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Abstract

The modeling of nonlinear dynamical systems subject to strong and evolving non-

smooth nonlinearities is typically approached via integer-order differential equations. In

this study, we present the possible application of variable-order fractional operators to a

class of nonlinear lumped parameter models that have great practical relevance in mechan-

ics and dynamics. Fractional operators are intrinsically multiscale operators that can act on

both space and time-dependent variables. Contrarily to their integer-order counterpart, frac-

tional operators can have either fixed or variable-order. In the latter case, the order can be

function of either independent or state variables. We show that when using variable-order

equations to describe the response of dynamical systems, the order can evolve as a function

of the response itself, therefore, allowing a natural and seamless transition between widely

dissimilar dynamics. Such an intriguing characteristic allows defining governing equations

for dynamical systems that are evolutionary in nature. Within this context, we present a

physics-driven strategy to define variable-order operators capable of capturing complex and

evolutionary phenomena. Specific examples include hysteresis in discrete oscillators and

contact problems. Despite using simplified models to illustrate the applications of variable-

order operators, we show numerical evidence of their unique modeling capabilities as well

as their connection to more complex dynamical systems.
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1 Introduction

Fractional calculus is the study of differential and integral operators of non-integer-order. Al-

though the branch of fractional calculus was created almost simultaneously to its integer-order

counterpart, the mathematics and its applications are considerably less developed. Due to their

differ-integral nature, fractional operators are intrinsically multiscale. While time fractional

operators enable memory effects (i.e. the response of a system is a function of its past his-

tory), space fractional operators can account for nonlocality and scale effects. In recent years,

there has been a surge of interest in fractional-order operators and in their applications to the

simulation of physical problems. Among the areas that have seen the largest number of applica-

tions, we mention transport processes in complex media [1, 2, 3, 4], formulation of constitutive

equations for viscoelastic materials [5, 6, 7], nonlocal elasticity [8, 9, 10, 11] and model-order

reduction of lumped parameter systems [12, 13]. In all these studies, fractional operators with

constant-order have typically been used. Comprehensive reviews on constant-order fractional

calculus can be found in [14, 15].

As fractional-order operators can be seen as an analytical continuation of integer-order op-

erators, variable-order (VO) operators can be seen as the natural extension of constant-order

(CO) fractional operators. In other terms, unlike the integer-order that can only vary in discrete

steps, the fractional-order allows a continuous variation with any arbitrary step. Furthermore,

in VO operators the order can vary either as a function of an independent variable of integration

(or differentiation) or as a function of some other dependent variable. These properties of VO

calculus provide the basis for the development of a computational framework with potentially

unlimited possibilities in terms of modeling complex physical phenomena. As an example, the
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reaction kinetics of proteins have been found to experience fractional-order relaxation mecha-

nisms. Glöckle et al. in [16] established that the fractional-order has a temperature dependence

and defined a variable-order governing equation where the order was defined to be a function

of the temperature.

Although the extension from CO to VO operators may seem somewhat natural, the first

comprehensive discussion on these operators was only recently given by Samko et al.[17, 18].

In VO operators, the order can be function of time, space, or even of an independent external

variable (e.g. temperature or applied loads). The formalism introduced in [17, 18, 19] has

led to research on the application of VO operators to the modeling of anomalous diffusion in

complex structures [20, 21]. Coimbra [22] has used VO operators to model oscillators under

nonlinear viscoelastic forces. Diaz et al. [23] have investigated the dynamics and control of

a VO Van der Pol oscillator. All these studies recognized and took advantage of the intrinsic

memory capability of VO operators (see [19]) and of the way this property could be leveraged

to describe more accurately the dynamics of nonlinear systems. The interested reader can find

a comprehensive review of the applications of VO operators in [24].

In this study, we show how one of the most remarkable properties of VO-based physical

models consists in their evolutionary nature. We will also show how this property can play

a critical role in the simulation of nonlinear dynamical systems. More specifically, as the VO

formalism allows updating the system’s order depending on its instantaneous response (and, po-

tentially, its historical response), the same theoretical model can evolve seamlessly to describe

widely dissimilar dynamics without the need for changing the underlying governing equation.

In the following, we will provide examples and applications of this remarkable property to non-
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linear dynamics with particular attention to contact problems and hysteretic systems. Further,

as pointed out in [22, 23], when using VO fractional calculus (VO-FC) the nonlinear behavior

of constant-order differential equations can often be modeled via linear operators. The most

immediate effect of this property is the possibility to extend, under certain conditions, many of

the analysis tools available for linear systems to the nonlinear ones.

An important step to promote the use of fractional-order models for the simulation of com-

plex systems is to establish the connection between the physical (e.g. material parameters)

and the mathematical (e.g. the law of variation of the order) properties. Despite the increasing

amount of research dedicated to exploring this specific aspect, a comprehensive approach is still

lacking. In this study, we start filling this gap by presenting physics-driven constitutive laws for

order variations for specific types of nonlinear problems that are of great interest in mechanics.

The remainder of the paper is structured as follows. First, we introduce briefly the VO oper-

ators based on the Riemann-Liouville (RL) definition. Next, we discuss how VO operators can

be formulated in order to enable evolutionary governing equations. Then, we present the appli-

cation of this approach to the modeling of contact dynamics and nonlinear hysteretic response.

We will discuss how the order of the VO operator can capture transitions in both the operating

regime (e.g. from linear to nonlinear) and the underlying physical phenomena (e.g. contacts

and hysteresis).
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2 Variable-order fractional operators

In their seminal study on VO-FC, Lorenzo et al. [19] presented several time-domain defini-

tions of VO-RL fractional operators. The discriminant factor between the different definitions

consisted in the memory behavior of the fractional operator. Here below, we report only the

definition that will be used in this work.

Definition 1 If g(t) and β (t) are continuous real-valued functions on (a0, t), the left-handed

VO-RL differential operator to the order β (t)> 0 with the lower bound a is defined as:

RL
a Dβ (t)

t g(t) =
dm

dtm

[
1

Γ(m−β (t))

∫ t

a

g(τ)
(t− τ)1+β (t)−m

dτ

]
+

dm

dtm ψ(g,−q,a0,a, t)+ψ(h,m,a0,a, t)

(1)

where a0 ≤ a < t, m = dβ (t)e is the upper integer bound on β (t), q = m− β (t), and Γ(·) is

the Gamma function. The VO-RL operator is initialized at a0 such that g(t) = 0 ∀ t ≤ a0 ≤ a.

ψ(g,−q,a0,a, t) is the initialization function defined as:

ψ(g,−q,a0,a, t) =
1

Γ(q)

∫ a

a0

(t− τ)q−1g(τ)dτ (2)

The term h is defined as:

h = RL
a0

D−q
t g(t) =

1
Γ(q)

∫ t

a0

(t− τ)q−1g(τ)dτ (3)

It is well known that the use of RL operators in fractional-order differential equations requires

fractional-order boundary conditions whose physical interpretation is more elusive than their
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integer-order counterpart [14]. The initialization function ψ(t) shifts the initial time instant

(from a to a0) of the interval over which the fractional derivative is defined. As g(t) = 0 ∀ t ≤

a0 ≤ a, all the fractional-order derivatives of g(t) at a0 are zero. Thus we do not require

fractional-order boundary conditions while solving fractional-order differential equations with

the initialized RL derivative. In other terms, the function ψ(t) accounts for the effect of the

history of g(t) and its derivatives up to the order m over the interval [a0,a] hence allowing

bypassing the use of fractional boundary conditions. Mathematically, ψ(t) brings to the defini-

tion of the fractional derivative the effect of fractionally differentiating g(t) from a0 to a [25].

Further details on the initialization procedure and on its importance can be found in [25].

3 Evolutionary governing equations: the role of VO-RL op-

erators applied to constants

It is well-known that different definitions of a fractional derivatives are not all equivalent to

each other. Differences are particularly pronounced when they are calculated at the bounds

of the domain of integration or when the argument is a constant. The only strict requirement

for every definition of a fractional derivative is that its value should coincide with the value of

the corresponding integer-order derivative when β (t) = m, where m ∈N (the set of integers).

Within this context, an example of particular interest for the following study consists in the

fixed-order RL derivative of a constant which is not equal to zero, unless β (t) = m. Although,

at first, this characteristic might appear unsettling, particularly in light of classical integer-order

calculus, we will show that it is a very convenient property to model several nonlinear and
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discontinuous behaviors in dynamics.

In order to provide the necessary mathematical context, we first present the RL derivative of

a constant function. Consider the function g(t) such that g(t) = 0 ∀ t ≤ 0, and g(t) =C0 ∀ t > 0,

where C0 is an arbitrary constant. Note that we take g(t) = 0 ∀ t ≤ 0 for proper initialization.

The RL derivative of g(t) over the interval (0, t) to a constant fractional-order β0 is given by

[14]:

RL
0 Dβ0

t C0 =
C0 t−β0

Γ(1−β0)
(4)

where m−1≤ β0 < m.

Now, consider a piece-wise continuous function β (t) defined via a continuous real-valued

function s(t) on the domain (0, t) as:

β (t) = exp(−s0 s(t)) (5)

where the function s(t) is designed to capture the physical mechanism producing the order

variation, and s0 ∈R+ is a scaling factor that allows calibrating the order variation based on the

characteristic response of the physical system. A detailed discussion of the procedure followed

to select both the function s(t) and the numerical value of s0 for the different physical problems

is reported in each specific section.

With s0 being a properly chosen constant, the limiting behavior of the order β (t) is found to
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be:

β (t)→ ∞ ∀ s(t)< 0 (6a)

β (t)→ 0 ∀ s(t)> 0 (6b)

The function β (t) is now constant on intervals determined according to Eq. (6). We apply a

VO-RL operator, denoted by RL
0 Dβ (t)

t (·), to the constant function g(t) over the interval (0, t).

Equations (4-6) lead to:

RL
0 Dβ (t)

t g(t) =


lim

β (t)→∞

C0 t−β (t)

Γ(1−β (t)) s(t)< 0

lim
β (t)→0

C0 t−β (t)

Γ(1−β (t)) s(t)> 0
(7)

which under the limiting conditions simplifies to:

RL
0 Dβ (t)

t C0 =

{ 0 s(t)≤ 0

C0 s(t)> 0
(8)

Note that when s(t) = 0, that is when the function changes sign, the VO-RL derivative of the

constant function is exactly equal to zero as noted by the equality s(t)≤ 0 in Eq. (7).

Before applying the above concepts to mechanical systems, we present a purely illustrative

example in order to provide some context on the methodology discussed above. Consider the

VO β (t) with s(t) = t(t−3)(t−3.5)(t−4)(t−4.5)(t−5), that is a function that changes sign at

specific time instants. The VO-RL operator RL
0 Dβ (t)

t C0 with C0 = 2 is given in Fig. (??). In this

example, we assumed s0 = 105. This formulation allows the term RL
0 Dβ (t)

t C0 to switch between
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0 and 2 when s(t) changes its sign.

It is exactly this switching behavior that can be exploited to simulate certain nonlinear dy-

namical properties of mechanical systems. More specifically, consider defining VO operators

as a part of a governing equation such that its variation can capture changes in the properties

of the dynamical systems such as, for example, a change in stiffness. The change in stiffness

could be abrupt, such as the type associated with closing contacts between multiple bodies,

or it could be smooth, such as the one associated with the transition from a linear elastic to a

nonlinear plastic material behavior due to large deformations. In all these cases, the response

of the system changes from initially linear to, potentially, highly nonlinear. This change in the

underlying dynamics of the system is captured via the VO β (t), through the function s(t). It

appears that the change in the VO β (t) results in an implicit reformulation of the underlying

equations of motion following a change in the underlying mechanisms dominating the response

of the system. Note that this approach marks a significant departure from the traditional mod-

eling of nonlinear systems where the functional (nonlinear) form of the equation as well as the

existence of nonlinearities must be assumed a priori.

4 VO-FC for the simulation of nonlinear dynamic systems

In order to illustrate the unique capabilities of VO operators and of the corresponding governing

equations, we introduce two case studies that are particularly relevant for the simulation of

many dynamical systems. More specifically, the two applications focus on either modeling

the dynamics of contacts between two impacting bodies or nonlinear irreversible (hysteretic)

Fabio Semperlotti, CND-19-1468 10



behavior.

The analysis of contacts between physical components is important in several real world

applications such as, for example, structural analysis of couplings between the rolling stock of

trains [26, 27], dynamic analysis of loosely jointed structures [28, 29] and breathing cracks [30,

31, 32], and detection of loose bolted joints [33, 34] or delamination in composite materials [35].

These systems are characterized by a bilinear change in the local stiffness which typically varies

as a function of time, depending on the nature of the excitation and of the dynamic response of

the system. In a similar way, there are many systems in which the material properties evolve

from linear elastic to nonlinear plastic. Polymeric foams used extensively for impact attenuation

in the automobile industry, and steel, used in structural members, exhibit hysteretic behavior

[36, 37, 38]. Hysteresis is also found, as an example, in systems subject to random vibrations

[39, 40], and in metal cutting [41]. Depending on the level of maximum and accumulated

strain, material’s behavior can evolve from linear elastic to hardening plastic, or linear elastic to

nonlinear plastic.

Currently available approaches to these classes of problems are based on nonlinear integer-

order differential models which are typically solved by finite element (FE) techniques. Although

integer-order models are invaluable tools for analysis, they also exhibit an important limitation

which consist in their inability to evolve between different governing equations. Their ability

to account for nonlinearities must be integrated in the model a priori often requiring somewhat

arbitrary considerations on the elements that will experience the nonlinear behavior. On the

contrary, VO-FC provides a natural platform to approach these problems due to its ability to

formulate governing equations capable of evolving according to the system response.
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In the following, we show how the characteristic behavior of the VO-RL operators when

applied to constants can be used to simulate challenging contact problems. More specifically,

we consider two different configurations: (1) dynamic contact between two lumped masses,

and (2) dynamic contact between a vibrating beam and a finite stiffness boundary. Further,

we present the application of the nonlinear behavior of VO-RL operator to the modeling of

nonlinear hysteresis. We show that the order variation can be crafted to represent any linear or

nonlinear material law such as those describing linear or nonlinear hysteretic behavior.

4.1 Contact dynamics for discrete particles

Consider a system of two oscillators separated by a dead zone of width d as shown in Fig. (??).

Given the system of oscillators, the absolute displacement of the individual masses is indicated

by ξ1(t) and ξ2(t), respectively. The two oscillators are connected to a spring-damper system

fixed at one end and are driven by externally applied forces F1(t) and F2(t). The oscillators are

separated by a dead-zone (i.e. a gap) of initial amplitude d such that the spring (K0) and damper

(C0) are engaged only when ξ1(t)−ξ2(t)> d.

Following the application of external loads, the dynamics of the two-oscillator system could

be either linear or nonlinear depending on the status of the contact (i.e. whether the gap between

them closes or not). More specifically, when the amplitude of oscillation is such that the gap

is cleared, the two oscillators enter in contact with each other. Before the gap closes, the two

oscillators are decoupled and exhibit a linear dynamic response. When the gap closes the two

oscillators couple in a nonlinear fashion. In the following, we show that the order of the VO-RL

operator can be crafted appropriately so that the stiffness term Keq (see Fig. (??)) can capture
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exactly the effect of the closing gap and, hence, the occurrence of the contact. The equations of

motion of the system written in classical integer-order form are:

M1 0

0 M2




ξ̈1

ξ̈2

+

C1 0

0 C2




ξ̇1

ξ̇2

+

K1 0

0 K2




ξ1

ξ2

=


F1

F2

 (9a)

when ξ1−ξ2 ≤ d, and:

M1 0

0 M2




ξ̈1

ξ̈2

+

C0 +C1 −C0

−C0 C0 +C2




ξ̇1

ξ̇2

+

K0 +K1 −K0

−K0 K0 +K2




ξ1

ξ2

=


F1

F2


(9b)

when ξ1−ξ2 > d.

We reformulate the above equations of motion using VO-FC. We start by defining the func-

tion s(t) that allows capturing the characteristic feature of the underlying contact mechanism

(i.e. the gap width) as a function of the system’s response. The function is defined as:

s(t) = ξ1(t)−ξ2(t)−d (10)

Note that the function s(t) = ξ1(t)−ξ2(t)−d changes sign when the contact either closes or

opens, hence it appears to be a reasonable choice to track the physical response of the contact.

As previously mentioned, this function provides the link between selected physical features of

the system and the VO β (t) of the operator and it could potentially be defined in many different

ways. Hence, this is one of the possible choices for such function. The variable-order β (t) can
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now be defined according to Eq. (5) as:

β (t) = exp(−s0(ξ1(t)−ξ2(t)−d)) (11)

The scaling factor s0 can be calculated as follows. We define the infimum of the function s(t) in

the neighborhood of a point where the function switches sign as ε = inf(|s(t)|). Now, ∀ ε > 0

and δ > 0 ∃ s0 such that e−s0ε < δ ; δ can be chosen to be infinitesimally small. Note that s0

depends on both the ε and δ parameters. We have graphically demonstrated the significance of

the parameters δ and ε in Fig. (??).

From a general perspective, the parameter δ provides the characteristic time (i.e. the tem-

poral resolution) for the switch to occur. In other terms, it determines the temporal range within

which the switch is bound to occur. The parameter ε = inf(s(t)) physically represents the

smallest possible change in the function s(t) following a change in the sign of s(t) that can be

accurately detected. In other terms, the parameter ε controls the spatial resolution of the func-

tion s(t) within the interval defined by δ . For problems involving rapid changes in properties,

such as contact problems, the switch should occur over a length scale much smaller than the

characteristic spatial scale of the problem. The characteristic length scale is clearly dependent

on the specific problem, hence the need for the scaling factor s0.

From a more practical perspective, the numerical value of the parameter s0 can be estimated

as follows. First, we choose the parameter δ which provides the characteristic time (i.e. the

temporal resolution) for the switch to occur. Note that δ should be greater than or equal to the

time step (∆t) used to numerically simulate the system; the most accurate value being δ = ∆t.
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As an example, for the simulations presented in the following for the contact problem, we chose

∆t = 10−3s hence δ = 10−3. Then, we define the parameter ε = inf(|s(t)|), which physically

represents the smallest possible change in the relative displacement of the two masses following

a change in the status of the contact. As previously discussed, this parameter is related to the

characteristic spatial scale of the problem. For contact problems, the initial gap distance d

can be chosen as a possible characteristic spatial scale. Then, the spatial resolution for the

switch can be set by requesting ε ≤ P0d, where P0 is a user-defined percentage value. At this

point it is easy to see that if tk is the instant when the contact status changes (i.e. s(tk) = 0),

then at the time step t̃k = tk +∆t following directly the change in the contact status, we have

s(t̃k) = ξ1(t̃k)− ξ2(t̃k)− d = inf(s(t)) 6= 0. Given the definition of the spatial resolution, the

switch in the status of the contact should occur within the interval 0 < s(t̃k) ≤ P0d. For the

simulations presented later in this paragraph, we chose P0 = 10−2 which means that the switch

occurs when the function s(t) exceeds a value equal to 1% the initial gap distance d. From the

relation e−s0ε < δ , we obtain s0 > 1.4×102. For a more conservative approximation, the value

was rounded to s0 = 103 m−1.

At this point, we have all the information to define Keq and Ceq as VO-RL operators. Using

Eqs. (8,11) it can be shown that Keq and Ceq are:

Keq =
RL
0 Dβ (t)

t K0 =


0 ξ1−ξ2 ≤ d

K0 ξ1−ξ2 > d
(12a)

Ceq =
RL
0 Dβ (t)

t C0 =


0 ξ1−ξ2 ≤ d

C0 ξ1−ξ2 > d
(12b)
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where K0 and C0 are constant values of stiffness and damping. We use Keq and Ceq to combine

the equations of motion (see Eq. (12)) of the coupled oscillators in a single set of equations:

M1 0

0 M2




ξ̈1

ξ̈2

+

Ceq +C1 −Ceq

−Ceq Ceq +C2




ξ̇1

ξ̇2

+

Keq +K1 −Keq

−Keq Keq +K2




ξ1

ξ2

=


F1

F2


(13)

where Keq and Ceq evolve according to Eq. (12) guided by the evolution of the VO β (t). The

nonlinearity associated with the contact between the two masses is now fully captured in the

VO. The equations of motion of the coupled oscillators are simplified, at least formally, and can

evolve from linear to nonlinear simply based on the response of the system (i.e. as a function of

the distance between the two masses). This discussion highlights a very unique feature of VO

operators, that is their evolutionary nature.

Another particularly intriguing aspect of this formulation is that the operator itself is still

linear; a property inherited by the intrinsic nature of VO-FC [19, 22]. However, we emphasize

that the linearity of the VO-RL operator depends on the specific functional variation of the order

[19]. In the context of our study, the fractional operator acts on piece-wise constant functions

(i.e. the contact stiffness and contact damping). The system consists of two oscillators and a

set of spring-damper (K0 and C0) inserted between them. In this specific case, the application

of the principle of superposition would correspond to adding an additional set of spring-damper

(say, K′0 and C′0) between the two oscillators. For this class of operators, it is easy to show that:

RL
0Dβ (x1,x2)

t [α1φ1 +α2φ2] = α1
RL

0Dβ (x1,x2)
t φ1 +α2

RL
0Dβ (x1,x2)

t φ2 (14)
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where φ1 (and φ2) is either K0 (and K′0) or C0 (and C′0).

Based on the above formulation, the equivalent VO coupled oscillators system is schemat-

ically shown in Fig. (??b). Note that the fractional Eq. (13) is an exact reformulation of the

integer-order Eq. (9). Thus, we expect that the solutions obtained from both formulations were

exactly equivalent (clearly, assuming the same initial and forcing conditions).

In order to validate this approach, we performed numerical simulations using the fractional-

order system represented by Eq. (13) and compared the results with the solution obtained from

the original integer-order system (Eq. (9)). Both systems of equations were solved numerically

by using finite difference methods. The parameters for the simulations were chosen as M1 =

M2 = 1kg, C0 = 0, C1 = 0.1Ns/m, C2 = 0.4Ns/m, K0 = 2N/m, K1 = K2 = 1N/m, and d = 5m.

Initial conditions were set at ξ1(0) = 0, ξ̇1(0) =−1m/s, and ξ2(0) = 0, ξ̇2(0) = 0. As previously

discussed, the value of s0 used in the simulations was s0 = 103m−1.

In order to showcase the capability of the VO operator applied to contact problems, we

identified three different regimes, each corresponding to different values of the external forcing

load: 1) (case a - linear) the gap does not close, hence the contact does not occur and the

masses are effectively decoupled at all times; 2) (case b - weakly nonlinear) the gap closes

aperiodically, and the overall response is quasi-periodic; 3) (case c - strongly nonlinear) the

contact closes periodically hence giving rise to a highly nonlinear response. For case (a) we set

F1(t) =−3sin(0.3t)N and F2 = 0, for case (b) F1(t) =−10sin(0.3t)N and F2 = 0, and for case

(c) F1(t) = 5sin(0.8t)N and F2 = −5sin(0.8t)N. The results are shown in Fig. (??) in terms

of the time history of the displacement of the two masses. The initial transient is very short

and the results obtained in all the cases converge quickly to the steady state. We denote the
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results obtained from the fractional-order model as ξ
β

1 and ξ
β

2 in order to differentiate them

from the results of the integer-order model. From a general perspective, results are in excellent

agreement with each other and the nonlinearity in the contact problem is now fully captured in

the order of the VO-RL operators (as evident from the switch in Keq).

In case (a), the dead-zone between the masses #1 and #2 does not close and hence the

oscillators are decoupled at all times. Thus, the response of the system to the sinusoidal forcing

is linear as clearly seen in Fig. (??a). As the amplitude of the loading increases (case (b)), the

masses come in contact aperiodically and the response of the system becomes nonlinear but still

quasi-periodic in nature; under these conditions the system exhibits features typical of a weakly

nonlinear dynamics. If the forcing amplitude is further increased, the masses come in contact

periodically and the response becomes highly nonlinear (Fig. (??c)). Also, note that each plot

reports the time history of the spring constant Keq which clearly switches between the values 0

and K0 depending on the occurrence of contact.

We make a few remarks concerning the numerical scheme adopted to solve the VO frac-

tional differential equations. From a general standpoint, it is not possible to obtain an an-

alytical expression for the VO-RL derivative of a (non-constant) function. Thus, the use of

VO-RL derivatives in fractional differential equations requires numerical methods specialized

for fractional-order derivatives. In this regard, there are several methods (e.g. finite difference,

finite elements) that have been developed in recent years and that can be used for this purpose

[42, 24]. However, in the context of the present study, we focused primarily on the use of VO-

RL derivatives of constant functions. Under these specific conditions, it is possible to obtain

an analytical expression (see Eq. (8)) of the derivative. It follows that specialized numerical

Fabio Semperlotti, CND-19-1468 18



methods are not required for the present study. Indeed, the same second-order finite difference

numerical scheme was used for both integer and fractional order models. As a result, both

the computational time and the numerical scheme complexity are exactly equivalent for both

models.

In addition, the comparison between the results obtained from both the integer- and the

fractional-order formulations is exact (i.e. the error is exactly zero) at every time instant. This

comment should be interpreted in the following way. Given that 1) both formulations have been

numerically solved using the same finite difference scheme, and that 2) the VO-RL allows an

exact definition of the switch, then the error between the two solutions is numerically zero.

At the same time, both solutions to the initial systems of differential equations were obtained

using a central-difference scheme in time. In this regard, both solutions are approximate. The

error corresponding to the central-difference scheme is O(∆t2), where ∆t indicates the step used

for the temporal discretization. As a result, the error in the numerical results obtained via the

VO-RL formulation is also O(∆t2).

Despite the simplicity of this discrete two-body system, one can envision how this VO-FC

formulation can be easily extended to the analysis of systems with N interacting bodies. The

classical integer-order formulation of such a system will require a maximum of 2N−1 separate

equations that are N×N dimensional depending on the contacts allowed between individual

bodies, thus resulting in a large number of equations. The VO-FC formulation, instead, allows

simulating the entire system response via a single N×N dimensional equation where the contact

parameters are VO-RL operators. Clearly, the VO-FC formulation has the potential to greatly

simplify the analysis of nonlinear systems involving contact between many interacting bodies.
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4.2 Contact dynamics for flexible beams

We extend the VO-RL formalism presented in the previous section to simulate the dynamics

of a cantilever beam undergoing a possible contact at its free end. We will use an approach

exactly equivalent to that illustrated in the previous paragraph for the discrete system. More

specifically, the beam is clamped at one end and separated by a dead-zone of amplitude ∆ from

a finite stiffness boundary (modeled via a spring) at the other end. When the beam is subject

to an external excitation, its free end can clear the gap and close the contact with the spring

element, as shown in Fig. (??a). Similar to the previous problem involving coupled oscillators,

when the contact closes the beam and the spring couple in a nonlinear fashion. The response of

this system is governed by:

EI
∂ 4η

∂ξ 4 +ρA
∂ 2η

∂ t2 = FT (ξ , t) (15a)

η
∣∣
0,t = 0

∂η

∂ξ

∣∣∣∣
0,t

= 0 EI
∂ 2η

∂ξ 2

∣∣∣∣
L,t

= 0 (15b)

EI
∂ 3η

∂ξ 3

∣∣∣∣
L,t

=

{ 0 η(L, t)>−∆

K0η(L, t) η(L, t)≤−∆

(15c)

where η(ξ , t) indicates the transverse displacement of the beam, FT (ξ , t) is the applied trans-

verse load, while E, I, L, and A are the Young’s modulus, the area moment of inertia, the length,

and the cross-sectional area of the beam, respectively. K0 is the stiffness of the spring located at

the contact point.

By following the approach outlined in the previous section, we reformulate the equations of
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motion for the beam using VO operators. Consider the following expression for the VO β (t):

β (t) = exp[s0(η(L, t)+∆)] (16)

where s0 is a scaling factor as discussed in the previous problem, s(t) = −(η(L, t)+∆) is the

function the captures the main features of the contact and that changes its sign depending on

the status of the contact. When the VO β (t) is used within a VO-RL operator applied to the

spring stiffness K0 it results in a nonlinear term that can capture the contact between the tip of

the beam and the spring. Mathematically, using Eqs. (8,11), it can be shown that:

Keq =
RL
0 Dβ (t)

t K0 =


0 η(L, t)>−∆

K0 η(L, t)≤−∆

(17)

We use the above VO-RL term Keq to reformulate the equation of motion of the beam in the

following manner:

EI
∂ 4η

∂ξ 4 +ρA
∂ 2η

∂ t2 = FT (ξ , t) (18a)

η
∣∣
0,t = 0

∂η

∂ξ

∣∣∣∣
0,t

= 0 EI
∂ 2η

∂ξ 2

∣∣∣∣
L,t

= 0 (18b)

EI
∂ 3η

∂ξ 3

∣∣∣∣
L,t

= Keqη(L, t) (18c)

where the VO-RL term Keq evolves according to Eq. (17) guided by the VO β (t). Clearly, the

nonlinearity associated with the contact between the beam and the spring is now fully captured

in the VO-RL term. Based on the above formulation, the equivalent VO system is schematically
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shown in Fig. (??b). We emphasize that the modified VO Eq. (18) is an exact reformulation of

the integer-order Eq. (15). In order to validate the VO-RL formulation, we solve the fractional

model numerically and compare with the response from a nonlinear integer-order model.

To numerically evaluate the response of the beam, we discretize it into N elements having

uniform length and mass lumped at the ends, as shown in Fig. (??c). To ensure compatibility,

it is essential that both the transverse displacement and the rotation (i.e., the first derivative of

the transverse displacement) are continuous across these lumped elements. Thus, the degrees

of freedom of each element are the transverse displacements and rotations of the ends of the

element, denoted as (η1,η2) and (∂η1
∂ξ

, ∂η2
∂ξ

), respectively. These degrees of freedom can be [43]

interpolated using C1 continuous Hermitian shape functions to obtain the following element

mass and the stiffness matrices:

Me =
ρAle
420



156 −22le 54 13le

−22le 4l2
e −13le −3l2

e

54 −13le 156 22le

13le −3l2
e 22le 4l2

e


(19a)

Ke =
2EI
l3
e



6 −3le −6 −3le

−3le 2l2
e 3le l2

e

−6 3le 6 3le

−3le l2
e 3le 2l2

e


(19b)

where le is the length of each discretized element. The element mass and stiffness matrices are
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then assembled to generate the following equation of motion for the entire beam:

[M]{η̈}+[K]{η}= {FT} (20)

where [M] and [K] are the global mass and stiffness matrices of the beam, respectively, and {FT}

is the force vector. The vector {η} contains both the displacement and the rotation degrees of

freedom. The variable stiffness at the end of the beam is accounted for by adding the VO-

RL term Keq to the diagonal position of the global stiffness matrix [K] corresponding to the

transverse degree of freedom of the tip of the beam. Since the VO-RL term Keq evolves with

time, the stiffness matrix [K] evolves with time as well. In order to obtain the time response of

the coupled system, the spatially-discretized Eq. (20) is further discretized in time. By using a

uniform time discretization, we obtain the following set of algebraic equations describing the

response of the coupled beam-spring system:

{η}m+1 = 2{η}m−{η}m−1 +∆t2[M]−1 [Fm
T − [K]m{η}m] (21)

where ∆t is the size of the time step and the superscript m denotes the time step such that at the

step m time is t = m∆t. Note that this numerical approach can be applied to both the integer

and the fractional order models because the fractional order term representing the contact is ex-

pressed entirely analytically. Hence, as in the previous example, there is no need for specialized

numerical methods for the solution of the fractional order problem.

By using the above described numerical model, the numerical response of the coupled

system was obtained assuming the following parameters: EI = 1Nm2, ρA=1kg/m, L = 1m,
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K0 = 1N/m, ∆ = 0.03m. The scaling parameter s0 was calculated according to the same

procedure highlighted in the previous paragraph and it was found to be s0 = 105m−1 for a

P0 = 0.01. The beam was discretized into N = 25 elements. The initial condition of the

beam was set at η(ξ ,0) = 0 and η̇(ξ ,0) = 0. The external transverse loading was chosen

as FT (ξ , t) = [0.1× δ (ξ −L)sin(t)]N and applied only at the tip of the beam. The results are

presented in Fig. (??a) in terms of the time history of the displacement of the tip of the beam.

We have denoted the results obtained from the modified fractional equation of motion as ηβ in

order to differentiate it from the results obtained via the integer-order equation of motion.

Additionally, we have also compared the response of the entire beam under an external

loading FT (ξ , t) = [δ (ξ − L)sin(4t)]N in order to highlight the effect of the contact on the

curvature of the beam. The parameters used for this simulation are the same given above, except

for ∆ which is taken as 0.1m. We obtained the response of the entire beam at two instants of

time: (a) when the beam does not couple with the spring (denoted as η
β

1 ), and (b) when the

beam couples with the spring (denoted as η
β

2 ). These two conditions occur at the time instants

t = 0.75s and t = 2.99s, respectively. As evident from the results presented in Fig. (??b), the

curvature of the beam changes upon contact with the spring located at its tip.

As emphasized earlier, the match between the fractional- and the integer-order results is ex-

act (i.e. their relative error is zero) at all times; however, both solutions are approximated due to

the use of numerical approaches. The nonlinearity in the contact problem is now fully captured

in the order of the VO-RL operator Keq which is evident from the switch in Keq (see Fig. (??a)).

A few closing comments on this problem. Although we have presented the results for the case

of a concentrated load, the same formulation applies identically to distributed transverse loads.
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Also, the formulation can be extended to the study of beams whose finite stiffness contact can

occur everywhere along the length and at multiple locations, simultaneously. This latter case

could be seen as the counterpart of the more classical problem of a beam coming in contact with

an elastic foundation.

4.3 Application to nonlinear hysteretic behavior

In this section, we extend the VO-RL formalism and illustrate how it can be used to model hys-

teretic behavior (associated with constitutive relations) in lumped parameter systems. Similar

to the contact problem discussed above where the variable-order β (t) was crafted to change the

stiffness upon contact, VO operators can be crafted to capture the irreversible nonlinear evolu-

tion associated with hysteretic constitutive relations. Consider a lumped spring-mass-damper

system (see Fig. (??a)) such that the constitutive equation of the spring varies from linear to non-

linear irreversible response depending on the total elongation of the spring. Since the spring’s

behavior is assumed irreversible, the VO operator must be designed to capture the occurrence

of a residual elongation in the spring. The equation of motion for the hysteretic behavior is

generalized to the form:

Mξ̈ +Cξ̇ +
[
K−

(
RL
0 Dβ1(t)

t K̃(t)
) (

RL
0 Dβ2(t)

t K
)]
×
[
ξ − RL

0 Dβ3(t)
t γ(t)

]
= F(t) (22a)
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where,

β1(t) = exp(−s1 (|ξ (t)|−d0)︸ ︷︷ ︸
s1(t)

) (22b)

β2(t) = exp(−s2 sgn(Ḟ(t))︸ ︷︷ ︸
s2(t)

) (22c)

β3(t) = exp(s3 sgn(Ḟ(t))︸ ︷︷ ︸
−s3(t)

) (22d)

K̃(t), K̃(|F(t)|−FY ) (22e)

γ(t) = sup
(
ξ (t)

)
− Fs

K
(22f)

In the above equations M, C, and K are the mass, damping, and linear elastic stiffness coeffi-

cients of the lumped system and ξ (t) denotes the displacement of the oscillator. The system is

subject to an external force F(t), and Fs = F(ts) such that ξ (ts) = sup
(
ξ (t)

)
. The coefficients

s1, s2, and s3 (in the VO β1(t), β2(t), and β3(t)) are scaling factors. The role of these scaling

factors and the calculation approach is exactly identical to the one exemplified in previous para-

graphs. The quantity d0 describes the linear response limit of the spring, and FY = Kd0 is the

force applied on the spring at this limit. K̃(t) is defined to be a function of |F(t)|−FY .

In order to understand the VO governing Eq. (22), the role of the different VO-RL operators

must be discussed. The VO-RL operator RL
0 Dβ1(t)

t K̃(t) accounts for the change in the stiffness of

the system dictated by the order variation β1(t). When the function s1(t) = |ξ (t)|− d0, which

defines the order β1(t), changes its sign (i.e. when |ξ (t)|> d0) the system enters the nonlinear

regime. The VO-RL operator RL
0 Dβ2(t)

t K accounts for the effect of the direction of loading on
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the stiffness via the function s2(t) = sgn(Ḟ(t)) in the order β2(t). This means that the net stiff-

ness of the system given by K(t,ξ ,F) = K−
(

RL
0 Dβ1(t)

t K̃(t)
) (

RL
0 Dβ2(t)

t K
)

fully captures both

nonlinear and direction-dependent effects (i.e. irreversibility). Finally, RL
0 Dβ3(t)

t γ(t) accounts

for the residual elongation in the spring during unloading. Mathematically, it allows the spring

to have a memory of the residual elongation via β3(t). The VO-RL operators described above

can be combined to capture the hysteretic behavior in the following fashion:

Mξ̈ +Cξ̇ + Kξ︸︷︷︸
I. Linear response

−
[

RL
0 Dβ1(t)

t K̃(t) RL
0 Dβ2(t)

t K
]

ξ︸ ︷︷ ︸
II. Captures transition to nonlinear response

−

[
K−

(
RL
0 Dβ1(t)

t K̃(t)
) (

RL
0 Dβ2(t)

t K
)]
×
[

RL
0 Dβ3(t)

t γ(t)
]

︸ ︷︷ ︸
III. Captures residual elongation and unloading response

= F(t)

(23)

For clarity, we have marked these different regimes in Fig. (??b) that presents the numerical

results obtained to validate the VO formulation.

In order to verify the response of the system given in Eq. (22), we performed a numerical

simulation in which the system was loaded quasi-statically with increasing quasi-static force

F(t), and the released. The specific parameters used in the simulation were M = 1kg, C =

1Ns/m, K = 1N/m, d0 = 5m and si = 103m−1;i = 1,2,3. We set K̃(t) as:

K̃(t) =
|F(t)|−5

4
(24)

The quasi-static loading leads to the simplification of Eq. (22) to:

[
K−

(
RL
0 Dβ1(t)

t

(
|F0|−5

4

)) (
RL
0 Dβ2(t)

t K
)]
×
[

ξ0− RL
0 Dβ3(t)

t

(
supξ0−

F0

K

)]
= F0 (25)
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where ξ0 is the static displacement due to the quasi-static force F(t) = F0. We emphasize

that the choice of K̃(t) in this study is arbitrary but it can be easily connected to the specific

properties of the material being modeled by the spring element.

In order to demonstrate the capability of the VO formulation, we identified three different

cases and loaded the system quasi-statically using three different force amplitudes, each one

followed by an unloading phase. In case (a), 0 ≤ F0 ≤ 4N such that the spring exhibits linear

response. In case (b), 0 ≤ F0 ≤ 6N such that the linear limit of the spring is exceeded and the

nonlinear irreversible behavior arises, hence giving rise to a residual elongation. Finally in case

(c), the system is loaded to a larger maximum force 0≤F0≤ 7N such that it accumulates a larger

residual elongation. The simulations were obtained using Eq. (25) and the results are expressed

in terms of the load-displacement curve in Fig. (??). Further, we have compared the results

obtained from the VO equation of motion (denoted by Fβ

0 ) with the corresponding integer-

order equation of motion (denoted by F0) which incorporates the same hysteretic behavior. For

the sake of completeness, we provide below the stiffness variation (in N/m) used to simulate the

integer-order equation of motion:

K(t,ξ ,F) =


1 ξ (t)≤ d0 ∩ Ḟ(t)≥ 0

9−|F(t)|
4 ξ (t)> d0 ∩ Ḟ(t)≥ 0

1 Ḟ(t)< 0

(26)

As evident from Fig. (??), the match is exact. This result should not surprise because the

fractional equation of motion is an exact reformulation of the integer-order equation of motion.

We emphasize that all the characteristic of the hysteretic behavior have been captured via the
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VO operators given in Eq. (22). By visually inspecting the numerical results, it is evident that

the spring responds in a linear fashion for |F0| < FY and in a nonlinear irreversible fashion for

|F0|> FY . Note that the stiffness of the spring also depends on the loading direction as expected

in a hysteretic system. Further, the spring remembers the residual elongation and the magnitude

of the residual elongation depends on the maximum force exerted on the spring. All the above

features are well known in hysteretic systems, and the numerical results show that the VO m

odel capture this behavior very closely.

5 General Remarks

We emphasize that, despite using the same functional form for the governing equations, differ-

ent laws for the order variations can result in largely different dynamics. This is mostly due to

the impact of the order law on the memory of the fractional-order operator and the subsequent

impact on the resulting dynamics of the system. We note that this is different from the order-

memory of the different classes of variable-order operators discussed in [19]. In the hysteresis

example, the VO operator retains a memory of the residual elongation during the unloading

cycle. This is unlike the VO operator used in modeling the contact problem where the operator

changes instantaneously depending on whether the contact has occurred or not. In this latter

case, the change of the operator is instantaneous and does not have any memory of the previous

states. Despite the simplicity of the discrete models presented in this study, it is immediate to

envision how a similar modeling approach could be implemented for complex structural prob-

lems involving, for example, bistable dynamics, discontinuities, contacts, and variable stiffness
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joints.

6 Conclusions

This work explored the use of variable-order fractional operators for the analysisof selected dis-

crete and continuous nonlinear dynamical systems. The most remarkable result consists in the

observed evolutionary nature of the VO operator which allows a natural mathematical treatment

of dynamical systems transitioning from linear to highly nonlinear behavior without requiring

a reformulation of the underlying governing equations. In other terms, thanks to the ability to

update the order of the differ-integral operator as a function of either dependent or indepen-

dent variables, the governing equations can evolve seamlessly and in real time from linear to

nonlinear simply based on the instantaneous response of the system. In this context, it was

discussed how an apparently unsettling property of the RL operator (that is the non-vanishing

derivative of a constant when using a finite lower terminal of integration) has very useful impli-

cations to model systems with strong and evolving non-smooth nonlinearities. We developed a

physics-driven strategy to exploit this unique behavior of Riemann-Liouville derivatives and to

define VO operators capable of capturing complex transitions in nonlinear dynamical systems.

Specific applications to the modeling of either contact dynamics or hysteretic behavior were

addressed. Results demonstrated that the VO operator is able to capture either the contact status

or the transition from linear to hysteretic response. Furthermore, despite the equations can de-

scribe systems exhibiting a marked nonlinear dynamics, the operators remain linear. This latter

aspect suggests that many operations and algorithms developed for systems of linear differential
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equations could still be applicable to this class of equations. We envision that the variable-order

formulation will provide a solid foundation to build powerful computational tools for the anal-

ysis of both discrete and continuous nonlinear systems.
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