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Abstract. Following the approach of Haiden-Katzarkov-Kontsevich [15], to any homo-
logically smooth Z-graded gentle algebra A we associate a triple (ΣA,ΛA; ηA), where ΣA

is an oriented smooth surface with non-empty boundary, ΛA is a set of stops on ∂ΣA

and ηA is a line field on ΣA, such that the derived category of perfect dg-modules of A
is equivalent to the partially wrapped Fukaya category of (ΣA,ΛA; ηA). Modifying ar-
guments of Johnson and Kawazumi, we classify the orbit decomposition of the action of
the (symplectic) mapping class group of ΣA on the homotopy classes of line fields. As
a result we obtain a sufficient criterion for homologically smooth graded gentle algebras
to be derived equivalent. Our criterion uses numerical invariants generalizing those given
by Avella-Alaminos-Geiss in [7], as well as some other numerical invariants. As an appli-
cation, we find many new cases when the AAG-invariants determine the derived Morita
class. As another application, we establish some derived equivalences between the stacky
nodal curves considered in [21].

Introduction

Given a Liouville manifold (M,ω = dλ), a rigorous definition of the compact Fukaya
category, F(M), appears in the monograph [27]. This is a triangulated A∞-category linear
over some base ring K. Roughly speaking, the objects of F(M) are compact, exact, ori-
ented Lagrangian submanifolds in M , equipped with spin structures (if charK 6= 2). The
orientations on each Lagrangian determine a Z2-grading on F(M), and the spin structures
enter in orienting the moduli spaces of holomorphic polygons that enter into the definition
of structure constants of the A∞ operations. It is often convenient to upgrade the Z2-
grading on F(M) to a Z-grading, which can be done under the additional assumption that
2c1(M) = 0 (see [20], [26]). Under this assumption, one defines a notion of a grading struc-
ture on M , and correspondingly considers only graded Lagrangians as objects of F(M),
which now becomes a Z-graded category. We refer to [26] for these general notions. In this
paper, we focus our attention to the case where M = Σ is punctured (real) 2-dimensional
surface, equipped with an area form. A grading structure on Σ can be concretely described
as a homotopy class of a section η of the projectivized tangent bundle of P(TΣ). Note that
there is an effective H1(Σ)’s worth of choices (see Sec. 1). A Lagrangian can be graded if
the winding number of η along L vanishes, and in such a situation a grading is a choice of
a homotopy from the tangent lift L → TL ⊂ TΣ to η|L along L. These gradings extend
in a straightforward manner to the wrapped Fukaya category W(Σ) which contains F(Σ)
as a full subcategory, but also allows non-compact Lagrangians in Σ and more generally,
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partially wrapped categoryW(Σ,Λ), as studied in [15, Sec. 2.1], where Σ is a surface with
boundary and Λ is a collection of stops (i.e., marked points) on ∂Σ.

By a graded surface (Σ,Λ; η) we mean an oriented surface with boundary Σ, together
with a set Λ of marked points on the boundary and a line field η. Given two graded
surfaces with stops, (Σi,Λi; ηi) for i = 1, 2, and a homeomorphism φ : Σ1 → Σ2, such that
φ(Λ1) = Λ2, and φ∗(η1) is homotopic to η2 (we refer to such homeomorphisms as graded),
one gets an equivalence between the partially wrapped Fukaya categories W(Σ1,Λ1; η1)
and W(Σ2,Λ2; η2). Thus, it is important to have a set of explicit computable invariants of
a line field η on a surface with boundary that determine the orbit of η under the action of
the mapping class group of Σ. Our first result (see Theorem 1.2.4) gives such invariants
in terms of winding numbers of η. In the most interesting case when genus is ≥ 2, the
invariants consist of the winding numbers along all the boundary components, plus two
more invariants, each taking values 0 and 1. The first of them decides whether the line
field η is induced by a non-vanishing vector field, while the second is the Arf-invariant of a
certain quadratic form over Z2. The cases of genus 1 and 0 are special due to the special
nature of the corresponding mapping class groups. In the case of genus 1 there is a certain
Z-valued invariant in addition to the winding numbers along boundary components. Note
that from the numerical invariants of Theorem 1.2.4 one can also recover the genus of the
surface and the numbers of stops on the boundary components, so if these invariants match
then the corresponding partially wrapped Fukaya categories are equivalent.

Next, we use this result to construct derived equivalences between gentle algebras, intro-
duced by Assem and Skowrónski in [3]. This is a remarkable class algebras with monomial
quadratic relations of special kind with a well understood structure of indecomposable mod-
ules. Furthermore, their derived categories of modules also enjoy many nice properties (see
[11] and references therein). Avella-Alaminos and Geiss [7] gave a combinatorial definition
of derived invariants of finite-dimensional gentle algebras, which form a collection of pairs
of non-negative integers (m,n) with multiplicities. We refer to these as AAG-invariants.
It is known that these invariants do not completely determine the derived Morita class of
a gentle algebra in general (for example, see [1]).

We consider Z-graded gentle algebras and their perfect derived categories (the classical
case corresponds to algebras concentrated in degree 0). For such an algebra A, we denote
by D(A) the perfect derived category of dg-modules over A viewed as a dg-algebra with
zero differential. The category D(A) has a natural dg-enhancement which we take into
account when talking about equivalences involving D(A).

The connection between graded gentle algebras and Fukaya categories was established by
Haiden, Katzarkov and Kontsevich in [15] (cf. [10]): they constructed collections of formal
generators in some partially wrapped Fukaya categories whose endomorphism algebras
are graded gentle algebras. In Theorem 3.2.2 we give an inverse construction1: starting
from a homologically smooth graded gentle algebra A we construct a graded surface with
stops (ΣA,ΛA; ηA) together with a set formal generators whose endomorphism algebra is
isomorphic to A. This leads to an equivalence of the partially wrapped Fukaya category

1The existence of such construction is mentioned in [15]
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W(Σ,Λ) with the derived category D(A). In addition, we generalize the combinatorial
definition of AAG-invariants to possibly infinite-dimensional graded gentle algebras and
show that they can be recovered from the winding numbers of ηA along all boundary
components.

Now recalling our numerical invariants of graded surfaces with stops from Theorem
1.2.4 we obtain a sufficient criterion for derived equivalence between homologically smooth
graded gentle algebras. Namely, if we start with two such algebras A and A′ and find that
the corresponding invariants from Theorem 1.2.4, determined by winding numbers of ηA
and ηA′ , coincide then we get a derived equivalence between A and A′. More precisely, the
first step is to check that A and A′ have the same AAG-invariants. In the case of genus 0,
this suffices. For genus 1, one has to compute a certain invariant with values in Z≥0, while
for genus > 1 one has to check that two invariants with values in {0, 1} match. Note that
the genus can be computed from the AAG-invariants.

As an application, using the above approach we obtain a sufficient criterion for derived
equivalence of homologically smooth graded gentle algebras given purely in terms of AAG-
invariants (see Corollary 3.2.5). Using Koszul duality, we also get a sufficient criterion
for derived equivalence of finite-dimensional gentle algebras with grading in degree 0 (see
Corollary 3.3.1).

In a different direction, we construct derived equivalences between stacky nodal curves
studied in [21]. Namely, these are either chains or rings of weighted projective lines glued
to form stacky nodes, locally modelled by quotients (xy = 0)/(x, y) ∼ (ζkx, ζy), where
ζr = 1 and k ∈ (Z/r)∗. In [21, Thm. B] we constructed an equivalence of the derived
category of coherent sheaves on such a stacky curve with the partially wrapped Fukaya
category of some graded surface with stops (this can be viewed as an instance of homological
mirror symmetry). Thus, using Theorem 1.2.4 we get many nontrivial derived equivalences
between our stacky curves. In the case of balanced nodes (those with k = −1) we recover
the equivalences between tcnc curves from [28].
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grant DMS-1509141, and would like to thank Martin Kalck for pointing out the reference
[7]. A.P. is supported in part by the NSF grant DMS-1700642 and by the Russian Academic
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London, Institut des Hautes Etudes Scientifiques, and Korea Institute for Advanced Study.
He would like to thank these institutions for hospitality and excellent working conditions.

1. Line fields on surfaces

1.1. Basics on line fields. Let Σ be an oriented smooth surface of genus g(Σ) with non-

empty boundary with connected components ∂Σ =
⊔d
i=1 ∂iΣ. The pure mapping class

group of Σ is

M(Σ) = π0(Homeo
+(Σ, ∂Σ)),

where Homeo+(Σ, ∂Σ) is the space of orientation preserving homeomorphism of Σ which
are the identity pointwise on ∂Σ.
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Definition 1.1.1. An (unoriented) line field η on Σ is a section of the projectivized tangent
bundle P(TΣ). We denote by

G(Σ) = π0(Γ(Σ,P(TΣ)))

the set of homotopy classes of unoriented line fields.

A non-vanishing vector field gives a section of the tangent circle bundle SΣ. Such a
section induces a line field via the bundle map SΣ → P(TΣ) which is a fibrewise double
covering. However, not all line fields come from non-vanishing vector fields: a section of
P(TΣ) may not lift to a section of SΣ (in Lemma 1.1.4 below we will get a criterion for
this).

The trivial circle fibration

S1 ι−→ P(TΣ)
p−→ Σ (1.1)

induces an exact sequence

0→ H1(Σ)
p∗−→ H1(P(TΣ))

ι∗−→ H1(S1)→ 0 (1.2)

(here and below, when the coefficient group is omitted it is assumed to be Z). Note that
the orientation on Σ induces orientations on the tangent circles, so that the inclusion ι
used in the above sequence is canonical up to homotopy.

We can think of line fields as trivializations of the circle fibration (1.1), in particular, the
set G(Σ) has a natural structure of a torsor over the group of homotopy classes of maps
Σ → S1, i.e., with H1(Σ). We denote the corresponding action of c ∈ H1(Σ) on G(Σ) by
η 7→ η + c,

Let us associate with a line field η the class [η] ∈ H1(P(TΣ)), such that ι∗[η]([S1]) = 1, by
taking the Poincaré-Lefschetz dual of the class of the image [η(Σ)] ⊂ H2(P(TΣ), ∂P(TΣ)).

Lemma 1.1.2. The map η 7→ [η] gives an identification

G(Σ) = (ι∗)−1(ζ) ⊂ H1(P(TΣ)),

where ζ ∈ H1(S1) is the generator which integrates to 1 along S1.

Proof. The exact sequence (1.2) shows that set (ι∗)−1(ζ) is a torsor over H1(Σ). It is easy
to check that the map η 7→ [η] is compatible with the H1(Σ)-actions, i.e.,

[η + c] = [η] + p∗c.

The assertion follows immediately from this. �

The mapping class group M(Σ) acts on G(Σ) on the right. Our goal in this section is
to understand the orbit decomposition of G(Σ) with respect to this action.

Given an immersed curve γ : S1 → Σ, one can consider its tangent lift γ̃ : S1 → P(TΣ)
given by (γ, Tγ), where Tγ is the tangent space to the curve γ.

Definition 1.1.3. Given a line field η and an immersed curve γ, define the winding number
of γ with respect to η to be

wη(γ) := 〈[η], [γ̃]〉,
where 〈 , 〉 : H1(P(TΣ))×H1(P(TΣ))→ Z is the natural pairing.
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The winding number wη(γ) with respect to η only depends on the homotopy class of η
and the regular homotopy class of γ. From the definition we immediately get the following
compatibility with the action of H1(Σ):

wη+c(γ) = wη(γ) + 〈c, [γ]〉.
Throughout, ∂Σ is oriented with respect to the natural orientation as the boundary of

Σ. In particular, wη(∂D2) = 2 for the unique homotopy class of line fields on D2. For a
boundary component B ⊂ ∂Σ with the opposite orientation, we write −B. Then, we have
wη(−B) = −wη(B).

Every nonvanishing vector field v on Σ defines naturally a line field. In this way we get
a map

V (Σ)→ G(Σ) : v 7→ 〈v〉
from the set of homotopy classes of nonvanishing vector fields V (Σ). We can think of
nonvanishing vector fields as trivializations of the tangent circle bundle, so V (Σ) has a
natural action of the group of homotopy classes of maps Σ→ S1, i.e., of H1(Σ). It is easy
to check that the above map is compatible with the H1(Σ)-actions via the multiplication
by 2:

〈v + c〉 = 〈v〉+ 2c

for c ∈ H1(Σ). Also, for any nonvanishing vector field v, the winding number of the
corresponding line field 〈v〉 along an immersed curve γ is related to the winding number
of v itself by

w〈v〉(γ) = 2wv(γ).

Lemma 1.1.4. A line field η comes from a vector field if an only if all of its winding
numbers are even.

Proof. The “only if” part is clear. Now let η be a line field with even winding numbers and
let v be some nonvanishing vector field (it exists since Σ is noncompact). Then η = 〈v〉+ c
for some c ∈ H1(Σ) such that 〈c, [γ]〉 is even for every homology class [γ]. But this implies
that c = 2c′, so η = 〈v + c′〉. �

1.2. Invariants under the action of the mapping class group. Recall that ∂iΣ,
i = 1, . . . , d are the components of the boundary of Σ. Given a line field η, the winding
numbers

wη(∂iΣ) for i = 1, . . . d,

depend only on the homotopy class of η and are invariant under the action of the mapping
class group M(Σ). This gives us the first set of invariants of elements of G(Σ).

To go further, we need to study the winding numbers along non-separating curves on
Σ. As is well-known, the winding number invariants do not descend to a map from H1(Σ).

Indeed, if S ⊂ Σ is a compact subsurface with boundary ∂S =
⊔d
i=1 ∂iS, by Poincaré-Hopf

index theorem (see [16, Ch. 3]), we have:

d∑
i=1

wη(∂iS) = 2χ(S) (1.3)
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However, considering the reduction modulo 2 we still get a well-defined homomorphism
(see [17]):

[wη]
(2) : H1(Σ;Z2)→ Z2

i.e an element H1(Σ;Z2).

Definition 1.2.1. We define the Z2-valued invariant

σ : G(Σ)→ Z2

η 7→

{
0 if [wη]

(2) = 0

1 otherwise

We have a natural map induced by the inclusion ∂Σ→ Σ,

i : H1(∂Σ;Z2) ∼= Zd2 → H1(Σ;Z2) ∼= Z2g+d−1
2 .

Note that the image of i is precisely the kernel of the intersection pairing on H1(Σ,Z2), and
the induced pairing on the cokernel of i is non-degenerate. In fact, this cokernel is naturally
isomorphic to H1(Σ;Z2) ' Z2g

2 , where Σ is the surface without boundary obtained from Σ
by capping off all the boundary components.

Note that the values of [wη]
(2) on the boundary cycles are given by wη(∂iΣ) modulo 2.

Thus, if at least one of these numbers is odd then σ(η) = 1. If all the boundary winding
numbers are even then we can check whether σ(η) = 0 by looking at the winding numbers
of a collection of cycles that form a basis in the homology of Σ.

Proposition 1.2.2. Suppose η is a line field on Σ defined by the class [η] ∈ H1(P(TΣ)).
There is well defined map

qη : H1(Σ;Z4)→ Z4

given by

qη(
m∑
i=1

αi) =
m∑
i=1

wη(αi) + 2m ∈ Z4,

where αi are simple closed curves. It satisfies

qη(a+ b) = qη(a) + qη(b) + 2(a · b) ∈ Z4

where a, b ∈ H1(Σ;Z4), and a · b denotes the intersection pairing on H1(Σ;Z4).

Proof. In the case when η comes from a non-vanishing vector field v, we have wη(a) =
2wv(a), where wv(·) is the winding number of the vector field. Hence, the assertion in this
case follows from [17, Thm 1A, Thm 1B]. In general, we have η = η0 + c, where η0 comes
from a non-vanishing vector field (which exists because Σ is non-compact) and c is a class
in H1(Σ). Thus, the function qη(a) := qη0(a) + 〈c, a〉 has the claimed properties. �

It is useful to remind here that the action of the Dehn twist along a simple closed curve
γ on the homology of Σ is given by the transvection Ta(x) = x + (a · x)a with respect to
the homology class a = [γ]. The latter class can be any primitive element in the homology
group.
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Lemma 1.2.3. Suppose that g(Σ) ≥ 2. Assume that line fields η and θ have wη(∂iΣ) =
wθ(∂iΣ) for i = 1, . . . , d, and qη = qθ. Then their homotopy classes lie in the same M(Σ)-
orbit.

Proof. The assumption qη = qθ implies that wη(a) ≡ wθ(a) mod 4 for any a ∈ H1(Σ). Thus,
we have θ = η + 4c for some c ∈ H1(Σ). Furthermore, the condition wη(∂iΣ) = wθ(∂iΣ)
implies that c has zero restriction to H1(∂Σ). Hence, there exists α ∈ H1(Σ), such that
〈c, γ〉 = (α ·γ) for any γ ∈ H1(Σ). Now the fact that η and θ lie in the sameM(Σ)-orbit is
proved in exactly the same way as in the proof of [18, Thm. 2.5]. Namely, for each standard
generator of the homology, α, one can construct an explicit element in the mapping class
fα (expressed in terms of Dehn twists along certain curves related to α) such that the
action of fα on a line field has the same effect as adding the class dual to 4α. �

Thus, for g(Σ) ≥ 2, the study of the M(Σ)-orbits on G(Σ) reduces to the study of
M(Σ)-orbits on the set of functions q : H1(Σ,Z4)→ Z4 satisfying

q(a+ b) = q(a) + q(b) + 2(a · b). (1.4)

Let us denote by Quad4 = Quad4(Σ) the set of all such functions (it is an H1(Σ,Z4)-torsor).
Recall that given a symplectic vector space V, (− · −) over Z2, one can consider the set

Quad(V ) of quadratic forms q : V → Z2 satisfying

q(x+ y) = q(x) + q(y) + (x · y). (1.5)

For every q ∈ Quad(V ), the Arf-invariant ([2],[12]) is the element of Z2 given by

A(q) =
n∑
i=1

q(ai)q(bi),

where (ai, bi) is a symplectic basis of V . The Arf invariant is the value that q attains on
the majority of vectors in V .

In the case when wη(∂iΣ) ≡ 2 mod 4 for every i = 1, . . . , d, and the quadratic function
q = qη takes values in 2Z4, we can associate to q an element in Quad(H1(Σ,Z2)) whose
Arf-invariant will give us an additional invariant of η modulo the mapping class group
action.

Namely, it is easy to see that if q ∈ Quad4 takes values in 2Z4 then we have a well defined
function q/2 : H1(Σ,Z2) → Z2 satisfying (1.5) such that q = 2 · q/2. Now the condition
wη(∂iΣ) ≡ 2 mod 4 is equivalent to q/2(∂iΣ) = 0, so this is precisely the condition for the
quadratic function q/2 to descend to a form q in Quad(H1(Σ,Z2)) (recall that H1(Σ,Z2)
is the quotient of H1(Σ,Z2) by the boundary classes).

Thus, in the case when σ(η) = 0 and wη(∂iΣ) ≡ 2 mod 4 for every i = 1, . . . , d, we can
apply the above construction to qη and define the quadratic form qη in Quad(H1(Σ,Z2)).
In this case we set

A(η) := A(qη).

In the case g(Σ) = 1 we will use a different invariant of a line field, Ã(η), defined by

Ã(η) := gcd({wη(α), wη(β), wη(∂1Σ) + 2, . . . , wη(∂dΣ) + 2}), (1.6)
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where α, β are non-separating curves in Σ such that [α] and [β] project to a basis of
H1(Σ)/ im(i∗). It can be shown as in [18, Lemma 2.6] that

Ã(η) = gcd({wη(γ) : γ non-separating })

which implies that Ã(·) is indeed invariant under the mapping class group. We also note
that in the case d = 1, wη(∂Σ) = −2, hence this invariant reduces to gcd(wη(α), wη(β))
considered in [1].

Theorem 1.2.4. (i) Suppose g(Σ) = 0, then the action of M(Σ) on G(Σ) is trivial.
Moreover, two line fields η and θ are homotopic if and only if

wη(∂iΣ) = wθ(∂iΣ) for all i = 1, . . . d.

(ii) Suppose g(Σ) = 1. Then two line fields η and θ are in the same M(Σ)-orbit if and
only if

wη(∂iΣ) = wθ(∂iΣ) for all i = 1, . . . d.

and
Ã(η) = Ã(θ) ∈ Z≥0,

where Ã(η) is defined by (1.6).
(iii) Suppose g(Σ) ≥ 2. Then two line fields η and θ are in the same M(Σ) orbit if and

only if the following conditions are satisfied:
(1) wη(∂iΣ) = wθ(∂iΣ) for all i = 1, . . . d;
(2) σ(η) = σ(θ) (this only needs to be checked if all wη(∂iΣ) are even);
(3) if wη(∂iΣ) = wθ(∂iΣ) ∈ 2 + 4Z and σ(η) = σ(θ) = 0 then additionally one

must have
A(η) = A(θ),

where A is an Arf invariant defined above.

Proof. (i) This follows immediately from the fact that G(Σ) is an H1(Σ)-torsor and the
boundary curves ∂iΣ generate the group H1(Σ).
(ii) This is proved in the same way as Theorem 2.8 in [18]. The main idea is to use the
fact that for the standard choice of simple curves α and β, the Dehn twists with respect
to α and β generate an action of SL2(Z) on the pair (wη(α), wη(β)) (one also uses some
other Dehn twists, as in the proof of [18, Thm. 2.8]).
(iii) We need to prove that if the invariants match then η and θ are in the same M(Σ)-
orbit. Note that σ(η) is determined by whether the quadratic function qη is trivial modulo
2 or not. By Lemma 1.2.3, it is enough to prove that the quadratic functions qη and qθ are
in the same M(Σ)-orbit.

First, let us analyze the result of the action of a transvection

Ta(x) = x+ (a · x)a

on quadratic functions in Quad4. Note that all such transvections can be realized by
elements of the mapping class group: if the class a is not divisible by 2 then we can lift it
to a primitive element of the homology, and hence, Ta is realized by some Dehn twist. On
the other hand, if a is divisible by 2 then Ta = id.
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We have

q(Ta(x)) = q(x) + (a · x)q(a) + 2(a · x)(x · a) = q(x) + (q(a) + 2)(a · x). (1.7)

In particular, if q(a) = −1 then q(Ta(x)) = q(x) + (a · x).
Let us set

H := H1(Σ,Z4), K = im(i∗ : H1(∂Σ,Z4)→ H1(Σ,Z4)).

If q, q′ ∈ Quad4 have q|K = q′|K then (q′− q) is a homomorphism H → Z4, vanishing on
K, hence it has form x 7→ (a · x) for some a ∈ H.

Assume now that q ∈ Quad4 is such that q|K is surjective, i.e., the reduction of q|K
modulo 2 is nonzero. Then we claim that any q′ ∈ Quad4 with q′|K = q|K lies in the
M(Σ)-orbit of q. Indeed, we have q′(x)− q(x) = (a · x) for some a ∈ H. By surjectivity of
q|K we can find k ∈ K such that q(k) = −1 − q(a), i.e., q(a + k) = −1. Then from (1.7)
we get

qTa+k = q′.

Next, let us consider q ∈ Quad4 such that q|K takes values in 2Z4. Assume also that
qmod 2 6= 0. We claim that in this case the M(Σ)-orbit of q is determined by q|K . Note
that qmod 2 is a homomorphismH → Z2 trivial onK, so it is an element of Hom(H/K,Z2).
SinceM(Σ) acts transitively on nonzero elements in Hom(H/K,Z2), it is enough to prove
that if q′ ≡ qmod 2 and q′|K = q|K then q′ and q are in the sameM(Σ)-orbit. As before we
deduce that q′(x)−q(x) = 2(a ·x) for some a ∈ H. If q(a) ≡ 1 mod 2 then this immediately
gives q′ = qT 2

a . On the other hand, if q′(a) ≡ q(a) ≡ 0 mod 2 then for any element b with
q(b) ≡ 1 mod 2 we have

qT 2
a+b(x) = q(x) + 2((a+ b) · x) = q′(x) + 2(b · x) = q′T 2

b (x),

so q′ and q are in the same orbit.
Finally, if q takes values in 2Z4 then we have q = 2 · q/2 for a quadratic form q/2 on

H/2H satisfying (1.5), and we can use the description ofM(Σ)-orbits on such forms from
[18, Thm. 1.3] (based on the work of Johnson [17]). �

Remark 1.2.5. 1. It follows from (1.3) that the genus of the surface is determined by the
boundary winding numbers of η via the formula

4− 4g(Σ) =
d∑
i=1

(wη(∂iΣ) + 2). (1.8)

2. In the case σ(η) = 0, the line field η is induced by a non-vanishing vector field v (see
Lemma 1.1.4). This induces a spin structure on the surface Σ (by considering its mod 2
reduction). The condition that wη(∂iΣ) ≡ 2 mod 4, for i = 1, . . . , d, means that this spin
structure extends to a spin structure on the compact surface obtained from Σ by capping
off the boundaries with a disk. Now, it is a theorem of Atiyah [4] (see also [17]) that the
action of the mapping class group on the spin structures on a compact Riemann surface
has exactly 2 orbits distinguished by the Arf invariant.

Theorem 1.2.4 can be used to get a criterion for a homeomorphism between two different
graded surfaces.
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Corollary 1.2.6. Let (Σ1,Λ1; η1) and (Σ2,Λ2; η2) be graded surfaces (where Λi are sets of
marked points on the boundary and ηi are line fields) with the same number of boundary
components d. Then there exists an orientation preserving homeomorphism φ : Σ1 → Σ2

such that φ(Λ1) = Λ2 and φ∗(η1) is homotopic to η2 if and only if there exists a numbering
of boundary components on Σ1 and Σ2 such that for each i = 1, . . . , d, one has

#(Λ1 ∩ ∂iΣ1) = #(Λ2 ∩ ∂iΣ2),

wη1(∂iΣ1) = wη2(∂iΣ2),

and in addition,

• if g(Σ1) = g(Σ2) = 1 then Ã(η1) = Ã(η2);
• if g(Σ1) = g(Σ2) ≥ 2 then σ(η1) = σ(η2) and A(η1) = A(η2) whenever the latter

two invariants are defined.

Proof. The “only if” part is clear. For the “if” part, since g(Σ1) = g(Σ2) (due to (1.8)),

we can find a homeomorphism φ̃ : Σ1 → Σ2 sending ∂iΣ1 to ∂iΣ2 and Λ1 to Λ2. Applying

Theorem 1.2.4 to φ̃∗η1 and η2 we deduce the existence of an element ψ ∈ M(Σ2) such

that ψ∗(φ̃∗η1) = η2. Thus, the homeomorphism φ = ψ ◦ φ̃ : Σ1 → Σ2 has the required
properties. �

2. Partially wrapped Fukaya categories

The partially wrapped Fukaya category W(Σ,Λ; η) (with coefficients in a field K) is
associated to a graded surface (Σ,Λ; η), where Σ is a connected compact surface with non-
empty boundary ∂Σ, Λ ⊂ ∂Σ is a collection of marked points called stops, and η is a line
field on Σ. Partially wrapped Fukaya categories were first introduced in the work of Auroux
[5] in arbitrary dimension. In the case the symplectic manifold is a surface, which is our
focus in this paper, there is a combinatorial description ofW(Σ,Λ; η) provided in [15]. The
latter not only gives a topological computation of the partially wrapped Fukaya category
defined by symplectic machinery in [5], but also provides an independent, purely topological
proof of the invariance of W(Σ,Λ; η) using the well-known contractibility result of Harer’s
arc complex. In particular, it follows from this topological description that given two
graded surfaces with stops, (Σi,Λi, ηi) for i = 1, 2, a homeomorphism φ : Σ1 → Σ2 which
restricts to a bijection Λ1 → Λ2 and a homotopy between φ∗(η1) to η2, we get an equivalence
of between the partially wrapped Fukaya categories W(Σ1,Λ1; η1) to W(Σ2,Λ2; η2). The
proof of the equivalence of the two approaches, [5] and [15] given by Abouzaid in the case
Λ = ∅ in the appendix of [10] easily extends to the general case. Another possible approach
to this equivalence is via the definition of wrapped Fukaya categories given in [13] which
uses the symplectic field theory formulation. We note that we do not need to appeal to
any of these equivalences for the applications in this paper, we simply work with with
the definition and the established results given in [15]. We next recall this combinatorial
description of the partially wrapped Fukaya categories from [15].

A set of pairwise disjoint and non-isotopic Lagrangians {Li} in Σ\Λ generates the par-
tially wrapped Fukaya category W(Σ,Λ; η) as a triangulated category if the complement



DERIVED EQUIVALENCES OF GENTLE ALGEBRAS VIA FUKAYA CATEGORIES 11

of the Lagrangians

Σ \ {
⊔
i

Li} =
⋃
f

Df

is a union of disks Df each of which has at most one stop on its boundary. Furthermore,
if each Df has exactly one stop in its boundary, the associative K-algebra

AL• :=
⊕
i,j

hom(Li, Lj)

is formal, and it can be described by a graded gentle algebra (see Def. 3.1.1). Figure 1
illustrates how each Df may look like, where the blue arcs are in

⊔
i Li while the black arcs

lie in ∂Σ.

Lm

Lm−1

L·
L2

L1

Figure 1. An example of a disk Df

The algebra AL• can easily be described by a quiver following the flow lines corresponding
to rotation around the boundary components of Σ connecting the Lagrangians. Note that
each boundary component of Σ is an oriented circle (where the boundary orientation is
induced by the area form on Σ). Specifically, a flowline that goes from Lj to Li gives a
generator for hom(Li, Lj) (note the reversal of indices). The data of Λ enters by disallowing
flows that pass through a marked point. The algebra structure is given by concatenation
of flow lines. Given αi ∈ hom(Li, Li+1) for i = 1, . . . , n, we write

αnαn−1 . . . α1 ∈ hom(L1, Ln+1)

for their product, read from right-to-left, and if non-zero, this expression corresponds to a
flow from Ln+1 to L1.

Finally, the line field η is used to grade the morphism spaces. A convenient way to
determine the line field η is by describing its restrictions along each of the disks Df . Each
such disk is as in Figure 1. Different disks are glued along the curves Li (the blue parts in
their boundary). As Li are contractible, changing a line field by homotopy, we can arrange
that it is transverse to Li everywhere along Li. Every line field on Σ (up to homotopy)
can be glued out of such line fields on the disks Df .

Note that if we have an embedded segment c ⊂ Σ and a line field η, which is transversal
to c at the ends p1, p2 of c, then we can define the winding number wη(c) (first, one can
trivialize TΣ along c in such a way that the tangent line to c is constant, then count the
number of times (with sign) η coincides with the tangent line to c along c. An equivalent
definition is given in [15, Sec. 3.2]). Now a line field on a disk Df , transverse to {Li},



12 YANKI LEKILI AND ALEXANDER POLISHCHUK

is determined (up to homotopy) by the integers θi, for i = 1, . . . ,m, given by its winding
numbers along the boundary parts on ∂Σ (the black parts in Figure 1). By definition, these
numbers are the degrees of the corresponding morphisms in the wrapped Fukaya category.

The numbers θi can be chosen arbitrarily subject to the constraint
m∑
i=1

θi = m− 2. (2.1)

This last constraint is the topological condition that needs to be satisfied in order for the
line field to extend to the interior of the disk. (Note that the stops do not play a role in
this discussion.)

The gentle algebra AL• is always homologically smooth since so is W(Σ,Λ; η). The
algebra AL• is proper (i.e., finite-dimensional) if and only if there is at least one marked
point on every boundary component. The “if” part is [15, Cor. 3.1]. On the other hand,
if there is a boundary component with no stops, then we can compose flows along this
boundary indefinitely, so AL• is not proper.

In what follows, it will be convenient to consider AopL• as a quiver algebra KQ/I, so that

flow lines from Li to Lj correspond to arrows from the ith vertex to jth vertex. Note that
the collection {Li} generates the partially wrapped Fukaya categoryW(Σ,Λ; η). Therefore,
we have an equivalence

D(AopL•)
∼=W(Σ,Λ; η),

where the category on the left denotes the bounded derived category of perfect (left) dg-
modules over AopL• .

3. Gentle algebras and Fukaya categories

3.1. Graded gentle algebras and AAG-invariants. A quiver is a tupleQ = (Q0, Q1, s, t)
where Q0 is the set of vertices, Q1 is the set of arrows, s, t : Q1 → Q0 is the functions that
determine the source and target of the arrows. We always assume Q to be finite. A path
in Q is a sequence of arrows αn . . . α2α1 such that s(αi+1) = t(αi) for i = 1, . . . , (n− 1). A
cycle in Q is a path of length ≥ 1 in which the beginning and the end vertices coincide but
otherwise the vertices are distinct. For K a field, let KQ be the path algebra, with paths
in Q as a basis and multiplication induced by concatenation. Note that the source s and
target t maps have obvious extensions to paths in Q.

Definition 3.1.1. A gentle algebra2 A = KQ/I is given by a quiver Q with relations I
such that

(1) Each vertex has at most two incoming and at most two outgoing edges.
(2) The ideal I is generated by composable paths of length 2.
(3) For each arrow α, there is at most one arrow β such that αβ ∈ I and there is at

most one arrow β such that βα ∈ I.

2Our terminology is the same as in [25], so we do not impose the condition of finite-dimensionality in
the definition of a gentle algebras. What we call “gentle algebra” is sometimes referred to as “locally gentle
algebra”.
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(4) For each arrow α, there is at most one arrow β such that αβ /∈ I and there is at
most one arrow β such that βα /∈ I.

In addition, we always assume Q to be connected.

We will consider Z-graded gentle algebras, i.e., every arrow in Q should have a degree
assigned to it. For a Z-graded gentle algebra A we denote by D(A) the derived category
of perfect dg-modules over A, where A is viewed as a dg-algebra with its natural grading
and zero differential.

Remark 3.1.2. Note that D(A) is different from the derived category of graded A-
modules. In fact, the former category is obtained from the latter as a suitable orbit
category (see the discussion in [24, Sec. 1.3]). On the other hand, it is well known that if
the grading of A is zero then D(A) is equivalent to the perfect derived category of ungraded
A-modules. Indeed, in this case a dg-module over A is the same thing as a complex of
A-modules.

Lemma 3.1.3. (i) A gentle algebra is homologically smooth if and only if there are no
forbidden cycles i.e. cycles αn . . . α2α1 in KQ such that αi+1αi ∈ I for i ∈ Z/n.
(ii) A gentle algebra is proper (i.e., finite-dimensional) if and only if there are no permitted
cycles i.e. paths αn . . . α2α1 in KQ such that αi+1αi /∈ I for i ∈ Z/n.

Proof. The “if” direction is proved in [15, Prop. 3.4(1)] using an explicit form of the
resolution of the diagonal bimodule. Note that such a resolution goes back to Bardzell’s
work [8] (where the case of arbitrary monomial relations is considered). It remains to
prove that if a gentle algebra A is homologically smooth then there are no forbidden
cycles. Since A is homologically smooth, the diagonal bimodule is perfect dg-module over
Aop ⊗ A. Thus, for every simple A-module S (corresponding to one of the vertices), we
get a quasi-isomorphism of S with a perfect dg-module over A. It follows that the space
Ext∗A−dgmod(S, S) is finite-dimensional. Equivalently, the space Ext∗A(S, S), computed in
the category of ungraded A-modules, is finite-dimensional (see [24, Thm. 1.3.3]). But the
latter space can be computed using the standard Koszul complex, and the presence of
forbidden cycles would mean that for some S the space Ext∗A(S, S) is infinite-dimensional.
(ii) This is straightforward as properness is equivalent to having only finite number of paths
that are nonzero in A (see [15, Prop. 3.4(2)]). �

We will use the following notions from [7].

Definition 3.1.4. A forbidden path is a path in Q of the form

f = αn−1 . . . α2α1 ∈ KQ
such that all (αi) are distinct and for all i = 1, . . . , (n − 2), αi+1αi ∈ I. It is a forbidden
thread if for all β ∈ Q1 neither βαn . . . α2α1 nor αn . . . α2α1β is a forbidden path. In
addition, if v ∈ Q0 with #{α ∈ Q1|s(α) = v} ≤ 1,#{α ∈ Q1|t(α) = v} ≤ 1, then we
consider the idempotent ev as a (trivial) forbidden thread in the following cases:

• either there are no α with s(α) = v or there are no α with t(α) = v;
• we have β, γ ∈ Q1 with s(γ) = v = t(β) and γβ ∈ I.
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The grading of a forbidden thread is defined by

|f | =
n−1∑
i=1

|αi| − (n− 2).

Definition 3.1.5. A permitted path is a path in Q of the form

p = αn . . . α2α1 ∈ KQ
such that all (αi) are distinct and for all i = 1, . . . , (n−1), αi+1αi /∈ I, and it is a permitted
thread if for all β ∈ Q1 neither βαn . . . α2α1 nor αn . . . α2α1β is a permitted path. In
addition, if v ∈ Q0 with #{α ∈ Q1|s(α) = v} ≤ 1,#{α ∈ Q1|t(α) = v} ≤ 1, then we
consider the idempotent ev as a (trivial) permitted thread in the following cases:

• either there are no α with s(α) = v or there are no α with t(α) = v;
• we have β, γ ∈ Q1 with s(γ) = v = t(β) and γβ /∈ I.

The grading of a permitted thread is defined by

|p| = −
n∑
i=1

|αi|.

Remark 3.1.6. Inclusion of the idempotents as forbidden and permitted threads ensures
that every vertex appears in exactly two forbidden threads/cycles and exactly two permit-
ted threads/cycles.

Definition 3.1.7. For a gentle algebra A, a combinatorial boundary component of type I
is an alternating cyclic sequence of forbidden and permitted threads:

b = pnfn . . . p2f2p1f1

such that s(fi) = s(pi) for i ∈ Z/n, and t(pi) = t(fi+1) for i ∈ Z/n with the following
condition:

(?) For each i ∈ Z/n, if fi+1 = αk . . . α1, pi = βm . . . β1, and fi = γn . . . γ1 such that
s(fi) = s(pi) and t(pi) = t(fi+1), we have

γ1 6= β1 and βm 6= αk.

The winding number associated to a combinatorial boundary component b of type I is
defined to be

w(b) :=
r∑
i=1

(|pi|+ |fi|).

We also denote the number n of forbidden threads in b as n(b).
A combinatorial boundary component of type II (that can appear only if A is not proper)

is simply a permitted cycle
pc = αm . . . α1.

The winding number associated to such a cycle is

w(pc) := −
m∑
i=1

|αi|.
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A combinatorial boundary component of type II’ (that can appear only if A is not homo-
logically smooth) is simply a forbidden cycle

fc = αm . . . α1.

The winding number associated to such a cycle is

w(fc) :=
m∑
i=1

|αi| −m.

For combinatorial boundary components of types II and II’ we set n(b) = 0.

Lemma 3.1.8. Let A be a proper gentle algebra, with grading in degree zero. Then the
collection of pairs (n(b), n(b)− w(b)), over all combinatorial boundary components (taken
with multiplicities) coincides with AAG-invariants of A.

Proof. This follows directly from the description of the AAG-invariants in [7, Sec. 3]. Note
that the pair (0,m) in Step (3) of the algorithm of [7, Sec. 3] associated to a forbidden
cycle fc = αm . . . α1 match with the pair (0, w(fc)) associated with the corresponding
combinatorial component of type II’. Indeed, w(fc) = m since the grading of A is in
degree 0. �

From now on we will always assume that our gentle algebras are homologically smooth,
with the exception of Remark 3.3.5.

Motivated by Lemma 3.1.8 we extend the definition of the AAG-invariants to graded
gentle algebras.

Definition 3.1.9. For a graded gentle algebra A we define the AAG-invariants to be
the collection of pairs (n(b), n(b) − w(b)), taken with multiplicities, where b runs over all
combinatorial boundary components of A.

3.2. Relation to Fukaya categories. The definition of the combinatorial boundary com-
ponent for a gentle algebra is motivated by the following proposition:

Proposition 3.2.1. Suppose Σ is a surface with a collection of marked points Λ ⊂ ∂Σ, and
a line field η. Let {Li} be a collection of Lagrangians such that the complement of

⊔
i Li is a

union of disks each of which has exactly one stop on its boundary. Then the combinatorial
boundary components of the homologically smooth gentle algebra A =

(⊕
i,j hom(Li, Lj)

)op
are in natural bijection with the boundary components of ∂Σ. Furthermore, if a combinato-
rial boundary component b corresponds to a boundary component B ⊂ ∂Σ then the number
of forbidden threads in b is equal to the number of stops on B and the winding numbers
match:

wη(B) = w(b).

Proof. Figure 2 shows an example of the way the surface Σ looks around a boundary
component B. Assume first that there is at least one stop on B. Let

q1(1), . . . , q1(k1), q2(1), . . . , q2(k2), . . . , qn(1), . . . , qn(kn)
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be the endpoints of the Lagrangians ending on B, ordered compatibly with the orientation
of B. Here we assume that there are no stops between qi(j) and qi(j + 1) and there is
exactly one stop si between qi(ki) and qi+1(1), for i ∈ Z/n. Then for every i ∈ Z/n we have
a permitted thread pi = βi(ki−1) . . . βi(1), where βi(j) is the generator of A corresponding
to the flow on B from qi(j) to qi(j + 1). On the other hand, each stop si lies on a unique
disk D, and by looking at the pieces of ∂D formed by other boundary components of Σ, we
obtain a forbidden thread fi = αmi

. . . α1 starting at the Lagrangian corresponding to qi(1)
and ending at the one corresponding to qi−1(ki−1). Thus, we get a combinatorial boundary
component of type I, b = pnfn . . . p1f1.

The winding number of η along the arc passing through the stop, oriented in the opposite
direction to the boundary direction, is determined using the constraint (2.1) to be

|f | =
n−1∑
i=1

|αi| − (n− 2)

On the other hand, the winding number of η along the arc corresponding to the permitted
thread p is simply |p|. Thus, we get the equality wη(B) = w(b).

In the case of a boundary component B ⊂ ∂Σ with no stops, the sequence of flows
between the corresponding ends of Lagrangians on B gives a permitted cycle, i.e., a com-
binatorial boundary component of type II. Again, the winding numbers match.

It is easy to see that in this way we get a bijection between the boundary components
B and the combinatorial boundary components of A.

α1

α2

α3

β1

β2

γ1

γ2

δ1

β̃2

Figure 2. The boundary component is given by the cyclic sequence p2f2p1f1
where f1 = α3α2α1, p1 = β2β1, f2 = γ2γ1 and p2 = δ1. Note that if instead
of f1, we considered the forbidden thread f̃1 = β̃2β1, the condition (?) is
violated.

�

Let A be a homologically smooth gentle algebra. We associate with A a ribbon graph
RA whose vertices are in bijection with the collection of forbidden threads in Q, and whose
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edges are in bijection with vertices of Q. More precisely, recall that there are precisely
two forbidden threads that pass through a vertex of Q. The corresponding edge on RA is
defined to connect the two forbidden threads.

Next, we will define a ribbon structure, i.e., a cyclic order on the set of edges incident
to each vertex. In fact, we will equip each such set of edges with a total order which will
induce a cyclic order. (Thus, we get what is called a ciliated fat graph [14].) Namely, the
set of edges incident to a vertex f of R is in bijection with the set of vertices of Q which
appear in the forbidden thread f . Now we use the order in which these vertices appear in
the forbidden thread f .

Thus, we can consider the associated thickened surface ΣA such that RA is embedded
as a deformation retract of ΣA. More specifically, to construct ΣA we replace each vertex
of RA with a 2-disk D2 and each edge with a strip, a thin oriented rectangle [−ε, ε]× [0, 1],
where the rectangles are attached to the boundary of the disks according to the given cyclic
orders at the vertices. On the boundary of each disk associated to the vertex of RA we
also mark a point, called a stop as follows. If the linear order on edges incident to this
vertex is given by e1 < e2 < . . . < ek, the stop e0 appears in the circular order such that
ek < e0 < e1. We define ΛA by taking the union of all such points. In particular, the
cardinality of ΛA, is equal to the number of forbidden threads in A.

Theorem 3.2.2. (i) Given a homologically smooth gentle algebra A over a field K (with
|Q1| > 0), let (ΣA,ΛA) be the corresponding surface with stops defined above. Then ΣA is
connected with non-empty boundary, and for each Z-grading on A there is a natural line
field η on Σ such that we have a derived equivalence

D(A) ∼=W(ΣA,ΛA; ηA).

Furthermore, the AAG-invariants of A are given by the collection of pairs

(ni, ni − wηA(∂iΣA)),

where (∂iΣA)i=1,...,N) are all boundary components of ΣA and ni ∈ Z≥0 is the number of
marked points on ∂iΣA.
(ii) One has

χ(ΣA) = χ(Q) = |Q0| − |Q1|.

Proof. (i) First, let us check that the ribbon graph RA and hence the associated surface
ΣA is connected. Indeed, for every vertex v of Q let e(v) be the corresponding edge in RA,
viewed as a subgraph in RA. Since Q is connected, it is enough to check that if v and v′

are connected by an edge α in Q then e(v) and e(v′) intersect in RA. Indeed, let f be a
forbidden thread containing α (it always exists). Then f is a vertex of both e(v) and e(v′).
This proves our claim that RA is connected.

Dual to the edges of RA we obtain a disjoint collection of non-compact arcs Lv indexed
by vertices of Q. Thus, ΣA is a surface with non-empty oriented boundary, ΛA is a set
of marked points in its boundary, and {Lv : v ∈ Q0} is a collection pair-wise disjoint and
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non-isotopic Lagrangian arcs in ΣA \ ΛA. Furthermore, the complement

ΣA \ {
⊔
v

Lv} =
⋃
f

Df

is a union of disks Df indexed by forbidden threads f in Q, with exactly one marked point
on its boundary (see Examples 3.3.2, 3.3.3 below). In particular, the collection {Lv} gives
a generating set.

By construction, there is a bijection between arrows in the quiver Q and the generators
of the endomorphism algebra AL :=

⊕
v,w hom(Lv, Lw) since each edge α in Q is in exactly

one forbidden thread f , and the corresponding Df has a flow associated to α. Furthermore,
two flows α1 : Lv2 → Lv1 and α2 : Lv3 → Lv2 can be composed in AL if and only if αi
is in a forbidden thread fi, for i = 1, 2, such that the disks Df1 and Df2 are glued along
the edge corresponding to v2. But this means that the corresponding elements of A satisfy
α2α1 /∈ I, as otherwise condition (3) of Definition 3.1.1 would be violated. This implies
that A is naturally identified with AopL as an ungraded algebra.

We define the line field ηA on ΣA as follows. We require that the line field is transverse
to each Lv. Then it suffices to describe its restrictions to the disks Df . Each Df is a
2m-gon as in Figure 1. As explained in Section 2, the homotopy class of a line field
on Df is determined by the winding numbers θi along the boundary arcs of Df , αi, for
i = 1, . . . , (m− 1), avoiding the unique stop (black in Figure 1) between the Lagrangians
(blue in Figure 1). Indeed, the remaining winding number θm along the boundary arc
that passes through the stop is determined by the condition

∑m
i=1 θi = m − 2, and we

can define ηA|Df
as the unique line field with these winding numbers. Now we set θi, for

i = 1, . . . ,m− 1, to be the degree of the generator of A corresponding to αi.
With this definition A and AopL are identified as graded algebras. Since we also know

that the collection {Lv} generates W(ΣA,ΛA; ηA), we conclude that

D(A) ∼=W(ΣA,ΛA; ηA).

Finally, the last statement follows from Proposition 3.2.1.
(ii) We have χ(ΣA) = χ(RA). Let us denote by v(RA) and e(RA) the numbers of vertices
and edges in RA. We have e(R1) = |Q0|, while v(RA) is the number of forbidden threads.
Let f1, . . . , fm be all forbidden threads. Since every edge of Q belongs to the unique
forbidden thread, we have ∑

`(fi) = |Q1|

(where `(·) is the length). On the other hand, since every vertex is contained in exactly
two forbidden threads, we have ∑

(`(fi) + 1) = 2|Q0|.

Combining this with the previous formula we get

v(RA) = 2|Q0| − |Q1|,

so we deduce that χ(RA) = χ(Q). �
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Using formula (1.8) we derive the following property of the AAG-invariants.

Corollary 3.2.3. Let {(ni,mi)}i=1,...,d be the AAG-invariants of a homologically smooth
graded gentle algebra A. Then

d∑
i=1

(ni −mi + 2) = 4− 4g,

where g ≥ 0 is the genus of the corresponding surface ΣA.

Combining Theorem 3.2.2 with Corollary 1.2.6, we get the following result.

Corollary 3.2.4. Given two homologically smooth graded gentle algebras A and B, assume

that the AAG-invariants of A and B are the same, and in addition, the invariants Ã(·),
σ(·) and A(·) (see Theorem 1.2.4) of the line fields ηA (on ΣA) and ηB (on ΣB) are the
same whenever they are defined. Then D(A) ' D(B).

As a particular case of the last Corollary, we can describe some cases when already
looking at the AAG-invariants gives the derived equivalence.

Corollary 3.2.5. Assume that A and B are homologically smooth graded gentle algebras,
such that the AAG-invariants of A and B coincide (up to permutation) and are given by a
collection {(ni,mi)}i=1,...,d. Assume in addition that one of the following conditions holds:
(a)

∑
i(ni −mi + 2) = 4;

(b)
∑

i(ni −mi + 2) = 0 and gcd(n1 −m1 + 2, . . . , nd −md + 2) = 1;
(c)

∑
i(ni −mi + 2) < 0 and at least one of the numbers ni −mi is odd.

Then D(A) ' D(B).

Proof. By Corollary 3.2.3, the three cases are distinguished by the genus g(ΣA): in case
(a) it is 0, in case (b) it is 1, and in case (c) it is > 1. Now the assertion follows from
Corollary 1.2.6. �

Remark 3.2.6. There is a simple combinatorial recipe for calculating winding numbers
of the line field η on ΣA, along the loops corresponding to cycles in the graph RA. Note
that knowing these numbers is enough to calculate all the invariants of η.

Indeed, a cycle in the graph RA is an alternating sequence . . . vifivi+1fi+1 . . . of vertices
and forbidden threads in Q. Since η is transverse to each arc Lvi , we can calculate the
winding number as the sum of winding numbers of the segments of the cycle connecting
a point in Lvi with a point in Lvi+1

through the disk Dfi . Recall that the boundary of
this disk is formed by the arcs Lv where v runs through vertices in the thread fi, and the
parts of the boundary labeled by arrows in fi (as in Figure 2). Now we claim that the
contribution to the winding number from the segment vifivi+1 is equal to

wη(vifivi+1) =

{
1−m+

∑m
j=1 deg(αj), vi

α1−→ . . .
αm−−→ vi+1 ⊂ fi

−1 +m−
∑m

j=1 deg(βj), vi+1
β1−→ . . .

βm−→ vi ⊂ fi.

Indeed, this follows immediately by looking at the polygon formed by the arcs Lvi and
Lvi+1

, by the segment of our cycle between them, and by the part of the boundary of Dfi

between these arcs.
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3.3. Application to finite-dimensional gentle algebras and examples. It is well
known that gentle algebras are Koszul and that the Koszul dual of a gentle algebra is again
gentle, corresponding to the dual combinatorial data (see [9, Sec. 3.3] where what we call
“gentle” is called “locally gentle”). Furthermore, under this duality homologically smooth
graded gentle algebras are exchanged with finite-dimensional ones. Thus, using Koszul
duality we can convert our results into those about finite-dimensional gentle algebras.

Let A be a finite-dimensional gentle algebra with grading in degree 0. Let A! be the
Koszul dual homologically smooth gentle algebra (with respect to the generators given by
the edges). We equip A! with the grading for which all edges have degree 1 (i.e., path-length
grading). Then the result of Keller in [19, Sec. 10.5] (“exterior” case) gives an equivalence

Df (A) ' D(A!),

where Df (A) is the bounded derived category of finite-dimensional A-modules (and D(A!)
is the perfect derived category of A! viewed as a dg-algebra, as before).

Furthermore, it is easy to check that the AAG-invariants of A and A! are the same.
Thus, Corollary 3.2.5 leads to the following result.

Corollary 3.3.1. Let A and B be finite-dimensional gentle algebras with grading in degree
0, such that the AAG-invariants of A and B coincide (up to permutation) and satisfy one
of the conditions (a)–(c) of Corollary 3.2.5. Then

Df (A) ' Df (B).

Example 3.3.2. Here is an example illustrating the construction of associating a surface
to a gentle algebra. Consider the gentle algebra given in Figure 3.

1 2 3 4

d

a

b c
bd = 0

Figure 3. An example of gentle algebra

The forbidden threads are given by {a, bd, c, e4}. The permitted threads are given by
{cba, d, e3, e4}. The combinatorial boundary components are given by {p3f3p2f2p1f1, p4f4}
where, f1 = e4, p1 = e4, f2 = c, p2 = e3, f3 = bd, p3 = cba, and f4 = a, p4 = d.

The associated ribbon graph is given in Figure 4, where the cyclic order at vertices are
given by counter-clockwise rotation.

a bd c e4

2

1

43

Figure 4. Ribbon graph associated to a gentle algebra
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Figure 5 depicts the corresponding surface, together with the dual arcs L1, L2, L3, L4.
As this is a genus zero surface, the line field is determined by the winding numbers

along the boundary components. The winding number along the interior puncture which
corresponds to the combinatorial boundary component p4f4 is given by |a| − |d| and the
winding number along the outer boundary component which corresponds to the combina-
torial boundary component p3f3p2f2p1f1 is the negative of this (since the two boundary
components are homotopic but oriented in an opposite way) but can also be computed as
(−|a| − |b| − |c|) + (|b|+ |d| − 1) + |c|+ 1 = |d| − |a|.

L3

L4

a

b

c

d

L1

L2

Figure 5. Surface associated to a gentle algebra

Example 3.3.3. Here is another example that produces a genus 1 surface with 2 boundary
components. Consider the gentle algebra given by Figure 6.

1 2 3

4 5 6

a b

c

d

t x

y

z
za = by = xc = dt = 0

Figure 6. Another example of a gentle algebra

The forbidden threads are given by {za, by, xc, dt}, and the permitted threads are given
by {ba, dc, xt, zy}. The combinatorial boundary components are given by {p2f2p1f1, p4f4p3f3}
where f1 = dt, p1 = zy, f2 = xc, p2 = ba, and f3 = za, p3 = dc, f4 = by, p4 = xt.

The corresponding surface is given in Figure 7.
This is a genus 1 surface with 2 boundary components. To determine the line field we

need to compute its winding number along the booundary components corresponding to
b1 = p2f2p1f1 and b2 = p4f4p3f3 as well as winding numbers along non-separating curves
depicted in grey. The horizontal one corresponds to the cycle α = f2v5f1v4f4v2f3v1, and
the vertical one corresponds to the cycle β = f1v5f2v1f3v2f4v3. From the formulae given,
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it is easy to compute

wη(b1) = −|a| − |b|+ (|x|+ |c| − 1)− |z| − |y|+ (|d|+ |t| − 1)

wη(b2) = −|t| − |x|+ (|y|+ |b| − 1)− |c| − |d|+ (|z|+ |a| − 1)

wη(α) = |t| − |y|+ |a| − |c|
wη(β) = −|b| − |a|+ |c|+ |d|

3 6

3 6

1 2

4

5

5

a

b

c

d

t

x

y

z

Figure 7. Genus 1 surface with 2 boundary components. Left-right and
top-bottom are identified.

Remark 3.3.4. An optimist’s conjecture would be that conversely if A and B are ho-
mologically smooth graded gentle algebras which are derived equivalent, then there exists
a homeomorphism φ : ΣA → ΣB inducing a bijection ΛA → ΛB and such that φ∗(ηA) is
homotopic to ηB. Note that to prove this, one needs to show that the topological type of
(ΣA,ΛA; ηA) is a derived invariant of A. This is encoded by the numerical invariants of
ηA introduced in Theorem 1.2.4 (from which one can recover the topological type of the
surface), together with the numbers of marked points on each boundary component.

Remark 3.3.5. In Theorem 3.2.2, it is possible to drop the assumption that A is smooth.
Assume for simplicity that A is proper. In this case, the surface Σ would be glued together
from the disks Df associated to forbidden threads as before, and also disks Dc with an
interior hole, associated with forbidden cycles. In other words, Dc is an annulus whose
inner boundary component has no marked points and is not glued to anything, while
its outer boundary component is connected by strips, corresponding to the vertices in
c, to other disks (this boundary component of Dc still has no stops). In the presence
of unmarked boundary components, there is a dual construction to the construction of
partially wrapped Fukaya categories,W(Σ,Λ; η), namely, the infinitesimal wrapped Fukaya
categories F(Σ,Λ; η), originally introduced for general symplectic manifolds in [22] and
studied in the case of surfaces in [21]. Its objects are graded Lagrangians which do not
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end on the unmarked components of the boundary. Thus, for non-smooth proper gentle
algebras, a version of Theorem 3.2.2 should state the equivalence

D(A) ' F(ΣA,ΛA; ηA)

However, we have not checked that the collection of Lagrangians {Lv} given by the con-
struction in Theorem 3.2.2 (and modified as above) generates F(ΣA,ΛA; ηA).

Remark 3.3.6. We note that the statement of Theorem 3.2.2 is mentioned in Section 3.4
of [15]. In the special case when the gentle algebra is trivially graded, the construction
of the surface Σ and the dual set of Lagrangians to {Li} appeared again in [23] after this
work was posted on arXiv. The authors of [23] works with the Kozsul dual gentle algebra
from a representation theoretical perspective. From the point of view of [15], these Koszul
dual algebras can be understood as the infinitesimal Fukaya categories as explained in the
previous remark. Note that also that when every boundary component has at least one
stop which is equivalent to requiring that corresponding gentle algebras are homologically
smooth and proper, infinitesimal and partially wrapped Fukaya categories are equivalent.
We refer to [13] for general results about Koszul duality in the setting of Fukaya categories.

4. Derived equivalences between stacky curves

4.1. Chains. Recall that in [21] we considered stacky curves C(r0, . . . , rn; k1, . . . , kn−1)
obtained by gluing weighted projective lines

B(r0, r1), B(r1, r2), . . . , B(rn−1, rn)

into a chain, where ki ∈ (Z/ri)∗ are used to determine the stacky structure of the nodes in
this chain.

Here B(a, b), for a, b > 0, denotes the weighted projective line stack (A2 \ 0)/Gm,
where Gm acts with weights (a, b) (see e.g., [6, Sec. 2] and references therein). It has
two stacky points q− and q+ such that Aut(q−) = µa, Aut(q+) = µb. To form the
chain C(r0, . . . , rn; k1, . . . , kn−1), we glue the point q+ in B(ri−1, ri) with the point q−
in B(ri, ri+1), so that the obtained stacky node locally looks like the quotient of xy = 0 by
the action of µri of the form ζ · (x, y) = (ζkix, ζy).

Note that in [29] similar stacky curves are considered but with all ki = −1 (the corre-
sponding stacky nodes are called balanced).

We also allow the possibility for r0 = 0 (resp., rn = 0): in this case B(0, r1) (resp.
B(rn−1, 0)) denotes the weighted affine line A1(r1) = B(1, r1) \ {q−} (resp. A1(rn−1) =
B(rn−1, 1) \ {q+}).

We showed in [21, Thm. B] that the bounded derived category of coherent sheaves on
such a stacky curve is equivalent to the partially wrapped Fukaya category of a surface
obtained by a certain gluing of the annuli that we will now describe.

Namely, let A(r, r′) denote the annulus with ordered boundary components that has
r marked points p−1 , . . . , p

−
r on the first component and r′ marked points p+1 , . . . , p

+
r′ on

the second boundary component (the points are ordered cyclically compatibly with the
orientation of the boundary). We visualize A(r, r′) as a rectangle with upper and lower
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sides glued, the left side containing the points p−i and the right side containing the points
p+i .

Given a collection of permutations σi ∈ Sri , i = 1, . . . , n − 1, we consider the surface
Σlin(r0, . . . , rn;σ1, . . . , σn−1) obtained by gluing the annuli

A(r0, r1), A(r1, r2), . . . , A(rn−1, rn)

in the following way (“lin” stands for “linear”, since we place annuli in a line). For each
i = 1, . . . , n−1, j = 1, . . . , ri, we glue a small segment of the boundary around the marked
point p+j in A(ri−1, ri) with a small segment of the boundary around the point p−σi(j) in

A(ri, ri+1) by attaching a strip, as in Figure 8.

Figure 8. Surface glued from annuli (top and bottom are identified).
(r0, r1, r2, r3) = (2, 3, 3, 1), σ1 = σ2 : (1, 2, 3)→ (2, 1, 3)

Note that the resulting surface has two special boundary components equipped with r0
and rn marked points, respectively (there are no other marked points on the other boundary
components). There are also other boundary components that arise in the process of gluing.
Namely, for each i = 1, . . . , n− 1, the boundary components situated between the ith and
the (i+1)st annuli are in bijection with cycles in the cycle decomposition of the commutator
[σi, τ ] ∈ Sri , where τ is the cyclic permutation j 7→ j − 1.

We equip Σlin(r0, . . . , rn;σ1, . . . , σn−1) with a line field η that corresponds to the hori-
zontal direction in Figure 8. Note that its restriction to each annulus is the standard line
field that has zero winding numbers on both boundary components (this is the same choice
of a line field that was made in [21, Sec. 2]).

It is easy to see that the winding numbers of η on boundary components are given as
follows. For the two special boundary components the winding numbers are equal to zero.
For a boundary component corresponding to a k-cycle in the cycle decomposition of [σi, τ ],
the winding number is −2k.

We are going to prove that in fact all winding numbers associated with η are even. For
this it is useful to construct a graph

Γ(r1, . . . , rn−1) ⊂ Σlin(r0, . . . , rn;σ1, . . . , σn−1),
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which is a homotopy retract of the surface. Namely, we take one vertex in the interior
of each annulus: this gives us n vertices v1, . . . , vn. Then we add a loop γi at each vi,
corresponding to the vertical circle in the ith annulus. Then for each of the ri strips
connecting the ith annulus with the (i+ 1)st we add an edge from vi to vi+1.

Lemma 4.1.1. One has [wη]
(2) = 0, i.e., all winding numbers of η are even.

Proof. The embedding of the graph Γ(r1, . . . , rn−1) into Σlin(r0, . . . , rn;σ1, . . . , σn−1) in-
duces an isomorphism on homology. Hence, H1(Σ

lin(r0, . . . , rn;σ1, . . . , σn−1)) is spanned
by the loops γi together with the loops formed by pairs of edges connecting vi with vi+1.
The latter loops can have plane projections of one of the two types: they look either like
circles or like figure eight curves, depending on whether the projections of the correspond-
ing edges cross or not. The winding number of η along a circle in the plane is −2, while
the winding number along a figure eight curve is 0. Since η is constant along vertical lines,
its winding numbers along γi are 0. Now the result follows from the fact that [wη]

(2) is a
homomorphism. �

To get the surface related to the stacky curve C(r0, . . . , rn; k1, . . . , kn−1), we now take
permutations σi of a special kind. Namely, for each i = 1, . . . , n − 1, we consider the
permutation

σi : x 7→ −kix (4.1)

of Z/riZ. We denote the resulting surface by Σlin(r0, . . . , rn; k1, . . . , kn−1). We equip it
with r0 and rn stops on two special boundary components, and denote this set of stops as
Λr0,rn . Now [21, Thm. B] states that

Db(CohC(r0, . . . , rn; k1, . . . , kn−1)) ∼=W(Σlin(r0, . . . , rn; k1, . . . , kn−1),Λr0,rn ; η).

For example, taking r0 = rn = 0, which corresponds to replacing the first and last weighted
projective line by weighted affine lines, we will get the fully wrapped Fukaya categories
(with no stops).

Note that for each i the commutator [σi, τ ] is given by x 7→ x + ki + 1 mod(ri), so its
cycle decomposition has pi = gcd(ki + 1, ri) cycles of length ri/pi. Thus, the boundary
winding numbers of η on Σlin(r0, . . . , rn; k1, . . . , kn−1) are

• 0 on each of the two special boundary components (that have marked points);
• for each i = 1, . . . , n− 1, the winding number −2ri/pi repeated pi times.

The genus of the surface Σlin(r0, . . . , rn; k1, . . . , kn−1) is given by

g =
1

2

n−1∑
i=1

(ri − pi).

Now we are going to apply Corollary 1.2.6 to construct examples of different data
(r0, . . . , rn; k1, . . . , kn−1) that lead to surfaces which are homeomorphic in a way preserving
the marked points on boundary components and the line fields. This will give equiva-
lences between corresponding partially wrapped Fukaya categories and hence between the
corresponding derived categories of stacky curves.
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Theorem 4.1.2. The graded surface with stops Σlin(r0, . . . , rn; k1, . . . , kn−1) is determined
up to a graded homeomorphism by the unordered pair of numbers (r0, rn) and by the un-
ordered collection of numbers

((r1/p1)
p1 , . . . , (rn−1/pn−1)

pn−1), (4.2)

where (ri/pi)
pi denotes the number ri/pi repeated pi times. Hence, the same data determines

the category Db(CohC(r0, . . . , rn; k1, . . . , kn−1)) up to equivalence.

Proof. The two special components (that have stops on them) are the only ones that
have the winding number 0. The winding numbers of all the other boundary components
are determined by the sequence (4.2). Thus, our claim is that our graded surfaces are
determined by their boundary invariants (numbers of points on components and winding
numbers). We want to deduce this from Corollary 1.2.6.

In the case when genus is 0, there is nothing more to check. In the case when genus is
≥ 2, we observe that by Lemma 4.1.1, the invariant σ vanishes for our line field η. On
the other hand, because of the two special components with the winding number 0, the
Arf-invariant does not appear, so we are done in this case.

Finally, if the surface Σlin(r0, . . . , rn; k1, . . . , kn−1) has genus 1 then we claim that Ã(η) =

2. Indeed, by Lemma 4.1.1, Ã(η) is even, so this follows from the existence of a boundary
component with the winding number 0. �

4.1.1. Merging stacky nodes into one. Note that if ki = −1 for some i (which means that
the corresponding node on the stacky curve is balanced) then gluing of A(ri−1, ri) with
A(ri, ri+1) results in ri boundary components on which η has the winding number −2.
Thus, if I ⊂ [1, n− 1] is a subset of indices i such that ki = −1, then setting rI =

∑
i∈I ri,

we get a graded homeomorphism

Σlin(r0, . . . , rn; k1, . . . , kn−1) ' Σlin(r0, rI , (ri)i6∈I , rn;−1, (ki)i6∈I).

Corollary 4.1.3. Let I ⊂ [1, n − 1] is a subset such that ki = −1 for i ∈ I, and let
rI =

∑
i∈I ri. Then there is an equivalence

Db(CohC(r0, . . . , rn; k1, . . . , kn−1)) ' Db(CohC(r0, rI , (ri)i6∈I , rn;−1, (ki)i6∈I)).

In the particular case I = [1, n − 1] (corresponding to surfaces of genus 0), the derived
equivalence of the above Corollary,

Db(CohC(r0, . . . , rn;−1, . . . ,−1)) ∼= Db(CohC(r0, r1 + . . .+ rn−1, rn;−1)),

was proved in [28].
Note that the surfaces Σlin(r•; k•) can have genus 1 only when ri0 − pi0 = 2 for some

i0 ∈ [1, n− 1] and ri = pi for i 6= i0. This can happen only when either ri0 = 3 or ri0 = 4
and ki0 = 1. These cases are distinguished by the presence of the boundary components
with the winding number either −6 or −4. So in the cases when the genus is 0 or 1 we do
not get any other derived equivalences between our stacky chain curves except those due
to merging of balanced nodes.
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In higher genus we can sometimes merge unbalanced nodes as well. For example, if
gcd(k + 1, r) = 1 then for any divisor d of k + 1, d stacky nodes of type (r; k) can be
merged into one stacky node of type (dr; k).

Corollary 4.1.4. Assume that for k ∈ Z∗r one has gcd(k + 1, r) = 1, and let d > 0 be a
divisor of k + 1. Then we have an equivalence

Db(CohC(r0, (r)
d, rd+1, . . . , rn; (k)d, kd+1, . . . , kn−1)) ' Db(CohC(r0, dr, rd+1, . . . , rn; k, kd+1, . . . , kn−1)).

Proof. We have gcd(k + 1, dr) = d · gcd(k+1
d
, r) = d. Thus, the pair (dr; k) contributes dp

boundary components with the winding number −2r, which is the same as the contribution
of d pairs (r; k). �

4.1.2. Derived equivalent quotients of the coordinate cross. To get a more interesting de-
rived equivalence in the case of genus ≥ 2, let us specialize to the case n = 2, r0 = r2 = 0,
r1 = r. Note that the corresponding stacky curve C(0, r, 0; k) is the global quotient of
the affine coordinate cross xy = 0 by the µr-action ζ · (x, y) = (ζkx, ζy). We obtain the
following derived equivalences between these affine stacky curves.

Corollary 4.1.5. For k, k′ ∈ (Z/r)∗, such that gcd(k + 1, r) = gcd(k′ + 1, r), there exists
an equivalence

Db Coh(C(0, r, 0; k)) ' Db Coh(C(0, r, 0; k′)).

Note that if k · k′ ≡ 1 mod r then we have an isomorphism C(0, r, 0; k) ' C(0, r, 0; k′)
induced by the involution (x, y) 7→ (y, x) on the coordinate cross. The simplest example
of a nontrivial derived equivalence of this kind is when r = 5, k = 1 and k′ = 2. It would
be interesting to explain this derived equivalence in a purely algebro-geometric way. Our
guess is that this can be done using the variation of GIT quotient technique.

4.2. Rings. Now let us consider another class of stacky curves considered in [21], de-
noted by R(r1, . . . , rn; k1, . . . , kn). They are defined by gluing the weighted projective lines
B(r1, r2), B(r2, r3), . . . , B(rn, r1) into a ring, where as before ki ∈ (Z/ri)∗ are used to de-
termine the stacky structure of the nodes. Thus, the point q+ in B(ri−1, ri) is glued with
the point q− in B(ri, ri+1) for all i ∈ Z/n.

On the symplectic side we modify our definition of the surfaces Σlin(r0, . . . , rn;σ1, . . . , σn−1)
as follows. Starting with the annuli A(r1, r2), A(r2, r3), . . . , A(rn, r1) we now glue them cir-
cularly using permutations σ1, . . . , σn, so that A(ri−1, ri) is connected by ri strips with
A(ri, ri+1), for i ∈ Z/n. Thus, the corresponding surface could be represented similarly to
Figure 8 but with the right and left ends identified (so that the corresponding boundary
components disappear). We denote the resulting surface by Σcir(r1, . . . , rn;σ1, . . . , σn).

Similarly to the case of a linear gluing it is equipped with a natural line field η that
corresponds to the horizontal direction when the surface is depicted as on Figure 8. As
before, the winding numbers of η on the boundary component corresponding to a k-cycle
in [σi, τ ] is equal to −2k.

The analog of the graph Γ(r1, . . . , rn−1) for circular gluing is given by the graph

Γcir(r1, . . . , rn) ⊂ Σcir(r1, . . . , rn;σ1, . . . , σn)
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that still has n vertices v1, . . . , vn, a loop γi at each vi, and ri edges connecting vi to
vi+1, for i ∈ Z/n. This graph is a homotopy retract of the surface, so we can calculate
the homology just by analyzing loops in Γcir(r1, . . . , rn). In particular, we see that the
homology is spanned by the loops γi, the loops formed by pairs of edges connecting vi with
vi+1, and by one more loop β corresponding to a horizontal line in Figure 8 The analog of
Lemma 4.1.1 still holds in this case and is proved similarly: all winding numbers of η are
even. Note that winding number along β is zero since η is constant along horizontal lines.

As before, we specialize to the case of permutations of the form (4.1) and denote the
corresponding surface by Σcir(r1, . . . , rn; k1, . . . , kn). The boundary winding numbers of η
on this surface are calculated as before (but now we do not have two special boundary
components). The genus of this surface is given by

g = 1 +
1

2

n∑
i=1

(ri − pi),

where pi = gcd(ki + 1, ri).
By [21, Thm. B], we have an equivalence

Db(CohR(r1, . . . , rn; k1, . . . , kn)) ∼=W(Σcir(r1, . . . , rn; k1, . . . , kn); η).

As before, we can use Corollary 1.2.6 to get derived equivalences between the corresponding
stacky curves.

We have σ(η) = 0 for our line field, so in the case when ri/pi is odd for all i, the
corresponding quadratic form qη on Z2g

2 is well defined and we have to calculate its Arf-
invariant.

Definition 4.2.1. For a permutation σ ∈ Sd, let us consider the vector space V (σ) over
Z2 with the basis α1, . . . , αd, the even pairing such that αi · αj for i < j is given by

αi · αj =

{
0 σ(i) < σ(j),

1 σ(i) > σ(j),

and the unique quadratic form qσ compatible with this pairing such that qσ(αi) = 0 for all
i. Let V (σ) be the quotient of V (σ) by the kernel of the pairing. If the restriction of qσ to
the kernel of the pairing is zero then qσ descends to a quadratic form qσ on V (σ).

Lemma 4.2.2. (i) For k ∈ Z∗r, let us consider the permutation σr(k) of Zr \ {0} =
{1, . . . , r − 1} given by x 7→ −kx. Then the corresponding quadratic form q(r, k) := qσr(k)
is trivial on the kernel of the pairing on V (σr(k)) if and only if r/p is odd, where p =
gcd(k + 1, r). If this is the case then q(r, k) descends to a nondegenerate quadratic form
q(r, k) on the (r − p)-dimensional space V (σr(k)).
(ii) Consider the standard line field η on the surface Σcir(r1, . . . , rn; k1, . . . , kn). Assume
that all ri/pi are odd, where pi = gcd(ki+1, ri). Then the quadratic form qη is well defined,
and is the direct sum of q(ri, ki) over i = 1, . . . , n, and the form x2 + y2 + xy on Z2 ⊕ Z2.
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Hence, in this case

A(η) =
n∑
i=1

A(q(ri, ki)) + 1 mod(2). (4.3)

Proof. We are going to study the quadratic form associated with the the surface Σ =
Σcir(r; k). Let us look at the simple curves αi, i = 1, . . . , r − 1, on Σ, depicted on Figure
9. In addition, we have two simple curves, β and γ, corresponding to a horizontal and a
vertical line on Figure 9.

α1

α2

α3

α4

β

γ

Figure 9. Circular gluing with r = 5, k = 1 (left-right, top-bottom are identified).

Using the graph Γcir(r), we see that the classes [β], [γ] and ([αi])i=1,...,r−1 span H1(Σ,Z2).
Furthermore, the restriction of the intersection pairing to the subspace generated by ([αi])
gives precisely the pairing on V (σr(k)). On the other hand, both [β] and [γ] are orthogonal
to this subspace and β · γ = 1. It follows that the kernel of the intersection pairing on
H1(Σ,Z2) is equal to the kernel of the pairing on V (σr(k)), and the quotient of H1(Σ,Z2)
by this kernel is the direct sum of V (σr(k)) and the 2-dimensional space spanned by [β]
and [γ]. Since the kernel of the intersection pairing is spanned by the classes of the p
boundary components and is (p− 1)-dimensional, we deduce that dimV (σr(k)) = r − p.

Furthermore, the winding number along each αi is −2 so qη(αi) = 0 mod(4). Thus,
the restriction of the Z2-valued form qη/2 to the subspace V (σr(k)) is precisely q(r, k). It
follows that q(r, k) vanishes on the kernel of the pairing if and only if qη vanishes on the
boundary cycles, which happens exactly when r/p is odd (recall that the value of qη on
any boundary cycle is 2− 2r/pmod(4)).
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Next, we observe that the winding numbers along either β and γ is zero, so qη(β) =
qη(γ) = 2, and hence,

(qη/2)(xβ + yγ) = x2 + y2 + xymod(2).

This immediately implies (i) and (ii) in the case of Σcir(r; k). In the case of a general
surface Σcir(r1, . . . , rn; k1, . . . , kn), the space H1(Σ,Z2) is spanned by the classes of loops
(αi,j)j=1,...,ri−1 connecting ith and (i+1)st annuli (defined in the same way as (αj)), as well
as by the classes of vertical loops γi, one in each annulus, and by the horizontal loop β.
The restriction of qη/2 to the set of classes (αi,j), for fixed i, agrees with the form q(ri, ki)
on V (σri(ki)). Furthermore, all the classes γi−γj lie in the kernel of the intersection form,
and the classes γi and β are orthogonal to (αi,j). It follows that the quotient of H1(Σ,Z2)
by the kernel of the intersection form splits into a direct sum of V (σri(ki)) over i = 1, . . . , n,
and the 2-dimensional subspace generated by the classes of the loops β, γ = γ1. Now the
result follows as in the case n = 1.

�

We have the following analog of Theorem 4.1.2 for the circular gluing.

Theorem 4.2.3. The graded surface Σcir(r1, . . . , rn; k1, . . . , kn) is determined up to a
graded homeomorphism by the unordered collection of numbers

((r1/p1)
p1 , . . . , (rn/pn)pn),

and in addition, in the case when all ri/pi are odd, by the invariant A(η) given by (4.3).
Hence, the same data determines the category Db(CohR(r1, . . . , rn; k1, . . . , kn)) up to equiv-
alence.

Proof. As before, this follows from Corollary 1.2.6. In the case when the genus is ≥ 2,
we know that the invariant σ vanishes for our line field η, and the assertion follows from
Lemma 4.2.2.

The case of genus 1 appears only when ki = −1 for all i, in which case one immediately

verifies that Ã(η) = 0. �

4.2.1. Case of irreducible stacky curves. Assume that n = 1. Using Theorem 4.2.3 we can
find examples of different k and k′ such that the surfaces Σcir(r; k) and Σcir(r; k′) are graded
homeomorphic, so we get interesting examples of derived equivalences between irreducible
stacky curves.

Corollary 4.2.4. Assume that r ≡ 0 mod(4), and k, k′ ∈ Z∗r are such that k ≡ 1 mod(4),
and gcd(k + 1, r) = gcd(k′ + 1, r). Then we have an equivalence

Db(CohR(r; k)) ' Db(CohR(r; k′)).

Proof. In this case k + 1 ≡ 2 mod(4), so p = gcd(k + 1, r) ≡ 2 mod(4) and hence, r/p is
even. It follows that the winding numbers of boundary components are divisible by 4, so
the Arf-invariant does not appear. �
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Now let us consider the case when k ∈ Z∗r satisfies gcd(k + 1, r) = 1. Note that this is
possible only when r is odd, and by Theorem 4.2.3, the graded surface Σcir(r; k) (that has
genus g = (r + 1)/2) depends on k only through the Arf-invariant A(q(r, k)).

We will compute this Arf-invariant for k = 1 and k = 2 in Sec. 4.3 below. By Theorem
4.2.3, this leads to the following derived equivalence.

Corollary 4.2.5. Assume that r ≥ 7 is not divisible by 3 and r ≡ ±1 mod(8). Then we
have an equivalence

Db(CohR(r; 1)) ' Db(CohR(r; 2)).

Proof. By Lemma 4.3.1 below, for odd r, we have

A(q(r, 1)) =

(
(r − 1)/2

2

)
mod 2.

On the other hand, by Lemma 4.3.2, we have

A(q(r, 2)) = (r − 1)/2 mod 2.

One can easily check that these two invariants are the same precisely when r ≡ ±1 mod(8).
�

4.2.2. Merging stacky nodes. Note that the pairs (ri, ki) with ki = −1 do not contribute
to the Arf-invariant A(η) since in this case V (σri(−1)) = 0. Thus, the analog of Corollary
4.1.3 still holds.

Corollary 4.2.6. Let I ⊂ [1, n − 1] is a subset such that ki = −1 for i ∈ I, and let
rI =

∑
i∈I ri. Then there is an equivalence

Db(CohR(r1, . . . , rn; k1, . . . , kn)) ' Db(CohR(rI , (ri)i6∈I ;−1, (ki)i6∈I)).

One has to be more careful with finding an analog of Corollary 4.1.4 since sometimes one
has to compare the Arf-invariants. However, if some other winding numbers are divisible
by 4 then the Arf-invariant does not appear.

Corollary 4.2.7. Assume that for k ∈ Z∗r one has gcd(k+ 1, r) = 1, and let d be a divisor
of k + 1. Assume also that there exists i > d such that ri/di is even. Then we have an
equivalence

Db(CohR((r)d, rd+1, . . . , rn; (k)d, kd+1, . . . , kn)) ' Db(CohR(dr, rd+1, . . . , rn; k, kd+1, . . . , kn)).

Now let us consider an example where Arf-invariant does appear. Namely, for odd r, let
us consider merging of two stacky nodes of type (r; 1) into one stacky node of type (2r; 1).
It turns out that the corresponding surfaces are homeomorphic but not necessarily graded
homeomorphic.

Corollary 4.2.8. For odd r, there exists a graded homeomorphism between Σcir(r, r; 1, 1)
and Σcir(2r; 1) if and only if r ≡ 1 mod(4). Hence, for r ≡ 1 mod(4), we have an equiva-
lence

Db(CohR(r, r; 1, 1)) ≡ Db(CohR(2r; 1)).
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Proof. For the graded surface Σcir(r, r; 1, 1), we have

A(η) = 2A(q(r, 1)) + 1 = 1 mod(2).

On the other hand, for Σcir(2r; 1), we have

A(η) = A(q(2r, 1) + 1 =
r + 1

2
mod(2)

by Lemma 4.3.1. Thus, the two Arf-invariants match exactly when r ≡ 1 mod(4). �

4.3. Computation of the Arf-invariants.

Lemma 4.3.1. For odd r one has

A(q(r, 1)) =

(
(r − 1)/2

2

)
mod(2),

A(q(2r, 1) =
r − 1

2
mod(2).

Proof. Since σr(1) is the order reversing permutation of {1, . . . , r−1}, q = q(r, 1) = q(r, 1) is
the unique quadratic form on the Z2-vector space V = V (σr(1)) with the basis α1, . . . , αr−1,
compatible with the symplectic pairing given by

αi · αj = 1 for i 6= j, (4.4)

and satisfying q(αi) = 0 for all i.
It is well known that the Gauss sum

G(q) :=
∑
x∈V

(−1)q(x)

is equal to ±2(r−1)/2 and its sign determines the Arf-invariant. It is easy to see that for
any x ∈ V , one has

q(x) = (−1)(
k
2),

where k is the number of nonzero coordinates of x. Thus, we have

G(q) =
r−1∑
k=0

(
r − 1

k

)
(−1)(

k
2).

Now we observe that

(−1)(
k
2) =

1− i
2
· ik +

1 + i

2
· (−i)k,

where i =
√
−1. Thus, we have

r−1∑
k=0

(
r − 1

k

)
(−1)(

k
2) =

1− i
2
· (1 + i)r−1 +

1 + i

2
· (1− i)r−1 =

2(r−1)/2 · [1− i
2
· i(r−1)/2 +

1 + i

2
· (−i)(r−1)/2] = 2(r−1)/2 · (−1)(

(r−1)/2
2 ),

which proves our formula for the Arf-invariant of q(r, 1).
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Now, let us consider the form q = q(2r, 1) on the vector space W = V (σ2r(1)) with the
basis α1, . . . , α2r−1, equipped with the even pairing given by (4.4), where q is compatible
with the pairing and satisfies q(αi) = 0. Note that the kernel of the pairing is spanned by
the vector v0 =

∑2r−1
k=1 αk, and we have

q(v0) =

(
2r − 1

2

)
= 0 mod(2),

since r is odd. Thus, the form q descends to a nondegenerate quadratic form q = q(2r, 1)
on W = W/〈v0〉. We claim that its Arf-invariant is

A(q) =
r − 1

2
mod 2.

Indeed, again we consider the Gauss sum

G(q) :=
∑
x∈W

(−1)q(x).

We have

G(q) =
1

2
·G(q) =

1

2

2r−1∑
k=0

(
2r − 1

k

)
(−1)(

k
2) =

1− i
4
· (1 + i)2r−1 +

1 + i

4
(1− i)2r−1 = (−4)(r−1)/2.

�

Lemma 4.3.2. Assume that r is odd and not divisible by 3. Then

A(q(r, 2)) =
r − 1

2
mod(2).

Proof. The form q = q(r, 2) = q(r, 2) is in Quad(V ), where V is the Z2-space with the basis
α1, . . . , αr−1 and the symplectic pairing given by

αi · αj =

{
0, i < j < i+ (r − 1)/2,

1, otherwise,

where i < j. Furthermore, q is determined by q(αi) = 0 for all i. It is easy to see that by
renumbering the classes (αi) as follows:

α′1 = α(r−1)/2, . . . , α
′
(r−1)/2 = α1, α

′
(r−1)/2+1 = αr−1, . . . , α

′
r−1 = α′(r−1)/2+1,

we get

α′i · α′j =

{
1, i < j < i+ (r − 1)/2,

0, j ≥ i+ (r − 1)/2,

and q ∈ Quad(V ) still satisfies q(α′i) = 0 for all i.
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We will compute the Arf-invariant by relating (V, q) to another space with a quadratic
form. For every k ≥ 0, such that k 6≡ 2 mod(3), let us consider a Z2-vector space Wk with
the basis β1, γ1, . . . , βk, γk, the even pairing given by the rule

βi · βj = 1 for i 6= j; γi · γj = 1 for i 6= j;

βi · γj = 1 for i ≤ j; βi · γj = 0 for i > j,

and the quadratic form qk in Quad(Wk) such that qk(βi) = q(γi) = 1 for all i.
First, we will prove that A(q) = A(q(r−1)/2−2) and then we will prove that

A(qk) = kmod(2). (4.5)

To relate (V, q) with (W(r−1)/2−2, q(r−1)/2−2) let us consider the 2-dimensional isotropic
subspace I ⊂ V spanned by α′1 and α′r−1. We have q|I ≡ 0, so the Arf-invariant of q is
equal to that of the induced quadratic form on I⊥/I. Now setting

γi = α′2 + α′2+i, βi = α′(r−1)/2+1 + α(r−1)/2+1+i,

for i = 1, . . . , (r − 1)/2 − 2, we get an identification of I⊥/I with W(r−1)/2−2, compatible
with the quadratic forms. Hence, A(q) = A(q(r−1)/2−2).

To prove (4.5) we use induction on k. It is easy to check that A(q1) = 1 (and A(q0) = 0
for trivial reasons), so it is enough to establish the formula

A(qk) = A(qk−3) + 1.

To this end we consider the 2-dimensional isotropic subspace J ⊂ Wk spanned by βk + γ1
and β1 + βk + γk. We have qk|J = 0, and our formula follows from the identification

J⊥/J ' Wk−3 ⊕W1,

where the standard basis of Wk−3 corresponds to the elements

(β2 + β2+i mod J, γ2 + γ2+i mod J)1≤i≤k−3

while a copy of W1 spanned by βk mod J and γk mod J . �
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