resultant percolative SPC model
is demonstrated to exhibit the complex physical behavior not represented by the previous simple
SPC model

3 METHODS

3.1 Evolution of Particle Gap Distribution from Finite Element Analysis
3.1.1 Basic Geometry

In this work, the nanoparticles are assumed to be cylindrically shaped for the FEA model.
As can be seen in Figure 3-1 of the as-manufactured nanostrands, the particles actually have a
very branched structure. However, before being used in the nanocomposite sensors this network
is broken into small particles, and subsequently pushed through a screen to break the network
into even smaller nanoparticles. The branched nature of the nanoparticles may impact the initial
range of orientations of the nanoparticles and would certainly affect attempts at physically
aligning the nanoparticles in manufacturing; but where the branches cross, the high aspect ratio
means that they still behave as two long rods locally. Hence, while the cylindrical assumption
does not perfectly describe the overall shape of the nanoparticles, at the local level (in the



vicinity of a given junction between neighbors) the approximation of cylindrical shape is
expected to be sufficient.

Figure 3-1. Micrograph of nickel nanostrands from Conductive Composites from Johnson [53].
Note that the strands in this image are larger than the average dimensions, but illustrate the
typical structure.

The finite element analysis (FEA) focused on the geometrical evolution of two
neighboring nanoparticles, and the subsequent modification to the gap between them with strain.
The nanoparticles (represented as cylinders) are placed within a block of pure silicone. Outside
of the silicone cell is a larger block of homogenous material that combines the properties of the
nickel nanoparticles and silicone matrix using the law of mixtures. Boundary conditions were
applied to the geometry in the form of constraints to x-direction motion on one face, and
application of a specified displacement in the x-direction on the opposite face.

The angle of each nanoparticle was specified with respect to the other nanoparticle and
tensile axis using four angles: 6, ¢, «, f. Figure 3-2 shows a representation of how the axis is
affected by the angles and how they affect the positioning of the nanoparticles. In Figure 3-2 the
tensile direction is along the x-axis. The angles are applied to the orientation of the system as
follows: (1) align both particles with the y-axis, one vertically above the other, with the origin
halfway between; (2) rotate both particles about the z-axis in the right-handed sense, by angle &,
(3) rotate the z=z’-axis (and the two particles) about the y’-axis by ¢ in the right-handed sense;
(4) rotate the bottom particle by « about the z’'-axis in the right-hand sense; (5) rotate the top
particle by £ about the z’’-axis in the right-hand sense. Thus, ¢ and @ affect the axis of the
nanoparticles with respect to the tensile axis, and « and S rotate the nanoparticles within the
coordinates defined by ¢ and 6.
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Figure 3-2. Representation of the angles used in FEA. ¢ and @ define the coordinate axes of the
fibers with respect to the tensile axes as shown in the figure. The angles & and £ are then the
rotations of individual nanoparticles about z’’ in the right-hand sense.
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Initial gap sizes of 2, 3.25, 4.5, and 5.75nm were used for the distance between
nanoparticles in the FEA. In an actual sensor, the nanoparticles appear to be pushed together
somehow by the manufacturing process or attraction to each other so that the polymer gaps
between nanoparticles are very small. Without the nanoparticles being pushed together in some
way, the gaps would be much larger. Hence, the thin layer of polymer coating each nanoparticle
controls the distance between the particles. The minimum layer of polymer absorbed onto the
surface depends on the radius of gyration [54]. Information for the specific polymer used in this
study (Ecoflex) were not available, but the range of values reported for PDMS is 1-4nm
depending on molecular weight [55]. Other studies assumed a layer of polymer that is one
molecule thick would be approximately Inm [25, 56]. If both nanoparticles had an 1nm thick



adsorbed layer, the total gap would be 2nm. Hence, gaps in this study were assumed to reach a
minimum value of around 2nm. This value falls within the range for silicone polymers. Gaps
around 2nm also have resistances close to the range of typical conductive materials (about
10#Qm) according to Equation 1. Gaps up to 5.75nm were chosen to show that even larger
initial gaps with resistivities that are in the range of insulative materials (about 10°Qm) can
decrease to the conductive range with strain. These five distances were used as bins where any
initial gap distance could be assigned and change in gap distance with strain calculated. Any
gaps smaller than 2nm were assigned to the 2nm bin and any gaps larger than 5.75nm were
assigned to the 5.75nm bin.

From the FEA output of nodal position at each strain interval, the minimum gap distance
between neighboring nanostrands could be calculated. The gap distance between the particles is
calculated by finding the smallest distance between any node on the first nanoparticle and any
node on the second nanoparticle. The data from the FEA was then fit assuming that the smallest
possible gap was defined by the thickness of a single polymer molecule (assumed to be
approximately 1nm.) The fit of the FEA data also allowed extrapolation of gap size calculation to
larger values of strain, beyond those considered by the model. The data from the FEA model
covered a range of 0-25% strain. Beyond 25% strain, convergence was sometimes very slow, due
to the nonlinear nature of the problem. Furthermore, the resistance model was generally not very
sensitive to small errors in gap determination at higher strain values, due to the exponential
dependence of resistivity on strain (Equation 1). The typical range of the sensors is between 0-
30% for biomechanical applications; hence, the assumed maximum strain for most purposes in
this paper is 30%, a relatively small extrapolation beyond the model calculations. The
extrapolation also seems reasonable because there are physical limits on the range of the gap
even at high values of strain, i.e. the absorbed layer thickness of the polymer being the lower
constraint and material flexibility being the upper constraint.

3.1.2 Model Details
Finite element analysis for this work was done in ANSYS 17.2. The simulated

nanoparticles were each modeled as cylinders with a radius of 50 nm and length of 1000 nm. As
stated earlier, although the physical character of the nanostrands is branched, their high aspect
ratio means that any effects of particle curvature are generally at a distance, and the assumption
of local linearity should be sufficient. This idea of local linearity also explains why it is
reasonable to give all nanoparticles the same length — because the interactions considered in the
model are really only a small segment along the length of the two nanostrands. The modeled
dimensions were chosen to be within typical values for the radius and aspect ratios. Typical radii
range from 25-250nm and aspect ratios of NiNs range from 5-50 [57]. The silicone region had a

side length 1200nm and the homogenous material was a block of 3600 nm side length. All sub-



volumes used element type SOLID187. The properties used in the FEA model for each of the
materials are listed in

Table 3-1. The density and Poisson’s ratio for the homogenous material assumed a
volume fraction of 0.54% filler to simulate the behavior of the rest of the sensor.

The mesh for all volumes used tetrahedral elements. The mesh of the nanoparticles
divided each cylinder into sections that were about 33 nm in length. The silicone block was
divided into elements comprised of 8nm segments and the homogenous block was divided into
10nm segments. These element sizes were chosen after a sensitivity analysis to ensure that the
FEA model converged on a consistent prediction of behavior for the system.

Table 3-1. Material properties used in the FEA model.

Material Young’s Modulus Density Poisson’s Ratio
(GPa) (kg/m’) (mm/mm)
Nlckel. 207 2910 041
Nanoparticles
Silicone 1.5e-3 1290 0.45
Homogenous 0.57 1330 0.449
Material : .

3.2 Random Resistor Network

The information from the FEA model was incorporated into a model of a whole
nanocomposite sensor by creating a random resistor network (RRN). Each resistor represents a
gap between two nanoparticles. The nodes between resistors represent the nanoparticles
themselves, but because the resistance of the nickel is so small compared to the resistance of the
polymer only the resistance of the gap is considered in the resistor network. Figure 3-3 shows a
representation of the resistor network in two dimensions, although a three-dimensional version
was actually used. The resistors are attached to a voltage source on one side and to ground on the
other.
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Figure 3-3. Two-dimensional example of a resistor network. The actual random resistor network
model used a similar geometry but in three dimensions.



The value of each resistor in the network was found by first assigning initial gap
distances (randomly or by some distribution.) The distance then determined the resistance
according to Equation 1. As strain was applied to the resistor network, each gap distance
changed according to either SPC or FEA. The changed gap distances could then again be
converted into resistances. At each value of strain, the overall resistance was calculated using
Kirchhoff’s current law.

The geometry of the random resistor network in three dimensions is a cubic lattice. The
junction gaps in a sensor will not have the same cubic configuration, but it is reasonable to
assume that that because of the aspect ratio of the nanoparticles, each is probably connected to at
least several other particles just as each node is connected to others in the lattice.

4 RESULTS AND DISCUSSION

4.1 Experimental Verification

The random resistor network (RRN) was validated by comparing the model to resistivity
data of an actual nanocomposite sensor. The sensor tested was made of Sylgard 184 with 15%
nickel nanoparticles by volume and the resistivity was measured for values of strain between 0
and 60 percent. The dots in Figure 4-1 show the experimental data and the lines show the RRN
model using FEA and SPC for gap evolution. The overall shape of the RRN model changes
significantly based on the parameters input to the model and the random arrangement of
resistances within the network. Even when running the same parameters for nanoparticle angles
and initial gap size distribution, the overall shape of the resistivity-strain curve will vary because
different resistors end up in different locations. The FEA curve in Figure 4-1 represents a best fit
with the smallest square error for the RRN model with FEA when compared with the
experimental data. The RRN model with SPC is shown as a comparison using the same
parameters including the number of resistors, angles assigned, and initial gap size distribution.

Figure 4-1 used angles for nanoparticle orientation that were randomly distributed along a
sphere in the RRN. The distribution for initial gap sizes was a Weibull distribution with a scaling
parameter of 3.5nm and a shape parameter of 12.36 (the same value used in Johnson [25]). The
mean for the Weibull distribution seems reasonable because it puts initial gap sizes between
1.5nm and 4.2nm. Having one molecule of polymer between two nanoparticles would be 1nm,
but there are most likely some gaps that have more than just one molecule between the two
nanoparticles. The range of gap sizes with this Weibull distribution seems representative of the
polymer gaps in an actual sensor.
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Figure 4-1. Resistivity-strain comparison between experimental data and the random resistor
network (RRN) for the best fit. The RRN used angles for nanoparticle orientation randomly
distributed along a sphere and a Weibull distribution with a mean of 3.5nm for the initial gap size
distribution and a shape parameter of 12.36 (see [25]).

Figure 4-1 compares the performance of the FEA-based gap evolution model with the
SPC model for a real sensor. For both models, the alignment and gap distribution was allowed to
vary in order to line up with the real data. But only the FEA model was able to find a
nanoparticle arrangement that resulted in a close match between predicted and actual resistivity.

4.2 Comparison of Gap Orientation Models (FEA and SPC)

The prediction of gap evolution can have a significant impact on overall resistivity in the
RRN. In Figure 4-1, for example, all parameters into the model were kept the same except how
gaps evolved with strain but the resulting curves for resistance versus strain of the complete
sensor show different behaviors.

In order to compare the Simple Poisson’s Contraction model (SPC) with the more
detailed FEA approach, various geometrical distributions of filler particles were investigated,
and the evolution of the gaps between the particles was predicted by SPC and compared with
results from the detailed FEA. The related change in resistance was then modeled for both cases,
using the random resistor network model. For the purposes of this discussion, the data from FEA
is assumed to be correct and the simplified SPC model is compared with the FEA. The overall
resistance of the material was tracked with increased strain, with particular focus on whether
resistance was predicted to increase or decrease.

For the initial comparison of the models with differing nanoparticle orientations, the
initial gap distribution was a uniform random distribution with values evenly distributed between
3-7nm. The nanoparticles were assigned angles randomly distributed on a sphere for the
orientation with respect to the tensile axis (#and ¢), and also for the rotation of each nanoparticle
(aand p). See Figure 3-2 for a detailed explanation of the angles. In this case, SPC predicted a
change in resistance comparable in magnitude and slope to FEA. As seen in Figure 4-2, both gap
orientation models predicted that resistance would decrease with strain, matching typical
experimental results of the sensors. While there are discrepancies in the actual resistivity values,

10



the trends are similar. This suggests that SPC may sufficient for modeling the conductive
behavior of such materials, if only rough trends are required, when the particles are randomly
oriented.
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Figure 4-2. Resistivity versus strain for FEA and SPC. The angles for this test were randomly
selected on a sphere and the same angles and initial gap sizes were used for both FEA and SPC.

The second example of potential nanoparticle geometry examined the case where particle
orientations were restricted to a certain range. Using angles only within a certain range is
representative of aligning the nanoparticles within the sensor during the manufacturing process.
The rotations of the nanoparticles (« and £ in Figure 3-2), which are represented in FEA but not
in SPC, appeared to have a significant impact on overall resistivity. One specific case where SPC
differed from FEA occurred when all nanoparticles were perpendicular to the tensile direction,
1.e. fequal to 0° and ¢ equal to 90°+15°. SPC predicted that all gaps would increase, causing the
overall resistance to increase with strain. In FEA, most of the orientations had gap sizes that
increased with strain, however, distributions of orientations where « and £ were between 60-90°

had gaps that decreased with strain causing the overall resistivity to decrease with strain (see
Figure 4-3).
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Figure 4-3. Resistance versus strain for FEA and SPC where angles are restricted to within 15°
of the tensile axis and « and fin FEA are between 60-90°. SPC predicts a different trend
between strain and resistance than FEA in this case but is similar in all other cases.

In order to understand more specifically which orientations of particles behaved
differently in the FEA vs the SPC models, the azimuthal () angle (see Figure 3-2) was varied
for a particular strain (10% tensile strain), with all gaps set to the same initial value (5nm).
Figure 4-4 shows how the distance between nanoparticles (or gap size) changes with strain, for
different angles (i.e. particle alignments with the tensile axis). The angles #and ¢ were combined
into a single angle to match the variables defined in the SPC model [25]. The variance in the
boxplot for the FEA data comes from the variations of the additional angles defined in the FEA
data, i.e. the rotation of each of the nanoparticles or & and S ; since the SPC model does not
include these additional variables, there is no variance in the predicted result from this model. In
each box of the boxplot, the middle line represents the median and the top and bottom lines
represent the 75" and 25™ percentiles, respectively. Outliers are shown by the red crosses. The
difference between FEA and SPC is more pronounced at larger initial gap distances, leading to
the selection of the relatively large initial gap size of Snm for this comparison.

Because of the exponential nature of the tunneling phenomenon (Equation 1), the smaller
gaps correlate with large changes in resistance. When gaps are close to 2nm, the resistivity drops
dramatically and the gap can conduct electricity. With the SPC model (right), there are no gaps
that reach this range after 10% strain; the most significant decrease is a change in gap from Snm
to 4.75nm when the orientation is 90° from the tensile axis. On the other hand, the FEA data
(left) predicts that some gaps at every orientation come close to the 2nm (highly conductive)
range. Although it is mostly outliers in the boxplot that become conductive, even having a small
number of conductive gaps has a large impact on overall resistivity.

12
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Figure 4-4. Change in gap distance at 10% strain versus angle between nanoparticles. The
boxplot (left) shows FEA data and the line (right) shows SPC model.

Figure 4-4 shows that the rotations of nanoparticles (« and £) are important variables to
include the full behavior of nanoparticles in order for a model to be accurate. When the particles
are randomly oriented, the SPC representation may be incorrect for specific orientations, but the
error averages out, resulting in approximately trends of resistivity versus strain (Figure 4-2); but
for aligned particles the error is magnified (Figure 4-3).

4.3 Percolation Theory

The percolative behavior of this material with respect to volume fraction of filler has
been well-established. As a critical volume fraction (the percolation threshold) of filler is
reached, the conductivity increases rapidly as conductive pathways are formed across the sample.
One could think about this in terms of an initial empty network spanning the polymer sample. As
the volume fraction of filler increases, more connections in the network are ‘switched on’ by the
presence of the filler. Eventually, enough connections are formed that a continuous pathway
spans the sample, and conductivity starts to rise significantly.

Similarly, for the strained sample, the hypothetical empty network represents the gaps
between the particles. As gaps close under Poisson contraction, the conductivity increases
exponentially, according to the quantum tunneling model (Equation 1). It has been hypothesized
that this behavior results in a percolation type behavior — i.e. at a certain strain, the number of
‘closed’ gaps (gaps that are small enough to result in high conductivity or in the range of 2nm or
less) reaches a critical fraction and conductive paths form, rapidly increasing conductivity. If the
system follows percolation type behavior, there should be the typical s-curve for the conductance
increase with strain.

Figure 4-5 shows how conductance is affected by gap size and strain. Gaps were
considered ‘conductive’ with a distance of 2nm or smaller for these figures. Both figures used
the random resistor network with angles randomly distributed along a sphere and a uniform
random distribution for the initial gap size with values between 2-7nm. The strain was between
0-30%, which is a typical range of use for the conductive polymer sensors. As expected for a
percolation-governed system, the conductance increases significantly once the fraction of gaps
within the conductive range passes a certain critical value. Although the fraction of conductive
gaps does not increase beyond 10 percent, the conductivity in the figure on the left rises from
almost zero to nearly 15 Siemens. The figure on the right shows a sharp increase in conductance
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as strain increases. It is also important to note that there is a clear s-curve in both plots in Figure

4-5 suggesting that percolation could be an accurate way to model this phenomenon. The figure
on the right

102
2 D)
3 10° 8
& t & .0
3 g 1077
> =]
© ©
c c
@] o
O O
1072 5 102
0 0.02 0.04 0.06 0.08 0 10 20 30
Fraction of Conductive Gaps Strain

Figure 4-5. Conductance versus the fraction of gaps with a distance less than 2nm (left) and
conductance versus strain (right). The conductance increases as more gaps become conductive,

as expected. The s-curve is evidence for the ability of percolation theory to accurately model this
system.

To further evaluate the viability of percolation models for this system, the RRN was
compared to the effective medium (EM) and generalized effective medium (GEM) equations
(see Equations 2 and 3) Figure 4-6 shows the random resistor network (RRN) compared to the
GEM and EM. The random resistor network in this figure assigned all initial gap distances to a
value of 3nm. The values for variables in the GEM/EM equations were taken from Johnson [21]
or fit with a least squares approach and are shown in Table 4-1. Table 4-1 also lists a sensitivity
analysis showing the percent change in the model response for a +20% in each input variable. As
expected, the variable with the largest change in response is ¢, the exponent for the filler side of
the GEM equation. This large change in response is typical for the critical exponents in this
equation [47], and given that the conductivity of the filler (nickel) is so much higher than the
conductivity of the matrix (silicone), it follows that the exponent for the filler (¢) would have a
larger response than the exponent for the matrix (s).

Figure 4-6 shows that the GEM equation fits much more closely to the RRN than the EM
equation. This suggests that the piezoresistive effects in the RRN that are not fully captured by
simply using the EM equation and confirms that the conductance-strain relationship does follow
percolation type behavior.

Table 4-1. Values for the generalized effective medium (GEM) and effective medium (EM)
equations used in Figure 4-6. See Equation 3 for GEM and Equation 2 or EM. The model
response shows the percent change in the model output for a £20% in the input parameter.

. Model Response for
Variable Value +20% Change in Input Source
Om 1.11e-8 +5% Least Squares Fit
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o 2.72¢2 +20% [21]

s 10.37 +10% [21]
-120%

t 1.72 +50% [21]

& 0.0045 +£5% [21]
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Figure 4-6. Resistivity-strain curves for the random resistor network (RRN) compared to the
generalized effective medium (GEM) equation with percolation and the effective medium (EM)
equation without percolation theory.

4.4 Design Problem — Gauge Factor

As shown earlier, the orientation of nanoparticles can have a significant impact on
resistivity change with strain. From a design perspective, it would be helpful to know, then, what
the best orientation of nanoparticles would be to get the greatest gauge factor or change in
resistivity for a certain change in strain. The orientations tested were (1) random selection of
rotations (defined by #and ¢) on the sphere, (2) selecting initial nanoparticle axes (y’’ in Figure
3-2) within +15° of parallel to the tensile axis, (3) selecting initial nanoparticle axes within +45°
from the tensile axis, and (4) selecting initial nanoparticle axes within +£15° of perpendicular to
the tensile axis. Within these orientation definitions, varying angles for the rotations of
individual nanoparticles (defined by « and f) were also assumed, namely: random rotations,
rotations between 0-30°, or rotations between 60-90°.
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Figure 4-7. Resistivity vs strain for random rotations described by #and ¢, but o and £ lie
between 0-30° (the particles are aligned relative to each other).

The highest gauge factor, and largest change in resistivity, came from using all possible
orientations for the nanoparticle axes (€ and ¢ randomly distributed along a sphere ) but
restricting the rotations of the nanoparticles to between 0-30° (i.e. by aligning the nanoparticles
relative to each other, but not relative to the global frame). Allowing « and fto be any possible
values (rather than the range between 0-30°) decreased the gauge factor by 0.5-1. The gauge
factor for the example in Figure 4-7 is 3.

4.5 Design Problem — Initial Rise in Resistivity

One phenomenon that happens in the silicone-nickel nanoparticle sensors studied in related
work [58] is an initial rise in resistance at small values of strain. The RRN model also usually
exhibited the same initial rise in resistance for different resistor networks, though not for all (as
seen in earlier figures.) Figure 4-8 shows a curve with the characteristic initial rise in resistivity
using the RRN model with FEA. The curve in Figure 4-8 used angles for nanoparticle orientation
randomly distributed along a sphere and a Weibull distribution for initial gap sizes with a scaling
parameter of 7nm and a shaping parameter of 12.36. The initial spike in resistivity happened
with other ranges for the orientation of nanoparticles such as nanoparticles axes within +45° or
+15°0f the tensile axis. The spike happened regardless of the initial gap distribution or mean
used, although using a large value for the mean value of initial gap caused the initial rise in
resistance to be more pronounced.
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Figure 4-8. A resistivity-strain curve that shows the characteristic initial increase in resistivity
seen in experimental data from sensors. This curve used a Weibull distribution with a scaling
parameter of 7nm and a shaping parameter of 12.36.

The RRN model with FEA was used to find possible orientations of nanoparticles that
remove the initial increase in resistivity. Different ranges of angles between nanoparticles were
tested to attempt to find a particular range that would eliminate the initial rise in resistance.
When « and fwere restricted to be within 0-30°, @restricted within +15° of the tensile axis, and
@ within £15° of 90° (see Figure 3-2), the initial spike in resistivity disappeared. Figure 4-9
shows an example of one curve with the described restriction in angles.
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Figure 4-9. Resistivity-strain curve where angles between nanoparticles are restricted to 0-30°
for e and S +15° of parallel to the tensile axis for 6, and between 75-90° for ¢. The initial spike
in resistance was eliminated when the angles were restricted to the ranges described.
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The fact that these angle restrictions eliminated the initial increase in resistivity makes
sense since all gaps between nanoparticles at these orientations should decrease with strain
according to Poisson’s contraction (see Figure 3-2). Hence, it seems that if there were a way to
restrict the angles between nanoparticles to a particular range of desired values that it would be
possible to remove the unwanted initial spike in resistivity at small values of strain.

5 SUMMARY AND CONCLUSION

The electrical behavior under strain for a nanocomposite sensor was modeled using a
random resistor network where the resistance of each polymer gap between two nanoparticles
was found using quantum tunneling. This paper analyzed two aspects of the resultant sensor
response: (1) How does the nano-particle orientation distribution, as a function of strain, affect
the sensor behavior, and can this behavior be adequately captured in a simple Poisson
contraction model; and (2) Is the piezoresistivity in the sensor best modeled with percolation
theory or is a standard effective medium type approach sufficient?

An FEA model assumed that each nanoparticle was a cylinder (at least, locally) in a
silicone matrix. While the cylindrical assumption may not be totally physically accurate, the high
aspect ratio of the particles means that any effects from particle curvature are at a distance. There
may also be effects from the branched nature of the nanoparticles, but these branching effects
would show up in terms of relative alignment of the neighboring nanoparticles. The analytical
simple Poisson contraction (SPC) approach assumed that the nanoparticles and matrix could be
modeled as a homogenous material, and a Poisson’s contraction applied to each gap based upon
the gap (rather than the neighboring particles) orientation, in order to predict gap change with
global strain. Despite the simpler approach, SPC proved to be effective at capturing the general
strain-resistivity behavior for a case where particles were randomly oriented along a sphere. In
more specialized cases (e.g. aligning nanoparticles), SPC diverges significant from actual
behavior modeled using FEA; for example, SPC predicts that the overall resistivity would
increase in various scenarios where FEA shows that it actually decreases. The difference
between SPC and FEA stems from the fact that SPC only considers the orientation of the shortest
vector between the particles (given by #and ¢), without considering the relative orientations of
the particles (given by « and fin the FEA simulation). FEA demonstrates that a subset of gaps
decreases with strain for a range of #and ¢ orientations, when the SPC would only predict gap
increase for many of these cases. Overall FEA predicts that gaps become ‘conductive’ (i.e.
decrease to around 2nm) from larger initial gap sizes and for a broader number of orientations
compared with SPC.

The detailed understanding of how orientation affects gap size available with FEA makes
it possible to design a sensor with desired characteristics. The highest gauge factor can be
achieved by using all possible orientations for nanoparticles, i.e. angles randomly distributed
along a sphere. The initial increase in resistivity seen in real sensors seen in real sensors can be
removed by assuming particle geometry where o and  were restricted to be within 0-30°,
restricted within +15° of the tensile axis, and ¢ within £15° of 90°. This range of orientation for
the nanoparticles should have all gaps decrease according to Poisson’s contraction, so it follows
that the overall resistivity would decrease.

Another question answered by this study related to whether the material response of the
sensor followed percolation theory. The conductance-strain relationship showed a characteristic
s-curve expected in percolative system. There was also an s-curve when plotting conductance
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versus the fraction of conductive gaps. Finally, the generalized effective medium equation
(GEM) was found to fit the random resistor network much more closely than the effective
medium equation. From these findings, it can be concluded that the system does follow a

percolation response, and, therefore, modeling the piezoresistivity with percolation theory

provides a reasonable estimate of the material response.
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