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Abstract

The modeling of nonlinear dynamical systems subject to strong and evolving non-
smooth nonlinearities is typically approached via integer-order differential equations. In
this study, we present the possible application of variable-order fractional operators to a
class of nonlinear lumped parameter models that have great practical relevance in mechan-
ics and dynamics. Fractional operators are intrinsically multiscale operators that can act on
both space and time-dependent variables. Contrarily to their integer-order counterpart, frac-
tional operators can have either fixed or variable-order. In the latter case, the order can be
function of either independent or state variables. We show that when using variable-order
equations to describe the response of dynamical systems, the order can evolve as a function
of the response itself, therefore, allowing a natural and seamless transition between widely
dissimilar dynamics. Such an intriguing characteristic allows defining governing equations
for dynamical systems that are evolutionary in nature. Within this context, we present a
physics-driven strategy to define variable-order operators capable of capturing complex and
evolutionary phenomena. Specific examples include hysteresis in discrete oscillators and
contact problems. Despite using simplified models to illustrate the applications of variable-
order operators, we show numerical evidence of their unique modeling capabilities as well

as their connection to more complex dynamical systems.
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1 Introduction

Fractional calculus is the study of differential and integral operators of non-integer-order. Al-
though the branch of fractional calculus was created almost simultaneously to its integer-order
counterpart, the mathematics and its applications are considerably less developed. Due to their
differ-integral nature, fractional operators are intrinsically multiscale. While time fractional
operators enable memory effects (i.e. the response of a system is a function of its past his-
tory), space fractional operators can account for nonlocality and scale effects. In recent years,
there has been a surge of interest in fractional-order operators and in their applications to the
simulation of physical problems. Among the areas that have seen the largest number of applica-
tions, we mention transport processes in complex media [1, 2, 3, 4], formulation of constitutive
equations for viscoelastic materials [5, 6, 7], nonlocal elasticity [8, 9, 10, 11] and model-order
reduction of lumped parameter systems [12, 13]. In all these studies, fractional operators with
constant-order have typically been used. Comprehensive reviews on constant-order fractional
calculus can be found in [14, 15].

As fractional-order operators can be seen as an analytical continuation of integer-order op-
erators, variable-order (VO) operators can be seen as the natural extension of constant-order
(CO) fractional operators. In other terms, unlike the integer-order that can only vary in discrete
steps, the fractional-order allows a continuous variation with any arbitrary step. Furthermore,
in VO operators the order can vary either as a function of an independent variable of integration
(or differentiation) or as a function of some other dependent variable. These properties of VO
calculus provide the basis for the development of a computational framework with potentially

unlimited possibilities in terms of modeling complex physical phenomena. As an example, the
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reaction kinetics of proteins have been found to experience fractional-order relaxation mecha-
nisms. Glockle et al. in [16] established that the fractional-order has a temperature dependence
and defined a variable-order governing equation where the order was defined to be a function
of the temperature.

Although the extension from CO to VO operators may seem somewhat natural, the first
comprehensive discussion on these operators was only recently given by Samko et al.[17, 18].
In VO operators, the order can be function of time, space, or even of an independent external
variable (e.g. temperature or applied loads). The formalism introduced in [17, 18, 19] has
led to research on the application of VO operators to the modeling of anomalous diffusion in
complex structures [20, 21]. Coimbra [22] has used VO operators to model oscillators under
nonlinear viscoelastic forces. Diaz et al. [23] have investigated the dynamics and control of
a VO Van der Pol oscillator. All these studies recognized and took advantage of the intrinsic
memory capability of VO operators (see [19]) and of the way this property could be leveraged
to describe more accurately the dynamics of nonlinear systems. The interested reader can find
a comprehensive review of the applications of VO operators in [24].

In this study, we show how one of the most remarkable properties of VO-based physical
models consists in their evolutionary nature. We will also show how this property can play
a critical role in the simulation of nonlinear dynamical systems. More specifically, as the VO
formalism allows updating the system’s order depending on its instantaneous response (and, po-
tentially, its historical response), the same theoretical model can evolve seamlessly to describe
widely dissimilar dynamics without the need for changing the underlying governing equation.

In the following, we will provide examples and applications of this remarkable property to non-
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linear dynamics with particular attention to contact problems and hysteretic systems. Further,
as pointed out in [22, 23], when using VO fractional calculus (VO-FC) the nonlinear behavior
of constant-order differential equations can often be modeled via linear operators. The most
immediate effect of this property is the possibility to extend, under certain conditions, many of
the analysis tools available for linear systems to the nonlinear ones.

An important step to promote the use of fractional-order models for the simulation of com-
plex systems is to establish the connection between the physical (e.g. material parameters)
and the mathematical (e.g. the law of variation of the order) properties. Despite the increasing
amount of research dedicated to exploring this specific aspect, a comprehensive approach is still
lacking. In this study, we start filling this gap by presenting physics-driven constitutive laws for
order variations for specific types of nonlinear problems that are of great interest in mechanics.

The remainder of the paper is structured as follows. First, we introduce briefly the VO oper-
ators based on the Riemann-Liouville (RL) definition. Next, we discuss how VO operators can
be formulated in order to enable evolutionary governing equations. Then, we present the appli-
cation of this approach to the modeling of contact dynamics and nonlinear hysteretic response.
We will discuss how the order of the VO operator can capture transitions in both the operating
regime (e.g. from linear to nonlinear) and the underlying physical phenomena (e.g. contacts

and hysteresis).
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2 Variable-order fractional operators

In their seminal study on VO-FC, Lorenzo et al. [19] presented several time-domain defini-
tions of VO-RL fractional operators. The discriminant factor between the different definitions
consisted in the memory behavior of the fractional operator. Here below, we report only the
definition that will be used in this work.

Definition 1 If g(¢) and (r) are continuous real-valued functions on (ag,?), the left-handed

VO-RL differential operator to the order () > 0 with the lower bound a is defined as:

B(1) B dam 1 4 g(1)
4Dy g(t) = drm {F(m—ﬁ(t)) /a (t— T)1+,8(t)—mdr

dm

+dt_mll/(g’ _Q7a07a7t) + w(h7m7a07a7t)

6]

where ap < a <t, m = [B(t)] is the upper integer bound on (), ¢ = m— B(z), and I'(-) is
the Gamma function. The VO-RL operator is initialized at ag such that g(r) =0Vt < ap < a.

v (g,—q,ap,a,t) is the initialization function defined as:

1 a
,—q.,a0,a,t) = —— | (t—1)7'g(1)dr )
Vg, —g.avan)= s [ (-0 ()
The term 4 is defined as:
h=HD; g(0) = / (-7 g(e)de 3)
ot r(Q) agp

It is well known that the use of RL operators in fractional-order differential equations requires

fractional-order boundary conditions whose physical interpretation is more elusive than their
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integer-order counterpart [14]. The initialization function y(¢) shifts the initial time instant
(from a to ap) of the interval over which the fractional derivative is defined. As g(t) =0V <
ap < a, all the fractional-order derivatives of g(z) at ag are zero. Thus we do not require
fractional-order boundary conditions while solving fractional-order differential equations with
the initialized RL derivative. In other terms, the function y(z) accounts for the effect of the
history of g(¢) and its derivatives up to the order m over the interval [ag,a] hence allowing
bypassing the use of fractional boundary conditions. Mathematically, y/(¢) brings to the defini-
tion of the fractional derivative the effect of fractionally differentiating g(¢) from ag to a [25].

Further details on the initialization procedure and on its importance can be found in [25].

3 Evolutionary governing equations: the role of VO-RL op-

erators applied to constants

It 1s well-known that different definitions of a fractional derivatives are not all equivalent to
each other. Differences are particularly pronounced when they are calculated at the bounds
of the domain of integration or when the argument is a constant. The only strict requirement
for every definition of a fractional derivative is that its value should coincide with the value of
the corresponding integer-order derivative when f(¢) = m, where m € .4 (the set of integers).
Within this context, an example of particular interest for the following study consists in the
fixed-order RL derivative of a constant which is not equal to zero, unless 3(¢) = m. Although,
at first, this characteristic might appear unsettling, particularly in light of classical integer-order

calculus, we will show that it is a very convenient property to model several nonlinear and
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discontinuous behaviors in dynamics.

In order to provide the necessary mathematical context, we first present the RL derivative of
a constant function. Consider the function g(¢) such that g(r) =0V ¢ <0, and g(t) =Co ¥Vt >0,
where Cj is an arbitrary constant. Note that we take g(z) = 0 V ¢ < O for proper initialization.
The RL derivative of g(¢) over the interval (0,7) to a constant fractional-order f is given by
[14]:

“4)

where m — 1 < By < m.
Now, consider a piece-wise continuous function 3(¢) defined via a continuous real-valued

function s(¢) on the domain (0,¢) as:

B(t) = exp(—so 5(2)) (5)

where the function s(7) is designed to capture the physical mechanism producing the order
variation, and sg € R is a scaling factor that allows calibrating the order variation based on the
characteristic response of the physical system. A detailed discussion of the procedure followed
to select both the function s(¢) and the numerical value of s for the different physical problems
is reported in each specific section.

With s being a properly chosen constant, the limiting behavior of the order () is found to
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be:

B(t) =V s(t) <0 (6a)

B(t) =0V s(t) >0 (6b)

The function fB(¢) is now constant on intervals determined according to Eq. (6). We apply a
VO-RL operator, denoted by gLDtﬁ (t)(-), to the constant function g(¢) over the interval (0,7).

Equations (4-6) lead to:

lim S0P s(t) <0
o L(1=B (1))
§0f gy = PO )
. Co t—PU
pim Fipay  S1)>0
which under the limiting conditions simplifies to:
0 s(1) <0
§EpPco = { (8)
Co s(t) >0

Note that when s(¢) = 0, that is when the function changes sign, the VO-RL derivative of the
constant function is exactly equal to zero as noted by the equality s(z) < 0 in Eq. (7).

Before applying the above concepts to mechanical systems, we present a purely illustrative
example in order to provide some context on the methodology discussed above. Consider the
VO B(t) with s(¢t) =¢(t—3)(t —3.5)(t—4)(t —4.5)(t —5), that is a function that changes sign at
specific time instants. The VO-RL operator gLDf3 ) Co with Cp = 2 is given in Fig. (??). In this
RL Dﬁ ()

example, we assumed so = 10°. This formulation allows the term Cp to switch between
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0 and 2 when s(z) changes its sign.

It is exactly this switching behavior that can be exploited to simulate certain nonlinear dy-
namical properties of mechanical systems. More specifically, consider defining VO operators
as a part of a governing equation such that its variation can capture changes in the properties
of the dynamical systems such as, for example, a change in stiffness. The change in stiffness
could be abrupt, such as the type associated with closing contacts between multiple bodies,
or it could be smooth, such as the one associated with the transition from a linear elastic to a
nonlinear plastic material behavior due to large deformations. In all these cases, the response
of the system changes from initially linear to, potentially, highly nonlinear. This change in the
underlying dynamics of the system is captured via the VO B(¢), through the function s(¢). It
appears that the change in the VO B(¢) results in an implicit reformulation of the underlying
equations of motion following a change in the underlying mechanisms dominating the response
of the system. Note that this approach marks a significant departure from the traditional mod-
eling of nonlinear systems where the functional (nonlinear) form of the equation as well as the

existence of nonlinearities must be assumed a priori.

4 VO-FC for the simulation of nonlinear dynamic systems

In order to illustrate the unique capabilities of VO operators and of the corresponding governing
equations, we introduce two case studies that are particularly relevant for the simulation of
many dynamical systems. More specifically, the two applications focus on either modeling

the dynamics of contacts between two impacting bodies or nonlinear irreversible (hysteretic)
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behavior.

The analysis of contacts between physical components is important in several real world
applications such as, for example, structural analysis of couplings between the rolling stock of
trains [26, 27], dynamic analysis of loosely jointed structures [28, 29] and breathing cracks [30,
31, 32], and detection of loose bolted joints [33, 34] or delamination in composite materials [35].
These systems are characterized by a bilinear change in the local stiffness which typically varies
as a function of time, depending on the nature of the excitation and of the dynamic response of
the system. In a similar way, there are many systems in which the material properties evolve
from linear elastic to nonlinear plastic. Polymeric foams used extensively for impact attenuation
in the automobile industry, and steel, used in structural members, exhibit hysteretic behavior
[36, 37, 38]. Hysteresis is also found, as an example, in systems subject to random vibrations
[39, 40], and in metal cutting [41]. Depending on the level of maximum and accumulated
strain, material’s behavior can evolve from linear elastic to hardening plastic, or linear elastic to
nonlinear plastic.

Currently available approaches to these classes of problems are based on nonlinear integer-
order differential models which are typically solved by finite element (FE) techniques. Although
integer-order models are invaluable tools for analysis, they also exhibit an important limitation
which consist in their inability to evolve between different governing equations. Their ability
to account for nonlinearities must be integrated in the model a priori often requiring somewhat
arbitrary considerations on the elements that will experience the nonlinear behavior. On the
contrary, VO-FC provides a natural platform to approach these problems due to its ability to

formulate governing equations capable of evolving according to the system response.
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In the following, we show how the characteristic behavior of the VO-RL operators when
applied to constants can be used to simulate challenging contact problems. More specifically,
we consider two different configurations: (1) dynamic contact between two lumped masses,
and (2) dynamic contact between a vibrating beam and a finite stiffness boundary. Further,
we present the application of the nonlinear behavior of VO-RL operator to the modeling of
nonlinear hysteresis. We show that the order variation can be crafted to represent any linear or

nonlinear material law such as those describing linear or nonlinear hysteretic behavior.

4.1 Contact dynamics for discrete particles

Consider a system of two oscillators separated by a dead zone of width d as shown in Fig. (??).
Given the system of oscillators, the absolute displacement of the individual masses is indicated
by &;(¢) and &(¢), respectively. The two oscillators are connected to a spring-damper system
fixed at one end and are driven by externally applied forces Fj(¢) and F(¢). The oscillators are
separated by a dead-zone (i.e. a gap) of initial amplitude d such that the spring (Kp) and damper
(Co) are engaged only when &; (1) — & (¢) > d.

Following the application of external loads, the dynamics of the two-oscillator system could
be either linear or nonlinear depending on the status of the contact (i.e. whether the gap between
them closes or not). More specifically, when the amplitude of oscillation is such that the gap
is cleared, the two oscillators enter in contact with each other. Before the gap closes, the two
oscillators are decoupled and exhibit a linear dynamic response. When the gap closes the two
oscillators couple in a nonlinear fashion. In the following, we show that the order of the VO-RL

operator can be crafted appropriately so that the stiffness term K., (see Fig. (??)) can capture
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exactly the effect of the closing gap and, hence, the occurrence of the contact. The equations of
motion of the system written in classical integer-order form are:

M, 0O & ¢ 0 3 Ky O &1 F
- + = (92)

0 M| |& 0 G| |& 0 K| |& 123

when & — &, < d, and:

M, O 5"1 CG+C  —CGy 51 Ko+Ki —Kp & F
+ + =

0 M| |& —Co Co+G| | & Ky Ko+K2| | & 123
(9b)

when & — & > d.
We reformulate the above equations of motion using VO-FC. We start by defining the func-
tion s(¢) that allows capturing the characteristic feature of the underlying contact mechanism

(i.e. the gap width) as a function of the system’s response. The function is defined as:

s(t) =& (t) = &(t) —d (10)

Note that the function s(z) = &; (t) — &,(r) — d changes sign when the contact either closes or
opens, hence it appears to be a reasonable choice to track the physical response of the contact.
As previously mentioned, this function provides the link between selected physical features of
the system and the VO B(¢) of the operator and it could potentially be defined in many different

ways. Hence, this is one of the possible choices for such function. The variable-order (z) can
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now be defined according to Eq. (5) as:

B(1) = exp(—s0(&1(t) — &2(t) — d)) (11)

The scaling factor sg can be calculated as follows. We define the infimum of the function s(z) in
the neighborhood of a point where the function switches sign as € = inf(|s(¢)|). Now, V € >0
and 6 > 0 3 s such that e %% < §; § can be chosen to be infinitesimally small. Note that s
depends on both the € and 6 parameters. We have graphically demonstrated the significance of
the parameters 0 and € in Fig. (??).

From a general perspective, the parameter 6 provides the characteristic time (i.e. the tem-
poral resolution) for the switch to occur. In other terms, it determines the temporal range within
which the switch is bound to occur. The parameter € = inf(s(z)) physically represents the
smallest possible change in the function s(z) following a change in the sign of s(z) that can be
accurately detected. In other terms, the parameter € controls the spatial resolution of the func-
tion s(7) within the interval defined by 6. For problems involving rapid changes in properties,
such as contact problems, the switch should occur over a length scale much smaller than the
characteristic spatial scale of the problem. The characteristic length scale is clearly dependent
on the specific problem, hence the need for the scaling factor sg.

From a more practical perspective, the numerical value of the parameter s( can be estimated
as follows. First, we choose the parameter 6 which provides the characteristic time (i.e. the
temporal resolution) for the switch to occur. Note that & should be greater than or equal to the

time step (Ar) used to numerically simulate the system; the most accurate value being 6 = Ar.
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As an example, for the simulations presented in the following for the contact problem, we chose
At = 1073s hence § = 1073, Then, we define the parameter & = inf(|s(¢)|), which physically
represents the smallest possible change in the relative displacement of the two masses following
a change in the status of the contact. As previously discussed, this parameter is related to the
characteristic spatial scale of the problem. For contact problems, the initial gap distance d
can be chosen as a possible characteristic spatial scale. Then, the spatial resolution for the
switch can be set by requesting € < Pyd, where P is a user-defined percentage value. At this
point it is easy to see that if #; is the instant when the contact status changes (i.e. s(z) = 0),
then at the time step 7; = t; + At following directly the change in the contact status, we have
s(fx) = &1 (k) — & (f) — d = inf(s(¢)) # 0. Given the definition of the spatial resolution, the
switch in the status of the contact should occur within the interval 0 < s(7;) < Pyd. For the
simulations presented later in this paragraph, we chose Py = 10~2 which means that the switch
occurs when the function s(7) exceeds a value equal to 1% the initial gap distance d. From the
relation e ~*0¢ < §, we obtain so > 1.4 x 10?. For a more conservative approximation, the value
was rounded to so = 10> m~!.

At this point, we have all the information to define K., and C,, as VO-RL operators. Using
Egs. (8,11) it can be shown that K,, and C,, are:

0 &—-&<d
Koy =RDPU K, = (12a)

\Ko &1—&>d

0 &—-&<d
Coq = E-DPCy = (12b)

kCo & —&>d
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where K and Cy are constant values of stiffness and damping. We use K., and C,, to combine

the equations of motion (see Eq. (12)) of the coupled oscillators in a single set of equations:

M, 0 5"1 Ceq +C _Ceq 51 Keq + K _Keq 51 F
+ +

0 M, 52 _Ceq Ceq +G 52 _Keq Keq + K> 52 F

where K., and C, evolve according to Eq. (12) guided by the evolution of the VO B(¢). The
nonlinearity associated with the contact between the two masses is now fully captured in the
VO. The equations of motion of the coupled oscillators are simplified, at least formally, and can
evolve from linear to nonlinear simply based on the response of the system (i.e. as a function of
the distance between the two masses). This discussion highlights a very unique feature of VO
operators, that is their evolutionary nature.

Another particularly intriguing aspect of this formulation is that the operator itself is still
linear; a property inherited by the intrinsic nature of VO-FC [19, 22]. However, we emphasize
that the linearity of the VO-RL operator depends on the specific functional variation of the order
[19]. In the context of our study, the fractional operator acts on piece-wise constant functions
(i.e. the contact stiffness and contact damping). The system consists of two oscillators and a
set of spring-damper (K and Cp) inserted between them. In this specific case, the application
of the principle of superposition would correspond to adding an additional set of spring-damper

(say, K}, and Cj)) between the two oscillators. For this class of operators, it is easy to show that:

RLpPC12) 10161 + ca 9] = g REDP 172 g, 4 o REDPX1-2) g, (14)
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where ¢; (and ¢,) is either Ky (and K})) or Cy (and C)).

Based on the above formulation, the equivalent VO coupled oscillators system is schemat-
ically shown in Fig. (??b). Note that the fractional Eq. (13) is an exact reformulation of the
integer-order Eq. (9). Thus, we expect that the solutions obtained from both formulations were
exactly equivalent (clearly, assuming the same initial and forcing conditions).

In order to validate this approach, we performed numerical simulations using the fractional-
order system represented by Eq. (13) and compared the results with the solution obtained from
the original integer-order system (Eq. (9)). Both systems of equations were solved numerically
by using finite difference methods. The parameters for the simulations were chosen as M| =
M, = 1kg, Cp =0, C; = 0.1Ns/m, C; = 0.4Ns/m, Ko = 2N/m, K; = K, = IN/m, and d = 5Sm.
Initial conditions were set at & (0) =0, &;(0) = —1m/s, and & (0) =0, & (0) = 0. As previously
discussed, the value of so used in the simulations was so = 10°m 1.

In order to showcase the capability of the VO operator applied to contact problems, we
identified three different regimes, each corresponding to different values of the external forcing
load: 1) (case a - linear) the gap does not close, hence the contact does not occur and the
masses are effectively decoupled at all times; 2) (case b - weakly nonlinear) the gap closes
aperiodically, and the overall response is quasi-periodic; 3) (case c¢ - strongly nonlinear) the
contact closes periodically hence giving rise to a highly nonlinear response. For case (a) we set
Fi(t) = —3sin(0.3¢)N and F> = 0, for case (b) F;(¢) = —10sin(0.3¢)N and F> = 0, and for case
(c) Fi(t) = 5sin(0.8¢)N and F, = —5sin(0.8¢)N. The results are shown in Fig. (??) in terms
of the time history of the displacement of the two masses. The initial transient is very short

and the results obtained in all the cases converge quickly to the steady state. We denote the
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results obtained from the fractional-order model as élﬁ and ﬁzﬁ in order to differentiate them
from the results of the integer-order model. From a general perspective, results are in excellent
agreement with each other and the nonlinearity in the contact problem is now fully captured in
the order of the VO-RL operators (as evident from the switch in K,,).

In case (a), the dead-zone between the masses #1 and #2 does not close and hence the
oscillators are decoupled at all times. Thus, the response of the system to the sinusoidal forcing
is linear as clearly seen in Fig. (??a). As the amplitude of the loading increases (case (b)), the
masses come in contact aperiodically and the response of the system becomes nonlinear but still
quasi-periodic in nature; under these conditions the system exhibits features typical of a weakly
nonlinear dynamics. If the forcing amplitude is further increased, the masses come in contact
periodically and the response becomes highly nonlinear (Fig. (??c)). Also, note that each plot
reports the time history of the spring constant K, which clearly switches between the values 0
and Ky depending on the occurrence of contact.

We make a few remarks concerning the numerical scheme adopted to solve the VO frac-
tional differential equations. From a general standpoint, it is not possible to obtain an an-
alytical expression for the VO-RL derivative of a (non-constant) function. Thus, the use of
VO-RL derivatives in fractional differential equations requires numerical methods specialized
for fractional-order derivatives. In this regard, there are several methods (e.g. finite difference,
finite elements) that have been developed in recent years and that can be used for this purpose
[42, 24]. However, in the context of the present study, we focused primarily on the use of VO-
RL derivatives of constant functions. Under these specific conditions, it is possible to obtain

an analytical expression (see Eq. (8)) of the derivative. It follows that specialized numerical
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methods are not required for the present study. Indeed, the same second-order finite difference
numerical scheme was used for both integer and fractional order models. As a result, both
the computational time and the numerical scheme complexity are exactly equivalent for both
models.

In addition, the comparison between the results obtained from both the integer- and the
fractional-order formulations is exact (i.e. the error is exactly zero) at every time instant. This
comment should be interpreted in the following way. Given that 1) both formulations have been
numerically solved using the same finite difference scheme, and that 2) the VO-RL allows an
exact definition of the switch, then the error between the two solutions is numerically zero.
At the same time, both solutions to the initial systems of differential equations were obtained
using a central-difference scheme in time. In this regard, both solutions are approximate. The
error corresponding to the central-difference scheme is O(At?), where At indicates the step used
for the temporal discretization. As a result, the error in the numerical results obtained via the
VO-RL formulation is also O(A¢?).

Despite the simplicity of this discrete two-body system, one can envision how this VO-FC
formulation can be easily extended to the analysis of systems with NV interacting bodies. The

classical integer-order formulation of such a system will require a maximum of 2!

separate
equations that are NxN dimensional depending on the contacts allowed between individual
bodies, thus resulting in a large number of equations. The VO-FC formulation, instead, allows
simulating the entire system response via a single NxN dimensional equation where the contact

parameters are VO-RL operators. Clearly, the VO-FC formulation has the potential to greatly

simplify the analysis of nonlinear systems involving contact between many interacting bodies.
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4.2 Contact dynamics for flexible beams

We extend the VO-RL formalism presented in the previous section to simulate the dynamics
of a cantilever beam undergoing a possible contact at its free end. We will use an approach
exactly equivalent to that illustrated in the previous paragraph for the discrete system. More
specifically, the beam is clamped at one end and separated by a dead-zone of amplitude A from
a finite stiffness boundary (modeled via a spring) at the other end. When the beam is subject
to an external excitation, its free end can clear the gap and close the contact with the spring
element, as shown in Fig. (??a). Similar to the previous problem involving coupled oscillators,
when the contact closes the beam and the spring couple in a nonlinear fashion. The response of

this system is governed by:

o*n ’n
on 9’1
=0 — | =0 EI—5| =0 15b
n’()l aé o 852 Li ( )
»n 0 n(L,t) > —A

where 1(&,1) indicates the transverse displacement of the beam, Fr(&,7) is the applied trans-
verse load, while E, I, L, and A are the Young’s modulus, the area moment of inertia, the length,
and the cross-sectional area of the beam, respectively. K is the stiffness of the spring located at
the contact point.

By following the approach outlined in the previous section, we reformulate the equations of
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motion for the beam using VO operators. Consider the following expression for the VO B(z):

B (1) = explso(n(L;1) +A)] (16)

where s¢ is a scaling factor as discussed in the previous problem, s(¢) = —(1n(L,t) + A) is the
function the captures the main features of the contact and that changes its sign depending on
the status of the contact. When the VO B(7) is used within a VO-RL operator applied to the
spring stiffness K it results in a nonlinear term that can capture the contact between the tip of
the beam and the spring. Mathematically, using Eqgs. (8,11), it can be shown that:

0 n(Lit)>-A
Keg =§-DP Ky = (17)

Ko U(LJ)S—A

We use the above VO-RL term K., to reformulate the equation of motion of the beam in the

following manner:

A P
Ela54 +pA~S 5 = Fr(E.0) (18a)
4 9n| _ ’’n| _
Ny, =0 Eo;_o Ela—gzLJ—O (18b)
3
Ela—z = Kegnl(L.1) (18¢)
987,

where the VO-RL term K., evolves according to Eq. (17) guided by the VO B(¢). Clearly, the
nonlinearity associated with the contact between the beam and the spring is now fully captured

in the VO-RL term. Based on the above formulation, the equivalent VO system is schematically
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shown in Fig. (??b). We emphasize that the modified VO Eq. (18) is an exact reformulation of
the integer-order Eq. (15). In order to validate the VO-RL formulation, we solve the fractional
model numerically and compare with the response from a nonlinear integer-order model.

To numerically evaluate the response of the beam, we discretize it into N elements having
uniform length and mass lumped at the ends, as shown in Fig. (??c). To ensure compatibility,
it is essential that both the transverse displacement and the rotation (i.e., the first derivative of
the transverse displacement) are continuous across these lumped elements. Thus, the degrees
of freedom of each element are the transverse displacements and rotations of the ends of the
element, denoted as (1;,7,) and (aa—rg, %—'%2), respectively. These degrees of freedom can be [43]
interpolated using C! continuous Hermitian shape functions to obtain the following element

mass and the stiffness matrices:

156 =221, 54 131,

pAl, |—22l 47 —13l =3[

— 1
¢~ 420 (192)
54 —131, 156 221,
131, 312 221, 42
6 _3le _6 _3le
2gl |3l 22 31, 12
K, = Lo (19b)

-3, 12 3, 2

where [, is the length of each discretized element. The element mass and stiffness matrices are
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then assembled to generate the following equation of motion for the entire beam:

(M} + KK} = {Fr} (20)

where [M] and [K] are the global mass and stiffness matrices of the beam, respectively, and {Fr }
is the force vector. The vector {n} contains both the displacement and the rotation degrees of
freedom. The variable stiffness at the end of the beam is accounted for by adding the VO-
RL term K., to the diagonal position of the global stiffness matrix [K] corresponding to the
transverse degree of freedom of the tip of the beam. Since the VO-RL term K., evolves with
time, the stiffness matrix [K] evolves with time as well. In order to obtain the time response of
the coupled system, the spatially-discretized Eq. (20) is further discretized in time. By using a
uniform time discretization, we obtain the following set of algebraic equations describing the

response of the coupled beam-spring system:

("t =2y =y T+ AR M) FE - (K] 1)

where At is the size of the time step and the superscript m denotes the time step such that at the
step m time is t = mAt. Note that this numerical approach can be applied to both the integer
and the fractional order models because the fractional order term representing the contact is ex-
pressed entirely analytically. Hence, as in the previous example, there is no need for specialized
numerical methods for the solution of the fractional order problem.

By using the above described numerical model, the numerical response of the coupled

system was obtained assuming the following parameters: EI = INm?, pA=lkg/m, L = 1m,
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Ky = IN/m, A = 0.03m. The scaling parameter sp was calculated according to the same
procedure highlighted in the previous paragraph and it was found to be so = 10°m~! for a
Py = 0.01. The beam was discretized into N = 25 elements. The initial condition of the
beam was set at n(£,0) = 0 and 1(£,0) = 0. The external transverse loading was chosen
as Fr(&,tr) =[0.1 x §(§ — L)sin(z)]N and applied only at the tip of the beam. The results are
presented in Fig. (??a) in terms of the time history of the displacement of the tip of the beam.
We have denoted the results obtained from the modified fractional equation of motion as n# in
order to differentiate it from the results obtained via the integer-order equation of motion.

Additionally, we have also compared the response of the entire beam under an external
loading Fr(§,t) = [6(& — L)sin(4¢)]N in order to highlight the effect of the contact on the
curvature of the beam. The parameters used for this simulation are the same given above, except
for A which is taken as 0.1m. We obtained the response of the entire beam at two instants of
time: (a) when the beam does not couple with the spring (denoted as nlﬁ ), and (b) when the
beam couples with the spring (denoted as nf ). These two conditions occur at the time instants
t =0.75s and t = 2.99s, respectively. As evident from the results presented in Fig. (??b), the
curvature of the beam changes upon contact with the spring located at its tip.

As emphasized earlier, the match between the fractional- and the integer-order results is ex-
act (i.e. their relative error is zero) at all times; however, both solutions are approximated due to
the use of numerical approaches. The nonlinearity in the contact problem is now fully captured
in the order of the VO-RL operator K., which is evident from the switch in K., (see Fig. (??a)).
A few closing comments on this problem. Although we have presented the results for the case

of a concentrated load, the same formulation applies identically to distributed transverse loads.

Fabio Semperlotti, CND-19-1468 24



Also, the formulation can be extended to the study of beams whose finite stiffness contact can
occur everywhere along the length and at multiple locations, simultaneously. This latter case
could be seen as the counterpart of the more classical problem of a beam coming in contact with

an elastic foundation.

4.3 Application to nonlinear hysteretic behavior

In this section, we extend the VO-RL formalism and illustrate how it can be used to model hys-
teretic behavior (associated with constitutive relations) in lumped parameter systems. Similar
to the contact problem discussed above where the variable-order 3(¢) was crafted to change the
stiffness upon contact, VO operators can be crafted to capture the irreversible nonlinear evolu-
tion associated with hysteretic constitutive relations. Consider a lumped spring-mass-damper
system (see Fig. (??a)) such that the constitutive equation of the spring varies from linear to non-
linear irreversible response depending on the total elongation of the spring. Since the spring’s
behavior is assumed irreversible, the VO operator must be designed to capture the occurrence
of a residual elongation in the spring. The equation of motion for the hysteretic behavior is

generalized to the form:

ME+cé+ K- (PR (8DPVK) | x e~ E0P Ty =F@)  @20)
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where,

Bi(r) = exp(—s1 (I€(r)| — do)) (22b)
s1(2)

B2 (1) = exp(—s2sgn(F(1))) (22¢)
$2(1)

B3(t) = exp(s3sgn(F (1)) (22d)
—s53(t)

K(t) = K(|F(1)| - Fy) (22¢)

1(1) = sup (§(1)) % (22f)

In the above equations M, C, and K are the mass, damping, and linear elastic stiffness coeffi-
cients of the lumped system and &(r) denotes the displacement of the oscillator. The system is
subject to an external force F(t), and Fy = F (t;) such that & (t;) = sup (£(¢)). The coefficients
s1, §2, and s3 (in the VO By (t), Ba(t), and B3(r)) are scaling factors. The role of these scaling
factors and the calculation approach is exactly identical to the one exemplified in previous para-
graphs. The quantity dy describes the linear response limit of the spring, and Fy = Kd| is the
force applied on the spring at this limit. K(¢) is defined to be a function of |F(¢)| — Fy.

In order to understand the VO governing Eq. (22), the role of the different VO-RL operators
must be discussed. The VO-RL operator gLDf3 g (t) accounts for the change in the stiffness of
the system dictated by the order variation 31 (7). When the function s;(r) = |&(¢)| — do, which
defines the order f3;(¢), changes its sign (i.e. when |§(¢)| > do) the system enters the nonlinear

IOeL sz (t)

regime. The VO-RL operator K accounts for the effect of the direction of loading on
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the stiffness via the function s5(¢) = sgn(F(¢)) in the order B,(¢). This means that the net stiff-
ness of the system given by K(t,&,F) = K — <§LDf3 g (t)) <§LDf3 20)1() fully captures both
nonlinear and direction-dependent effects (i.e. irreversibility). Finally, gLDf3 3 ([)}/(t) accounts
for the residual elongation in the spring during unloading. Mathematically, it allows the spring
to have a memory of the residual elongation via f3(¢). The VO-RL operators described above

can be combined to capture the hysteretic behavior in the following fashion:

Mércé+ ke~ [EDPUR() §DP VK] €
~~~ N

I. Linear response

IL. Captures transitioﬁo nonlinear response
k= (E0P k() (§-DPVK) | x [8DF ()| = F (o)

III. Captures residual elongation and unloading response

(23)

For clarity, we have marked these different regimes in Fig. (??b) that presents the numerical
results obtained to validate the VO formulation.

In order to verify the response of the system given in Eq. (22), we performed a numerical
simulation in which the system was loaded quasi-statically with increasing quasi-static force
F(t), and the released. The specific parameters used in the simulation were M = 1kg, C =

INs/m, K = IN/m, dy = Sm and s; = 10°m™';i = 1,2,3. We set K(t) as:
(24)

The quasi-static loading leads to the simplification of Eq. (22) to:

[K_ (gLDgl(z)<|F0|T—5)) (gLDFz(t)K)} y {50_5%53(0(8@50_%)] _E O ©5)
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where & is the static displacement due to the quasi-static force F () = Fy. We emphasize
that the choice of K(¢) in this study is arbitrary but it can be easily connected to the specific
properties of the material being modeled by the spring element.

In order to demonstrate the capability of the VO formulation, we identified three different
cases and loaded the system quasi-statically using three different force amplitudes, each one
followed by an unloading phase. In case (a), 0 < Fyp < 4N such that the spring exhibits linear
response. In case (b), 0 < Fy < 6N such that the linear limit of the spring is exceeded and the
nonlinear irreversible behavior arises, hence giving rise to a residual elongation. Finally in case
(c), the system is loaded to a larger maximum force 0 < Fp < 7N such that it accumulates a larger
residual elongation. The simulations were obtained using Eq. (25) and the results are expressed
in terms of the load-displacement curve in Fig. (??). Further, we have compared the results
obtained from the VO equation of motion (denoted by F0[i ) with the corresponding integer-
order equation of motion (denoted by F) which incorporates the same hysteretic behavior. For
the sake of completeness, we provide below the stiffness variation (in N/m) used to simulate the

integer-order equation of motion:

1 E(t)<dy N F(t)>0
K(t,6,F)=q 20l g(1)y>dy n F(r)>0 (26)
1 F(t)<0

As evident from Fig. (??), the match is exact. This result should not surprise because the
fractional equation of motion is an exact reformulation of the integer-order equation of motion.

We emphasize that all the characteristic of the hysteretic behavior have been captured via the
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VO operators given in Eq. (22). By visually inspecting the numerical results, it is evident that
the spring responds in a linear fashion for |Fy| < Fy and in a nonlinear irreversible fashion for
|Fo| > Fy. Note that the stiffness of the spring also depends on the loading direction as expected
in a hysteretic system. Further, the spring remembers the residual elongation and the magnitude
of the residual elongation depends on the maximum force exerted on the spring. All the above
features are well known in hysteretic systems, and the numerical results show that the VO m

odel capture this behavior very closely.

5 General Remarks

We emphasize that, despite using the same functional form for the governing equations, differ-
ent laws for the order variations can result in largely different dynamics. This is mostly due to
the impact of the order law on the memory of the fractional-order operator and the subsequent
impact on the resulting dynamics of the system. We note that this is different from the order-
memory of the different classes of variable-order operators discussed in [19]. In the hysteresis
example, the VO operator retains a memory of the residual elongation during the unloading
cycle. This is unlike the VO operator used in modeling the contact problem where the operator
changes instantaneously depending on whether the contact has occurred or not. In this latter
case, the change of the operator is instantaneous and does not have any memory of the previous
states. Despite the simplicity of the discrete models presented in this study, it is immediate to
envision how a similar modeling approach could be implemented for complex structural prob-

lems involving, for example, bistable dynamics, discontinuities, contacts, and variable stiffness
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joints.

6 Conclusions

This work explored the use of variable-order fractional operators for the analysisof selected dis-
crete and continuous nonlinear dynamical systems. The most remarkable result consists in the
observed evolutionary nature of the VO operator which allows a natural mathematical treatment
of dynamical systems transitioning from linear to highly nonlinear behavior without requiring
a reformulation of the underlying governing equations. In other terms, thanks to the ability to
update the order of the differ-integral operator as a function of either dependent or indepen-
dent variables, the governing equations can evolve seamlessly and in real time from linear to
nonlinear simply based on the instantaneous response of the system. In this context, it was
discussed how an apparently unsettling property of the RL operator (that is the non-vanishing
derivative of a constant when using a finite lower terminal of integration) has very useful impli-
cations to model systems with strong and evolving non-smooth nonlinearities. We developed a
physics-driven strategy to exploit this unique behavior of Riemann-Liouville derivatives and to
define VO operators capable of capturing complex transitions in nonlinear dynamical systems.
Specific applications to the modeling of either contact dynamics or hysteretic behavior were
addressed. Results demonstrated that the VO operator is able to capture either the contact status
or the transition from linear to hysteretic response. Furthermore, despite the equations can de-
scribe systems exhibiting a marked nonlinear dynamics, the operators remain linear. This latter

aspect suggests that many operations and algorithms developed for systems of linear differential
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equations could still be applicable to this class of equations. We envision that the variable-order
formulation will provide a solid foundation to build powerful computational tools for the anal-

ysis of both discrete and continuous nonlinear systems.
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