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Abstract

Contextual word representations, typically

trained on unstructured, unlabeled text, do not

contain any explicit grounding to real world

entities and are often unable to remember facts

about those entities. We propose a general

method to embed multiple knowledge bases

(KBs) into large scale models, and thereby

enhance their representations with structured,

human-curated knowledge. For each KB, we

first use an integrated entity linker to retrieve

relevant entity embeddings, then update con-

textual word representations via a form of

word-to-entity attention. In contrast to pre-

vious approaches, the entity linkers and self-

supervised language modeling objective are

jointly trained end-to-end in a multitask set-

ting that combines a small amount of entity

linking supervision with a large amount of raw

text. After integrating WordNet and a subset

of Wikipedia into BERT, the knowledge en-

hanced BERT (KnowBert) demonstrates im-

proved perplexity, ability to recall facts as

measured in a probing task and downstream

performance on relationship extraction, en-

tity typing, and word sense disambiguation.

KnowBert’s runtime is comparable to BERT’s

and it scales to large KBs.

1 Introduction

Large pretrained models such as ELMo (Peters

et al., 2018), GPT (Radford et al., 2018), and

BERT (Devlin et al., 2019) have significantly im-

proved the state of the art for a wide range of NLP

tasks. These models are trained on large amounts

of raw text using self-supervised objectives. How-

ever, they do not contain any explicit grounding

to real world entities and as a result have difficulty

recovering factual knowledge (Logan et al., 2019).

Knowledge bases (KBs) provide a rich source

of high quality, human-curated knowledge that can

be used to ground these models. In addition, they

often include complementary information to that

found in raw text, and can encode factual knowl-

edge that is difficult to learn from selectional pref-

erences either due to infrequent mentions of com-

monsense knowledge or long range dependencies.

We present a general method to insert multiple

KBs into a large pretrained model with a Knowl-

edge Attention and Recontextualization (KAR)

mechanism. The key idea is to explicitly model

entity spans in the input text and use an entity

linker to retrieve relevant entity embeddings from

a KB to form knowledge enhanced entity-span

representations. Then, the model recontextual-

izes the entity-span representations with word-to-

entity attention to allow long range interactions

between contextual word representations and all

entity spans in the context. The entire KAR is in-

serted between two layers in the middle of a pre-

trained model such as BERT.

In contrast to previous approaches that inte-

grate external knowledge into task-specific mod-

els with task supervision (e.g., Yang and Mitchell,

2017; Chen et al., 2018), our approach learns the

entity linkers with self-supervision on unlabeled

data. This results in general purpose knowledge

enhanced representations that can be applied to a

wide range of downstream tasks.

Our approach has several other benefits. First,

it leaves the top layers of the original model un-

changed so we may retain the output loss layers

and fine-tune on unlabeled corpora while training

the KAR. This also allows us to simply swap out

BERT for KnowBert in any downstream applica-

tion. Second, by taking advantage of the exist-

ing high capacity layers in the original model, the

KAR is lightweight, adding minimal additional

parameters and runtime. Finally, it is easy to in-

corporate additional KBs by simply inserting them

at other locations.

KnowBert is agnostic to the form of the
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KB, subject to a small set of requirements (see

Sec. 3.2). We experiment with integrating both

WordNet (Miller, 1995) and Wikipedia, thus ex-

plicitly adding word sense knowledge and facts

about named entities (including those unseen at

training time). However, the method could be ex-

tended to commonsense KBs such as ConceptNet

(Speer et al., 2017) or domain specific ones (e.g.,

UMLS; Bodenreider, 2004).

We evaluate KnowBert with a mix of intrin-

sic and extrinsic tasks. Despite being based

on the smaller BERTBASE model, the experi-

ments demonstrate improved masked language

model perplexity and ability to recall facts over

BERTLARGE. The extrinsic evaluations demon-

strate improvements for challenging relationship

extraction, entity typing and word sense disam-

biguation datasets, and often outperform other

contemporaneous attempts to incorporate external

knowledge into BERT.

2 Related Work

Pretrained word representations Initial work

learning word vectors focused on static word

embeddings using multi-task learning objectives

(Collobert and Weston, 2008) or corpus level co-

occurence statistics (Mikolov et al., 2013a; Pen-

nington et al., 2014). Recently the field has

shifted toward learning context-sensitive embed-

dings (Dai and Le, 2015; Peters et al., 2018; De-

vlin et al., 2019). We build upon these by incorpo-

rating structured knowledge into these models.

Entity embeddings Entity embedding methods

produce continuous vector representations from

external knowledge sources. Knowledge graph-

based methods optimize the score of observed

triples in a knowledge graph. These methods

broadly fall into two categories: translational dis-

tance models (Bordes et al., 2013; Wang et al.,

2014b; Lin et al., 2015; Xiao et al., 2016) which

use a distance-based scoring function, and linear

models (Nickel et al., 2011; Yang et al., 2014;

Trouillon et al., 2016; Dettmers et al., 2018) which

use a similarity-based scoring function. We exper-

iment with TuckER (Balazevic et al., 2019) em-

beddings, a recent linear model which general-

izes many of the aforecited models. Other meth-

ods combine entity metadata with the graph (Xie

et al., 2016), use entity contexts (Chen et al., 2014;

Ganea and Hofmann, 2017), or a combination of

contexts and the KB (Wang et al., 2014a; Gupta

et al., 2017). Our approach is agnostic to the de-

tails of the entity embedding method and as a re-

sult is able to use any of these methods.

Entity-aware language models Some previous

work has focused on adding KBs to generative lan-

guage models (LMs) (Ahn et al., 2017; Yang et al.,

2017; Logan et al., 2019) or building entity-centric

LMs (Ji et al., 2017). However, these methods

introduce latent variables that require full annota-

tion for training, or marginalization. In contrast,

we adopt a method that allows training with large

amounts of unannotated text.

Task-specific KB architectures Other work has

focused on integrating KBs into neural architec-

tures for specific downstream tasks (Yang and

Mitchell, 2017; Sun et al., 2018; Chen et al., 2018;

Bauer et al., 2018; Mihaylov and Frank, 2018;

Wang and Jiang, 2019; Yang et al., 2019). Our

approach instead uses KBs to learn more gener-

ally transferable representations that can be used

to improve a variety of downstream tasks.

3 KnowBert

KnowBert incorporates knowledge bases into

BERT using the Knowledge Attention and Re-

contextualization component (KAR). We start by

describing the BERT and KB components. We

then move to introducing KAR. Finally, we de-

scribe the training procedure, including the multi-

task training regime for jointly training KnowBert

and an entity linker.

3.1 Pretrained BERT

We describe KnowBert as an extension to (and

candidate replacement for) BERT, although the

method is general and can be applied to any deep

pretrained model including left-to-right and right-

to-left LMs such as ELMo and GPT. Formally,

BERT accepts as input a sequence of N Word-

Piece tokens (Sennrich et al., 2016; Wu et al.,

2016), (x1, . . . , xN ), and computes L layers of

D-dimensional contextual representations Hi ∈
R
N×D by successively applying non-linear func-

tions Hi = Fi(Hi−1). The non-linear func-

tion is a multi-headed self-attention layer followed

by a position-wise multilayer perceptron (MLP)
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(Vaswani et al., 2017):

Fi(Hi−1) =

TransformerBlock(Hi−1) =

MLP(MultiHeadAttn(Hi−1,Hi−1,Hi−1)).

The multi-headed self-attention uses Hi−1 as the

query, key, and value to allow each vector to attend

to every other vector.

BERT is trained to minimize an objective func-

tion that combines both next-sentence prediction

(NSP) and masked LM log-likelihood (MLM):

LBERT = LNSP + LMLM.

Given two inputs xA and xB , the next-sentence

prediction task is binary classification to predict

whether xB is the next sentence following xA.

The masked LM objective randomly replaces a

percentage of input word pieces with a special

[MASK] token and computes the negative log-

likelihood of the missing token with a linear layer

and softmax over all possible word pieces.

3.2 Knowledge Bases

The key contribution of this paper is a method

to incorporate knowledge bases (KB) into a pre-

trained BERT model. To encompass as wide a se-

lection of prior knowledge as possible, we adopt

a broad definition for a KB in the most general

sense as fixed collection of K entity nodes, ek,

from which it is possible to compute entity embed-

dings, ek ∈ R
E . This includes KBs with a typical

(subj, rel, obj) graph structure, KBs that

contain only entity metadata without a graph, and

those that combine both a graph and entity meta-

data, as long as there is some method for embed-

ding the entities in a low dimensional vector space.

We also do not make any assumption that the en-

tities are typed. As we show in Sec. 4.1 this flex-

ibility is beneficial, where we compute entity em-

beddings from WordNet using both the graph and

synset definitions, but link directly to Wikipedia

pages without a graph by using embeddings com-

puted from the entity description.

We also assume that the KB is accompanied

by an entity candidate selector that takes as input

some text and returns a list of C potential entity

links, each consisting of the start and end indices

of the potential mention span and Mm candidate

entities in the KG:

C = {〈(startm, endm), (em,1, . . . , em,Mm)〉 |

m ∈ 1 . . . C, ek ∈ 1 . . .K}.

In practice, these are often implemented us-

ing precomputed dictionaries (e.g., CrossWikis;

Spitkovsky and Chang, 2012), KB specific rules

(e.g., a WordNet lemmatizer), or other heuristics

(e.g., string match; Mihaylov and Frank, 2018).

Ling et al. (2015) showed that incorporating can-

didate priors into entity linkers can be a power-

ful signal, so we optionally allow for the candi-

date selector to return an associated prior proba-

bility for each entity candidate. In some cases, it

is beneficial to over-generate potential candidates

and add a special NULL entity to each candidate

list, thereby allowing the linker to discriminate be-

tween actual links and false positive candidates. In

this work, the entity candidate selectors are fixed

but their output is passed to a learned context de-

pendent entity linker to disambiguate the candi-

date mentions.

Finally, by restricting the number of candidate

entities to a fixed small number (we use 30),

KnowBert’s runtime is independent of the size the

KB, as it only considers a small subset of all pos-

sible entities for any given text. As the candidate

selection is rule-based and fixed, it is fast and in

our implementation is performed asynchronously

on CPU. The only overhead for scaling up the size

of the KB is the memory footprint to store the en-

tity embeddings.

3.3 KAR

The Knowledge Attention and Recontextualiza-

tion component (KAR) is the heart of KnowBert.

The KAR accepts as input the contextual rep-

resentations at a particular layer, Hi, and com-

putes knowledge enhanced representations H
′
i =

KAR(Hi, C). This is fed into the next pretrained

layer, Hi+1 = TransformerBlock(H′
i), and the

remainder of BERT is run as usual.

In this section, we describe the KAR’s key com-

ponents: mention-span representations, retrieval

of relevant entity embeddings using an entity

linker, update of mention-span embeddings with

retrieved information, and recontextualization of

entity-span embeddings with word-to-entity-span

attention. We describe the KAR for a single KB,

but extension to multiple KBs at different layers is

straightforward. See Fig. 1 for an overview.

Mention-span representations The KAR starts

with the KB entity candidate selector that provides

a list of candidate mentions which it uses to com-

pute mention-span representations. Hi is first pro-
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Figure 1: The Knowledge Attention and Recontextualization (KAR) component. BERT word piece representations

(Hi) are first projected to H
proj
i

(1), then pooled over candidate mentions spans (2) to compute S, and contextual-

ized into S
e using mention-span self-attention (3). An integrated entity linker computes weighted average entity

embeddings Ẽ (4), which are used to enhance the span representations with knowledge from the KB (5), comput-

ing S
′e. Finally, the BERT word piece representations are recontextualized with word-to-entity-span attention (6)

and projected back to the BERT dimension (7) resulting in H
′
i
.

jected to the entity dimension (E, typically 200 or

300, see Sec. 4.1) with a linear projection,

H
proj
i = HiW

proj
1

+ b
proj
1 . (1)

Then, the KAR computes C mention-span repre-

sentations sm ∈ R
E , one for each candidate men-

tion, by pooling over all word pieces in a mention-

span using the self-attentive span pooling from

Lee et al. (2017). The mention-spans are stacked

into a matrix S ∈ R
C×E .

Entity linker The entity linker is responsible for

performing entity disambiguation for each poten-

tial mention from among the available candidates.

It first runs mention-span self-attention to compute

S
e = TransformerBlock(S). (2)

The span self-attention is identical to the typical

transformer layer, exception that the self-attention

is between mention-span vectors instead of word

piece vectors. This allows KnowBert to incorpo-

rate global information into each linking decision

so that it can take advantage of entity-entity co-

occurrence and resolve which of several overlap-

ping candidate mentions should be linked.1

Following Kolitsas et al. (2018), Se is used to

score each of the candidate entities while incorpo-

rating the candidate entity prior from the KB. Each

candidate span m has an associated mention-span

1We found a small transformer layer with four atten-
tion heads and a 1024 feed-forward hidden dimension was
sufficient, significantly smaller than each of the layers in
BERT. Early experiments demonstrated the effectiveness of
this layer with improved entity linking performance.

vector s
e
m (computed via Eq. 2), Mm candidate

entities with embeddings emk (from the KB), and

prior probabilities pmk. We compute Mm scores

using the prior and dot product between the entity-

span vectors and entity embeddings,

ψmk = MLP(pmk, s
e
m · emk), (3)

with a two-layer MLP (100 hidden dimensions).

If entity linking (EL) supervision is available,

we can compute a loss with the gold entity emg.

The exact form of the loss depends on the KB, and

we use both log-likelihood,

LEL = −
∑

m

log

(

exp(ψmg)
∑

k exp(ψmk)

)

, (4)

and max-margin,

LEL =max(0, γ − ψmg) +
∑

emk 6=emg

max(0, γ + ψmk), (5)

formulations (see Sec. 4.1 for details).

Knowledge enhanced entity-span representa-

tions KnowBert next injects the KB entity in-

formation into the mention-span representations

computed from BERT vectors (sem) to form entity-

span representations. For a given span m, we first

disregard all candidate entities with score ψ below

a fixed threshold, and softmax normalize the re-

maining scores:

ψ̃mk =















exp(ψmk)
∑

ψmk≥δ

exp(ψmk)
, ψmk ≥ δ

0, ψmk < δ.
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Then the weighted entity embedding is

ẽm =
∑

k

ψ̃mkemk.

If all entity linking scores are below the thresh-

old δ, we substitute a special NULL embedding

for ẽm. Finally, the entity-span representations are

updated with the weighted entity embeddings

s
′e
m = s

e
m + ẽm, (6)

which are packed into a matrix S
′e ∈ R

C×E .

Recontextualization After updating the entity-

span representations with the weighted entity vec-

tors, KnowBert uses them to recontextualize the

word piece representations. This is accomplished

using a modified transformer layer that substi-

tutes the multi-headed self-attention with a multi-

headed attention between the projected word piece

representations and knowledge enhanced entity-

span vectors. As introduced by Vaswani et al.

(2017), the contextual embeddings Hi are used

for the query, key, and value in multi-headed self-

attention. The word-to-entity-span attention in

KnowBert substitutes H
proj
i for the query, and S

′e

for both the key and value:

H
′proj
i = MLP(MultiHeadAttn(H

proj
i ,S

′e,S
′e)).

This allows each word piece to attend to all

entity-spans in the context, so that it can propa-

gate entity information over long contexts. Af-

ter the multi-headed word-to-entity-span attention,

we run a position-wise MLP analogous to the stan-

dard transformer layer.2

Finally, H′proj
i is projected back to the BERT di-

mension with a linear transformation and a resid-

ual connection added:

H
′
i = H

′proj
i W

proj
2

+ b
proj
2 +Hi (7)

Alignment of BERT and entity vectors As

KnowBert does not place any restrictions on the

entity embeddings, it is essential to align them

with the pretrained BERT contextual representa-

tions. To encourage this alignment we initialize

W
proj
2

as the matrix inverse of W
proj
1

(Eq. 1). The

use of dot product similarity (Eq. 3) and residual

connection (Eq. 7) further aligns the entity-span

representations with entity embeddings.

2As for the multi-headed entity-span self-attention, we
found a small transformer layer to be sufficient, with four
attention heads and 1024 hidden units in the MLP.

Algorithm 1: KnowBert training method

Input: Pretrained BERT and J KBs

Output: KnowBert

for j = 1 . . . J do

Compute entity embeddings for KBj
if EL supervision available then

Freeze all network parameters except

those in (Eq. 1–3)

Train to convergence using (Eq. 4) or

(Eq. 5)

end

Initialize W
proj
2

as (W
proj
1

)−1

Unfreeze all parameters except entity

embeddings

Minimize

LKnowBert = LBERT +
∑j

i=1
LELi

end

3.4 Training Procedure

Our training regime incrementally pretrains in-

creasingly larger portions of KnowBert before

fine-tuning all trainable parameters in a multitask

setting with any available EL supervision. It is

similar in spirit to the “chain-thaw” approach in

Felbo et al. (2017), and is summarized in Alg. 1.

We assume access to a pretrained BERT model

and one or more KBs with their entity candidate

selectors. To add the first KB, we begin by pre-

training entity embeddings (if not already pro-

vided from another source), then freeze them in all

subsequent training, including task-specific fine-

tuning. If EL supervision is available, it is used

to pretrain the KB specific EL parameters, while

freezing the remainder of the network. Finally,

the entire network is fine-tuned to convergence by

minimizing

LKnowBert = LBERT + LEL.

We apply gradient updates to homogeneous

batches randomly sampled from either the unla-

beled corpus or EL supervision.

To add a second KB, we repeat the process, in-

serting it in any layer above the first one. When

adding a KB, the BERT layers above it will expe-

rience large gradients early in training, as they are

subject to the randomly initialized parameters as-

sociated with the new KB. They are thus expected

to move further from their pretrained values be-

fore convergence compared to parameters below

the KB. By adding KBs from bottom to top, we
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System PPL
Wikidata # params. # params. # params. Fwd. / Bwd.

MRR masked LM KAR entity embed. time

BERTBASE 5.5 0.09 110 0 0 0.25

BERTLARGE 4.5 0.11 336 0 0 0.75

KnowBert-Wiki 4.3 0.26 110 2.4 141 0.27

KnowBert-WordNet 4.1 0.22 110 4.9 265 0.31

KnowBert-W+W 3.5 0.31 110 7.3 406 0.33

Table 1: Comparison of masked LM perplexity, Wikidata probing MRR, and number of parameters (in millions)

in the masked LM (word piece embeddings, transformer layers, and output layers), KAR, and entity embeddings

for BERT and KnowBert. The table also includes the total time to run one forward and backward pass (in seconds)

on a TITAN Xp GPU (12 GB RAM) for a batch of 32 sentence pairs with total length 80 word pieces. Due to

memory constraints, the BERTLARGE batch is accumulated over two smaller batches.

minimize disruption of the network and decrease

the likelihood that training will fail. See Sec. 4.1

for details of where each KB was added.

The entity embeddings and selected candidates

contain lexical information (especially in the case

of WordNet), that will make the masked LM pre-

dictions significantly easier. To prevent leaking

into the masked word pieces, we adopt the BERT

strategy and replace all entity candidates from the

selectors with a special [MASK] entity if the can-

didate mention span overlaps with a masked word

piece.3 This prevents KnowBert from relying on

the selected candidates to predict masked word

pieces.

4 Experiments

4.1 Experimental Setup

We used the English uncased BERTBASE model

(Devlin et al., 2019) to train three versions

of KnowBert: KnowBert-Wiki, KnowBert-

WordNet, and KnowBert-W+W that includes both

Wikipedia and WordNet.

KnowBert-Wiki The entity linker in

KnowBert-Wiki borrows both the entity can-

didate selectors and embeddings from Ganea and

Hofmann (2017). The candidate selectors and

priors are a combination of CrossWikis, a large,

precomputed dictionary that combines statistics

from Wikipedia and a web corpus (Spitkovsky and

Chang, 2012), and the YAGO dictionary (Hoffart

et al., 2011). The entity embeddings use a skip-

gram like objective (Mikolov et al., 2013b) to

learn 300-dimensional embeddings of Wikipedia

3Following BERT, for 80% of masked word pieces all
candidates are replaced with [MASK], 10% are replaced with
random candidates and 10% left unmasked.

page titles directly from Wikipedia descriptions

without using any explicit graph structure between

nodes. As such, nodes in the KB are Wikipedia

page titles, e.g., Prince (musician). Ganea

and Hofmann (2017) provide pretrained embed-

dings for a subset of approximately 470K entities.

Early experiments with embeddings derived from

Wikidata relations4 did not improve results.

We used the AIDA-CoNLL dataset (Hoffart

et al., 2011) for supervision, adopting the stan-

dard splits. This dataset exhaustively annotates

entity links for named entities of person, organi-

zation and location types, as well as a miscella-

neous type. It does not annotate links to common

nouns or other Wikipedia pages. At both train and

test time, we consider all selected candidate spans

and the top 30 entities, to which we add the spe-

cial NULL entity to allow KnowBert to discrim-

inate between actual links and false positive links

from the selector. As such, KnowBert models both

entity mention detection and disambiguation in an

end-to-end manner. Eq. 5 was used as the objec-

tive.

KnowBert-WordNet Our WordNet KB com-

bines synset metadata, lemma metadata and the re-

lational graph. To construct the graph, we first ex-

tracted all synsets, lemmas, and their relationships

from WordNet 3.0 using the nltk interface. After

disregarding certain symmetric relationships (e.g.,

we kept the hypernym relationship, but removed

the inverse hyponym relationship) we were left

with 28 synset-synset and lemma-lemma relation-

ships. From these, we constructed a graph where

each node is either a synset or lemma, and intro-

4https://github.com/facebookresearch/

PyTorch-BigGraph
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System F1

WN-first sense baseline 65.2

ELMo 69.2

BERTBASE 73.1

BERTLARGE 73.9

KnowBert-WordNet 74.9

KnowBert-W+W 75.1

Table 2: Fine-grained WSD F1.

duced the special lemma in synset relation-

ship to link synsets and lemmas. The candidate se-

lector uses a rule-based lemmatizer without part-

of-speech (POS) information.5

Our embeddings combine both the graph and

synset glosses (definitions), as early experiments

indicated improved perplexity when using both

vs. just graph-based embeddings. We used

TuckER (Balazevic et al., 2019) to compute 200-

dimensional vectors for each synset and lemma

using the relationship graph. Then, we extracted

the gloss for each synset and used an off-the-

shelf state-of-the-art sentence embedding method

(Subramanian et al., 2018) to produce 2048-

dimensional vectors. These are concatenated to

the TuckER embeddings. To reduce the dimen-

sionality for use in KnowBert, the frozen 2248-

dimensional embeddings are projected to 200-

dimensions with a learned linear transformation.

For supervision, we combined the SemCor

word sense disambiguation (WSD) dataset (Miller

et al., 1994) with all lemma example usages from

WordNet6 and link directly to synsets. The loss

function is Eq. 4. At train time, we did not provide

gold lemmas or POS tags, so KnowBert must learn

to implicitly model coarse grained POS tags to dis-

ambiguate each word. At test time when evaluat-

ing we restricted candidate entities to just those

matching the gold lemma and POS tag, consistent

with the standard WSD evaluation.

Training details To control for the unlabeled

corpus, we concatenated Wikipedia and the Books

Corpus (Zhu et al., 2015) and followed the data

preparation process in BERT with the exception of

heavily biasing our dataset to shorter sequences of

128 word pieces for efficiency. Both KnowBert-

5https://spacy.io/
6To provide a fair evaluation on the WiC dataset which

is partially based on the same source, we excluded all WiC
train, development and test instances.

System AIDA-A AIDA-B

Daiber et al. (2013) 49.9 52.0

Hoffart et al. (2011) 68.8 71.9

Kolitsas et al. (2018) 86.6 82.6

KnowBert-Wiki 80.2 74.4

KnowBert-W+W 82.1 73.7

Table 3: End-to-end entity linking strong match, micro

averaged F1.

Wiki and KnowBert-WordNet insert the KB be-

tween layers 10 and 11 of the 12-layer BERTBASE

model. KnowBert-W+W adds the Wikipedia KB

between layers 10 and 11, with WordNet be-

tween layers 11 and 12. Earlier experiments with

KnowBert-WordNet in a lower layer had worse

perplexity. We generally followed the fine-tuning

procedure in Devlin et al. (2019); see supplemen-

tal materials for details.

4.2 Intrinsic Evaluation

Perplexity Table 1 compares masked LM per-

plexity for KnowBert with BERTBASE and

BERTLARGE. To rule out minor differences due to

our data preparation, the BERT models are fine-

tuned on our training data before being evalu-

ated. Overall, KnowBert improves the masked

LM perplexity, with all KnowBert models outper-

forming BERTLARGE, despite being derived from

BERTBASE.

Factual recall To test KnowBert’s ability to re-

call facts from the KBs, we extracted 90K tu-

ples from Wikidata (Vrandečić and Krötzsch,

2014) for 17 different relationships such as

companyFoundedBy. Each tuple was written

into natural language such as “Adidas was founded

by Adolf Dassler” and used to construct two test

instances, one that masks out the subject and one

that masks the object. Then, we evaluated whether

a model could recover the masked entity by com-

puting the mean reciprocal rank (MRR) of the

masked word pieces. Table 1 displays a sum-

mary of the results (see supplementary material

for results across all relationship types). Overall,

KnowBert-Wiki is significantly better at recalling

facts than both BERTBASE and BERTLARGE, with

KnowBert-W+W better still.

Speed KnowBert is almost as fast as BERTBASE

(8% slower for KnowBert-Wiki, 32% for

KnowBert-W+W) despite adding a large number
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System LM P R F1

Zhang et al. (2018) — 69.9 63.3 66.4

Alt et al. (2019) GPT 70.1 65.0 67.4

Shi and Lin (2019) BERTBASE 73.3 63.1 67.8

Zhang et al. (2019) BERTBASE 70.0 66.1 68.0

Soares et al. (2019) BERTLARGE — — 70.1

Soares et al. (2019) BERTLARGE† — — 71.5

KnowBert-W+W BERTBASE 71.6 71.4 71.5

Table 4: Single model test set results on the TACRED

relationship extraction dataset. † with MTB pretrain-

ing.

of (frozen) parameters in the entity embed-

dings (Table 1). KnowBert is much faster than

BERTLARGE. By taking advantage of the already

high capacity model, the number of trainable

parameters added by KnowBert is a fraction of

the total parameters in BERT. The faster speed is

partially due to the entity parameter efficiency in

KnowBert as only as small fraction of parameters

in the entity embeddings are used for any given

input due to the sparse linker. Our candidate

generators consider the top 30 candidates and

produce approximately O(number tokens) can-

didate spans. For a typical 25 token sentence,

approximately 2M entity embedding parameters

are actually used. In contrast, BERTLARGE uses the

majority of its 336M parameters for each input.

Integrated EL It is also possible to evaluate the

performance of the integrated entity linkers in-

side KnowBert using diagnostic probes without

any further fine-tuning. As these were trained in

a multitask setting primarily with raw text, we do

not a priori expect high performance as they must

balance specializing for the entity linking task and

learning general purpose representations suitable

for language modeling.

Table 2 displays fine-grained WSD F1 using the

evaluation framework from Navigli et al. (2017)

and the ALL dataset (combing SemEval 2007,

2013, 2015 and Senseval 2 and 3). By linking to

nodes in our WordNet graph and restricting to gold

lemmas at test time we can recast the WSD task

under our general entity linking framework. The

ELMo and BERT baselines use a nearest neighbor

approach trained on the SemCor dataset, similar

to the evaluation in Melamud et al. (2016), which

has previously been shown to be competitive with

task-specific architectures (Raganato et al., 2017).

As can be seen, KnowBert provides competi-

tive performance, and KnowBert-W+W is able to

System LM F1

Wang et al. (2016) — 88.0

Wang et al. (2019b) BERTBASE 89.0

Soares et al. (2019) BERTLARGE 89.2

Soares et al. (2019) BERTLARGE† 89.5

KnowBert-W+W BERTBASE 89.1

Table 5: Test set F1 for SemEval 2010 Task 8 relation-

ship extraction. † with MTB pretraining.

match the performance of KnowBert-WordNet de-

spite incorporating both Wikipedia and WordNet.

Table 3 reports end-to-end entity linking per-

formance for the AIDA-A and AIDA-B datasets.

Here, KnowBert’s performance lags behind the

current state-of-the-art model from Kolitsas et al.

(2018), but still provides strong performance com-

pared to other established systems such as AIDA

(Hoffart et al., 2011) and DBpedia Spotlight

(Daiber et al., 2013). We believe this is due to

the selective annotation in the AIDA data that

only annotates named entities. The CrossWikis-

based candidate selector used in KnowBert gen-

erates candidate mentions for all entities includ-

ing common nouns from which KnowBert may be

learning to extract information, at the detriment of

specializing to maximize linking performance for

AIDA.

4.3 Downstream Tasks

This section evaluates KnowBert on downstream

tasks to validate that the addition of knowledge

improves performance on tasks expected to benefit

from it. Given the overall superior performance of

KnowBert-W+W on the intrinsic evaluations, we

focus on it exclusively for evaluation in this sec-

tion. The main results are included in this section;

see the supplementary material for full details.

The baselines we compare against are

BERTBASE, BERTLARGE, the pre-BERT state

of the art, and two contemporaneous papers that

add similar types of knowledge to BERT. ERNIE

(Zhang et al., 2019) uses TAGME (Ferragina

and Scaiella, 2010) to link entities to Wikidata,

retrieves the associated entity embeddings, and

fuses them into BERTBASE by fine-tuning. Soares

et al. (2019) learns relationship representations by

fine-tuning BERTLARGE with large scale “match-

ing the blanks” (MTB) pretraining using entity

linked text.
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System Accuracy

ELMo† 57.7

BERTBASE
† 65.4

BERTLARGE
† 65.5

BERTLARGE
†† 69.5

KnowBert-W+W 70.9

Table 6: Test set results for the WiC dataset (v1.0).
†Pilehvar and Camacho-Collados (2019)
††Wang et al. (2019a)

Relation extraction Our first task is relation ex-

traction using the TACRED (Zhang et al., 2017)

and SemEval 2010 Task 8 (Hendrickx et al., 2009)

datasets. Systems are given a sentence with

marked a subject and object, and asked to pre-

dict which of several different relations (or no re-

lation) holds. Following Soares et al. (2019), our

KnowBert model uses special entity tokens [E1],

[/E1], [E2], [/E2] to mark the location of the

subject and object in the input sentence, then con-

catenates the contextual word representations for

[E1] and [E2] to predict the relationship. For

TACRED, we also encode the subject and object

types with special tokens and concatenate them to

the end of the sentence.

For TACRED (Table 4), KnowBert-W+W sig-

nificantly outperforms the comparable BERTBASE

systems including ERNIE by 3.5%, improves over

BERTLARGE by 1.4%, and is able to match the per-

formance of the relationship specific MTB pre-

training in Soares et al. (2019). For SemEval

2010 Task 8 (Table 5), KnowBert-W+W F1 falls

between the entity aware BERTBASE model from

Wang et al. (2019b), and the BERTLARGE model

from Soares et al. (2019).

Words in Context (WiC) WiC (Pilehvar and

Camacho-Collados, 2019) is a challenging task

that presents systems with two sentences both con-

taining a word with the same lemma and asks them

to determine if they are from the same sense or not.

It is designed to test the quality of contextual word

representations. We follow standard practice and

concatenate both sentences with a [SEP] token

and fine-tune the [CLS] embedding. As shown

in Table 6, KnowBert-W+W sets a new state of

the art for this task, improving over BERTLARGE

by 1.4% and reducing the relative gap to 80% hu-

man performance by 13.3%.

System P R F1

UFET 68.8 53.3 60.1

BERTBASE 76.4 71.0 73.6

ERNIE 78.4 72.9 75.6

KnowBert-W+W 78.6 73.7 76.1

Table 7: Test set results for entity typing using the nine

general types from (Choi et al., 2018).

Entity typing We also evaluated KnowBert-

W+W using the entity typing dataset from Choi

et al. (2018). To directly compare to ERNIE, we

adopted the evaluation protocol in Zhang et al.

(2019) which considers the nine general entity

types.7 Our model marks the location of a target

span with the special [E] and [/E] tokens and

uses the representation of the [E] token to predict

the type. As shown in Table 7, KnowBert-W+W

shows an improvement of 0.6% F1 over ERNIE

and 2.5% over BERTBASE.

5 Conclusion

We have presented an efficient and general method

to insert prior knowledge into a deep neural model.

Intrinsic evaluations demonstrate that the addition

of WordNet and Wikipedia to BERT improves the

quality of the masked LM and significantly im-

proves its ability to recall facts. Downstream eval-

uations demonstrate improvements for relation-

ship extraction, entity typing and word sense dis-

ambiguation datasets. Future work will involve in-

corporating a diverse set of domain specific KBs

for specialized NLP applications.
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